JP2017135155A - Substrate for mounting semiconductor light emitting device - Google Patents

Substrate for mounting semiconductor light emitting device Download PDF

Info

Publication number
JP2017135155A
JP2017135155A JP2016011629A JP2016011629A JP2017135155A JP 2017135155 A JP2017135155 A JP 2017135155A JP 2016011629 A JP2016011629 A JP 2016011629A JP 2016011629 A JP2016011629 A JP 2016011629A JP 2017135155 A JP2017135155 A JP 2017135155A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
semiconductor light
stress
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016011629A
Other languages
Japanese (ja)
Inventor
幸生 西田
Yukio Nishida
幸生 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2016011629A priority Critical patent/JP2017135155A/en
Publication of JP2017135155A publication Critical patent/JP2017135155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to maintain high bonding strength of a light emitting device with respect to a substrate by suppressing stress on the substrate caused by heat generation during light emission of the light emitting device in the substrate on which the light emitting device is mounted by soldering.SOLUTION: The substrate for mounting a semiconductor light emitting device formed by mounting a light emitting device group 6 composed of a plurality of light emitting devices 5 on a line segment L between fixed holes 2 provided at both end portions of a substrate 1 is provided with a pair of stress relief holes 10 on the line segment L between light emitting devices 5a positioned at both ends of the light-emitting device group 6 and the fixed holes 2 located on the respective end sides.SELECTED DRAWING: Figure 14

Description

本発明は、複数の半導体発光素子(例えば、LED素子)を実装する基板(半導体発光素子実装用基板)に関する。   The present invention relates to a substrate (semiconductor light emitting device mounting substrate) on which a plurality of semiconductor light emitting devices (for example, LED devices) are mounted.

従来、複数のLED素子を実装(特に、直線状に実装)したLED実装用基板としては、例えば、特許文献1(名称:車両用灯具)に発光モジュールを構成する回路基板として開示されている。   Conventionally, as an LED mounting board on which a plurality of LED elements are mounted (particularly mounted in a straight line), for example, Patent Document 1 (name: vehicle lamp) is disclosed as a circuit board constituting a light emitting module.

開示された発光モジュール80は、図16に示すように、回路基板81、給電コネクタ95、96及び半導体発光素子100により構成されている。   The disclosed light emitting module 80 includes a circuit board 81, power feeding connectors 95 and 96, and a semiconductor light emitting element 100, as shown in FIG.

そのうち、回路基板81は、右側部82と左側部83の夫々の上側部84と下側部85の間に2個所ずつの切り欠き部86が形成されると共に、右側部82に形成された2個所の切り欠き部86の間には回路基板81を貫通する2つの円孔87、88が形成され、同様に左側部83に形成された2個所の切り欠き部86の間には回路基板81を貫通する2つの長孔89、90が形成されている。   Among them, the circuit board 81 has two cutout portions 86 formed between the upper side portion 84 and the lower side portion 85 of the right side portion 82 and the left side portion 83, respectively, and 2 formed on the right side portion 82. Two circular holes 87 and 88 penetrating the circuit board 81 are formed between the notch portions 86, and the circuit board 81 is similarly formed between the two notch portions 86 formed on the left side portion 83. Two long holes 89 and 90 penetrating through are formed.

そして、給電コネクタ95、96が回路基板81の上側部84の上端に配置され、複数の半導体発光素子(具体的には、22個の半導体発光素子)100が回路基板81の下側部85に横一列に直線状に配置されている。   The power supply connectors 95 and 96 are disposed at the upper end of the upper side portion 84 of the circuit board 81, and a plurality of semiconductor light emitting elements (specifically, 22 semiconductor light emitting elements) 100 are provided on the lower side portion 85 of the circuit board 81. It is arranged linearly in a horizontal row.

保持部材への発光モジュール80の取り付けは、以下、図示しないが、発光モジュール80の回路基板81の4つの切り欠き部86が保持部材のベース部に突設されたスクリュボスに嵌合されると同時に、回路基板81の一方の円孔88が保持部材のベース部に突設された一方の位置決めピンに嵌挿されると共に回路基板81の他方の長孔90が保持部材のベース部に突設された他方の位置決めピンに嵌挿されている。また、回路基板81の他方の円孔87は反射部材の固定部の裏面側に突設された一方の位置決めピンに嵌挿されると共に回路基板81の他方の長孔89が反射部材の固定部の裏面側に突設された他方の位置決めピンに嵌挿されている。   Although not shown in the drawings, the light emitting module 80 is attached to the holding member at the same time when the four notches 86 of the circuit board 81 of the light emitting module 80 are fitted to the screw bosses protruding from the base portion of the holding member. The one circular hole 88 of the circuit board 81 is inserted into one positioning pin protruding from the base portion of the holding member, and the other long hole 90 of the circuit board 81 protrudes from the base portion of the holding member. The other positioning pin is inserted. The other circular hole 87 of the circuit board 81 is fitted into one positioning pin protruding from the back surface side of the fixing part of the reflecting member, and the other long hole 89 of the circuit board 81 is the fixing part of the reflecting member. It is inserted into the other positioning pin protruding from the back side.

そして、上記位置決めされた発光モジュール80が、保持部材と反射部材とで挟まれた状態でタッピングスクリュによって共締めされている。   The positioned light emitting module 80 is fastened together with a tapping screw while being sandwiched between the holding member and the reflecting member.

特開2013−164937号JP 2013-164937 A

ところで、上記構成からなる発光モジュール80は、半導体発光素子100の発光時に、夫々の半導体発光素子100からの発熱が重畳されるために熱量が増加して回路基板の温度が極めて高くなり、大幅な温度上昇による熱膨張によって回路基板に伸びが生じる。   Meanwhile, in the light emitting module 80 having the above configuration, when the semiconductor light emitting element 100 emits light, heat generated from each semiconductor light emitting element 100 is superimposed, so that the amount of heat increases and the temperature of the circuit board becomes extremely high. The circuit board is stretched due to thermal expansion due to temperature rise.

