JP2017135213A - Degradation diagnosis device of magnetic core member, degradation diagnosis method of magnetic core member, electrical apparatus - Google Patents

Degradation diagnosis device of magnetic core member, degradation diagnosis method of magnetic core member, electrical apparatus Download PDF

Info

Publication number
JP2017135213A
JP2017135213A JP2016012677A JP2016012677A JP2017135213A JP 2017135213 A JP2017135213 A JP 2017135213A JP 2016012677 A JP2016012677 A JP 2016012677A JP 2016012677 A JP2016012677 A JP 2016012677A JP 2017135213 A JP2017135213 A JP 2017135213A
Authority
JP
Japan
Prior art keywords
magnetic core
core member
search coil
unit
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016012677A
Other languages
Japanese (ja)
Other versions
JP6595356B2 (en
Inventor
信司 山中
Shinji Yamanaka
信司 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2016012677A priority Critical patent/JP6595356B2/en
Publication of JP2017135213A publication Critical patent/JP2017135213A/en
Application granted granted Critical
Publication of JP6595356B2 publication Critical patent/JP6595356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a degradation diagnosis technique of a magnetic core member which allows for accurate diagnosis of the degree of degradation of a magnetic core member used over years.SOLUTION: A degradation diagnosis device of a magnetic core member includes: an oscillation unit 23 giving a specific AC voltage of a specific frequency to a search coil 10 surrounding a magnetic core member ; an acquisition unit for acquiring detection information based at least on the current flowing to the search coil 10; a storage unit for storing determination information that is set based on the detection information corresponding to the magnetic core member 2 in the initial state; and a diagnosis unit for diagnosing the degree of degradation based on the detection information and determination information corresponding to the magnetic core member 2 used over years from the initial state.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、磁心部材の劣化診断技術に関する。   Embodiments described herein relate generally to a deterioration diagnosis technique for a magnetic core member.

変圧器が有する鉄心の劣化を診断するために、クランプ式の高周波CTを変圧器の接地線に取り付けることで、変圧器から出力される部分放電電流を検出する装置がある。この装置では、高周波CTにより検出された部分放電電流信号と予め記憶された部分放電特性のデータとに基づいて、変圧器の劣化状態を診断している(例えば、特許文献1参照)。   In order to diagnose deterioration of the iron core of the transformer, there is a device that detects a partial discharge current output from the transformer by attaching a clamp-type high-frequency CT to the ground line of the transformer. In this apparatus, the deterioration state of the transformer is diagnosed based on the partial discharge current signal detected by the high frequency CT and the data of the partial discharge characteristics stored in advance (see, for example, Patent Document 1).

特開平11−326429号公報JP 11-326429 A

しかしながら、変圧器から出力される部分放電電流は、微弱な電流であるため、SN比が悪く、ノイズの影響が大きくなるので、この部分放電電流を受動的に検出して鉄心(磁心部材)の劣化状態(劣化度)の診断を行うと、ノイズが発生した場合に部分放電電流の検出値を正確に取得できず、鉄心の劣化状態が誤って診断されてしまうという課題がある。   However, since the partial discharge current output from the transformer is a weak current, the S / N ratio is poor and the influence of noise increases. Therefore, the partial discharge current is passively detected to detect the iron core (magnetic core member). When the deterioration state (deterioration degree) is diagnosed, the detection value of the partial discharge current cannot be obtained accurately when noise occurs, and the deterioration state of the iron core is erroneously diagnosed.

本発明の実施形態はこのような事情を考慮してなされたもので、経年使用した磁心部材の劣化度の診断を正確に行うことができる磁心部材の劣化診断技術を提供することを目的とする。   Embodiments of the present invention have been made in view of such circumstances, and an object of the present invention is to provide a deterioration diagnosis technique for a magnetic core member that can accurately diagnose the deterioration degree of a magnetic core member that has been used over time. .

本発明の実施形態に係る磁心部材の劣化診断装置は、磁心部材を囲むサーチコイル部に特定の交流電圧を特定の周波数で付与する発振部と、少なくとも前記サーチコイル部に流れる電流に基づく検出情報を取得する取得部と、初期状態の磁心部材に対応する検出情報に基づいて判定情報が設定され、この判定情報を記憶する記憶部と、前記初期状態から経年使用した磁心部材に対応する検出情報と前記判定情報とに基づいて、その劣化度を診断する診断部と、を備えることを特徴とする。   A deterioration diagnosis device for a magnetic core member according to an embodiment of the present invention includes an oscillation unit that applies a specific AC voltage at a specific frequency to a search coil unit that surrounds the magnetic core member, and detection information based on at least a current flowing through the search coil unit. Determination information is set on the basis of detection information corresponding to the magnetic core member in the initial state, a storage unit for storing the determination information, and detection information corresponding to the magnetic core member that has been used from the initial state over time. And a diagnosis section for diagnosing the degree of deterioration based on the determination information.

本発明の実施形態に係る磁心部材の劣化診断方法は、磁心部材を囲むサーチコイル部に特定の交流電圧を特定の周波数で付与する発振ステップと、少なくとも前記サーチコイル部に流れる電流に基づく検出情報を取得する取得ステップと、初期状態の磁心部材に対応する検出情報に基づいて判定情報が設定され、この判定情報を記憶する記憶ステップと、前記初期状態から経年使用した磁心部材に対応する検出情報と前記判定情報とに基づいて、その劣化度を診断する診断ステップと、を含むことを特徴とする。   A deterioration diagnosis method for a magnetic core member according to an embodiment of the present invention includes an oscillation step of applying a specific alternating voltage to a search coil portion surrounding the magnetic core member at a specific frequency, and detection information based on at least a current flowing through the search coil portion. Determination information is set based on detection information corresponding to the magnetic core member in the initial state, storage step for storing the determination information, and detection information corresponding to the magnetic core member that has been used for a while from the initial state And a diagnosis step of diagnosing the degree of deterioration based on the determination information.

本発明の実施形態に係る電気機器は、磁心部材の劣化診断装置により診断が可能な電気機器であって、前記磁心部材と前記サーチコイル部とを有することを特徴とする。   An electrical device according to an embodiment of the present invention is an electrical device that can be diagnosed by a deterioration diagnosis device for a magnetic core member, and includes the magnetic core member and the search coil unit.

本発明の実施形態により、経年使用した磁心部材の劣化度の診断を正確に行うことができる磁心部材の劣化診断技術が提供される。   The embodiment of the present invention provides a deterioration diagnosis technique for a magnetic core member that can accurately diagnose the deterioration degree of a magnetic core member that has been used over time.

本実施形態の劣化診断装置を示す図。The figure which shows the deterioration diagnostic apparatus of this embodiment. 劣化診断装置の構成を示す回路図。The circuit diagram which shows the structure of a deterioration diagnostic apparatus. 劣化診断装置を構成するパソコンを示すブロック図。The block diagram which shows the personal computer which comprises a deterioration diagnostic apparatus. 劣化診断の手順を示すフローチャート。The flowchart which shows the procedure of deterioration diagnosis.

以下、本発明の実施形態を添付図面に基づいて説明する。図1に示すように、本実施形態の劣化診断装置は、トランス1(変圧器)が有する磁心部材2の劣化度を診断するための装置である。磁心部材2は、四角形状(環状)を成す部材として形成されている。なお、磁心部材2は、軟磁性体で構成された金属部材である。この磁心部材2の図中左側には、外部の電源から所定電圧の交流電力が供給される1次コイルとしての第1巻回コイル部3が捲回されている。本実施形態では、所定周波数(例えば、50〜60Hz)の交流電力が第1巻回コイル部3に入力される。また、磁心部材2の図中右側には、第1巻回コイル部3に供給される電圧を変化させて出力する2次コイルとしての第2巻回コイル部4が捲回されている。なお、トランス1は、第1巻回コイル部3と第2巻回コイル部4との巻き線比に応じて電圧を変化させる機能を有する電気機器である。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. As shown in FIG. 1, the deterioration diagnosis device of the present embodiment is a device for diagnosing the deterioration degree of the magnetic core member 2 included in the transformer 1 (transformer). The magnetic core member 2 is formed as a member having a quadrangular shape (annular shape). The magnetic core member 2 is a metal member made of a soft magnetic material. On the left side of the magnetic core member 2 in the figure, a first winding coil portion 3 is wound as a primary coil to which AC power of a predetermined voltage is supplied from an external power source. In the present embodiment, AC power having a predetermined frequency (for example, 50 to 60 Hz) is input to the first winding coil unit 3. Further, on the right side of the magnetic core member 2 in the drawing, a second winding coil portion 4 as a secondary coil that changes and outputs a voltage supplied to the first winding coil portion 3 is wound. The transformer 1 is an electrical device having a function of changing a voltage according to a winding ratio between the first winding coil unit 3 and the second winding coil unit 4.

