JP2017134984A - X-ray generator and X-ray imaging system using the same - Google Patents

X-ray generator and X-ray imaging system using the same Download PDF

Info

Publication number
JP2017134984A
JP2017134984A JP2016013359A JP2016013359A JP2017134984A JP 2017134984 A JP2017134984 A JP 2017134984A JP 2016013359 A JP2016013359 A JP 2016013359A JP 2016013359 A JP2016013359 A JP 2016013359A JP 2017134984 A JP2017134984 A JP 2017134984A
Authority
JP
Japan
Prior art keywords
insulating
ray generator
protruding
ray
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016013359A
Other languages
Japanese (ja)
Inventor
山▲崎▼ 康二
Koji Yamazaki
康二 山▲崎▼
義勇 鈴木
Yoshio Suzuki
義勇 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016013359A priority Critical patent/JP2017134984A/en
Publication of JP2017134984A publication Critical patent/JP2017134984A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray generator including a lid and a body, capable of being opened and closed, capable of being maintained, and capable of increasing withstand pressure of an insulating container while minimizing the size of the apparatus and increasing the material cost.SOLUTION: A lid 11b of an insulating container 11 includes: a protruding portion 12 protruding along an inner surface of a side wall of the insulating container 11; and a protruding source joining portion 15 where the protruding portion 12 is joined to an inner surface of the lid 11b. In the protruding portion 12, a plurality of insulating plates 21 is laminated via a plate-to-plate joining portion 16 joining adjacent insulating plates 21 along a transverse direction of the protruding source joining portion 15.SELECTED DRAWING: Figure 2

Description

本発明は、医療機器、非破壊検査装置等に適用可能なX線撮影システムと、該システムに用いられるX線発生装置に関する。   The present invention relates to an X-ray imaging system applicable to a medical device, a nondestructive inspection apparatus, and the like, and an X-ray generator used in the system.

X線発生管は、陰極、陽極及び管状の絶縁管からなる真空管であって、陰極に接続された電子放出源から放出された電子を、高電圧で加速し、陽極に設けられたターゲットに照射して、X線を発生させるものである。このようなX線発生管が収納容器内に封入されたX線発生装置においては、X線発生管と接地電位に規定される収納容器との間で放電し、耐圧不良となるおそれがある。耐圧向上策として、収納容器の内側に絶縁性容器を設けることがあり、特にメンテナンスを要する場合、開閉を可能とする係合部を有する絶縁性容器とすることがある。特許文献1には、係合部が絶縁性容器を構成する絶縁性部材の厚さ方向断面において屈曲部又は湾曲部を有する構成とすることで、X線発生管と収納容器との間で生じる放電を抑制するX線発生装置が開示されている。具体的には、絶縁性容器の蓋体に突出部を設け、突出部により係合部の屈曲部を形成することが開示されている。   The X-ray generator tube is a vacuum tube composed of a cathode, an anode and a tubular insulating tube, which accelerates electrons emitted from an electron emission source connected to the cathode at a high voltage and irradiates a target provided on the anode. Thus, X-rays are generated. In an X-ray generator in which such an X-ray generation tube is enclosed in a storage container, there is a risk of discharge failure between the X-ray generation tube and the storage container defined by the ground potential, resulting in poor pressure resistance. As a measure for improving the pressure resistance, an insulating container may be provided inside the storage container. In particular, when maintenance is required, an insulating container having an engaging portion that can be opened and closed may be used. In Patent Document 1, the engaging portion has a bent portion or a curved portion in the cross section in the thickness direction of the insulating member constituting the insulating container, and thus occurs between the X-ray generating tube and the storage container. An X-ray generator that suppresses discharge is disclosed. Specifically, it is disclosed that a protruding portion is provided on the lid of the insulating container, and the bent portion of the engaging portion is formed by the protruding portion.

特開2015−028909号公報Japanese Patent Laid-Open No. 2015-028909

X線発生装置においては、内部のX線発生管の交換等のメンテナンスを行うために、上記したように係合部を有する絶縁性容器とする場合があるが、特許文献1に開示された収納容器においては、係合部において十分な耐圧が得られない場合があった。耐圧性能を上げるためには、突出部を大きくして係合部の屈曲部もしくは湾曲部を大きくすればよいが、突出部の大型化はX線発生装置の小型化、軽量化に逆行するため、むやみに突出部を大きくすることは好ましくない。また、突出部を大きく形成することは、材料費の増大も招いてしまう。   In the X-ray generator, in order to perform maintenance such as replacement of the internal X-ray generator tube, the insulating container having the engaging portion may be used as described above. In the container, a sufficient pressure resistance may not be obtained at the engaging portion. In order to improve the pressure resistance performance, it is only necessary to enlarge the protruding part and enlarge the bent part or curved part of the engaging part. However, the enlargement of the protruding part goes against the downsizing and weight reduction of the X-ray generator. Unnecessarily increasing the protruding portion is not preferable. In addition, the formation of the projecting portion increases the material cost.

