JP2017135456A - MEMS element - Google Patents

MEMS element Download PDF

Info

Publication number
JP2017135456A
JP2017135456A JP2016011580A JP2016011580A JP2017135456A JP 2017135456 A JP2017135456 A JP 2017135456A JP 2016011580 A JP2016011580 A JP 2016011580A JP 2016011580 A JP2016011580 A JP 2016011580A JP 2017135456 A JP2017135456 A JP 2017135456A
Authority
JP
Japan
Prior art keywords
movable electrode
support
electrode
spring layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016011580A
Other languages
Japanese (ja)
Other versions
JP6606439B2 (en
Inventor
典生 古川
Norio Furukawa
典生 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2016011580A priority Critical patent/JP6606439B2/en
Publication of JP2017135456A publication Critical patent/JP2017135456A/en
Application granted granted Critical
Publication of JP6606439B2 publication Critical patent/JP6606439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow for compaction without decreasing the sensitivity or mechanical strength.SOLUTION: A MEMS element has a fixed electrode 8 fixed to the support layer 7 of a substrate 1, a displaceable movable electrode 6 placed substantially in parallel with the fixed electrode 8, and a spring layer 3 fixed to the support layer 7 of the substrate 1 at a position above or below the movable electrode 6. The movable electrode 6 is mechanically supported for the spring layer 3 via a pin-like support 5 and connected electrically, and one turn or more of spiral slits 12 are formed around the spring layer 3 of the pin-like support 5. Since no stress is applied from the substrate 1 or support member to the movable electrode 6, the whole movable electrode can displace in the horizontal direction and vertical direction, and thereby the sensitivity is improved.SELECTED DRAWING: Figure 1

Description

本発明はMEMS素子、特にマイクロフォン、各種センサ等として用いられるMEMS素子に関する。   The present invention relates to a MEMS element, particularly a MEMS element used as a microphone, various sensors, and the like.

従来から、マイクロフォン、センサ、アクチュエータ、電子回路、機械要素部品等に、MEMS(Micro Electro Mechanical System)素子が用いられており、例えば携帯機器の市場においては、MEMS素子のマイクロフォンがエレクトレットコンデンサマイクロフォンに置き換わり、近年では小型化に加えて高感度化の要求が高まっている。   Conventionally, MEMS (Micro Electro Mechanical System) elements have been used for microphones, sensors, actuators, electronic circuits, mechanical component parts, etc. For example, in the market of portable devices, the microphone of the MEMS element is replaced with an electret condenser microphone. In recent years, there has been an increasing demand for higher sensitivity in addition to downsizing.

このようなマイクロフォンは、半導体基板上に作製された可動電極と固定電極とが平行平板型コンデンサを形成し、音圧によって可動電極が振動して生じる静電容量変位を電圧変化に変換することにより、音声を電気信号に変換するものである。   In such a microphone, the movable electrode and the fixed electrode formed on the semiconductor substrate form a parallel plate capacitor, and the capacitance displacement caused by the vibration of the movable electrode due to sound pressure is converted into a voltage change. The sound is converted into an electric signal.

図8に、従来のMEMSマイクロフォンの一例(断面図)が示されており、このマイクロフォンでは、半導体基板61に絶縁膜62を介して可動電極(ダイヤフラム)66が形成されると共に、支持層(犠牲層の一部からなる)67を介して固定電極68が設けられる。この固定電極68と可動電極66は、平行となるように配置され、上記固定電極68には、その上に絶縁膜69を設けられた状態で多数の音孔71が形成される。   FIG. 8 shows an example (cross-sectional view) of a conventional MEMS microphone. In this microphone, a movable electrode (diaphragm) 66 is formed on a semiconductor substrate 61 via an insulating film 62, and a support layer (sacrificial). A fixed electrode 68 is provided via 67 (consisting of part of the layer). The fixed electrode 68 and the movable electrode 66 are arranged so as to be parallel to each other, and a large number of sound holes 71 are formed in the fixed electrode 68 with an insulating film 69 provided thereon.