このトランス1は、磁心部材2の周囲を囲むサーチコイル部10を有する。このサーチコイル部10は、環状を成す磁心部材2の全体を囲むように環状に配置される。また、サーチコイル部10は、磁心部材2から所定距離Dを空けて設けられる。なお、サーチコイル部10は、巻回コイル部3,4からも所定距離を空けて設けられる。そのため、磁心部材2や巻回コイル部3,4と、サーチコイル部10と、の間を電気的に絶縁させることができる。なお、サーチコイル部10が絶縁用の被覆部材で覆われても良い。高電圧が付与されるトランス1では、サーチコイル部10に絶縁用の被覆部材が薄く形成される。   The transformer 1 has a search coil portion 10 surrounding the magnetic core member 2. The search coil portion 10 is annularly arranged so as to surround the entirety of the annular magnetic core member 2. Further, the search coil unit 10 is provided at a predetermined distance D from the magnetic core member 2. The search coil unit 10 is also provided at a predetermined distance from the winding coil units 3 and 4. Therefore, it is possible to electrically insulate the magnetic core member 2 and the winding coil portions 3 and 4 from the search coil portion 10. Note that the search coil portion 10 may be covered with an insulating covering member. In the transformer 1 to which a high voltage is applied, a thin insulating covering member is formed on the search coil portion 10.

また、トランス1の磁心部材2は、磁束の通路(磁路)を形成するものであって、インダクタンスを増加させるために高透磁率材により作成される。この磁心部材2は、薄板状を成す鉄部材が複数積層により形成され、各層は渦電流を抑制するために絶縁されている。なお、サーチコイル部10の軸方向(図1の紙面の左右方向)は、磁心部材2の薄板状の鉄部材が積層される方向(図1の紙面の奥行方向)に対して交差する方向となっている。磁心部材2は、長年の使用により劣化することがある。例えば、積層された鉄部材の間の絶縁が悪化することがある。すると、磁心部材2の渦電流損失(鉄損)が増加し、磁心部材2の温度が通常時よりも上昇する。   The magnetic core member 2 of the transformer 1 forms a magnetic flux path (magnetic path), and is made of a high permeability material in order to increase inductance. The magnetic core member 2 is formed by laminating a plurality of thin iron members, and each layer is insulated to suppress eddy currents. Note that the axial direction of the search coil portion 10 (the left-right direction of the drawing in FIG. 1) intersects the direction in which the thin plate-like iron members of the magnetic core member 2 are stacked (the depth direction of the drawing in FIG. 1). It has become. The magnetic core member 2 may be deteriorated by long-term use. For example, insulation between laminated iron members may deteriorate. Then, the eddy current loss (iron loss) of the magnetic core member 2 increases, and the temperature of the magnetic core member 2 rises more than usual.

そこで、本実施形態では、経年使用された磁心部材2の劣化を診断する劣化診断装置(劣化診断システム)が設けられている。この劣化診断装置は、各種処理を行うことで劣化の診断を行うパソコン11(PC)と、サーチコイル部10に接続される測定装置12と、を含む。また、測定装置12からサーチコイル部10に向かって延びるケーブルの先端に着脱部13(コネクタ部材)が設けられている。この着脱部13は、サーチコイル部10から延びるケーブルの先端の着脱部14(コネクタ部材)に取り付けられる。また、パソコン11は、ケーブルを介して測定装置12に接続されている。   Therefore, in this embodiment, a deterioration diagnosis device (deterioration diagnosis system) for diagnosing deterioration of the magnetic core member 2 used over time is provided. The deterioration diagnosis apparatus includes a personal computer 11 (PC) that diagnoses deterioration by performing various processes, and a measurement apparatus 12 connected to the search coil unit 10. An attachment / detachment portion 13 (connector member) is provided at the tip of the cable extending from the measuring device 12 toward the search coil portion 10. The attachment / detachment portion 13 is attached to an attachment / detachment portion 14 (connector member) at the tip of a cable extending from the search coil portion 10. The personal computer 11 is connected to the measuring device 12 via a cable.

図2に示すように、測定装置12は、サーチコイル部10に接続される電気回路を有している。サーチコイル部10は、トランス1の磁心部材2を取り囲んでいる。また、電気回路は、サーチコイル部10に所定(一定)の電圧振幅で1kHz以上の高周波数(特定の周波数)の交流電力を出力する発振部23を含む。   As shown in FIG. 2, the measuring device 12 has an electric circuit connected to the search coil unit 10. The search coil unit 10 surrounds the magnetic core member 2 of the transformer 1. The electric circuit also includes an oscillating unit 23 that outputs AC power having a high frequency (specific frequency) of 1 kHz or more to the search coil unit 10 with a predetermined (constant) voltage amplitude.

さらに、測定装置12は、サーチコイル部10の電圧値を測定する電圧計24と、電気回路の電流値を測定する電流計25と、が設けられる。また、発振部23とサーチコイル部10との間には、共振用のコンデンサ26が直列に設けられる。発振部23とサーチコイル部10とコンデンサ26とで共振回路が構成される。   Furthermore, the measuring device 12 is provided with a voltmeter 24 that measures the voltage value of the search coil unit 10 and an ammeter 25 that measures the current value of the electric circuit. A resonance capacitor 26 is provided in series between the oscillation unit 23 and the search coil unit 10. The oscillation unit 23, the search coil unit 10, and the capacitor 26 constitute a resonance circuit.

本実施形態では、発振部23から電流が出力されると、サーチコイル部10と磁心部材2との相互間で作用する電磁誘導現象が生じる。このときに、電圧計24の電圧値と電流計25の電流値とを解析することによって、サーチコイル部10の測定値(検出情報)を取得できる。なお、この測定値は、サーチコイル部10のリアクタンス値や抵抗値であっても良い。また、サーチコイル部10に流れる電流の周波数や位相が変化した値を測定値としても良い。そして、この取得した測定値をパソコン11で解析することで、磁心部材2の渦電流損失(鉄損)と比例して変化する値に相当する損失特性値を求めることができる。   In the present embodiment, when a current is output from the oscillating unit 23, an electromagnetic induction phenomenon that acts between the search coil unit 10 and the magnetic core member 2 occurs. At this time, the measurement value (detection information) of the search coil unit 10 can be acquired by analyzing the voltage value of the voltmeter 24 and the current value of the ammeter 25. The measured value may be a reactance value or a resistance value of the search coil unit 10. Further, a value obtained by changing the frequency or phase of the current flowing through the search coil unit 10 may be used as the measurement value. Then, by analyzing the acquired measurement value with the personal computer 11, a loss characteristic value corresponding to a value that changes in proportion to the eddy current loss (iron loss) of the magnetic core member 2 can be obtained.

なお、本実施形態では、電気回路の要素を最小限にして単純化したものを例示しているが、その他の要素が含まれる電気回路であっても良い。また、前述した着脱部13,14を外すと、サーチコイル部10と、このサーチコイル部10以外の電気回路の部分が分断される。つまり、測定装置12は、サーチコイル部10から取り外して持ち運ぶことができる。このように測定装置12のハンディ化が実現される。また、測定装置12には、使用者が持ち運ぶときに使用する把持部を設けても良い。   In the present embodiment, the simplified example is shown in which the elements of the electric circuit are minimized, but an electric circuit including other elements may be used. Further, when the above-described attaching / detaching portions 13 and 14 are removed, the search coil portion 10 and the portion of the electric circuit other than the search coil portion 10 are divided. That is, the measuring device 12 can be removed from the search coil unit 10 and carried. In this way, the measuring device 12 can be hand-held. In addition, the measuring device 12 may be provided with a grip portion used when the user carries it.