すると、回路基板81は、円孔87及び円孔88を支点にして長孔89及び長孔90の方向に伸張する。そのため、半導体発光素子100は、長孔89及び長孔90の側にあるほど保持部材及び反射部材に対する位置ずれが大きくなり、最も長孔89及び長孔90の側に位置する半導体発光素子100が最も大きな位置ずれを生じる。   Then, the circuit board 81 extends in the direction of the long hole 89 and the long hole 90 with the circular hole 87 and the circular hole 88 as fulcrums. Therefore, as the semiconductor light emitting element 100 is located closer to the long hole 89 and the long hole 90, the positional deviation with respect to the holding member and the reflecting member becomes larger, and the semiconductor light emitting element 100 positioned closest to the long hole 89 and the long hole 90 is The largest misalignment occurs.

その結果、半導体発光素子100から発せられて車両用灯具から出射される光の光学特性に悪影響を及ぼすおそれがある。   As a result, the optical characteristics of the light emitted from the semiconductor light emitting device 100 and emitted from the vehicular lamp may be adversely affected.

また、回路基板の位置決めの保持を確実なものにするために、両端部をねじ止め等の手段により強固に固定支持した場合を考えると、半導体発光素子の発光時の発熱による回路基板の伸張によって固定支持部間に曲げ応力が発生して反りが生じ、それによって半導体発光素子と回路基板との接合部(例えば、はんだ接合部)に破損あるいは破壊が生じて必要とされる接合強度が確保できなくなる可能性がある。   In addition, in order to ensure the holding of the positioning of the circuit board, considering the case where both ends are firmly fixed and supported by means such as screwing, the expansion of the circuit board due to heat generation during light emission of the semiconductor light emitting element Bending stress is generated between the fixed support parts to cause warpage, which causes damage or breakage at the joint part (for example, solder joint part) between the semiconductor light emitting element and the circuit board, thereby ensuring the required joint strength. There is a possibility of disappearing.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、半導体発光素子(LED素子)が実装された回路基板(LED実装用基板)において、半導体発光素子の発光時の発熱によって生じる回路基板に対する応力を抑制することにより、回路基板に対する半導体発光素子の高い接合強度を保持できるようにすることにある。   Therefore, the present invention was devised in view of the above problems, and the object of the present invention is to provide a circuit board (LED mounting board) on which a semiconductor light emitting element (LED element) is mounted, when the semiconductor light emitting element emits light. It is intended to maintain a high bonding strength of the semiconductor light emitting element to the circuit board by suppressing the stress on the circuit board caused by the heat generation.

上記課題を解決するために、本発明の請求項1に記載された発明は、半導体発光素子を実装する半導体発光素子実装用基板であって、前記半導体発光素子実装用基板は、両端部に貫通孔からなる固定孔を有すると共に、前記固定孔を結ぶ線分上に複数の前記半導体発光素子からなる半導体発光素子群がはんだ接合により実装され、前記半導体発光素子群の両端部に位置する半導体発光素子と、夫々の端部側に位置する前記固定孔との間の前記線分上に貫通孔からなる一対の応力開放孔を設けたことを特徴とするものである。   In order to solve the above problems, the invention described in claim 1 of the present invention is a semiconductor light emitting element mounting substrate on which a semiconductor light emitting element is mounted, and the semiconductor light emitting element mounting substrate penetrates at both ends. A semiconductor light emitting device having a fixing hole made of a hole, and a plurality of semiconductor light emitting device groups made of the semiconductor light emitting devices mounted on a line segment connecting the fixing holes by solder bonding, and positioned at both ends of the semiconductor light emitting device group A pair of stress release holes including through holes are provided on the line segment between the element and the fixed hole located on each end side.

また、本発明の請求項2に記載された発明は、請求項1において、前記応力開放孔は、前記半導体発光素子群が実装された方向に直交する方向に長い長方形あるいは、前記半導体発光素子群が実装された方向に直交する方向の中央部が内側に凹んだ鼓状を有することを特徴とするものである。   According to a second aspect of the present invention, in the first aspect, the stress release hole is a rectangle that is long in a direction orthogonal to a direction in which the semiconductor light emitting element group is mounted, or the semiconductor light emitting element group. The central portion in the direction orthogonal to the direction in which the is mounted has a drum shape recessed inward.

また、本発明の請求項3に記載された発明は、請求項2において、前記長方形の幅及び前記鼓状の中央部の凹んだ部分の幅はいずれも、前記半導体発光素子の、記半導体発光素子群が実装された方向に直交する方向の長さ以下であることを特徴とするものである。   According to a third aspect of the present invention, in the second aspect, the width of the rectangle and the width of the recessed portion of the central portion of the drum shape are both the semiconductor light emitting element of the semiconductor light emitting element. The length of the element group is equal to or shorter than the direction perpendicular to the direction in which the element group is mounted.

また、本発明の請求項4に記載された発明は、請求項1〜請求項3のいずれかにおいて、前記応力開放孔は、前記半導体発光素子群の両端部に位置する半導体発光素子と前記固定孔との中間位置付近から前記半導体発光素子側あるいは前記固定孔側のいずれかの方向の離れた位置に設けられていることを特徴とするものである。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the stress relief holes are formed by fixing the semiconductor light emitting elements located at both ends of the semiconductor light emitting element group and the fixing. It is provided at a position away from the vicinity of an intermediate position with respect to the hole in either direction of the semiconductor light emitting element side or the fixed hole side.