本発明の目的は、蓋体と本体とからなり開閉可能な絶縁性容器を備え、メンテナンスが可能なX線発生装置において、装置の大型化及び材料費の増大を最小限に抑えて、絶縁性容器の耐圧を高めることにある。また、本発明は、係るX線発生装置を用いたX線撮影システムを提供するものである。   An object of the present invention is to provide an X-ray generator that can be opened and closed with an insulating container that can be opened and closed by a lid and a main body, and minimizes the increase in the size of the apparatus and the increase in material costs. The purpose is to increase the pressure resistance of the container. The present invention also provides an X-ray imaging system using such an X-ray generator.

本発明の第一は、X線発生管と、前記X線発生管を収容する絶縁性容器と、前記絶縁性容器を収納する導電性容器と、を備え、
前記絶縁性容器は、開口を規定する側壁を有する本体と、取り外し可能かつ前記開口を塞ぐ蓋体と、を有し、
前記蓋体及び前記側壁のいずれか一方は、前記蓋体及び前記側壁のいずれか他方の内面に沿って突出している突出部と、前記突出部が前記いずれか一方の内面に接合されている突出元接合部と、を備えるX線発生装置であって、
前記突出部は、前記突出部の突出方向の長さと前記突出元接合部の短手方向の長さのうち長くない方の方向に沿って、電気的絶縁性を有する複数の絶縁板が、隣接する前記絶縁板を接合する板間接合部を介して積層されていることを特徴とするX線発生装置である。
The first of the present invention comprises an X-ray generator tube, an insulating container that stores the X-ray generator tube, and a conductive container that stores the insulating container,
The insulating container has a main body having a side wall that defines an opening, and a lid that is removable and closes the opening,
One of the lid and the side wall is a protrusion that protrudes along the inner surface of the other of the lid and the side wall, and the protrusion that is joined to the inner surface of either one of the lid and the side wall. An X-ray generator comprising a former joint,
The projecting portion is adjacent to a plurality of insulating plates having electrical insulation properties along a direction that is not longer between a length in the projecting direction of the projecting portion and a length in the short direction of the projecting joint portion. It is an X-ray generator characterized by being laminated | stacked via the board | plate junction part which joins the said insulating board to perform.

本発明の第二は、X線発生装置と、
前記X線発生装置から放出され、被検体を透過したX線を検出するX線検出装置と、
前記X線発生装置と前記X線検出装置とを連携制御する制御装置とを備えたことを特徴とするX線撮影システムである。
A second aspect of the present invention is an X-ray generator,
An X-ray detector that detects X-rays emitted from the X-ray generator and transmitted through the subject;
An X-ray imaging system comprising a control device that controls the X-ray generation device and the X-ray detection device in a coordinated manner.

本発明においては、絶縁性容器の蓋体又は本体のいずれかに、複数枚の絶縁板を積層してなる突出部を設けたことにより、積層方向の絶縁耐圧が担保された絶縁構造が得られる。また、係る突出部における絶縁板の積層方向を特定することで、確実により高い耐圧を得ることができ、装置の大型化を抑制することができる。よって、本発明によれば、従来よりも高電圧に耐え、小型でメンテナンスが可能なX線発生装置を提供することができる。さらに、本発明では、係るX線発生装置を用いて、信頼性の高いX線撮影システムを提供することができる。   In the present invention, by providing a protrusion formed by laminating a plurality of insulating plates on either the lid or the main body of the insulating container, an insulating structure in which the withstand voltage in the laminating direction is secured is obtained. . Further, by specifying the stacking direction of the insulating plates in the projecting portion, it is possible to reliably obtain a higher withstand voltage, and to suppress an increase in the size of the device. Therefore, according to the present invention, it is possible to provide an X-ray generator that can withstand a higher voltage than before and that is small and can be maintained. Furthermore, in the present invention, a highly reliable X-ray imaging system can be provided using such an X-ray generator.

本発明のX線発生装置の一実施形態の断面模式図である。It is a cross-sectional schematic diagram of one Embodiment of the X-ray generator of this invention. 図1のX線発生装置の収納容器の係合部周辺の断面の部分拡大図である。It is the elements on larger scale of the cross section around the engaging part of the storage container of the X-ray generator of FIG. 絶縁性容器の係合部周辺を模式的に示した斜視図である。It is the perspective view which showed typically the engaging part periphery of an insulating container. 突出部の構成が本発明とは異なる絶縁性容器の突出部周辺の断面模式図である。It is a cross-sectional schematic diagram of the periphery of the protrusion part of the insulating container from which this invention differs in the structure of a protrusion part. 図2(a)及び図4(a)、(b)にそれぞれ示した係合部と突出元接合部と板間接合部の耐圧を電気抵抗で示した電気回路図である。It is the electric circuit diagram which showed the withstand voltage of the engaging part shown in FIG. 2 (a) and FIG. 4 (a), (b), the protrusion origin junction part, and the board-to-plate junction part by an electrical resistance. 本発明に係る突出部における、突出元接合部と係合部の電気抵抗比及びアスペクト比を変化させた場合の合成抵抗比を示す図である。It is a figure which shows the synthetic | combination resistance ratio at the time of changing the electrical resistance ratio and aspect ratio of a protrusion origin junction part and an engaging part in the protrusion part which concerns on this invention. 本発明のX線発生装置の他の実施形態の絶縁性容器の突出部周辺を示す断面模式図である。It is a cross-sectional schematic diagram which shows the protrusion part periphery of the insulating container of other embodiment of the X-ray generator of this invention. 本発明のX線撮影システムの一実施形態のブロック図である。1 is a block diagram of an embodiment of an X-ray imaging system of the present invention.