さらに、測定装置12は、電気回路を制御する制御部20と、パソコン11とケーブルを用いて通信を行う通信部21と、電気回路から取得される各種情報を解析する解析部22と、を含む。なお、通信部21や解析部22は、制御部20にそれぞれ接続されて制御される。   Furthermore, the measuring device 12 includes a control unit 20 that controls the electric circuit, a communication unit 21 that communicates with the personal computer 11 using a cable, and an analysis unit 22 that analyzes various information acquired from the electric circuit. . Note that the communication unit 21 and the analysis unit 22 are connected to and controlled by the control unit 20, respectively.

発振部23の出力の電流値や電圧値や周波数値などは、制御部20により制御される。また、電圧計24の電圧値や、電流計25の電流値は、制御部20に入力される。また、解析部22は、FFT(高速フーリエ変換)などの解析を行うためのアナライザなどを含む。   The control unit 20 controls the output current value, voltage value, frequency value, and the like of the oscillation unit 23. Further, the voltage value of the voltmeter 24 and the current value of the ammeter 25 are input to the control unit 20. The analysis unit 22 includes an analyzer for performing analysis such as FFT (Fast Fourier Transform).

例えば、制御部20は、解析部22に解析を行わせることで、電圧計24の電圧値と電流計25の電流値とに基づいて、サーチコイル部10に流れる電流の周波数や位相に関する情報を取得できる。なお、制御部20は、サーチコイル部10とコンデンサ26とにより生じる共振状態を最大化する自動チューニング機能を有する。   For example, the control unit 20 causes the analysis unit 22 to perform analysis, so that information on the frequency and phase of the current flowing through the search coil unit 10 is obtained based on the voltage value of the voltmeter 24 and the current value of the ammeter 25. You can get it. The control unit 20 has an automatic tuning function that maximizes the resonance state caused by the search coil unit 10 and the capacitor 26.

また、測定装置12の制御部20の各種制御内容は、通信部21を介して接続されたパソコン11により指示される。また、測定装置12の制御部20が取得した測定値(情報)は、通信部21を介してパソコン11に送信される。   Various control contents of the control unit 20 of the measuring device 12 are instructed by the personal computer 11 connected via the communication unit 21. In addition, the measurement value (information) acquired by the control unit 20 of the measurement device 12 is transmitted to the personal computer 11 via the communication unit 21.

図3に示すように、本実施形態のパソコン11は、CPU30やROM31やRAM32やHDD33などのハードウエア資源を有し、各種プログラムを実行して各種制御を行うコンピュータである。また、パソコン11は、ディスプレイなどの各種情報を出力可能な出力装置34や、キーボードなどの各種情報を入力可能な入力装置35や、測定装置12とケーブルを用いて通信を行う通信部36などを有する。   As shown in FIG. 3, the personal computer 11 according to the present embodiment is a computer that has hardware resources such as a CPU 30, a ROM 31, a RAM 32, and an HDD 33 and executes various programs to perform various controls. Further, the personal computer 11 includes an output device 34 that can output various information such as a display, an input device 35 that can input various information such as a keyboard, a communication unit 36 that communicates with the measuring device 12 using a cable, and the like. Have.

また、CPU30には、測定装置12から送信された情報に基づいてサーチコイル部10の測定値を取得する取得部40が設けられる。さらに、CPU30には、サーチコイル部10の測定値に基づいて磁心部材2の損失特性値を算出する算出部41が設けられる。さらに、CPU30には、劣化した磁心部材2、つまり、劣化度が既知の磁心部材2がシミュレート(推定)されるシミュレーション部42が設けられる。さらに、CPU30には、診断対象となる磁心部材2の損失特性値(検出情報)と所定の判定値(判定情報)とに基づいて劣化診断を行う劣化診断部43が設けられる。   In addition, the CPU 30 is provided with an acquisition unit 40 that acquires a measurement value of the search coil unit 10 based on information transmitted from the measurement device 12. Further, the CPU 30 is provided with a calculation unit 41 that calculates the loss characteristic value of the magnetic core member 2 based on the measurement value of the search coil unit 10. Further, the CPU 30 is provided with a simulation unit 42 that simulates (estimates) the deteriorated magnetic core member 2, that is, the magnetic core member 2 with a known deterioration degree. Further, the CPU 30 is provided with a deterioration diagnosis unit 43 that performs deterioration diagnosis based on the loss characteristic value (detection information) of the magnetic core member 2 to be diagnosed and a predetermined determination value (determination information).

また、HDD33は、各種情報を記憶する記憶装置である。このHDD33には、磁心部材2の劣化診断を行うときに用いる判定値を判定情報として記憶する判定情報記憶部44が設けられる。さらに、HDD33には、測定装置12から送信される測定値(情報)などの検出情報を記憶する検出情報記憶部45が設けられる。   The HDD 33 is a storage device that stores various types of information. The HDD 33 is provided with a determination information storage unit 44 that stores, as determination information, a determination value used when a deterioration diagnosis of the magnetic core member 2 is performed. Further, the HDD 33 is provided with a detection information storage unit 45 that stores detection information such as measurement values (information) transmitted from the measurement device 12.

次に、磁心部材2の劣化診断を行うときの手順について図4を用いて説明する(適宜図1から図3を参照)。本実施形態では、経年使用した磁心部材2、つまり劣化診断の対象となる磁心部材2の診断を行う前に、劣化診断に用いる判定値(閾値)を設定するようにしている。   Next, a procedure for performing deterioration diagnosis of the magnetic core member 2 will be described with reference to FIG. 4 (refer to FIGS. 1 to 3 as appropriate). In the present embodiment, a determination value (threshold value) used for deterioration diagnosis is set before diagnosing the magnetic core member 2 that has been used for a long time, that is, the magnetic core member 2 to be subjected to deterioration diagnosis.

まず、サーチコイル部10をトランス1から取り外した状態にする。つまり、磁心部材2の周囲を囲んでいない空心状態(単独状態)のサーチコイル部10にする。そして、使用者がパソコン11の入力装置35を操作することで測定装置12を制御する。この測定装置12の制御部20は、発振部23を制御し、この発振部23から高周波数の交流を所定の電圧で出力させる。このとき、高周波数の交流(電流)がサーチコイル部10を流れる(S11:発振ステップ)。   First, the search coil unit 10 is removed from the transformer 1. That is, the search coil unit 10 is in an air-core state (single state) that does not surround the magnetic core member 2. Then, the user controls the measuring device 12 by operating the input device 35 of the personal computer 11. The control unit 20 of the measuring device 12 controls the oscillating unit 23 and outputs high-frequency alternating current from the oscillating unit 23 at a predetermined voltage. At this time, high-frequency alternating current (current) flows through the search coil section 10 (S11: oscillation step).

さらに、制御部20の取得部40は、電圧計24の電圧値と電流計25の電流値とを解析することによって、サーチコイル部10の測定値を取得する(S12:取得ステップ)。このとき、発振部23から出力される電流がサーチコイル部10に流れると、電磁誘導現象が生じるが、サーチコイル部10は空心状態であるので、サーチコイル部10の測定値は、磁心部材2の影響を受けず、サーチコイル部10の性質のみに基づいた値となる。   Further, the acquisition unit 40 of the control unit 20 acquires the measurement value of the search coil unit 10 by analyzing the voltage value of the voltmeter 24 and the current value of the ammeter 25 (S12: acquisition step). At this time, when the current output from the oscillating unit 23 flows to the search coil unit 10, an electromagnetic induction phenomenon occurs. However, since the search coil unit 10 is in an air-core state, the measured value of the search coil unit 10 is the magnetic core member 2. It is a value based only on the properties of the search coil section 10 without being affected by the above.

また、測定装置12の制御部20は、空心状態のサーチコイル部10の測定値をパソコン11に送信する。そして、パソコン11のCPU30は、受信した測定値を検出情報としてHDD33の検出情報記憶部45に記憶する。   In addition, the control unit 20 of the measuring device 12 transmits the measurement value of the search coil unit 10 in the air-centered state to the personal computer 11. Then, the CPU 30 of the personal computer 11 stores the received measurement value as detection information in the detection information storage unit 45 of the HDD 33.