本発明によれば、半導体発光素子実装用基板の両端部に設けられた固定孔を結ぶ線分上に複数の半導体発光素子からなる半導体発光素子群をはんだ接合により実装してなる半導体発光素子実装基板において、半導体発光素子群の両端部に位置する半導体発光素子と、夫々の端部側に位置する固定孔との間の前記線分上に一対の応力開放孔を設けた。   According to the present invention, a semiconductor light-emitting element mounting formed by mounting a semiconductor light-emitting element group composed of a plurality of semiconductor light-emitting elements on a line segment connecting fixed holes provided at both ends of a semiconductor light-emitting element mounting substrate by solder bonding. In the substrate, a pair of stress release holes are provided on the line segment between the semiconductor light emitting elements located at both ends of the semiconductor light emitting element group and the fixing holes located at the respective end parts.

これにより、半導体発光素子実装基板に対して半導体発光素子の高い接合強度が保持されて優れた実装信頼性を確保することができる。   As a result, the high bonding strength of the semiconductor light emitting element with respect to the semiconductor light emitting element mounting substrate is maintained, and excellent mounting reliability can be ensured.

応力開放孔の外形寸法の最適化に用いる発光素子実装基板の説明図である。It is explanatory drawing of the light emitting element mounting board | substrate used for the optimization of the external dimension of a stress release hole. 図1のA部拡大図である。It is the A section enlarged view of FIG. 応力開放孔の第1実施例の説明図である。It is explanatory drawing of 1st Example of a stress relief | release hole. 同じく、応力開放孔の第2実施例の説明図である。Similarly, it is explanatory drawing of 2nd Example of a stress relief | release hole. 同じく、応力開放孔の第3実施例の説明図である。Similarly, it is explanatory drawing of 3rd Example of a stress relief | release hole. 同じく、応力開放孔の第4実施例の説明図である。Similarly, it is explanatory drawing of 4th Example of a stress release hole. 同じく、応力開放孔の第5実施例の説明図である。Similarly, it is explanatory drawing of 5th Example of a stress release hole. 同じく、応力開放孔の第6実施例の説明図である。Similarly, it is explanatory drawing of 6th Example of a stress release hole. 発光素子に加わる相対応力のグラフである。It is a graph of the relative stress added to a light emitting element. 同じく、発光素子に加わる相対応力のグラフである。Similarly, it is a graph of the relative stress added to a light emitting element. 応力開放孔の第7実施例の説明図である。It is explanatory drawing of 7th Example of a stress release hole. 同じく、応力開放孔の第8実施例の説明図である。Similarly, it is explanatory drawing of 8th Example of a stress relief | release hole. 発光素子に加わる相対応力のグラフである。It is a graph of the relative stress added to a light emitting element. 応力開放孔の配設位置の最適化に用いる発光素子実装基板の説明図である。It is explanatory drawing of the light emitting element mounting substrate used for optimization of the arrangement | positioning position of a stress release hole. 応力開放孔の位置と発光素子に加わる応力との関係を示すグラフである。It is a graph which shows the relationship between the position of a stress release hole, and the stress added to a light emitting element. 従来例の説明図である。It is explanatory drawing of a prior art example.

以下、この発明の好適な実施形態を図1〜図15を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 15 (the same reference numerals are given to the same portions). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

発明者は図1に示すように、両端部に固定用の貫通孔(固定孔)2を有すると共に両固定孔2を結ぶ線分L上の中央部に該線分Lに沿って設けられた複数のダイボンディングパッド3を有する基板1おいて、複数のダイボンディングパッド3からなるダイボンディングパッド群4の両端部に位置するダイボンディングパッド3aと、夫々の端部側に位置する固定孔2との間の前記線分L上に一対の応力開放用の貫通孔(応力開放孔)10を設け、図2に示すように、隣り合うダイボンディングパッド3に架かるようにはんだ接合によって実装した複数の半導体発光素子(以下、「発光素子」と略称する)5からなる発光素子群6の発光(点灯)時の発熱によって生じる発光素子5に対する応力が応力開放孔10によって緩和されることを確認し、その上で応力シミュレーションによって応力開放孔10の形状寸法の最適化を図った。   As shown in FIG. 1, the inventor has fixing through holes (fixing holes) 2 at both ends, and is provided along the line segment L at the center on the line segment L connecting both the fixing holes 2. In the substrate 1 having a plurality of die bonding pads 3, die bonding pads 3 a located at both ends of the die bonding pad group 4 composed of the plurality of die bonding pads 3, and fixing holes 2 located at the respective end portions A pair of stress release through holes (stress release holes) 10 are provided on the line segment L between the two, and as shown in FIG. 2, a plurality of solder joints mounted on adjacent die bonding pads 3 are mounted. It is confirmed that stress applied to the light emitting element 5 caused by heat generation during light emission (lighting) of the light emitting element group 6 including the semiconductor light emitting elements (hereinafter, simply referred to as “light emitting elements”) 5 is relieved by the stress release holes 10. It was optimized geometry of the stress releasing hole 10 by the stress simulation thereon.

応力開放孔10の形状寸法のシミュレーションに際しては、まず、応力開放孔10の基本形状を矩形状として、寸法の異なる複数の応力開放孔を設定した。なお、以下において、発光素子及び応力開放孔の夫々の説明で用いる「幅」及び「高さ」はそれぞれ、「発光素子群が実装された方向に対応する寸法」及び「発光素子群が実装された方向に直交する方向に対応する寸法」を示す。   In the simulation of the shape and size of the stress relief hole 10, first, the basic shape of the stress relief hole 10 was made rectangular, and a plurality of stress relief holes having different dimensions were set. In the following, “width” and “height” used in the description of each of the light emitting element and the stress relief hole are “dimension corresponding to the direction in which the light emitting element group is mounted” and “the light emitting element group is mounted, respectively”. Dimension corresponding to the direction orthogonal to the direction indicated.