以下、図面を参照し、本発明のX線発生装置について好適な実施形態を挙げて説明する。但し、本発明は係る実施形態に限定されるものではない。また、係る実施形態に記載されていない事項については、従来の技術が好ましく適用される。   Hereinafter, with reference to the drawings, the X-ray generator of the present invention will be described with reference to preferred embodiments. However, the present invention is not limited to the embodiment. In addition, conventional techniques are preferably applied to matters not described in the embodiment.

図1は本発明のX線発生装置の好ましい一実施形態の断面模式図であり、図1(a)はX線発生管の管軸に沿った断面模式図であり、図1(b)は図1(a)中のA−A’に相当する断面模式図である。   FIG. 1 is a schematic cross-sectional view of a preferred embodiment of the X-ray generator of the present invention, FIG. 1 (a) is a schematic cross-sectional view along the tube axis of the X-ray generator tube, and FIG. FIG. 2 is a schematic cross-sectional view corresponding to AA ′ in FIG.

本発明のX線発生装置1は、X線発生管2を収納容器3内に収容しており、収納容器3内の余空間には絶縁性流体4が充填されている。X線発生管2としては、反射型、透過型のいずれでも用いることができ、X線発生管2のX線放射位置(ターゲット9)に対応して収納容器3にX線を透過するX線放出窓14が設けられている。尚、本例では透過型X線発生管を用いた構成例を示す。また、本発明は、収納容器3内にX線発生管2に管電圧を印加する管電圧回路(不図示)を収納してモノタンク実装したX線発生装置に好ましく適用される。   In the X-ray generator 1 of the present invention, an X-ray generation tube 2 is accommodated in a storage container 3, and an extra space in the storage container 3 is filled with an insulating fluid 4. As the X-ray generation tube 2, either a reflection type or a transmission type can be used, and X-rays that transmit X-rays to the storage container 3 corresponding to the X-ray emission position (target 9) of the X-ray generation tube 2. A discharge window 14 is provided. In this example, a configuration example using a transmission X-ray generator tube is shown. The present invention is preferably applied to an X-ray generator in which a tube voltage circuit (not shown) for applying a tube voltage to the X-ray generator tube 2 is accommodated in the storage container 3 and mounted in a mono tank.

透過型のX線発生管2は、管状の絶縁管7の一方の開口に陰極5が、他方の開口に陽極6が接合されている。絶縁管7としては、小型化や作り易さを考慮して円筒形が好ましく、本例においても円筒形の構成例を示すが、本発明においてはこれに限定されず、角筒形であっても良い。また、陰極5及び陽極6は絶縁管7の開口に応じた形状、即ち、本例では円形である。   In the transmission type X-ray generation tube 2, a cathode 5 is joined to one opening of a tubular insulating tube 7, and an anode 6 is joined to the other opening. The insulating tube 7 is preferably cylindrical in consideration of miniaturization and ease of manufacture, and in this example, a cylindrical configuration example is shown, but the present invention is not limited to this, and is a rectangular tube. Also good. Further, the cathode 5 and the anode 6 have a shape corresponding to the opening of the insulating tube 7, that is, a circular shape in this example.

X線発生管2の内部には、陰極5の電位を基準に電位規定された電子銃8を有しており、陽極6にはターゲット9が接合されている。電子銃8はグリッド電極や集束電極を含む場合がある。この様なX線発生管2において、陰極5と陽極6との間に40kV乃至150kV程度の電位差を与え、電子銃8から放出された電子を陽極6上のターゲット9へと向けて照射する。電子が照射されたターゲット9はX線を発生し、透過型のターゲット9においては、電子の照射面とは反対側からX線発生管2の外部にX線を取り出す。   An X-ray generator tube 2 has an electron gun 8 whose potential is regulated with respect to the potential of the cathode 5, and a target 9 is joined to the anode 6. The electron gun 8 may include a grid electrode and a focusing electrode. In such an X-ray generating tube 2, a potential difference of about 40 kV to 150 kV is applied between the cathode 5 and the anode 6, and electrons emitted from the electron gun 8 are irradiated toward the target 9 on the anode 6. The target 9 irradiated with electrons generates X-rays, and the transmissive target 9 extracts X-rays from the side opposite to the electron irradiation surface to the outside of the X-ray generation tube 2.