次に、サーチコイル部10を初期状態のトランス1に取り付けた状態にする。つまり、磁心部材2の周囲を囲んだ状態のサーチコイル部10にする。なお、本実施形態において、初期状態のトランス1とは、磁心部材2が劣化していない状態のトランス1のことである。例えば、初期状態のトランス1として、所定の使用場所に設置されたばかりの新品のトランス1を用いる。なお、製造工場から出荷される直前の状態のトランス1を用いても良い。また、使用を開始したトランス1であっても新品に近い状態であれば初期状態とする。   Next, the search coil unit 10 is attached to the transformer 1 in the initial state. That is, the search coil unit 10 is in a state of surrounding the magnetic core member 2. In the present embodiment, the transformer 1 in the initial state is the transformer 1 in a state where the magnetic core member 2 is not deteriorated. For example, a new transformer 1 just installed at a predetermined place of use is used as the transformer 1 in the initial state. Note that the transformer 1 in a state immediately before being shipped from the manufacturing factory may be used. Moreover, even if it is the state near the new article even if it is the transformer 1 which started use, it will be set as an initial state.

また、本実施形態では、初期状態のトランス1に電力を付与した稼働状態(通電状態)にする。稼働状態では、トランス1の巻回コイル部3,4に電流が流れた状態になるとともに、磁心部材2と巻回コイル部3,4との相互間で作用する電磁誘導現象が生じる状態になる。そして、この電磁誘導現象が生じたときの磁心部材2の渦電流損失に基づき、磁心部材2の温度が室温(常温)よりも上昇された状態になる。この上昇された温度により磁心部材2の損失特性値が、トランス1が非稼働状態(非通電状態)にあるときよりも増大される。   Moreover, in this embodiment, it is set as the operation state (energization state) which gave electric power to the transformer 1 of an initial state. In the operating state, a current flows through the winding coil portions 3 and 4 of the transformer 1 and an electromagnetic induction phenomenon acting between the magnetic core member 2 and the winding coil portions 3 and 4 occurs. . Then, based on the eddy current loss of the magnetic core member 2 when this electromagnetic induction phenomenon occurs, the temperature of the magnetic core member 2 becomes higher than room temperature (normal temperature). Due to this increased temperature, the loss characteristic value of the magnetic core member 2 is increased more than when the transformer 1 is in a non-operating state (non-energized state).

そして、測定装置12の制御部20は、発振部23から高周波数の交流を所定の電圧で出力させる。このとき、高周波数の交流(電流)がサーチコイル部10を流れる(S13:発振ステップ)。   Then, the control unit 20 of the measuring device 12 outputs a high-frequency alternating current from the oscillation unit 23 at a predetermined voltage. At this time, high-frequency alternating current (current) flows through the search coil section 10 (S13: oscillation step).

さらに、制御部20の取得部40は、電圧計24の電圧値と電流計25の電流値とを解析することによって、サーチコイル部10の測定値を取得する(S14:取得ステップ)。このとき、発振部23から出力される電流(電力)がサーチコイル部10に流れると、サーチコイル部10と磁心部材2との相互間で作用する電磁誘導現象が生じる。そのため、サーチコイル部10の測定値は、磁心部材2の渦電流損失(鉄損)の影響を受ける。具体的には、サーチコイル部10は、磁心部材2から生じる磁場の影響を受ける。なお、前述した空心状態のサーチコイル部10の測定値と、初期状態の磁心部材2に取り付けたサーチコイル部10の測定値と、の間には差分が生じる。   Furthermore, the acquisition unit 40 of the control unit 20 acquires the measurement value of the search coil unit 10 by analyzing the voltage value of the voltmeter 24 and the current value of the ammeter 25 (S14: acquisition step). At this time, when a current (electric power) output from the oscillating unit 23 flows into the search coil unit 10, an electromagnetic induction phenomenon that acts between the search coil unit 10 and the magnetic core member 2 occurs. Therefore, the measured value of the search coil unit 10 is affected by the eddy current loss (iron loss) of the magnetic core member 2. Specifically, the search coil unit 10 is affected by a magnetic field generated from the magnetic core member 2. In addition, a difference arises between the measured value of the search coil part 10 of the air core state mentioned above, and the measured value of the search coil part 10 attached to the magnetic core member 2 of an initial state.

また、測定装置12の制御部20は、初期状態のトランス1のサーチコイル部10の測定値をパソコン11に送信する。そして、パソコン11のCPU30は、受信した測定値を検出情報としてHDD33の検出情報記憶部45に記憶する。   Further, the control unit 20 of the measuring device 12 transmits the measurement value of the search coil unit 10 of the transformer 1 in the initial state to the personal computer 11. Then, the CPU 30 of the personal computer 11 stores the received measurement value as detection information in the detection information storage unit 45 of the HDD 33.

そして、パソコン11のCPU30は、検出情報記憶部45に記憶された各測定値に基づいて、初期状態の磁心部材2の損失特性値を算出する(S15:算出ステップ)。具体的には、初期状態のトランス1のサーチコイル部10の測定値から、空心状態のサーチコイル部10の測定値を減算した値(差分)が、初期状態の磁心部材2の損失特性値に相当する値となる。なお、この損失特性値の算出は、CPU30の算出部41により実行される。また、パソコン11のCPU30は、算出した初期状態の磁心部材2の損失特性値を検出情報としてHDD33の検出情報記憶部45に記憶する。   And CPU30 of the personal computer 11 calculates the loss characteristic value of the magnetic core member 2 of an initial state based on each measured value memorize | stored in the detection information storage part 45 (S15: calculation step). Specifically, a value (difference) obtained by subtracting the measured value of the search coil unit 10 in the air-core state from the measured value of the search coil unit 10 of the transformer 1 in the initial state becomes the loss characteristic value of the magnetic core member 2 in the initial state. The corresponding value. The calculation of the loss characteristic value is executed by the calculation unit 41 of the CPU 30. Further, the CPU 30 of the personal computer 11 stores the calculated loss characteristic value of the magnetic core member 2 in the initial state in the detection information storage unit 45 of the HDD 33 as detection information.

次に、パソコン11のCPU30は、初期状態の磁心部材2の損失特性値に基づいて、経年使用して劣化した磁心部材2、つまり、劣化度が既知の磁心部材2の損失特性値をシミュレート(推定)する(S16:シミュレーションステップ)。なお、このシミュレーションは、CPU30のシミュレーション部42により実行される。また、パソコン11のCPU30は、算出した劣化度が既知の磁心部材2の損失特性値をHDD33の検出情報記憶部45に記憶する。このシミュレーションを行うことで、実際に経年使用した磁心部材2が入手できない状態であっても、劣化後の磁心部材2の損失特性値を取得できる。   Next, the CPU 30 of the personal computer 11 simulates the loss characteristic value of the magnetic core member 2 that has deteriorated over time based on the loss characteristic value of the magnetic core member 2 in the initial state. (Estimate) (S16: Simulation step). This simulation is executed by the simulation unit 42 of the CPU 30. In addition, the CPU 30 of the personal computer 11 stores the loss characteristic value of the magnetic core member 2 whose calculated degree of deterioration is known in the detection information storage unit 45 of the HDD 33. By performing this simulation, the loss characteristic value of the deteriorated magnetic core member 2 can be acquired even if the magnetic core member 2 that has actually been used over time is not available.

なお、磁心部材2が劣化した状態では、積層された鉄部材の間の絶縁が一部悪化することで、磁心部材2の渦電流損失が増加する。そのため、劣化後の磁心部材2の損失特性値は、初期状態の磁心部材2の損失特性値よりも大きくなる。なお、シミュレートする磁心部材2は、初期状態から5年使用した状態を想定しても良いし、初期状態から10年使用した状態を想定しても良いし、初期状態から20年使用した状態を想定しても良い。また、経年使用した期間が長くなるに従って磁心部材2の損失特性値は大きくなるので、初期状態の磁心部材2の損失特性値を割り増した値を、劣化後の磁心部材2の損失特性値としても良い。   In the state where the magnetic core member 2 is deteriorated, the insulation between the laminated iron members is partially deteriorated, so that the eddy current loss of the magnetic core member 2 increases. Therefore, the loss characteristic value of the magnetic core member 2 after deterioration becomes larger than the loss characteristic value of the magnetic core member 2 in the initial state. The magnetic core member 2 to be simulated may be assumed to be used for 5 years from the initial state, may be assumed to be used for 10 years from the initial state, or is used for 20 years from the initial state. May be assumed. Further, since the loss characteristic value of the magnetic core member 2 increases as the period of use over time increases, the value obtained by increasing the loss characteristic value of the magnetic core member 2 in the initial state is used as the loss characteristic value of the deteriorated magnetic core member 2. good.