特開2014−233059号公報JP, 2014-233059, A

ところで、マイクロフォンの感度は、音圧を受けた可動電極66が変位して生じる静電容量の変化率を大きくすることで向上するが、図8に示されるような一般的なMEMSマイクロフォンは、可動電極66の周囲が基板61や支持層67等で固定されているため、可動電極66の中の湾曲のみで静電容量を変化させている。
一方、可動電極66では、それにかかる引張応力が小さい程、湾曲し易くなって感度は向上するが、逆に圧縮応力に転じてしまうと可動電極66が撓み、マイクロフォンとして動作しなくなる。そのため、可動電極66の成膜工程とその後のアニール工程で可能な限り小さな引張応力が維持されるように設定することが重要とされ、可動電極66に用いる材質も限定されている。
By the way, the sensitivity of the microphone is improved by increasing the rate of change in capacitance caused by the displacement of the movable electrode 66 that receives the sound pressure. However, a general MEMS microphone as shown in FIG. Since the periphery of the electrode 66 is fixed by the substrate 61, the support layer 67, etc., the capacitance is changed only by the curvature in the movable electrode 66.
On the other hand, in the movable electrode 66, the smaller the tensile stress applied thereto, the easier it is to bend and the sensitivity is improved, but conversely, if it turns to compressive stress, the movable electrode 66 bends and does not operate as a microphone. For this reason, it is important to set the tensile stress as small as possible in the film forming process of the movable electrode 66 and the subsequent annealing process, and the material used for the movable electrode 66 is also limited.

従来のマイクロフォンでは、上述のように可動電極66の周囲が固定されているため、可動電極66の全体の変位により静電容量が変化することはなく、可動電極66の径が小さくなる程、その変位が小さくなり感度が低下するという問題がある。そのため、感度を維持したまま小型化を図ることも困難である。   In the conventional microphone, since the periphery of the movable electrode 66 is fixed as described above, the capacitance does not change due to the entire displacement of the movable electrode 66, and the smaller the diameter of the movable electrode 66, the more There is a problem that the sensitivity is lowered because the displacement is reduced. Therefore, it is difficult to reduce the size while maintaining the sensitivity.

上記特許文献1に示されるマイクロフォンでは、可動電極の外周にスリットを設けて変位し易くしている。一方、スリット周辺にかかる応力集中を緩和するため、可動電極の厚さを厚くする必要があり、可動電極の変位を妨げてしまっていた。そのため、応力の集中を緩和しつつ、可動電極の変位を妨げない方法が求められている。   In the microphone disclosed in Patent Document 1, a slit is provided on the outer periphery of the movable electrode to facilitate displacement. On the other hand, in order to alleviate the stress concentration around the slit, it is necessary to increase the thickness of the movable electrode, which hinders displacement of the movable electrode. Therefore, there is a demand for a method that does not hinder the displacement of the movable electrode while reducing the stress concentration.

また、マイクロフォンにおいて、可動電極66の周囲が固定される条件で小型化すると、共振周波数が高音域側にシフトし、中低音域の感度が低下してしまう。この中低音域の感度低下を防ぐために空気振動の抵抗成分、所謂音響抵抗を増加させる方法があり、例えば可動電極66と固定電極68とのギャップに遮蔽物を設けることで、音響抵抗を増加させることが可能となるが、遮蔽物は静電容量の変化に寄与できるコンデンサの実効面積を減らすため、中低音域の感度低下を防ぐ一方で、音域全体の感度を低下させるという不都合がある。   Further, if the microphone is miniaturized under the condition that the periphery of the movable electrode 66 is fixed, the resonance frequency is shifted to the high sound region side, and the sensitivity in the middle and low sound region is lowered. There is a method of increasing the resistance component of the air vibration, so-called acoustic resistance, in order to prevent the lowering of the sensitivity in the mid-low range. For example, by providing a shield in the gap between the movable electrode 66 and the fixed electrode 68, the acoustic resistance is increased. However, since the shielding object reduces the effective area of the capacitor that can contribute to the change in capacitance, there is a disadvantage in that the sensitivity of the entire sound range is lowered while the sensitivity of the mid-low range is prevented.

更に、上記可動電極66を薄くしたり、固定のための支持部(62,67)を減らしたりすることで、可動電極66は変位し易くなり感度を向上させることができるが、機械的強度が低下して可動電極66が破壊され易いといった問題が生じる。以上のことから、従来のMEMS素子としてのマイクロフォンでは、感度の低下或いは機械的強度の低下のいずれかを伴うために小型化することが困難であった。
このような感度の低下や機械的強度の低下は、上記マイクロフォンに限らず、変位や振動を電気量に変換する他のMEMS素子についても同様に解決課題となる。
Furthermore, by reducing the thickness of the movable electrode 66 or reducing the number of support portions (62, 67) for fixing, the movable electrode 66 can be easily displaced and the sensitivity can be improved, but the mechanical strength is increased. There arises a problem that the movable electrode 66 is liable to be destroyed due to the decrease. From the above, it has been difficult to reduce the size of a conventional microphone as a MEMS element because it involves either a decrease in sensitivity or a decrease in mechanical strength.
Such a decrease in sensitivity and a decrease in mechanical strength are not only limited to the above-described microphone, but are also a problem to be solved for other MEMS elements that convert displacement and vibration into an electric quantity.

本発明は上記問題点に鑑みてなされたものであり、その目的は、感度の低下或いは機械的強度の低下を伴うことなく、小型化が可能となるMEMS素子を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a MEMS device that can be miniaturized without a decrease in sensitivity or a decrease in mechanical strength.