設定した矩形状の応力開放孔は、幅aを発光素子5の高さdの1/4(0.25倍)とし、高さbを発光素子5の高さdの2倍とする縦長形状の第1実施例11(図3参照)、幅aを発光素子5の高さdとし、高さbを発光素子5の高さdの1/2とする横長形状の第2実施例12(図4参照)、幅aを発光素子5の高さdとし、高さbを発光素子5の高さdの2倍とする縦長形状の第3実施例13(図5参照)、幅aを発光素子5の高さdとし、高さbを発光素子5の高さdの4倍とする縦長形状の第4実施例14(図6参照)、幅aを発光素子5の高さdとし、高さbを発光素子5の高さdの5.25倍とする縦長形状の第5実施例15(図7参照)、及び、幅aを発光素子5の高さdの2倍とし、高さbを発光素子5の高さdの2倍とする正方形の第6実施例16(図8参照)の6種類とした。   The rectangular stress relief hole thus set has a vertically long shape in which the width a is 1/4 (0.25 times) the height d of the light emitting element 5 and the height b is twice the height d of the light emitting element 5. First Embodiment 11 (see FIG. 3), a second embodiment 12 having a horizontally long shape in which the width a is the height d of the light-emitting element 5 and the height b is ½ of the height d of the light-emitting element 5. 4), a third embodiment 13 (see FIG. 5) having a vertically long shape in which the width a is the height d of the light-emitting element 5 and the height b is twice the height d of the light-emitting element 5. A vertically long fourth embodiment 14 (see FIG. 6) in which the height d of the light-emitting element 5 is set to 4 times the height d of the light-emitting element 5, and the width a is set to the height d of the light-emitting element 5. The vertically elongated fifth embodiment 15 (see FIG. 7) in which the height b is 5.25 times the height d of the light emitting element 5, and the width a is twice the height d of the light emitting element 5, The height b is twice the height d of the light emitting element 5 That was the sixth six EXAMPLE 16 (see FIG. 8) of the square.

なお、応力開放孔を設けない基板を比較例20として設定した。   In addition, the board | substrate which does not provide a stress relief | release hole was set as the comparative example 20. FIG.

そこで、まず、夫々の応力開放孔の幅aと応力緩和との関係について、高さb(発光素子5の高さdの2倍)が同一で幅aのみが異なる、第1実施例11、第3実施例13、第6実施例16及び比較例20について応力を算出した。その、算出結果をグラフ上に示したのが図9である。   Therefore, first, regarding the relationship between the width a of each stress release hole and the stress relaxation, the height b (twice the height d of the light emitting element 5) is the same and only the width a is different, the first embodiment 11, The stress was calculated for the third example 13, the sixth example 16, and the comparative example 20. FIG. 9 shows the calculation result on a graph.

図9のグラフは、横軸が、応力開放孔の幅aの、発光素子の高さdに対する比率a/dを表し、縦軸は、全発光素子の点灯時に該発光素子に掛かる最大応力を、応力開放孔を有しない比較例を100%としたときの比率(%)で表している。   In the graph of FIG. 9, the horizontal axis represents the ratio a / d of the width a of the stress release hole to the height d of the light emitting elements, and the vertical axis represents the maximum stress applied to the light emitting elements when all the light emitting elements are turned on. The ratio is expressed as a ratio (%) when the comparative example having no stress release hole is taken as 100%.

図9より、比較例の発光素子に掛かる最大応力[711MPa]に対する第1実施例の発光素子に加わる最大応力[652MPa]の比率は91.7%であり、第3実施例の発光素子に加わる最大応力[642MPa]の比率は90.3%であり、第6実施例の発光素子に加わる最大応力[697MPa]の比率は98.0%である。   From FIG. 9, the ratio of the maximum stress [652 MPa] applied to the light emitting device of the first example to the maximum stress [711 MPa] applied to the light emitting device of the comparative example is 91.7%, which is applied to the light emitting device of the third example. The ratio of the maximum stress [642 MPa] is 90.3%, and the ratio of the maximum stress [697 MPa] applied to the light emitting device of the sixth example is 98.0%.

このことより、最も応力緩和の効果が大きい応力開放孔の幅aは、第3実施例のように発光素子の高さdと同じ場合であるという結果が得られた。   From this, it was found that the width a of the stress release hole having the greatest stress relaxation effect is the same as the height d of the light emitting element as in the third embodiment.

そこで次に、応力開放孔の幅aを、上記の応力シミュレーションにおいて好適の幅として得られた発光素子の高さdと同じにしたときの、応力開放孔の高さbと応力緩和との関係について、幅aが発光素子の高さdと同じで高さbのみが異なる、第2実施例、第3実施例、第4実施例、第5実施例及び比較例について応力を算出した。その、算出結果をグラフ上に示したのが図10である。   Therefore, next, the relationship between the stress relief hole height b and the stress relaxation when the stress relief hole width a is the same as the light emitting element height d obtained as a suitable width in the above stress simulation. The stress was calculated for the second example, the third example, the fourth example, the fifth example, and the comparative example, in which the width a is the same as the height d of the light emitting element and only the height b is different. FIG. 10 shows the calculation result on the graph.

図10のグラフは、横軸が、応力開放孔の高さbの、発光素子の高さdに対する比率b/dを表し、縦軸は、全発光素子の点灯時に該発光素子に加わる最大応力を、応力開放孔を有しない比較例を100%としたときの比率(%)で表している。   In the graph of FIG. 10, the horizontal axis represents the ratio b / d of the height b of the stress release hole to the height d of the light emitting elements, and the vertical axis represents the maximum stress applied to the light emitting elements when all the light emitting elements are turned on. Is expressed as a ratio (%) when the comparative example having no stress release holes is taken as 100%.