次に、CPU30は、シミュレートした劣化後の磁心部材2の損失特性値に基づいて、劣化診断に用いる判定値(閾値)を設定し、HDD33の判定情報記憶部44に記憶する(S17:記憶ステップ)。   Next, the CPU 30 sets a determination value (threshold value) used for deterioration diagnosis based on the simulated loss characteristic value of the magnetic core member 2 after deterioration, and stores it in the determination information storage unit 44 of the HDD 33 (S17: storage). Step).

なお、この判定値は常に一定の値でなくても良い。例えば、劣化診断の対象となるトランス1が置かれた室温に応じて判定値が変化するものでも良いし、トランス1に供給した電力に応じて判定値が変化するものであっても良い。また、測定装置12の発振部23が出力する電流の電流値や電圧値や周波数値に応じて判定値が変化するものであっても良い。   Note that this determination value may not always be a constant value. For example, the determination value may change according to the room temperature where the transformer 1 to be subjected to deterioration diagnosis is placed, or the determination value may change according to the electric power supplied to the transformer 1. Further, the determination value may be changed according to the current value, voltage value, or frequency value of the current output from the oscillation unit 23 of the measuring device 12.

次に、劣化度の診断対象のトランス1の劣化診断を行う。なお、サーチコイル部10は、診断対象の磁心部材2の周囲を囲んだ状態となっている。また、本実施形態では、診断対象のトランス1に電力を付与した稼働状態(通電状態)にする。稼働状態では、トランス1の巻回コイル部3,4に電流が流れた状態になるとともに、磁心部材2と巻回コイル部3,4との相互間で作用する電磁誘導現象が生じる状態になる。そして、この電磁誘導現象が生じたときの磁心部材2の渦電流損失に基づき、磁心部材2の温度が室温(常温)よりも上昇された状態になる。この上昇された温度により磁心部材2の損失特性値が、トランス1が非稼働状態(非通電状態)にあるときよりも増大される。   Next, deterioration diagnosis of the transformer 1 to be diagnosed for deterioration degree is performed. The search coil unit 10 is in a state of surrounding the magnetic core member 2 to be diagnosed. Moreover, in this embodiment, it is set as the operation state (energized state) which gave electric power to the transformer 1 of a diagnostic object. In the operating state, a current flows through the winding coil portions 3 and 4 of the transformer 1 and an electromagnetic induction phenomenon acting between the magnetic core member 2 and the winding coil portions 3 and 4 occurs. . Then, based on the eddy current loss of the magnetic core member 2 when this electromagnetic induction phenomenon occurs, the temperature of the magnetic core member 2 becomes higher than room temperature (normal temperature). Due to this increased temperature, the loss characteristic value of the magnetic core member 2 is increased more than when the transformer 1 is in a non-operating state (non-energized state).

さらに、磁心部材2が劣化している場合には、積層された鉄部材の間の一部の絶縁の悪化しまうことなどによって、磁心部材2の渦電流損失が増加し、磁心部材2の温度が初期状態の磁心部材2よりも上昇される。   Furthermore, when the magnetic core member 2 is deteriorated, the eddy current loss of the magnetic core member 2 increases due to deterioration of some insulation between the laminated iron members, and the temperature of the magnetic core member 2 increases. It is raised from the magnetic core member 2 in the initial state.

このように、測定装置12は、トランス1の巻回コイル部3,4が通電された状態で、サーチコイル部10の測定値を測定する。巻回コイル部3,4が通電されることで磁心部材2の温度が上昇するので、磁心部材2が劣化した状態では、渦電流損失(鉄損)が増加して温度が上昇する。そのため、劣化した状態の磁心部材2では、その損失特性値が高くなり、初期状態の磁心部材2の損失特性値との差が大きくなるので、磁心部材2の劣化度の診断処理を容易に行うことができる。   Thus, the measuring device 12 measures the measured value of the search coil unit 10 in a state where the winding coil units 3 and 4 of the transformer 1 are energized. Since the temperature of the magnetic core member 2 is increased by energizing the winding coil portions 3 and 4, eddy current loss (iron loss) is increased and the temperature is increased when the magnetic core member 2 is deteriorated. Therefore, the loss characteristic value of the magnetic core member 2 in a deteriorated state becomes high, and the difference from the loss characteristic value of the magnetic core member 2 in the initial state becomes large. Therefore, the diagnosis process of the deterioration degree of the magnetic core member 2 is easily performed. be able to.

そして、測定装置12の制御部20は、発振部23から高周波数の交流を所定の電圧で出力させる。このとき、高周波数の交流(電流)がサーチコイル部10を流れる(S18:発振ステップ)。   Then, the control unit 20 of the measuring device 12 outputs a high-frequency alternating current from the oscillation unit 23 at a predetermined voltage. At this time, high-frequency alternating current (current) flows through the search coil section 10 (S18: oscillation step).

さらに、制御部20の取得部40は、電圧計24の電圧値と電流計25の電流値とを解析することによって、サーチコイル部10の測定値を取得する(S19:取得ステップ)。このとき、発振部23から出力される電流(電力)がサーチコイル部10に流れると、サーチコイル部10と磁心部材2との相互間で作用する電磁誘導現象が生じる。そのため、サーチコイル部10の測定値は、磁心部材2の渦電流損失(鉄損)の影響を受ける。具体的には、サーチコイル部10は、磁心部材2から生じる磁場の影響を受ける。なお、診断対象の磁心部材2が劣化している場合には、初期状態のサーチコイル部10の測定値との間で差分が生じるようになる。   Furthermore, the acquisition unit 40 of the control unit 20 acquires the measurement value of the search coil unit 10 by analyzing the voltage value of the voltmeter 24 and the current value of the ammeter 25 (S19: acquisition step). At this time, when a current (electric power) output from the oscillating unit 23 flows into the search coil unit 10, an electromagnetic induction phenomenon that acts between the search coil unit 10 and the magnetic core member 2 occurs. Therefore, the measured value of the search coil unit 10 is affected by the eddy current loss (iron loss) of the magnetic core member 2. Specifically, the search coil unit 10 is affected by a magnetic field generated from the magnetic core member 2. In addition, when the magnetic core member 2 to be diagnosed is deteriorated, a difference is generated between the measured values of the search coil unit 10 in the initial state.

また、測定装置12の制御部20は、診断対象のトランス1のサーチコイル部10の測定値をパソコン11に送信する。そして、パソコン11のCPU30は、受信した測定値を検出情報としてHDD33の検出情報記憶部45に記憶する。   Further, the control unit 20 of the measuring device 12 transmits the measurement value of the search coil unit 10 of the transformer 1 to be diagnosed to the personal computer 11. Then, the CPU 30 of the personal computer 11 stores the received measurement value as detection information in the detection information storage unit 45 of the HDD 33.

そして、パソコン11のCPU30は、検出情報記憶部45に記憶された各測定値に基づいて、診断対象の磁心部材2の損失特性値を算出する(S20:算出ステップ)。具体的には、診断対象のトランス1のサーチコイル部10の測定値から、空心状態のサーチコイル部10の測定値を減算した値(差分)が、診断対象の磁心部材2の損失特性値に相当する値となる。なお、この損失特性値の算出は、CPU30の算出部41により実行される。また、パソコン11のCPU30は、算出した診断対象の磁心部材2の損失特性値を検出情報としてHDD33の検出情報記憶部45に記憶する。   Then, the CPU 30 of the personal computer 11 calculates the loss characteristic value of the magnetic core member 2 to be diagnosed based on each measurement value stored in the detection information storage unit 45 (S20: calculation step). Specifically, a value (difference) obtained by subtracting the measurement value of the search coil unit 10 in the air-core state from the measurement value of the search coil unit 10 of the transformer 1 to be diagnosed is the loss characteristic value of the magnetic core member 2 to be diagnosed. The corresponding value. The calculation of the loss characteristic value is executed by the calculation unit 41 of the CPU 30. Further, the CPU 30 of the personal computer 11 stores the calculated loss characteristic value of the magnetic core member 2 to be diagnosed in the detection information storage unit 45 of the HDD 33 as detection information.