本発明において、収納容器3は外側が金属容器等の導電性容器10、内側が絶縁性容器11の二重構造である。さらに導電性容器10は開口を規定する側壁を有する本体10aと取り外し可能かつ開口を塞ぐ蓋体10bとからなり、絶縁性容器11も開口を規定する側壁を有する本体11aと取り外し可能かつ開口を塞ぐ蓋体11bとからなる。そのため、X線発生装置1はメンテナンス可能に構成されている。   In the present invention, the storage container 3 has a double structure of a conductive container 10 such as a metal container on the outside and an insulating container 11 on the inside. Further, the conductive container 10 includes a main body 10a having a side wall that defines an opening and a lid 10b that is removable and closes the opening, and the insulating container 11 is also removable from the main body 11a having a side wall that defines the opening and blocks the opening. It consists of a lid 11b. Therefore, the X-ray generator 1 is configured to be maintainable.

本発明においては、導電性容器10の本体10aと蓋体10bとは、係合部を介して係合される。本発明において「係合」とは、接着等の接合を行わず、簡単に分離できる状態を意味する。本例では、導電性容器10の蓋体10bが本体10aの開口を覆い、且つ本体10aの側壁に接触して係合部が形成されている。よって、X線発生装置1を組み上げる際には、本体10aの側壁と蓋体10bの周縁部とを不図示のOリング等を介したねじ締め構造等により留め付けて収納容器3を密封する。導電性容器10の材料としては、鉄、ステンレス、鉛、真鍮、銅等の金属が使用可能である。   In the present invention, the main body 10a and the lid body 10b of the conductive container 10 are engaged via the engaging portion. In the present invention, “engagement” means a state that can be easily separated without performing bonding such as adhesion. In this example, the lid 10b of the conductive container 10 covers the opening of the main body 10a, and contacts with the side wall of the main body 10a to form an engaging portion. Therefore, when assembling the X-ray generator 1, the storage container 3 is sealed by fastening the side wall of the main body 10a and the peripheral portion of the lid 10b with a screw fastening structure or the like via an O-ring (not shown). As a material for the conductive container 10, metals such as iron, stainless steel, lead, brass, and copper can be used.

また、絶縁性容器11の本体11aと蓋体11bも、係合部を介して係合される。係合部周辺を図2に詳細に示す。図2(a)、図2(b)はそれぞれ図1(a)のBで示される領域、図1(b)のCで示される領域をそれぞれ拡大及び誇張して示している。   Further, the main body 11a and the lid body 11b of the insulating container 11 are also engaged through the engaging portion. FIG. 2 shows the periphery of the engaging portion in detail. 2A and 2B show the region indicated by B in FIG. 1A and the region indicated by C in FIG. 1B in an enlarged and exaggerated manner, respectively.

本発明においては、絶縁性容器11の蓋体11b及び本体11aの側壁のいずれか一方は、本体11aの開口近傍に、突出部12と突出元接合部15とを備える。突出部12は、蓋体11b及び本体11aの側壁のいずれか他方の内面に沿って突出しており、突出元接合部15により、蓋体11b及び本体11aの側壁のいずれか一方の内面に接合されている。突出部12は本体11aの側壁或いは蓋体11bのいずれかに接する係合部13を有している。図1,図2の実施形態においては、蓋体11bは、本体11aの側壁の内面に沿って突出している突出部12と、突出部12が蓋体11bの内面に接合されている突出元接合部15とを備えており、突出部12は本体11aの側壁に接する係合部13を有している。   In the present invention, either one of the lid 11b of the insulating container 11 or the side wall of the main body 11a includes the protruding portion 12 and the protruding source joint portion 15 in the vicinity of the opening of the main body 11a. The projecting portion 12 projects along the inner surface of either the lid body 11b or the side wall of the main body 11a, and is joined to either the inner surface of the lid body 11b or the side wall of the main body 11a by the projecting joint 15. ing. The protruding portion 12 has an engaging portion 13 that contacts either the side wall of the main body 11a or the lid body 11b. In the embodiment of FIGS. 1 and 2, the lid body 11b includes a protruding portion 12 that protrudes along the inner surface of the side wall of the main body 11a, and a protruding source joint in which the protruding portion 12 is bonded to the inner surface of the lid body 11b. The protrusion part 12 has the engaging part 13 which contact | connects the side wall of the main body 11a.

突出部12と絶縁性容器11の本体11aとの係合部13においては、両者の表面が互いに接触するが、加工によって生じる凹凸によって両表面間に微小な空隙を生じ、係る空隙は寸法精度を上げても減じることができない。この微小な空隙は、導電性容器10と、絶縁性容器11内に収納された高電圧部との間を結ぶ放電経路と成り得る。よって、X線出力の増大に伴って電圧を上げる場合には、突出部12を大型化し、係合部13の空隙の最短経路を長くする必要があった。突出部12の大型化は材料によっては部材の入手を困難にさせる。また、突出部12の大型化はX線発生装置1の小型化の障壁となる。   In the engaging portion 13 between the projecting portion 12 and the main body 11a of the insulating container 11, both surfaces are in contact with each other, but a minute gap is generated between both surfaces due to the unevenness caused by processing, and the gap has a dimensional accuracy. Even if it is raised, it cannot be reduced. This minute gap can be a discharge path that connects between the conductive container 10 and the high-voltage portion housed in the insulating container 11. Therefore, when the voltage is increased as the X-ray output increases, it is necessary to increase the size of the projecting portion 12 and lengthen the shortest path of the gap of the engaging portion 13. The enlargement of the protrusion 12 makes it difficult to obtain a member depending on the material. Moreover, the enlargement of the protrusion 12 becomes a barrier to the miniaturization of the X-ray generator 1.