上記目的を達成するために、請求項1の発明に係るMEMS素子は、基板の支持層に固定された固定電極と、この固定電極に略平行に配置された変位可能な可動電極と、この可動電極の上又は下の位置で上記基板の支持層に固定されたバネ層と、を有し、上記可動電極を、上記バネ層に対し支持体を介して機械的に支持すると共に電気的に接続してなることを特徴とする。
請求項2の発明は、平面視において上記支持体を点状又は線状として複数配置し、上記バネ層には上記点状又は線状の支持体の周りに、少なくとも1巻以上の渦巻き状スリットを形成したことを特徴とする。
請求項3の発明は、平面視において上記支持体を上記バネ層の周囲に環状に配置し、上記バネ層には上記環状の支持体の外周に沿って1巻以上の渦巻き状スリットを形成したことを特徴とする。
In order to achieve the above object, a MEMS device according to the invention of claim 1 includes a fixed electrode fixed to a support layer of a substrate, a displaceable movable electrode disposed substantially parallel to the fixed electrode, and the movable element. A spring layer fixed to the support layer of the substrate at a position above or below the electrode, and mechanically supporting the movable electrode with respect to the spring layer via a support and electrically connecting It is characterized by becoming.
According to a second aspect of the present invention, a plurality of the support bodies are arranged in the form of dots or lines in plan view, and the spring layer has at least one spiral slit around the dot or line support bodies. Is formed.
According to a third aspect of the present invention, the support body is annularly arranged around the spring layer in a plan view, and one or more spiral slits are formed in the spring layer along the outer periphery of the annular support body. It is characterized by that.

以上の構成によれば、例えばバネ層に形成した渦巻き状スリットの中心部に支持体が設けられ、この支持体を介して可動電極がバネ層に取り付けられることにより、可動電極が渦巻きバネを介してバネ層の上又は下に支持される状態となる。また、この可動電極は支持体(コンタクトとする場合もある)を介してバネ層へ、そして回路部へ電気的に接続される。
この結果、可動電極にかかる基板や支持層等からの応力がなくなると共に、可動電極全体が水平方向だけでなく垂直方向にも変位できる状態となり、例えばマイクロフォンでは、音圧に対する敏感な変位、振動により、良好な感度が得られる。
According to the above configuration, for example, the support is provided at the center of the spiral slit formed in the spring layer, and the movable electrode is attached to the spring layer via the support, so that the movable electrode is interposed via the spiral spring. To be supported above or below the spring layer. The movable electrode is electrically connected to the spring layer and to the circuit portion through a support (which may be a contact).
As a result, stress from the substrate or support layer applied to the movable electrode is eliminated, and the entire movable electrode can be displaced not only in the horizontal direction but also in the vertical direction. For example, in a microphone, due to sensitive displacement and vibration with respect to sound pressure. Good sensitivity can be obtained.

本発明によれば、可動電極が水平方向及び垂直方向(全方位方向)に変位可能となるため、可動電極の中の変位、振動及び可動電極全体の変位、振動を得ることができ、音圧に対する静電容量の変化率の正確性が担保され、感度も良好となるので、感度の低下或いは機械的強度の低下を伴うことなく、小型化が可能となる   According to the present invention, since the movable electrode can be displaced in the horizontal direction and the vertical direction (omnidirectional direction), the displacement in the movable electrode, the vibration, the displacement of the entire movable electrode, and the vibration can be obtained. As the accuracy of the rate of change in capacitance with respect to is ensured and the sensitivity is improved, it is possible to reduce the size without lowering the sensitivity or lowering the mechanical strength.

また、渦巻き状スリットを設けることで、支持層からバネ層に与えられる水平方向の応力をスリットが吸収し、可動電極は水平方向へ変位しながらも平板を保つことができる。このため、製膜工程での応力制御の幅が広がり、従来可動電極として使用できなかった機械的強度の高い材質や複合材料を用いることが可能となる。
更に、バネ層の材質、渦巻き状スリット数、スリット形状、スリット幅、巻き数、可動電極の質量を選択することにより、共振周波数の帯域を広く設計することが可能となり、小型化した際の中低音域の感度低下を抑えられるという効果がある。
Further, by providing the spiral slit, the slit absorbs the horizontal stress applied from the support layer to the spring layer, and the movable electrode can keep the flat plate while being displaced in the horizontal direction. For this reason, the range of stress control in the film forming process is widened, and it becomes possible to use a material having high mechanical strength or a composite material that could not be used as a movable electrode in the past.
Furthermore, by selecting the material of the spring layer, the number of spiral slits, the slit shape, the slit width, the number of windings, and the mass of the movable electrode, it is possible to design a wide resonance frequency band, which is There is an effect that it is possible to suppress a decrease in sensitivity in the low frequency range.