図10より、比較例の発光素子に加わる最大応力[711MPa]に対する第2実施例の発光素子に加わる最大応力[680MPa]の比率は95.6%であり、第3実施例の発光素子に加わる最大応力[642MPa]の比率は90.3%であり、第4実施例の発光素子に加わる最大応力[610MPa]の比率は85.8%であり、第5実施例の発光素子に加わる最大応力[569MPa]の比率は80.0%である。   From FIG. 10, the ratio of the maximum stress [680 MPa] applied to the light emitting device of the second example to the maximum stress [711 MPa] applied to the light emitting device of the comparative example is 95.6%, which is applied to the light emitting device of the third example. The ratio of the maximum stress [642 MPa] is 90.3%, the ratio of the maximum stress [610 MPa] applied to the light emitting device of the fourth embodiment is 85.8%, and the maximum stress applied to the light emitting device of the fifth embodiment. The ratio of [569 MPa] is 80.0%.

このことより、応力開放孔の幅aを発光素子の高さdと同じにしたときに、最も応力緩和の効果が大きい応力開放孔の高さbは、少なくとも高さbが発光素子の高さdの5.25倍の範囲内においては、高ければ高いほど効果が大きいという結果が得られた。   From this, when the width a of the stress relief hole is made equal to the height d of the light emitting element, the height b of the stress relief hole having the greatest stress relaxation effect is at least the height b of the light emitting element. In the range of 5.25 times d, the higher the effect, the greater the effect.

したがって、上述の応力シミュレーションの結果より、矩形の応力開放孔は、幅aが発光素子の高さdと同じで且つ高さbが少なくとも発光素子の高さdの5.25倍の範囲内においては高ければ高いほど効果が大きいという結果が得られた。   Therefore, from the result of the stress simulation described above, the rectangular stress release hole has a width a equal to the height d of the light emitting element and a height b at least in the range of 5.25 times the height d of the light emitting element. The higher the value, the greater the effect.

次に、上記シミュレーション結果を踏まえ、第7実施例及び第8実施例として、上記シミュレーションによって得られた好適とされる幅a(発光素子の高さdと同じ値)の部分を部分的に有する、矩形以外の形状(例えば、図11及び図12にあるような、高さ方向の中央部が内側に凹んだ鼓状)の応力開放孔についても応力シミュレーションを行った。   Next, based on the simulation results, the seventh embodiment and the eighth embodiment partially have a portion having a width a (the same value as the height d of the light emitting element) obtained by the simulation. Stress simulation was also performed on a stress release hole having a shape other than a rectangle (for example, a drum shape with a central portion in the height direction recessed inward as shown in FIGS. 11 and 12).

第7実施例17は図11より、高さbを発光素子5の高さdの2倍とし、上端部及び下端部の幅aを発光素子の高さdの2倍とすると共に中央部の凹んだ部分の幅aを発光素子の高さdと同じとし、第8実施例18は図12より、高さbを発光素子の高さdの4倍とし、上端部及び下端部の幅aを発光素子の高さdの2倍とすると共に中央部の凹んだ部分の幅aを発光素子の高さdと同じとした。 From FIG. 11, the seventh embodiment 17 has a height b that is twice the height d of the light emitting element 5, a width a 1 at the upper end and the lower end that is twice the height d of the light emitting element, and a central portion. The width a 2 of the recessed portion is the same as the height d of the light emitting element, and the eighth embodiment 18 shows that the height b is four times the height d of the light emitting element from FIG. The width a 1 was set to be twice the height d of the light emitting element, and the width a 2 of the recessed portion at the center was the same as the height d of the light emitting element.

図13のグラフは、幅aを発光素子5の高さdの2倍とし、高さbを発光素子5の高さdの2倍とする正方形の第6実施例、幅aを発光素子5の高さdとし、高さbを発光素子5の高さdの2倍とする縦長形状の第3実施例、幅aを発光素子5の高さdとし、高さbを発光素子5の高さdの4倍とする縦長形状の第4実施例、高さbを発光素子5の高さdの2倍とし、上端部及び下端部の幅aを発光素子5の高さdの2倍とすると共に中央部の凹んだ部分の幅aを発光素子5の高さdと同じとする第7実施例、及び高さbを発光素子5の高さdの4倍とし、上端部及び下端部の幅aを発光素子5の高さdの2倍とすると共に中央部の凹んだ部分の幅aを発光素子5の高さdと同じとした第8実施例の夫々の全発光素子の点灯時に該発光素子に加わる最大応力を、第6実施例に加わる最大応力を100%としたときの比率(%)で表している。 The graph of FIG. 13 shows a sixth example of a square in which the width a is twice the height d of the light emitting element 5 and the height b is twice the height d of the light emitting element 5, and the width a is the light emitting element 5. The height d of the light emitting element 5 and the height b of the light emitting element 5 is twice as long as the height d of the light emitting element 5, the width a is the height d of the light emitting element 5, and the height b is Fourth embodiment of a vertically long shape having a height four times the height d, the height b is twice the height d of the light emitting element 5, and the width a 1 of the upper end portion and the lower end portion is the height d of the light emitting element 5. seventh embodiment of the width a 2 of recessed portion of the central portion and the same as the height d of the light emitting element 5 with a 2-fold, and the height b and 4 times the height d of the light emitting element 5, the upper end In the eighth embodiment, the width a 1 of the center portion and the lower end portion is twice the height d of the light emitting element 5, and the width a 2 of the recessed portion in the center is the same as the height d of the light emitting element 5. When all the light emitting elements are turned on, The maximum stress applied to the light emitting element is expressed as a ratio (%) when the maximum stress applied to the sixth embodiment is 100%.