本発明において、突出部12は、電気的絶縁性を有する複数の絶縁板21が、隣接する絶縁板21を接合する板間接合部16を介して積層されている。そのため、積層方向の絶縁耐圧が担保された絶縁構造が得られる。特に、絶縁性容器11に用いられる絶縁板材と同じ厚さの板を使用することで材料入手を容易にし、板厚が薄いため切断等の加工も容易となり、ブロック状の絶縁材から所定の板厚に切り出して絶縁板とした場合よりも安価である。また、ブロック状の絶縁材を板面方向に連ねて接合した場合よりも高い絶縁耐圧が担保される。   In the present invention, the protruding portion 12 is formed by laminating a plurality of insulating plates 21 having electrical insulation properties through inter-plate joining portions 16 that join adjacent insulating plates 21. Therefore, an insulating structure in which the withstand voltage in the stacking direction is ensured is obtained. In particular, the use of a plate having the same thickness as the insulating plate material used for the insulating container 11 makes it easy to obtain materials, and since the plate thickness is thin, processing such as cutting is facilitated. It is less expensive than the case where it is cut into a thickness and used as an insulating plate. In addition, a higher withstand voltage is ensured than when a block-shaped insulating material is joined in the plate surface direction.

本発明においては、突出部12の積層方向を特定することで、係合部13の耐圧をより高いレベルで得ることができる。具体的には、突出部12の突出方向の長さと突出元接合部15の短手方向の長さのうち長くない方の方向に沿って、突出部12の積層方向が設定される。尚、突出部12の突出方向とは、図3(a)に示されるZ方向に一致する。また、突出元接合部15の短手方向とは、図3(a)に示されるX方向に一致し、係合部13を介して絶縁性容器11の内外を隔てる方向に相当する。ここで、突出部12の突出方向の長さと突出元接合部15の短手方向の長さうち「長くない」には「等しい」場合と「短い」場合が含まれる。   In the present invention, the pressure resistance of the engaging portion 13 can be obtained at a higher level by specifying the stacking direction of the protruding portions 12. Specifically, the stacking direction of the projecting portions 12 is set along the longer direction of the length of the projecting portion 12 in the projecting direction and the length of the projecting original joint portion 15 in the short direction. In addition, the protrusion direction of the protrusion part 12 corresponds with the Z direction shown by Fig.3 (a). Further, the short direction of the projecting joint 15 corresponds to the X direction shown in FIG. 3A, and corresponds to the direction separating the inside and the outside of the insulating container 11 through the engaging portion 13. Here, “not long” of the length of the protruding portion 12 in the protruding direction and the length of the protruding original joint portion 15 in the short direction includes cases of “equal” and “short”.

図2(a)に示される例においては、突出元接合部15の短手方向の長さL2が、突出部12の突出方向の長さL1よりも短い。そのため、矢印Fで示される突出部12の積層方向は、突出元接合部15の短手方向に沿っている。換言すれば、板間接合部16は、突出部12の突出方向に平行に配置される。突出部12の突出方向の長さL1と突出元接合部15の短手方向の長さL2が等しい場合は、図3(b)(c)に示す様に、突出部12の突出方向と突出元接合部15の短手方向のうちいずれか一方に沿うように、突出部12の積層方向Fを設定すればよい。   In the example shown in FIG. 2A, the length L <b> 2 in the short direction of the protruding joint 15 is shorter than the length L <b> 1 in the protruding direction of the protruding portion 12. Therefore, the stacking direction of the projecting portions 12 indicated by the arrow F is along the short direction of the projecting joint portion 15. In other words, the inter-plate joint 16 is arranged in parallel with the protruding direction of the protruding portion 12. When the length L1 of the protruding portion 12 in the protruding direction is equal to the length L2 of the protruding original joint portion 15 in the short direction, as shown in FIGS. 3B and 3C, the protruding direction of the protruding portion 12 and the protruding direction What is necessary is just to set the lamination direction F of the protrusion part 12 so that any one of the transversal directions of the former junction part 15 may be followed.

本発明において、突出部12の積層方向Fを特定することにより、より高い耐圧が得られる理由を図4,図5を用いて説明する。   In the present invention, the reason why a higher breakdown voltage can be obtained by specifying the stacking direction F of the protrusions 12 will be described with reference to FIGS.