本発明の第1実施例のMEMS素子であるマイクロフォンの構成を示す断面図である。It is sectional drawing which shows the structure of the microphone which is a MEMS element of 1st Example of this invention. 第1実施例のマイクロフォンの構成を示し、固定電極部分を除いた状態の平面図である。It is a top view of the state which showed the structure of the microphone of 1st Example and excluded the fixed electrode part. 第1実施例のバネ層の渦巻き状スリットをキャビティ側からみた平面図である。It is the top view which looked at the spiral slit of the spring layer of 1st Example from the cavity side. 第1実施例の渦巻き状スリットの部分を示し、図3のA−A方向の断面図である。FIG. 4 is a cross-sectional view taken along the line AA of FIG. 3, showing a spiral slit portion of the first embodiment. 第1実施例の渦巻き状スリットの変形例を示す平面図である。It is a top view which shows the modification of the spiral slit of 1st Example. 第2実施例のマイクロフォン装置の構成を示し、図(A)は固定電極部分を除いた状態の平面図、図(B)は図(A)の100部分の拡大図である。The structure of the microphone apparatus of 2nd Example is shown, A figure (A) is a top view of the state except a fixed electrode part, A figure (B) is an enlarged view of 100 part of a figure (A). 第3実施例のマイクロフォンの構成を示し、固定電極部分を除いた状態の平面図である。It is a top view of the state which showed the structure of the microphone of 3rd Example and remove | excluded the fixed electrode part. 従来例のマイクロフォンの構成を示す断面図である。It is sectional drawing which shows the structure of the microphone of a prior art example.

図1乃至図4に、第1実施例のMEMS素子であるマイクロフォンの構成が示されており、図1に示されるように、マイクロフォンは、中央にキャビティ30を有する半導体基板1、この基板1上に形成された絶縁膜2、この絶縁膜2上に形成され、中央に開口を有するバネ層(断面を示す斜線は省略)3、このバネ層3の中央部開口3aの周辺に所定の間隔で配置され(バネ層のホールに接続され)、電気的接続(コンタクト)を兼ねるピン状支持体5、このピン状支持体5が取り付けられる可動電極6が設けられる。この可動電極6は、圧力の作用で変位可能な膜(ダイヤフラム)からなる電極である。   1 to 4 show a configuration of a microphone that is a MEMS element according to the first embodiment. As shown in FIG. 1, the microphone includes a semiconductor substrate 1 having a cavity 30 in the center, and the substrate 1. The insulating film 2 formed on the insulating film 2, the spring layer formed on the insulating film 2 and having an opening in the center (the hatched portion indicating the cross section is omitted), and around the central opening 3 a of the spring layer 3 at a predetermined interval A pin-shaped support 5 that is disposed (connected to the hole of the spring layer) and also serves as an electrical connection (contact), and a movable electrode 6 to which the pin-shaped support 5 is attached are provided. The movable electrode 6 is an electrode made of a film (diaphragm) that can be displaced by the action of pressure.

また、上記バネ層3の上方で支持層(犠牲層)7を介して可動電極6と平行に設置される固定電極8、この固定電極8を保持する絶縁膜9が設けられる。上記の固定電極8は、絶縁層9に保持されて支持層7に支持されることで、可動電極6との間にギャップ10を形成する。上記固定電極8及び絶縁膜9には、複数の音孔11が設けられる。
そして、実施例では、図2乃至図4に示されるように、バネ層3の中央開口3aの周辺において上記ピン状支持体(平面視において点状に設けた支持体)5を中心とする円形渦巻き状のスリット12が複数設けられる。
Further, a fixed electrode 8 provided in parallel with the movable electrode 6 via a support layer (sacrificial layer) 7 above the spring layer 3 and an insulating film 9 for holding the fixed electrode 8 are provided. The fixed electrode 8 is held by the insulating layer 9 and supported by the support layer 7, thereby forming a gap 10 with the movable electrode 6. The fixed electrode 8 and the insulating film 9 are provided with a plurality of sound holes 11.
In the embodiment, as shown in FIGS. 2 to 4, a circular shape centering on the pin-like support body (support body provided in a dotted shape in plan view) 5 around the central opening 3 a of the spring layer 3. A plurality of spiral slits 12 are provided.