図13より、応力開放孔の幅aを発光素子の高さdの2倍とする第6実施例に対して、応力開放孔の幅aを発光素子の高さdと同じとする部分を全体的あるいは部分的に有する第3実施例、第4実施例、第7実施例及第8実施例の方が応力緩和の効果が効果的に発揮されることを示している。   From FIG. 13, in contrast to the sixth embodiment in which the width a of the stress release hole is twice the height d of the light emitting element, the entire portion where the width a of the stress release hole is the same as the height d of the light emitting element is shown. The third embodiment, the fourth embodiment, the seventh embodiment, and the eighth embodiment, which are intended or partially included, show that the stress relaxation effect is more effectively exhibited.

また、夫々が応力開放孔の高さbを発光素子の高さdの2倍とすると共に、発光素子の高さdと同じ幅aを有する長方形の第3実施例と、発光素子の高さdと同じ幅aの凹みを有する鼓状の第7実施例とは、ほぼ同程度の応力緩和効果が得られることがわかる。 Further, each of the third embodiment of the rectangle having the same width a as the height d of the light emitting element, and the height b of the light emitting element, each of which makes the height b of the stress relief hole twice the height d of the light emitting element. the drum-shaped seventh embodiment having the recess of the same width a 2 and d, it can be seen that substantially the same degree of stress relaxation effect can be obtained.

同様に、夫々が応力開放孔の高さbを発光素子の高さdの4倍とすると共に、発光素子の高さdと同じ幅aを有する長方形の第4実施例と、発光素子の高さdと同じ幅aの凹みを有する鼓状の第8実施例とは、ほぼ同程度の応力緩和効果が得られることがわかる。 Similarly, the fourth embodiment in which each of the heights b of the stress relief holes is four times the height d of the light emitting element and has the same width a as the height d of the light emitting element, and the height of the light emitting element is the drum-shaped eighth embodiment having the recess of the same width a 2 and d, it can be seen that substantially the same degree of stress relaxation effect can be obtained.

同時に、第3実施例及び第7実施例よりも、応力開放孔の高さbが高い第4実施例及び第8実施例の方が応力緩和の効果が高いことがわかる。   At the same time, it can be seen that the fourth embodiment and the eighth embodiment, in which the height b of the stress release hole is higher, have a higher stress relaxation effect than the third embodiment and the seventh embodiment.

この結果は、上記シミュレーションによって得られた好適とされる、応力開放孔の高さbは、少なくとも高さbが発光素子の高さdの5.25倍の範囲内においては、高ければ高いほど効果が大きいとする結果に沿うものである。   This result shows that the height b of the stress release hole, which is preferable obtained by the simulation, is higher as long as the height b is at least 5.25 times the height d of the light emitting element. This is in line with the result that the effect is great.

以上より、応力開放孔の高さbが同じであれば、発光素子の高さdと同じ幅aを有する長方形の応力開放孔と、発光素子の高さdと同じ幅aの凹みを有する鼓状の応力開放孔とは、形状が異なってもほぼ同程度の応力緩和効果を得ることができる。 From the above, if the height b of the stress releasing holes are the same, has a rectangular stress releasing hole having the same width a as the height d of the light-emitting element, the same width a 2 height d of the light-emitting element recesses Even if the shape is different from the drum-shaped stress release hole, it is possible to obtain almost the same stress relaxation effect.

また、上記いずれの応力開放孔(長方形及び鼓状)においても、高さbが高ければ高いほど応力緩和効果が増すことになる。   Further, in any of the stress release holes (rectangle and drum shape), the stress relaxation effect increases as the height b increases.

ところで、応力シミュレーションによって、応力開放孔を設ける好適な位置も算出した。
シミュレーションの条件としては、図14に示すように、応力開放孔10を、幅aが発光素子5の高さdとし、高さbが発光素子の高さdの2倍とする縦長形状の第3実施例とし、基板1の両端部に設けられた固定孔2間の線分L上に複数の発光素子5からなる発光素子群6を実装し、発光素子群6の両端部に位置する発光素子5aと、夫々の端部側に位置する固定孔2との間の前記線分L上に一対の応力開放孔10を設けた。
By the way, the suitable position which provides a stress release hole was also calculated by stress simulation.
As the simulation conditions, as shown in FIG. 14, the stress release hole 10 has a vertically long shape in which the width a is the height d of the light emitting element 5 and the height b is twice the height d of the light emitting element. As a third embodiment, a light emitting element group 6 composed of a plurality of light emitting elements 5 is mounted on a line segment L between fixed holes 2 provided at both ends of the substrate 1, and light emission located at both ends of the light emitting element group 6 is achieved. A pair of stress release holes 10 are provided on the line segment L between the element 5a and the fixing hole 2 located on each end side.

そして、発光素子群6の両端部に位置する発光素子5aの中心から応力開放孔10の中心までの距離をfとし、応力開放孔10の中心から固定孔2の中心までの距離をeとする。   The distance from the center of the light emitting element 5a located at both ends of the light emitting element group 6 to the center of the stress releasing hole 10 is f, and the distance from the center of the stress releasing hole 10 to the center of the fixing hole 2 is e. .

その応力シミュレーションの結果が図15に示されている。   The result of the stress simulation is shown in FIG.

図15は、横軸が、発光素子群6の両端部に位置する発光素子5aの中心から応力開放孔の中心までの距離fの、発光素子群6の両端部に位置する発光素子5aの中心から固定孔2の中心までの距離(e+f)に対する比(f/(e+f))を表し、縦軸は、発光素子に加わる最大応力[MPa]を表している。   FIG. 15 shows the center of the light emitting element 5a located at both ends of the light emitting element group 6 at a distance f from the center of the light emitting element 5a located at both ends of the light emitting element group 6 to the center of the stress relief hole. Represents the ratio (f / (e + f)) to the distance (e + f) from the center of the fixing hole 2 to the center of the fixing hole 2, and the vertical axis represents the maximum stress [MPa] applied to the light emitting element.