図4(a)、(b)は図2(a)と同じ大きさの突出部12を、積層方向Fが異なるように、即ち、積層方向Fが突出部12の突出方向に沿った構成である。図4(a)は図2(a)とは積層数が同じで絶縁板21の厚みが異なり、図4(b)は図2(a)とは絶縁板21の厚みが同じで積層数が異なっている。また、図5(a)、(b)、(c)はそれぞれ、図2(a)、図4(a)、図4(b)の構成における電気回路図である。   4 (a) and 4 (b) show the protrusions 12 having the same size as that of FIG. 2 (a) so that the stacking direction F is different, that is, the stacking direction F is along the protrusion direction of the protrusions 12. is there. 4A is the same as FIG. 2A in the number of layers and the thickness of the insulating plate 21 is different, and FIG. 4B is the same as FIG. Is different. FIGS. 5A, 5B, and 5C are electric circuit diagrams in the configurations of FIGS. 2A, 4A, and 4B, respectively.

絶縁性容器11が突出部12を有する場合、絶縁性容器11内で絶縁性流体4が局所的に微小放電した場合、突出部12の絶縁性容器11の内部空間に露出した部分Dが実質的に高電圧になる可能性がある。よって、Dから導電性容器10に向かう放電を抑制する必要がある。通常、絶縁性容器11や突出部12を構成する絶縁板は、絶縁性流体4や接合材よりも単位体積当たりの耐圧が高いため、突出部12の周辺の耐圧は、実質、絶縁性流体4で満たされた係合部13の耐圧と、接合材による突出元接合部15の耐圧の影響を受ける。突出部の12突出方向に平行な断面において、係合部13と突出元接合部15の交わる点Eから導電性容器10に向かう経路は一つしかない。そのため、DからEにおいて、突出部12の突出方向の長さと突出元接合部15の短手方向の長さがそれぞれの耐圧能力において決定される。   When the insulating container 11 has the protruding portion 12, when the insulating fluid 4 is locally microdischarged in the insulating container 11, the portion D exposed to the internal space of the insulating container 11 of the protruding portion 12 is substantially reduced. There is a possibility of high voltage. Therefore, it is necessary to suppress the discharge from D to the conductive container 10. Usually, the insulating plate constituting the insulating container 11 and the protruding portion 12 has a higher pressure resistance per unit volume than the insulating fluid 4 and the bonding material, and therefore the pressure resistance around the protruding portion 12 is substantially the insulating fluid 4. Are affected by the pressure resistance of the engaging portion 13 filled with the above and the pressure resistance of the protruding joint 15 due to the bonding material. In the cross section parallel to the protruding direction 12 of the protruding portion, there is only one path from the point E where the engaging portion 13 and the protruding source joint 15 intersect to the conductive container 10. Therefore, from D to E, the length in the protruding direction of the protruding portion 12 and the length in the short direction of the protruding original joint portion 15 are determined in each pressure resistance capability.

図2(a)に示す本発明の形態と、図4(a),(b)の形態とを比較する。尚、いずれも突出元接合部15及び板間接合部16を構成する接合材の耐圧が、絶縁性流体4よりも高い場合を例に挙げる。また、突出部12の突出方向の長さL1が突出元接合部15の短手方向の長さL2よりも長い。図2(a)の様に、突出部12の突出方向の長さL1と突出元接合部15の短手方向の長さL2を比較して、短い方の突出元接合部15の短手方向に積層方向Fが沿う場合には、板間接合部16は突出元接合部15よりも長くなる。そのため、板間接合部16の耐圧は突出元接合部15よりも高い。一方、積層数が同じで積層方向Fを変えた図4(a)の場合、板間接合部16は突出元接合部15と平行で同じ長さであるため、板間接合部16の耐圧は突出元接合部15と同じである。   The form of the present invention shown in FIG. 2 (a) is compared with the form of FIGS. 4 (a) and 4 (b). Note that, in any case, a case where the pressure resistance of the bonding material constituting the protruding source joint 15 and the inter-plate joint 16 is higher than that of the insulating fluid 4 is taken as an example. Further, the length L1 of the protruding portion 12 in the protruding direction is longer than the length L2 of the protruding original joint portion 15 in the short direction. 2A, the length L1 of the protruding portion 12 in the protruding direction and the length L2 of the protruding source joint 15 in the short direction are compared, and the shorter direction of the shorter protruding source connecting portion 15 is compared. When the stacking direction F is along, the inter-plate joint 16 is longer than the protruding joint 15. Therefore, the pressure resistance of the inter-plate joint 16 is higher than that of the protruding joint 15. On the other hand, in the case of FIG. 4A in which the number of stacks is the same and the stacking direction F is changed, the inter-plate joint 16 is parallel to the projecting joint 15 and has the same length. This is the same as the protruding joint 15.

図2(a)、図4(a)、(b)の各構成において、突出元接合部15、板間接合部16、係合部13のそれぞれの耐圧を定量的に説明する。一般に耐圧は面積に依存し、面積が広がると耐圧が低下する。また、耐圧は媒質の長さに依存し、媒質の長さが長くなると耐圧が上昇する。よって、それぞれの媒質において依存度合いは異なるが、耐圧は電気抵抗と同じような考え方ができ、電気抵抗に置き換えると、電気抵抗の高低は耐圧の高低と読取ることができる。   2A, FIG. 4A, and FIG. 4B, the respective pressure resistances of the protruding joint portion 15, the inter-plate joint portion 16, and the engaging portion 13 will be quantitatively described. Generally, the withstand voltage depends on the area, and the withstand voltage decreases as the area increases. The breakdown voltage depends on the length of the medium, and the breakdown voltage increases as the length of the medium increases. Therefore, although the degree of dependence differs for each medium, the withstand voltage can be considered the same as the electrical resistance, and when replaced with the electrical resistance, the level of the electrical resistance can be read as the level of the withstand voltage.