上記バネ層3、ピン状支持体5及び可動電極6は、音圧を電気信号として取り出すため導電性材料で形成され、バネ層3の外周の一部が図示しない外部電極に接続される。なお、バネ層3、ピン状支持体5において、導電性材料で形成される部分を一部としてもよい。上記固定電極8においても、導電性材料で形成された固定電極8の一部が外周に引き出されて図示しない外部電極に接続される。
また、バネ層3としては、不純物を添加したポリシリコン膜の他に、チタン又はタングステンなどの高融点金属やポリシリコン膜と金属膜を反応させたシリサイド化合物を用い、また表面に導電性があればよいため、例えば窒化膜などの絶縁性膜の上に高融点金属を堆積した積層膜とすることもできる。
上記可動電極6は、平板キャパシタを形成する電極部とピン状支持体5(全部又は一部)が電気的に接続されていればよく、不純物を添加したポリシリコン膜の他に、チタン又はタングステン等の高融点金属、或いは導電性材料の上部に例えば窒化膜などの絶縁性膜を積層したものを用いることができる。
The spring layer 3, the pin-like support 5 and the movable electrode 6 are made of a conductive material for taking out sound pressure as an electric signal, and a part of the outer periphery of the spring layer 3 is connected to an external electrode (not shown). In addition, in the spring layer 3 and the pin-shaped support body 5, it is good also considering a part formed with an electroconductive material as a part. Also in the fixed electrode 8, a part of the fixed electrode 8 made of a conductive material is drawn out to the outer periphery and connected to an external electrode (not shown).
In addition to the polysilicon film to which impurities are added, the spring layer 3 uses a refractory metal such as titanium or tungsten or a silicide compound obtained by reacting a polysilicon film and a metal film, and has a conductive surface. Therefore, for example, a laminated film in which a refractory metal is deposited on an insulating film such as a nitride film may be used.
The movable electrode 6 has only to be electrically connected to the electrode portion forming the flat capacitor and the pin-like support 5 (all or part). In addition to the polysilicon film doped with impurities, titanium or tungsten It is possible to use a high melting point metal such as a material having an insulating film such as a nitride film stacked on a conductive material.

上記バネ層3の中央開口の周囲に設けられた渦巻き状スリット12は、図3,図4に示されるように、渦巻きバネ部を構成し、この渦巻き状スリット12の中心に、可動電極6を支持するピン状支持体5を配置することにより、可動電極6を複数の渦巻きバネ部で支持する形となる。この渦巻き状スリット12は、少なくとも1巻以上の渦巻きで形成すればよく、これによって、水平方向及び垂直方向に変位することが可能となる。   As shown in FIGS. 3 and 4, the spiral slit 12 provided around the central opening of the spring layer 3 constitutes a spiral spring portion, and the movable electrode 6 is placed at the center of the spiral slit 12. By arranging the pin-like support 5 to be supported, the movable electrode 6 is supported by a plurality of spiral springs. The spiral slit 12 may be formed by at least one or more spirals, and can thereby be displaced in the horizontal direction and the vertical direction.

上記マイクロフォンの構成によれば、音圧による空気振動が固定電極8及び絶縁膜9に形成された音孔11を通って可動電極6へ伝わり、この可動電極6がバネ層3の渦巻き状スリット12により形成された渦巻きバネ部に支持されることで、可動電極6は固定電極8と平行のままで変位・振動し、この変位・振動により生じる可動電極6と固定電極8との間の静電容量の変化が電気信号に変換される。この場合の可動電極6の変位・振動は、電極の中の振動だけでなく、電極全体の水平方向及び垂直方向の振動も加わったものとなり、これにより音圧を良好な感度で電気信号へ変換できることになる。   According to the configuration of the microphone, air vibration due to sound pressure is transmitted to the movable electrode 6 through the sound hole 11 formed in the fixed electrode 8 and the insulating film 9, and the movable electrode 6 is a spiral slit 12 of the spring layer 3. The movable electrode 6 is displaced and vibrated while being parallel to the fixed electrode 8 by being supported by the spiral spring portion formed by the above-described electrostatic force between the movable electrode 6 and the fixed electrode 8 generated by the displacement and vibration. The change in capacitance is converted into an electrical signal. In this case, the displacement / vibration of the movable electrode 6 includes not only the vibration in the electrode but also the horizontal and vertical vibrations of the entire electrode, thereby converting the sound pressure into an electrical signal with good sensitivity. It will be possible.