次に、パソコン11のCPU30は、診断対象の磁心部材2の損失特性値と判定情報記憶部44に記憶された判定値とに基づいて劣化診断を行う(S21:診断ステップ)。具体的には、診断対象の磁心部材2の損失特性値が判定値以上か否かを判定する。そして、この損失特性値が判定値以上であると判定された場合には、診断対象の磁心部材2が劣化していると判定される。また、判定値以上でないと判定された場合には、診断対象の磁心部材2が劣化していないと判定される。そして、パソコン11のCPU30は、診断結果を出力装置34により出力する。   Next, the CPU 30 of the personal computer 11 performs a deterioration diagnosis based on the loss characteristic value of the magnetic core member 2 to be diagnosed and the determination value stored in the determination information storage unit 44 (S21: diagnosis step). Specifically, it is determined whether or not the loss characteristic value of the magnetic core member 2 to be diagnosed is greater than or equal to a determination value. When it is determined that the loss characteristic value is equal to or greater than the determination value, it is determined that the magnetic core member 2 to be diagnosed has deteriorated. Moreover, when it determines with it not being more than a determination value, it determines with the magnetic core member 2 to be diagnosed not deteriorating. Then, the CPU 30 of the personal computer 11 outputs the diagnosis result by the output device 34.

このように、診断対象となるトランス1(対象装置)の軟磁性体の磁心部材2の劣化診断を行う際に、サーチコイル部10に能動的に電流(電力)を付与して測定値を取得するので、磁心部材2の劣化度の診断を正確に行うことができる。   As described above, when the deterioration diagnosis of the soft magnetic core member 2 of the transformer 1 (target device) to be diagnosed is performed, a current (power) is actively applied to the search coil unit 10 to obtain a measured value. Therefore, the deterioration degree of the magnetic core member 2 can be accurately diagnosed.

また、シミュレートされた劣化度が既知の磁心部材2に基づいて判定値が設定されるので、診断対象の磁心部材2の損失特性値(検出情報)と判定値とを比較することで磁心部材の劣化度の診断処理を容易に行うことができる。   In addition, since the determination value is set based on the magnetic core member 2 whose simulated degree of deterioration is known, the magnetic core member is compared by comparing the loss characteristic value (detection information) of the magnetic core member 2 to be diagnosed with the determination value. It is possible to easily perform the diagnosis process of the degree of deterioration.

また、測定装置12の発振部23が出力(発振)する交流の周波数を1kHz以上の高周波数とすることで、小型のコンデンサ26を用いて測定装置12を製作することができる。そのため、測定装置12の小型化を図ることができる。なお、発振部23が出力する交流の周波数は、10kHz以上、100kHz以上、1MHz以上、10MHz以上、または100MHz以上の高周波数であっても良い。また、発振部23が出力する交流の周波数は、トランス1に供給される電力の所定周波数(例えば、50〜60Hz)と明確に異なる周波数であれば良い。このようにすることで、劣化度の診断の対象となる磁心部材2を有するトランス1(電気機器)に影響を与えることなくなる。さらに、測定装置12がトランス1に供給される電力の影響を受けることなく、劣化度の診断を行うことができる。   Further, by setting the AC frequency output (oscillated) by the oscillating unit 23 of the measuring device 12 to a high frequency of 1 kHz or more, the measuring device 12 can be manufactured using a small capacitor 26. Therefore, the measuring device 12 can be downsized. The AC frequency output from the oscillating unit 23 may be a high frequency of 10 kHz or more, 100 kHz or more, 1 MHz or more, 10 MHz or more, or 100 MHz or more. Further, the AC frequency output from the oscillating unit 23 may be a frequency that is clearly different from a predetermined frequency (for example, 50 to 60 Hz) of power supplied to the transformer 1. By doing in this way, it does not affect the transformer 1 (electric equipment) having the magnetic core member 2 that is the target of diagnosis of the degree of deterioration. Furthermore, the degree of deterioration can be diagnosed without the measuring device 12 being affected by the power supplied to the transformer 1.

また、着脱部13,14を外すと、サーチコイル部10と測定装置12とが分離されるので、測定装置12の持ち運びが便利になる。そして、劣化度の対象となる磁心部材2を囲むサーチコイル部10に、測定装置12を取り付けることで、劣化度の診断を容易に行うことができる。つまり、複数個のトランス1の劣化診断を行う場合には、1台の測定装置12があれば良く、測定装置12をトランス1のサーチコイル部10に順次付け替えることができる。   Further, when the detachable portions 13 and 14 are removed, the search coil unit 10 and the measuring device 12 are separated, so that the measuring device 12 can be easily carried. Then, by attaching the measuring device 12 to the search coil unit 10 surrounding the magnetic core member 2 that is the target of the deterioration degree, the deterioration degree can be easily diagnosed. That is, when performing deterioration diagnosis of a plurality of transformers 1, only one measuring device 12 is required, and the measuring devices 12 can be sequentially replaced with the search coil unit 10 of the transformer 1.

また、本実施形態では、初期状態のトランス1と診断対象となるトランス1とが別物として説明しているが、初期状態のトランス1と診断対象となるトランス1とが同一物であっても良い。つまり、トランス1の製造時に、その磁心部材2の損失特性値を取得して判定値を設定し、トランス1の経年使用後に、その磁心部材2の損失特性値を取得して判定値と比較することで、磁心部材2の劣化度(劣化状態)を診断しても良い。   In this embodiment, the transformer 1 in the initial state and the transformer 1 to be diagnosed are described as separate objects. However, the transformer 1 in the initial state and the transformer 1 to be diagnosed may be the same. . That is, when the transformer 1 is manufactured, the loss characteristic value of the magnetic core member 2 is acquired and a determination value is set. After the transformer 1 is used over time, the loss characteristic value of the magnetic core member 2 is acquired and compared with the determination value. Thus, the degree of deterioration (deterioration state) of the magnetic core member 2 may be diagnosed.

なお、本実施形態では、サーチコイル部10をトランス1の構成部材として説明しているが、サーチコイル部10をトランス1に対して着脱自在にしても良い。さらに、サーチコイル部10を測定装置12の構成部材としても良い。つまり、サーチコイル部10とパソコン11と測定装置12とで劣化診断装置(劣化診断システム)を構成しても良い。   In the present embodiment, the search coil unit 10 is described as a constituent member of the transformer 1, but the search coil unit 10 may be detachable from the transformer 1. Further, the search coil unit 10 may be a constituent member of the measuring device 12. That is, the search coil unit 10, the personal computer 11, and the measuring device 12 may constitute a deterioration diagnosis device (deterioration diagnosis system).

なお、本実施形態では、トランス1に電力を付与した稼働状態(通電状態)で、サーチコイル部10の測定値を取得するようにしているが、トランス1に電力を付与しない非稼働状態(非通電状態)で、サーチコイル部10の測定値を取得しても良い。そして、この測定値に基づいて磁心部材2の劣化診断を行っても良い。   In the present embodiment, the measured value of the search coil unit 10 is acquired in the operating state (energized state) in which power is applied to the transformer 1, but the non-operating state in which power is not applied to the transformer 1 (non-operating state) The measured value of the search coil unit 10 may be acquired in the energized state. Then, the deterioration diagnosis of the magnetic core member 2 may be performed based on this measured value.