そこで、図2(a)、図4(a)、(b)の各構成における突出元接合部15、板間接合部16、係合部13の耐圧を電気抵抗に置き換えると、DからEまでの経路は、図5(a)、(b)、(c)の電気回路図に置き換えることができる。図5を用いて詳しく説明する。   Therefore, when the withstand voltage of the protruding joint 15, the inter-plate joint 16, and the engaging portion 13 in each configuration of FIG. 2A, FIG. 4A and FIG. This path can be replaced by the electrical circuit diagrams of FIGS. 5 (a), 5 (b), and 5 (c). This will be described in detail with reference to FIG.

係合部13の電気抵抗をR1、突出元接合部15の電気抵抗をR2、アスペクト比α(=突出部12の突出方向の長さL1/突出元接合部15の短手方向の長さL2)とすると、図2(a)、図4(a)、(b)におけるDからEまでの経路の合成抵抗は以下の通りである。   The electrical resistance of the engaging portion 13 is R1, the electrical resistance of the protruding joint 15 is R2, and the aspect ratio α (= the length L1 of the protruding portion 12 in the protruding direction 1 / the length L2 of the protruding source connecting portion 15 in the short direction). ), The combined resistance of the path from D to E in FIGS. 2 (a), 4 (a) and 4 (b) is as follows.

図2(a)の合成抵抗
Ra=((1+4α)・R1・R2)/(2・(1+2α)・R1+(1+4α)・R2)
図4(a)の合成抵抗
Rb=((R1+4R2)・R1・R2)/(R12+6・R1・R2+4R22
図4(b)の合成抵抗
Rc=((R13+24R12・R2+160・R1・R22+256R23)・R1・R2)/(R14+28R13・R2+240R12・R22+640R1・R23+256R24
The combined resistance Ra in FIG. 2A = ((1 + 4α) · R1 · R2) / (2 · (1 + 2α) · R1 + (1 + 4α) · R2)
The combined resistance Rb = ((R1 + 4R2) · R1 · R2) / (R1 2 + 6 · R1 · R2 + 4R2 2 ) in FIG.
The combined resistance Rc = ((R1 3 + 24R1 2 · R2 + 160 · R1 · R2 2 + 256R2 3 ) · R1 · R2) / (R1 4 + 28R1 3 · R2 + 240R1 2 · R2 2 + 640R1 · R2 3 + 256R2 4 )

ここで、突出元接合部15と係合部13の電気抵抗比(R2/R1)及びアスペクト比αを変化させた場合の合成抵抗比(Ra/Rb)、(Ra/Rc)をそれぞれ図6(a)、(b)に示す。図6(a)、(b)に示されるように、アスペクト比αが1以上の場合、ほとんどの領域で合成抵抗比(Ra/Rb)、(Ra/Rc)が1以上となった。よって、突出部12の突出方向の長さと突出元接合部15の短手方向の長さのうち短い方の方向に積層方向Fが沿うことで、より高い耐圧が得られることがわかった。特に、突出元接合部15の電気抵抗R2が係合部13の電気抵抗R1以上である場合((R2/R1)≧1)において、確実に高い耐圧が得られ、好ましい。   Here, the combined resistance ratios (Ra / Rb) and (Ra / Rc) when the electrical resistance ratio (R2 / R1) and the aspect ratio α between the protruding joint 15 and the engaging portion 13 are changed are shown in FIG. Shown in (a), (b). As shown in FIGS. 6A and 6B, when the aspect ratio α is 1 or more, the combined resistance ratios (Ra / Rb) and (Ra / Rc) are 1 or more in most regions. Therefore, it was found that a higher withstand voltage can be obtained when the stacking direction F is along the shorter direction of the length of the protruding portion 12 in the protruding direction and the length of the protruding original joint portion 15 in the short direction. In particular, when the electric resistance R2 of the protruding joint 15 is equal to or higher than the electric resistance R1 of the engaging portion 13 ((R2 / R1) ≧ 1), a high withstand voltage can be surely obtained, which is preferable.