また、可動電極6がバネ層3の渦巻き状スリット12のバネ部で支持されるので、基板1や支持層7等の支持部材(可動電極6の周囲)から可動電極6へ生じる応力が緩和される。即ち、可動電極6が支持層等に直接固定される条件で、可動電極6に圧縮応力がかかる場合は外側へ変位し、可動電極6に引張応力がかかる場合には内側へ変位するが、実施例においては、これらの応力が渦巻き状のスリット12により吸収され、可動電極6の垂直方向及び水平方向の変位が可能となるため、音圧又は応力のいずれを受けても可動電極6と固定電極8との平行が保たれ、高い感度が維持される。   In addition, since the movable electrode 6 is supported by the spring portion of the spiral slit 12 of the spring layer 3, stress generated from the support member (around the movable electrode 6) such as the substrate 1 and the support layer 7 is relieved. The That is, when the movable electrode 6 is directly fixed to the support layer or the like, when the movable electrode 6 is subjected to compressive stress, the movable electrode 6 is displaced outward, and when the movable electrode 6 is subjected to tensile stress, the movable electrode 6 is displaced inward. In the example, since these stresses are absorbed by the spiral slit 12 and the movable electrode 6 can be displaced in the vertical direction and the horizontal direction, the movable electrode 6 and the fixed electrode can be subjected to either sound pressure or stress. 8 is maintained in parallel, and high sensitivity is maintained.

また、バネ層3の中央部に設けた開口3aは必須の構成ではないが、実施例では、この開口3aを形成することによっても応力が緩和されるようにしている。即ち、バネ層3の外周は絶縁膜2と支持層7で固定・支持されており、これらの支持部材から圧縮応力或いは引張応力が与えられるが、中央部に開口3aを設けることで、バネ層3引いては可動電極6にかかる応力が緩和されるという利点がある。   Further, the opening 3a provided in the central portion of the spring layer 3 is not essential, but in the embodiment, the stress can be relieved also by forming the opening 3a. That is, the outer periphery of the spring layer 3 is fixed and supported by the insulating film 2 and the support layer 7, and a compressive stress or a tensile stress is applied from these support members, but by providing an opening 3a in the central portion, the spring layer By subtracting 3, there is an advantage that the stress applied to the movable electrode 6 is relaxed.

図5に、第1実施例の渦巻きはスリットの変形例が示されており、図5の渦巻き状スリット13のように、スリットが中心から徐々に拡がるように設け、バネ層3のスリット間の線幅が太くなる螺旋形のスリットとしてもよい。   FIG. 5 shows a modified example of the spiral of the first embodiment. As shown in the spiral slit 13 of FIG. 5, the spiral is provided so as to gradually expand from the center, and between the slits of the spring layer 3. It may be a spiral slit with a thick line width.

図6に、第2実施例のマイクロフォンの構成が示されており、この第2実施例は、全体が弧形となる渦巻きスリットを4箇所に設けたものである。図6(A),(B)に示されるように、可動電極6の外周部の下側でバネ層3の開口3aの周囲の位置に、可動電極6とバネ層3を機械的及び電気的に接続するための弧形の支持片(平面視において線状に設けた支持体)15が設けられており、この弧形支持片15の周囲に、支持片15を中心として1巻以上巻かれた渦巻き状スリット16が形成される。その他の構成は、図1と同様となる。   FIG. 6 shows the configuration of the microphone according to the second embodiment. This second embodiment is provided with four spiral slits that are arcuate as a whole. As shown in FIGS. 6A and 6B, the movable electrode 6 and the spring layer 3 are mechanically and electrically disposed at a position around the opening 3 a of the spring layer 3 on the lower side of the outer peripheral portion of the movable electrode 6. An arc-shaped support piece (a support provided linearly in a plan view) 15 is provided for connection to the electrode, and one or more turns are wound around the arc-shaped support piece 15 around the support piece 15. A spiral slit 16 is formed. Other configurations are the same as those in FIG.

第1及び第2実施例のマイクロフォンでは、図1に示されるように、音圧によってマイクロフォンに導入される空気は、固定電極8及び絶縁膜9の複数の音孔11を通って可動電極6の外側から渦巻状スリット12,16又は支持体(片)5,15同士の間を通り、キャビティ30へ抜ける。
しかし、第2実施例の場合は、4つの渦巻きスリット16(及び支持片15)しか設けておらず、支持片間の隙間の数が第1実施例に比べて少なくなっている。従って、音響抵抗が大きくなり、中低音域における感度を増加させることが可能となる。
In the microphones of the first and second embodiments, as shown in FIG. 1, the air introduced into the microphone by the sound pressure passes through the plurality of sound holes 11 of the fixed electrode 8 and the insulating film 9 and moves to the movable electrode 6. From the outside, it passes between the spiral slits 12 and 16 or the supports (pieces) 5 and 15 and goes out to the cavity 30.
However, in the case of the second embodiment, only four spiral slits 16 (and support pieces 15) are provided, and the number of gaps between the support pieces is smaller than that of the first embodiment. Therefore, the acoustic resistance is increased, and the sensitivity in the mid-low range can be increased.