なお、本実施形態では、初期状態の磁心部材2の損失特性値に基づいて判定値を設定し、劣化診断の対象の磁心部材2の損失特性値と判定値とに基づいて劣化診断を行っているが、劣化診断を行うために取得する検出情報は、損失特性値でなくても良い。例えば、測定装置12が取得した測定値に基づいて磁心部材2の温度を特定、または、損失特性値に基づいて磁心部材2の温度を特定するようにし、この温度に基づいて磁心部材2の劣化診断を行うようにしても良い。   In the present embodiment, the determination value is set based on the loss characteristic value of the magnetic core member 2 in the initial state, and the deterioration diagnosis is performed based on the loss characteristic value and the determination value of the magnetic core member 2 to be subjected to the deterioration diagnosis. However, the detection information acquired for performing the deterioration diagnosis may not be the loss characteristic value. For example, the temperature of the magnetic core member 2 is specified based on the measured value acquired by the measuring device 12, or the temperature of the magnetic core member 2 is specified based on the loss characteristic value, and the deterioration of the magnetic core member 2 is determined based on this temperature. A diagnosis may be performed.

なお、本実施形態では、磁心部材2の劣化診断に用いる測定値を、リアクタンス値や抵抗値や、或いは電流の周波数や位相が変化した値としているが、その他の値を測定値としても良い。例えば、サーチコイル部10の電流値の変化に基づいて、磁心部材2の劣化診断を行っても良い。また、サーチコイル部10の電圧値の変化に基づいて、磁心部材2の劣化診断を行っても良い。また、サーチコイル部10に流れる電流の周波数や位相が変化した値に基づいて、磁心部材2の劣化診断を行っても良い。   In the present embodiment, the measured value used for the deterioration diagnosis of the magnetic core member 2 is a reactance value, a resistance value, or a value in which the frequency or phase of the current has changed, but other values may be used as the measured value. For example, the deterioration diagnosis of the magnetic core member 2 may be performed based on a change in the current value of the search coil unit 10. Further, the deterioration diagnosis of the magnetic core member 2 may be performed based on a change in the voltage value of the search coil unit 10. Further, the deterioration diagnosis of the magnetic core member 2 may be performed based on a value in which the frequency or phase of the current flowing through the search coil unit 10 is changed.

なお、本実施形態では、劣化度が既知の磁心部材2の損失特性値をシミュレートするようにしているが、その他の態様で劣化度が既知の磁心部材2の損失特性値を取得しても良い。例えば、実際に経年使用して劣化した磁心部材2を有するトランス1にサーチコイル部10を取り付けて測定値を取得し、この取得した測定値をパソコン11で解析することで、劣化度が既知の磁心部材2の損失特性値を取得するようにしても良い。このように、実際に経年使用した磁心部材2の損失特性値に基づいて、劣化診断に用いる判定値を設定しても良い。実際に経年使用した磁心部材2を用いることで、シミュレーションを行う手間を省くことができる。また、診断対象の磁心部材2の損失特性値(検出情報)を判定値と比較することで磁心部材の劣化度の診断処理を容易に行うことができる。   In the present embodiment, the loss characteristic value of the magnetic core member 2 having a known deterioration degree is simulated. However, even if the loss characteristic value of the magnetic core member 2 having a known deterioration degree is acquired in other manners. good. For example, the measured value is obtained by attaching the search coil unit 10 to the transformer 1 having the magnetic core member 2 that has actually deteriorated over time, and the obtained measured value is analyzed by the personal computer 11 so that the degree of deterioration is known. The loss characteristic value of the magnetic core member 2 may be acquired. Thus, the determination value used for the deterioration diagnosis may be set based on the loss characteristic value of the magnetic core member 2 actually used over time. By using the magnetic core member 2 that has actually been used over time, it is possible to save the trouble of performing the simulation. Further, by comparing the loss characteristic value (detection information) of the magnetic core member 2 to be diagnosed with the determination value, the diagnosis process of the degree of deterioration of the magnetic core member can be easily performed.

なお、本実施形態では、サーチコイル部10が環状を成す磁心部材2の周方向に沿って環状に配置されるが、サーチコイル部10を磁心部材2の全体に螺旋状に緩く巻きつけても良い。   In the present embodiment, the search coil portion 10 is annularly arranged along the circumferential direction of the annular magnetic core member 2. However, even if the search coil portion 10 is loosely wound spirally around the entire magnetic core member 2. good.

なお、本実施形態では、このサーチコイル部10が磁心部材2や巻回コイル部3,4から所定距離Dを空けて設けられているが、被覆部材でサーチコイル部10が覆われる場合には、サーチコイル部10が磁心部材2や巻回コイル部3,4に接触するように配置しても良い。   In the present embodiment, the search coil portion 10 is provided at a predetermined distance D from the magnetic core member 2 and the winding coil portions 3 and 4, but when the search coil portion 10 is covered with a covering member, The search coil portion 10 may be disposed so as to contact the magnetic core member 2 and the winding coil portions 3 and 4.

なお、本実施形態では、トランス1の磁心部材2の劣化診断を行う劣化診断装置を例示しているが、この劣化診断装置を用いてリアクトルの劣化診断を行っても良い。また、劣化診断装置は、磁心部材を有する電気機器であれば劣化診断を行うことができる。例えば、この劣化診断装置を用いて、電磁石などの磁心部材の劣化診断を行っても良いし、電流によって形成される磁場にエネルギーを蓄えることができるインダクタ(受動素子)などが有する磁心部材の劣化診断を行っても良い。   In the present embodiment, a deterioration diagnosis device that performs deterioration diagnosis of the magnetic core member 2 of the transformer 1 is illustrated, but reactor deterioration diagnosis may be performed using this deterioration diagnosis device. Further, the deterioration diagnosis device can perform deterioration diagnosis as long as it is an electric device having a magnetic core member. For example, this deterioration diagnosis device may be used to perform deterioration diagnosis of a magnetic core member such as an electromagnet, or deterioration of a magnetic core member included in an inductor (passive element) that can store energy in a magnetic field formed by an electric current. A diagnosis may be made.

なお、本実施形態の所定の値と判定値との判定において「判定値以上か否か」の判定をしているが、この判定は、「判定値を超えているか否か」の判定でも良いし、「判定値以下か否か」の判定でも良いし、「判定値未満か否か」の判定でも良い。   In the determination of the predetermined value and the determination value according to the present embodiment, “whether or not the determination value is exceeded” is determined, but this determination may be a determination of “whether or not the determination value is exceeded”. The determination may be “whether it is less than or equal to the determination value” or the determination “whether it is less than the determination value”.

以上説明した実施形態によれば、磁心部材2を囲むサーチコイル部10に特定の交流電圧を特定の周波数で付与する発振部23を持つことにより、経年使用した磁心部材2の劣化度の診断を正確に行うことができる。   According to the embodiment described above, the search coil unit 10 surrounding the magnetic core member 2 has the oscillating unit 23 that applies a specific AC voltage at a specific frequency, thereby diagnosing the degree of deterioration of the magnetic core member 2 used over time. Can be done accurately.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1…トランス、2…磁心部材、3…第1巻回コイル部、4…第2巻回コイル部、10…サーチコイル部、11…パソコン、12…測定装置、13…着脱部、14…着脱部、20…制御部、21…通信部、22…解析部、23…発振部、24…電圧計、25…電流計、26…コンデンサ、30…CPU、31…ROM、32…RAM、33…HDD、34…出力装置、35…入力装置、36…通信部、40…取得部、41…算出部、42…シミュレーション部、43…劣化診断部、44…判定情報記憶部、45…検出情報記憶部。 DESCRIPTION OF SYMBOLS 1 ... Transformer, 2 ... Magnetic core member, 3 ... 1st winding coil part, 4 ... 2nd winding coil part, 10 ... Search coil part, 11 ... Personal computer, 12 ... Measuring apparatus, 13 ... Detachable part, 14 ... Detachable , 20 ... control part, 21 ... communication part, 22 ... analysis part, 23 ... oscillation part, 24 ... voltmeter, 25 ... ammeter, 26 ... capacitor, 30 ... CPU, 31 ... ROM, 32 ... RAM, 33 ... HDD, 34 ... output device, 35 ... input device, 36 ... communication unit, 40 ... acquisition unit, 41 ... calculation unit, 42 ... simulation unit, 43 ... deterioration diagnosis unit, 44 ... determination information storage unit, 45 ... detection information storage Department.