図15より、(f/(e+f))が0.25、つまり、発光素子群6の両端部に位置する発光素子5aの中心から応力開放孔までの距離が、発光素子群6の両端部に位置する発光素子5aの中心から固定孔2の中心までの距離の1/4の場合は、発光素子に加わる最大応力が637[MPa]となり、(f/(e+f))が0.5、つまり、発光素子群6の両端部に位置する発光素子5aの中心から応力開放孔までの距離が、発光素子群6の両端部に位置する発光素子5aの中心から固定孔2の中心までの距離の1/2の場合は、発光素子に加わる最大応力が645[MPa]となり、(f/(e+f))が0.75、つまり、発光素子群6の両端部に位置する発光素子5aの中心から応力開放孔までの距離が、発光素子群6の両端部に位置する発光素子5aの中心から固定孔の中心までの距離の3/4の場合は、発光素子に加わる最大応力が642[MPa]となる。   From FIG. 15, (f / (e + f)) is 0.25, that is, the distance from the center of the light emitting element 5a located at both ends of the light emitting element group 6 to the stress release hole is the both ends of the light emitting element group 6. When the distance from the center of the light emitting element 5a located at the center to the center of the fixing hole 2 is 1/4, the maximum stress applied to the light emitting element is 637 [MPa], and (f / (e + f)) is 0. .5, that is, the distance from the center of the light emitting element 5a located at both ends of the light emitting element group 6 to the stress releasing hole is the center of the light emitting element 5a located at both ends of the light emitting element group 6 The maximum stress applied to the light emitting element is 645 [MPa], and (f / (e + f)) is 0.75, that is, located at both ends of the light emitting element group 6. The distance from the center of the light emitting element 5a to the stress release hole is such that the light emitting element 5a located at both ends of the light emitting element group 6 In the case of 3/4 of the distance from the center to the center of the fixed hole, the maximum stress applied to the light emitting element is 642 [MPa].

そこで、漸近線Nを引くと、応力緩和の効果が最も小さい範囲(漸近線の頂点近傍)は、発光素子群6の両端部に位置する発光素子5aと固定孔2との中間位置付近であることを示している。   Therefore, when the asymptotic line N is drawn, the range in which the stress relaxation effect is the smallest (near the apex of the asymptotic line) is near the intermediate position between the light emitting elements 5a located at both ends of the light emitting element group 6 and the fixing hole 2. It is shown that.

したがって、応力緩和のために設ける応力開放孔の効果的な位置は、発光素子群6の両端部に位置する発光素子5aと固定孔2との中間位置付近から発光素子5a側あるいは固定孔2側のいずれかの方向の離れた位置が有効であることがわかる。   Therefore, an effective position of the stress release hole provided for stress relaxation is from the vicinity of the intermediate position between the light emitting element 5a and the fixing hole 2 located at both ends of the light emitting element group 6 to the light emitting element 5a side or the fixing hole 2 side. It can be seen that a position apart in either direction is effective.

なお、以上のシミュレーション結果より、応力開放孔は直線でも鼓状でもよいため、例えば、丸孔、菱形孔などの実施例以外の形状であっても、発光素子両端部から固定孔の間にいずれの形状の応力開放孔を形成すれば、応力開放孔なしのものより、応力緩和が起こるといえる。固定孔と発光素子両端部が水平に位置してなくて、例えば、発光素子の配置より垂直方向にずれていても、シミュレーション結果から、発光素子両端部から固定孔の間に応力開放孔を形成すれば、応力開放孔なしのものより、応力緩和が起こるといえる。   From the above simulation results, the stress release hole may be linear or drum-shaped, so that, for example, any shape other than the example such as a round hole and a rhombus hole may be formed between the light emitting element both ends and the fixed hole. It can be said that the stress relaxation occurs when the stress release hole of the shape is formed, as compared with the case without the stress release hole. Even if the fixing hole and both ends of the light emitting element are not horizontally positioned, for example, even if the fixing hole and the light emitting element are shifted in the vertical direction, a stress release hole is formed between the both ends of the light emitting element and the fixing hole. In this case, it can be said that stress relaxation occurs compared to the case without the stress release hole.

以上説明したように、発光素子がはんだ実装された発光素子実装基板において、発光素子の発光時の発熱によって生じる基板に対する応力を抑制するために応力開放孔を設け、且つ応力開放孔の形状寸法及び配設位置に対して上記応力シミュレーションにより得られた算出結果を適用することにより、発光素子実装基板に対して発光素子の高い接合強度が保持されて優れた実装信頼性を確保することができる。   As described above, in the light emitting element mounting substrate on which the light emitting element is solder-mounted, the stress releasing hole is provided in order to suppress the stress on the substrate caused by the heat generated when the light emitting element emits light, and the shape dimension of the stress releasing hole and By applying the calculation result obtained by the stress simulation to the arrangement position, the high bonding strength of the light emitting element with respect to the light emitting element mounting substrate is maintained, and excellent mounting reliability can be ensured.