このような第2実施例においても、バネ層3の渦巻き状スリット16により、支持片15に支持された可動電極6が水平方向及び垂直方向に変位・振動することができるため、可動電極6は応力に関係なく、固定電極8との平行が維持されたまま、音圧に対し全面において変位・振動することが可能となる。   Also in the second embodiment, the movable electrode 6 supported by the support piece 15 can be displaced and vibrated in the horizontal direction and the vertical direction by the spiral slit 16 of the spring layer 3. Regardless of the stress, the entire surface can be displaced and vibrated with respect to the sound pressure while maintaining the parallelism with the fixed electrode 8.

図7に、第3実施例のマイクロフォンの構成が示されており、この第3実施例は、全体に1つの渦巻きスリットを設けたものである。図7に示されるように、可動電極6の外周部の下側において、バネ層3の開口3aの周囲に沿って可動電極6とバネ層3を機械的及び電気的に接続するための1つの環状支持体(平面視において環状に設けた支持体)17が設けられており、この環状支持体17の外側に、外周を1周以上巻いた渦巻き状スリット18が形成される。その他の構成は、図1と同様となる。   FIG. 7 shows the configuration of the microphone according to the third embodiment. In the third embodiment, one spiral slit is provided as a whole. As shown in FIG. 7, on the lower side of the outer peripheral portion of the movable electrode 6, one piece for mechanically and electrically connecting the movable electrode 6 and the spring layer 3 along the periphery of the opening 3 a of the spring layer 3. An annular support body (support body provided in an annular shape in plan view) 17 is provided, and a spiral slit 18 having an outer periphery wound one or more times is formed outside the annular support body 17. Other configurations are the same as those in FIG.

第3実施例の構成によれば、第1及び第2実施例のような支持体間の隙間がなく、音圧によって導入された空気は、渦巻き状スリット18のみからキャビティ30へ抜けるため、音響抵抗が第1及び第2実施例よりも大きくなり、中低音域における感度を増加させることが可能となる。また、第3実施例においても、バネ層3に設けられた渦巻状スリット18と環状支持体5により、可動電極6が水平方向および垂直方向に変位することができるため、可動電極6は応力に関係なく、固定電極8との平行が維持されたまま、その全面が音圧に対して変位・振動することができる。   According to the configuration of the third embodiment, there is no gap between the supports as in the first and second embodiments, and the air introduced by the sound pressure escapes only from the spiral slit 18 to the cavity 30, so that The resistance becomes larger than those in the first and second embodiments, and the sensitivity in the mid-low range can be increased. Also in the third embodiment, since the movable electrode 6 can be displaced in the horizontal and vertical directions by the spiral slit 18 and the annular support 5 provided in the spring layer 3, the movable electrode 6 is subjected to stress. Regardless, the entire surface can be displaced and vibrated with respect to the sound pressure while maintaining parallelism with the fixed electrode 8.

上記各実施例の構成に限らず、バネ層3には形状の異なる渦巻き状スリットを組み合わせて配置することが可能となる。例えば、形状の異なる複数の渦巻き状スリットを設けることにより、マイクロフォン全体を揺する特定周波数の外部振動に可動電極6が共振し、大きな揺れとなって破壊されることを防ぐことができる。なお、形状の異なるスリットは、例えばスリットの渦巻きの大きさ、スリットの幅、巻き数の異なるものを組み合わせて配置してもよい。   Not only the configuration of each of the embodiments described above, it is possible to arrange the spring layer 3 in combination with spiral slits having different shapes. For example, by providing a plurality of spiral slits having different shapes, it is possible to prevent the movable electrode 6 from resonating with a specific frequency external vibration that shakes the entire microphone, and being destroyed due to a large shake. In addition, you may arrange | position the slit from which a shape differs, for example in combination of the magnitude | size of the spiral of a slit, the width | variety of a slit, and a different winding number.

上記実施例では、可動電極6をバネ層3の上側(上層)に配置したが、この可動電極6はバネ層3の下側(下層)に配置してもよい。   In the above embodiment, the movable electrode 6 is disposed on the upper side (upper layer) of the spring layer 3. However, the movable electrode 6 may be disposed on the lower side (lower layer) of the spring layer 3.

1,61…半導体基板、 2,9,62,69…絶縁膜、
3…バネ層、 5…ピン状支持体、
6,66…可動電極、 7,67…支持層(犠牲層)、
8,68…固定電極、 10…ギャップ、
11,71…音孔、 12,13,16,18…渦巻き状スリット、
15…弧形支持片、 17…環状支持体、
30…キャビティ。
1, 61 ... Semiconductor substrate, 2, 9, 62, 69 ... Insulating film,
3 ... spring layer, 5 ... pin-shaped support,
6, 66 ... movable electrode, 7, 67 ... support layer (sacrificial layer),
8, 68 ... fixed electrode, 10 ... gap,
11, 71 ... sound holes, 12, 13, 16, 18 ... spiral slits,
15 ... arc-shaped support piece, 17 ... annular support,
30 ... cavity.