Claims (7)

磁心部材を囲むサーチコイル部に特定の交流電圧を特定の周波数で付与する発振部と、
少なくとも前記サーチコイル部に流れる電流に基づく検出情報を取得する取得部と、
初期状態の磁心部材に対応する検出情報に基づいて判定情報が設定され、この判定情報を記憶する記憶部と、
前記初期状態から経年使用した磁心部材に対応する検出情報と前記判定情報とに基づいて、その劣化度を診断する診断部と、
を備えることを特徴とする磁心部材の劣化診断装置。
An oscillation unit that applies a specific AC voltage at a specific frequency to a search coil unit that surrounds the magnetic core member;
An acquisition unit for acquiring detection information based on at least a current flowing through the search coil unit;
Determination information is set based on detection information corresponding to the magnetic core member in the initial state, and a storage unit that stores the determination information;
Based on the detection information corresponding to the magnetic core member used over time from the initial state and the determination information, a diagnosis unit that diagnoses the degree of deterioration;
An apparatus for diagnosing deterioration of a magnetic core member, comprising:
前記初期状態の磁心部材に対応する検出情報は、前記初期状態の磁心部材を囲むサーチコイル部に基づく測定値から、空心状態のサーチコイル部に基づく測定値を減算することで求められることを特徴とする請求項1に記載の磁心部材の劣化診断装置。   The detection information corresponding to the magnetic core member in the initial state is obtained by subtracting the measurement value based on the search coil portion in the empty state from the measurement value based on the search coil portion surrounding the magnetic core member in the initial state. The deterioration diagnosis device for a magnetic core member according to claim 1. 前記判定情報は、前記初期状態の磁心部材に対応する検出情報と、前記劣化度が既知の磁心部材に対応する検出情報と、に基づいて設定されることを特徴とする請求項1または請求項2に記載の磁心部材の劣化診断装置。   The determination information is set based on detection information corresponding to the magnetic core member in the initial state and detection information corresponding to a magnetic core member whose degradation degree is known. 2. A deterioration diagnosis device for a magnetic core member according to 2. 前記特定の周波数は、1kHz以上の高周波数であることを特徴とする請求項1から請求項3のいずれか1項に記載の磁心部材の劣化診断装置。   The deterioration diagnosis device for a magnetic core member according to any one of claims 1 to 3, wherein the specific frequency is a high frequency of 1 kHz or more. 前記サーチコイル部と前記サーチコイル部以外の部分とを着脱させる着脱部を備え、
前記サーチコイル部を外すことで前記サーチコイル部以外の部分が持ち運び可能であることを特徴とする請求項1から請求項4のいずれか1項に記載の磁心部材の劣化診断装置。
An attachment / detachment part for attaching / detaching the search coil part and a part other than the search coil part;
5. The deterioration diagnosis device for a magnetic core member according to claim 1, wherein a portion other than the search coil portion can be carried by removing the search coil portion.
磁心部材を囲むサーチコイル部に特定の交流電圧を特定の周波数で付与する発振ステップと、
少なくとも前記サーチコイル部に流れる電流に基づく検出情報を取得する取得ステップと、
初期状態の磁心部材に対応する検出情報に基づいて判定情報が設定され、この判定情報を記憶する記憶ステップと、
前記初期状態から経年使用した磁心部材に対応する検出情報と前記判定情報とに基づいて、その劣化度を診断する診断ステップと、
を含むことを特徴とする磁心部材の劣化診断方法。
An oscillation step of applying a specific AC voltage at a specific frequency to the search coil portion surrounding the magnetic core member;
An acquisition step of acquiring detection information based on at least a current flowing in the search coil section;
Determination information is set based on detection information corresponding to the magnetic core member in the initial state, and a storage step for storing the determination information;
Diagnostic step of diagnosing the degree of deterioration based on the detection information corresponding to the magnetic core member used over time from the initial state and the determination information;
A method for diagnosing deterioration of a magnetic core member, comprising:
請求項1から請求項5のいずれか1項に記載の磁心部材の劣化診断装置により診断が可能な電気機器であって、
前記磁心部材と前記サーチコイル部とを有することを特徴とする電気機器。
An electrical device capable of being diagnosed by the deterioration diagnosis device for a magnetic core member according to any one of claims 1 to 5,
An electric device comprising the magnetic core member and the search coil portion.
JP2016012677A 2016-01-26 2016-01-26 Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method, electrical equipment Active JP6595356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016012677A JP6595356B2 (en) 2016-01-26 2016-01-26 Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method, electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016012677A JP6595356B2 (en) 2016-01-26 2016-01-26 Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method, electrical equipment

Publications (2)

Publication Number Publication Date
JP2017135213A true JP2017135213A (en) 2017-08-03
JP6595356B2 JP6595356B2 (en) 2019-10-23

Family

ID=59505018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016012677A Active JP6595356B2 (en) 2016-01-26 2016-01-26 Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method, electrical equipment

Country Status (1)

Country Link
JP (1) JP6595356B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023093015A (en) * 2021-12-22 2023-07-04 電子磁気工業株式会社 Magnetizing device and life prediction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221886A (en) * 1990-01-26 1991-09-30 Matsushita Electric Works Ltd Method for measuring core loss
JPH11326429A (en) * 1998-05-20 1999-11-26 Toshiba Corp Insulation diagnostic method and device for dry insulation equipment
JP2011047784A (en) * 2009-08-27 2011-03-10 Toshiba Corp Reactor for power and testing method thereof
JP2015207652A (en) * 2014-04-21 2015-11-19 株式会社神戸製鋼所 Simple evaluation method for pressed powder magnetic core

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221886A (en) * 1990-01-26 1991-09-30 Matsushita Electric Works Ltd Method for measuring core loss
JPH11326429A (en) * 1998-05-20 1999-11-26 Toshiba Corp Insulation diagnostic method and device for dry insulation equipment
JP2011047784A (en) * 2009-08-27 2011-03-10 Toshiba Corp Reactor for power and testing method thereof
JP2015207652A (en) * 2014-04-21 2015-11-19 株式会社神戸製鋼所 Simple evaluation method for pressed powder magnetic core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023093015A (en) * 2021-12-22 2023-07-04 電子磁気工業株式会社 Magnetizing device and life prediction method
JP7343849B2 (en) 2021-12-22 2023-09-13 電子磁気工業株式会社 Magnetizing device and life prediction method

Also Published As

Publication number Publication date
JP6595356B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
KR101532555B1 (en) Fault detection for laminated core
US20120130663A1 (en) On-line diagnostic method for health monitoring of a transformer
US20180100895A1 (en) Method and apparatus for diagnosing a fault condition in an electric machine
KR101532560B1 (en) Fault detection for laminated core
Gutten et al. Maintenance diagnostics of transformers considering the influence of short-circuit currents during operation
JP6595355B2 (en) Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method
JP2020510815A5 (en)
CN106815437B (en) Method and device for determining vibration sensitive area of oil tank under steady-state working condition of transformer
JP6595356B2 (en) Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method, electrical equipment
US11131719B2 (en) Method and device for identifying an inter-turn short circuit in parallel windings
JP2007271607A (en) Abnormality detection device
Brandt et al. Analysis of winding fault in electric machines by frequency method
Samimi et al. Feasibility study on the detection of turn-to-turn fault severity in the transformer winding by frequency response analysis and numerical indices
US12020855B2 (en) Test and measurement instrument for determining magnetic core losses
Ushakov et al. Traditional Electrical Diagnostic Methods
USH2281H1 (en) Apparatus and method for testing an edge of a workpiece for sharpness
US11788879B2 (en) State analysis of an inductive operating resource
JP2012078349A (en) Pulse excitation type inspection device, and pulse excitation type inspection method
Toudji et al. Predictive diagnostic based on HF modeling of electrical machines windings
Pallot et al. Application of operational modal analysis to investigate transformer vibration patterns
Chaouche et al. A robust approach for locating and assessing mechanical faults in an actual transformer winding using the state space of its lumped equivalent model
Siada et al. High frequency transformer computer modeling
US20220376645A1 (en) Short circuit detection device, and short circuit detection method for rotating electric machine
Pütter et al. Reliable demagnetization of transformer cores
JP4215244B2 (en) Coil loss state monitoring system and coil loss measurement method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190926

R150 Certificate of patent or registration of utility model

Ref document number: 6595356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150