1… 基板
2… 貫通孔(固定孔)
3… ダイボンディングパッド
3a… ダイボンディングパッド
4… ダイボンディングパッド群
5… 半導体発光素子(発光素子)
5a… 発光素子
6… 発光素子群
10… 貫通孔(応力開放孔)
11… 第1実施例
12… 第2実施例
13… 第3実施例
14… 第4実施例
15… 第5実施例
16… 第6実施例
17… 第7実施例
18… 第8実施例
20… 比較例
1 ... Substrate 2 ... Through hole (fixed hole)
DESCRIPTION OF SYMBOLS 3 ... Die bonding pad 3a ... Die bonding pad 4 ... Die bonding pad group 5 ... Semiconductor light emitting element (light emitting element)
5a ... Light emitting element 6 ... Light emitting element group 10 ... Through hole (stress release hole)
11 ... 1st Example 12 ... 2nd Example 13 ... 3rd Example 14 ... 4th Example 15 ... 5th Example 16 ... 6th Example 17 ... 7th Example 18 ... 8th Example 20 ... Comparative example

Claims (4)

半導体発光素子を実装する半導体発光素子実装用基板であって、
前記半導体発光素子実装用基板は、両端部に貫通孔からなる固定孔を有すると共に、前記固定孔を結ぶ線分上に複数の前記半導体発光素子からなる半導体発光素子群がはんだ接合により実装され、
前記半導体発光素子群の両端部に位置する半導体発光素子と、夫々の端部側に位置する前記固定孔との間の前記線分上に貫通孔からなる一対の応力開放孔を設けたことを特徴とする半導体発光素子実装用基板。
A semiconductor light emitting element mounting substrate for mounting a semiconductor light emitting element,
The semiconductor light emitting element mounting substrate has a fixing hole made of a through hole at both ends, and a semiconductor light emitting element group made of a plurality of the semiconductor light emitting elements is mounted by solder bonding on a line segment connecting the fixing hole,
A pair of stress release holes including through holes is provided on the line segment between the semiconductor light emitting elements located at both ends of the semiconductor light emitting element group and the fixing holes located at the respective end parts. A substrate for mounting a semiconductor light emitting device.
前記応力開放孔は、前記半導体発光素子群が実装された方向に直交する方向に長い長方形あるいは、前記半導体発光素子群が実装された方向に直交する方向の中央部が内側に凹んだ鼓状を有することを特徴とする請求項1に記載の半導体発光素子実装用基板。   The stress release hole has a rectangular shape that is long in a direction orthogonal to the direction in which the semiconductor light emitting element group is mounted, or a drum shape in which a central portion in a direction orthogonal to the direction in which the semiconductor light emitting element group is mounted is recessed inward. The substrate for mounting a semiconductor light emitting element according to claim 1, comprising: 前記長方形の幅及び前記鼓状の中央部の凹んだ部分の幅はいずれも、前記半導体発光素子の、記半導体発光素子群が実装された方向に直交する方向の長さ以下であることを特徴とする請求項2に記載の半導体発光素子実装用基板。   Both the width of the rectangle and the width of the recessed portion of the central portion of the drum shape are equal to or less than the length of the semiconductor light emitting element in the direction orthogonal to the direction in which the semiconductor light emitting element group is mounted. The substrate for mounting a semiconductor light emitting element according to claim 2. 前記応力開放孔は、前記半導体発光素子群の両端部に位置する半導体発光素子と前記固定孔との中間位置付近から前記半導体発光素子側あるいは前記固定孔側のいずれかの方向の離れた位置に設けられていることを特徴とする請求項1〜請求項3のいずれかに記載の半導体発光素子実装用基板。   The stress release hole is located at a position away from the vicinity of an intermediate position between the semiconductor light emitting element located at both ends of the semiconductor light emitting element group and the fixing hole in either the semiconductor light emitting element side or the fixing hole side. The semiconductor light-emitting element mounting substrate according to claim 1, wherein the substrate is mounted.
JP2016011629A 2016-01-25 2016-01-25 Substrate for mounting semiconductor light emitting device Pending JP2017135155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016011629A JP2017135155A (en) 2016-01-25 2016-01-25 Substrate for mounting semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016011629A JP2017135155A (en) 2016-01-25 2016-01-25 Substrate for mounting semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2017135155A true JP2017135155A (en) 2017-08-03

Family

ID=59504526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016011629A Pending JP2017135155A (en) 2016-01-25 2016-01-25 Substrate for mounting semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2017135155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234411A1 (en) * 2022-06-03 2023-12-07 株式会社小糸製作所 Vehicle light source unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234411A1 (en) * 2022-06-03 2023-12-07 株式会社小糸製作所 Vehicle light source unit

Similar Documents

Publication Publication Date Title
CN203942113U (en) Connector and connector assembly
KR102173584B1 (en) LED misalignment treatment method on printed circuit board
US8696170B2 (en) Illuminating device
JP2012064390A (en) Lighting fixture
JP6277841B2 (en) CONNECTION DEVICE, LIGHT SOURCE DEVICE, AND LIGHTING APPARATUS
US10038256B2 (en) Module-terminal block connection structure and connection method
JP6223005B2 (en) lighting equipment
JP2017135155A (en) Substrate for mounting semiconductor light emitting device
JP2015065431A (en) Substrate for mounting light emitting element and fixing method of the same
JP2014089817A (en) Lighting apparatus and method for manufacturing lighting apparatus
JP2011146420A (en) Heat sink and method for fixing the same
JP2015173193A (en) light source unit
JP6531521B2 (en) Light emitting device and light emitting system
KR101309233B1 (en) Tube type led lamp
JP6341960B2 (en) lighting equipment
JP2014102910A (en) Connection connector and connector unit
JP2016039183A (en) Method of manufacturing lighting fixture and lighting fixture
JP6971441B2 (en) Light source module and its manufacturing method
JP6316359B2 (en) lighting equipment
JP6223517B2 (en) Fixture
JP6157062B2 (en) Printed wiring board, light source module, lighting apparatus, and manufacturing method
JP2018055769A (en) Lighting device
JP6324470B2 (en) Method for manufacturing light source module or lighting apparatus
KR102439547B1 (en) Lamp unit and lamp for vehicle using the same
JP2018101646A (en) Lighting fixture