Claims (3)

基板の支持層に固定された固定電極と、
この固定電極に略平行に配置された変位可能な可動電極と、
この可動電極の上又は下の位置で上記基板の支持層に固定されたバネ層と、を有し、
上記可動電極を、上記バネ層に対し支持体を介して機械的に支持すると共に電気的に接続してなるMEMS素子。
A fixed electrode fixed to the support layer of the substrate;
A displaceable movable electrode disposed substantially parallel to the fixed electrode;
A spring layer fixed to the support layer of the substrate at a position above or below the movable electrode,
A MEMS element, wherein the movable electrode is mechanically supported and electrically connected to the spring layer via a support.
平面視において上記支持体を点状又は線状として複数配置し、上記バネ層には上記点状又は線状の支持体の周りに、少なくとも1巻以上の渦巻き状スリットを形成したことを特徴とする請求項1記載のMEMS素子。   A plurality of the support bodies are arranged in the form of dots or lines in a plan view, and at least one or more spiral slits are formed in the spring layer around the dot or line supports. The MEMS device according to claim 1. 平面視において上記支持体を上記バネ層の周囲に環状に配置し、上記バネ層には上記環状の支持体の外周に沿って1巻以上の渦巻き状スリットを形成したことを特徴とする請求項1記載のMEMS素子。   The said support body is cyclically | annularly arrange | positioned around the said spring layer in planar view, The spiral slit of 1 volume or more was formed in the said spring layer along the outer periphery of the said cyclic | annular support body. 1. The MEMS device according to 1.
JP2016011580A 2016-01-25 2016-01-25 MEMS element Active JP6606439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016011580A JP6606439B2 (en) 2016-01-25 2016-01-25 MEMS element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016011580A JP6606439B2 (en) 2016-01-25 2016-01-25 MEMS element

Publications (2)

Publication Number Publication Date
JP2017135456A true JP2017135456A (en) 2017-08-03
JP6606439B2 JP6606439B2 (en) 2019-11-13

Family

ID=59503757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016011580A Active JP6606439B2 (en) 2016-01-25 2016-01-25 MEMS element

Country Status (1)

Country Link
JP (1) JP6606439B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112492483A (en) * 2020-12-02 2021-03-12 潍坊歌尔微电子有限公司 Miniature microphone dust keeper, MEMS microphone and electronic equipment
WO2021135109A1 (en) * 2019-12-31 2021-07-08 潍坊歌尔微电子有限公司 Dustproof structure, microphone packaging structure and electronic device
JP7428317B2 (en) 2020-06-09 2024-02-06 日清紡マイクロデバイス株式会社 MEMS element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021135109A1 (en) * 2019-12-31 2021-07-08 潍坊歌尔微电子有限公司 Dustproof structure, microphone packaging structure and electronic device
JP7428317B2 (en) 2020-06-09 2024-02-06 日清紡マイクロデバイス株式会社 MEMS element
CN112492483A (en) * 2020-12-02 2021-03-12 潍坊歌尔微电子有限公司 Miniature microphone dust keeper, MEMS microphone and electronic equipment

Also Published As

Publication number Publication date
JP6606439B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
US10433068B2 (en) MEMS acoustic transducer with combfingered electrodes and corresponding manufacturing process
CN108141678B (en) Microelectromechanical microphone with fixed internal area
CN105519137B (en) MEMS device and process
WO2010079574A1 (en) Mems device
KR101578542B1 (en) Method of Manufacturing Microphone
JP5338825B2 (en) Acoustic sensor and microphone
JPWO2005086534A1 (en) Electret condenser
US20150041930A1 (en) Acoustic transducer
JP6127611B2 (en) Capacitive sensor, acoustic sensor and microphone
US10343898B1 (en) MEMS microphone with tunable sensitivity
US10934160B2 (en) System of non-acoustic sensor combined with MEMS microphone
JP6606439B2 (en) MEMS element
JP2007208986A (en) Micro-machining type element and corresponding fabrication
US10981777B2 (en) MEMS transducer system for pressure and acoustic sensing
JP2008085507A (en) Acoustic sensor, and sound module with acoustic sensor
US11202153B2 (en) MEMS microphone
US11459230B2 (en) MEMS microphone
US11259106B1 (en) Mems device with dynamic valve layer
JP6307171B2 (en) MEMS microphone
JP6787553B2 (en) Piezoelectric element
KR101893486B1 (en) Rigid Backplate Structure Microphone and Method of Manufacturing the Same
JP2008259062A (en) Electrostatic transducer
WO2022193131A1 (en) Vibration sensor and microphone
JP6559365B2 (en) Piezoelectric microphone
JP2011044792A (en) Microphone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191018

R150 Certificate of patent or registration of utility model

Ref document number: 6606439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250