また、放電が発生した場合であっても、係合部13では絶縁性流体4が対流により入れ替わるため、大きなダメージが残らず、再び放電を生じる可能性が低いが、突出元接合部15においては、接合材にダメージが残ってしまう。そのため、ダメージが残った突出元接合部15においては、再び放電が生じる可能性があり、この点においても、突出元接合部15の耐圧が係合部13の耐圧より高いことが好ましい。尚、接合材よりも絶縁性流体4の耐圧能力が高い場合は、図7(a)に示す様に、突出部12の突出方向の長さL1を突出元接合部15の短手方向の長さL2よりも短くし((R2/R1)≧1)、積層方向Fが突出部12の突出方向に沿う様に突出部12を設けることが好ましい。   Even if a discharge occurs, the insulating fluid 4 is replaced by convection in the engaging portion 13, so that no great damage remains and the possibility of causing a discharge again is low. Damage to the bonding material will remain. For this reason, there is a possibility that the discharge will occur again at the protruding joint 15 where the damage remains. Also in this respect, the withstand pressure of the protruding joint 15 is preferably higher than the withstand of the engaging portion 13. When the pressure resistance capability of the insulating fluid 4 is higher than that of the bonding material, the length L1 in the protruding direction of the protruding portion 12 is set to the length in the short direction of the protruding original bonding portion 15 as shown in FIG. It is preferable that the protruding portion 12 is provided so that the stacking direction F is along the protruding direction of the protruding portion 12 with a length shorter than the length L2 ((R2 / R1) ≧ 1).

また、突出部12は大きさにより積層数を変えて良く、図7(b)に示すように、積層数は3層以上とすることが可能である。   Further, the number of stacked layers of the protrusions 12 may be changed depending on the size, and the number of stacked layers can be three or more as shown in FIG.

突出部12を形成する絶縁板21は、入手容易性の観点から絶縁性容器11を形成する絶縁板と同じ厚みが良い。よって、突出部12を形成する絶縁板21の板厚は絶縁性容器11を形成する絶縁板の最も厚い部分以下であることが望ましい。   The insulating plate 21 forming the protruding portion 12 has the same thickness as the insulating plate forming the insulating container 11 from the viewpoint of availability. Therefore, it is desirable that the thickness of the insulating plate 21 that forms the protruding portion 12 is equal to or less than the thickest portion of the insulating plate that forms the insulating container 11.

耐圧は一般に、最も耐圧の弱い箇所に律速される。よって、D−E間で接合部を通る経路は突出元接合部15が最も短いのが好ましい。言い換えると板間接合部16を通る経路の長さ(例えば図7(b)のL1)は突出元接合部15の短手方向の長さ(例えば図7(b)のL2)以上(L1≧L2)であることが好ましい。   In general, the withstand voltage is limited to the place with the weakest withstand voltage. Therefore, it is preferable that the projecting joint 15 has the shortest path through the joint between D and E. In other words, the length of the path passing through the inter-plate joint 16 (for example, L1 in FIG. 7B) is equal to or longer than the length in the short direction (for example, L2 in FIG. 7B) of the protruding joint 15 (L1 ≧ L2) is preferred.

本発明において、突出部12を形成する絶縁板21は、図7(c)に示すように、突出部12の突出方向の長さが、本体11aの側壁の内面から絶縁性容器11の内側に向かって、漸減することが小型化の観点で好ましい。一方で、内側の絶縁板21の突出部12の突出方向の長さが短くなりすぎると、板間接合部16を通る経路が突出元接合部15の短手方向の長さよりも短くなり、所望の耐圧を発現できなくなる。よって、任意の絶縁板21の突出部12の突出方向の長さは、係る絶縁板21とこれよりも内側に位置する絶縁板21との合計の板厚以上とする。換言すれば、板間接合部16及び突出元接合部15を通る経路が、突出元接合部15のみを通る経路よりも長くなるように、絶縁板21の長さを設定する。例えば、図7(c)においては、L4≧L3−板間接合部16の厚さである。   In the present invention, as shown in FIG. 7C, the insulating plate 21 forming the protruding portion 12 has a length in the protruding direction of the protruding portion 12 from the inner surface of the side wall of the main body 11a to the inside of the insulating container 11. On the other hand, gradually decreasing is preferable from the viewpoint of miniaturization. On the other hand, if the length of the protruding portion 12 of the inner insulating plate 21 in the protruding direction becomes too short, the path passing through the inter-plate bonding portion 16 becomes shorter than the length of the protruding original bonding portion 15 in the short direction. It becomes impossible to express the pressure resistance. Therefore, the length of the protruding portion 12 of the arbitrary insulating plate 21 in the protruding direction is equal to or greater than the total thickness of the insulating plate 21 and the insulating plate 21 positioned on the inner side. In other words, the length of the insulating plate 21 is set so that the path passing through the inter-plate joint 16 and the projecting joint 15 is longer than the path passing through only the projecting joint 15. For example, in FIG.7 (c), it is the thickness of L4> = L3-plate junction part 16. In FIG.

突出部12による係合部13は必要な場所に適宜配置されればよい。よって、蓋体11bの外周の互いに直交する2辺に対応して設ける場合には、図2(b)に示すように、突出部同士が突き当たる角部において、突出部12の端部同士が、接合部を介して階段状に突き当たっていることが耐圧の観点で好ましい。図2(b)中の17は2辺の突出部12,12の端部同士を接合する接合材で構成された突出部組み合わせ部である。このように階段状に組み合わせると、直角や斜めに直線的に組み合わさるよりも、絶縁性容器11の内外を結ぶ突出部組合せ部17の長さを長くすることができ、耐圧が向上する。突出部組合せ部17は係合でも良いが、接合することが耐圧上より好ましい。   The engaging part 13 by the protrusion part 12 should just be arrange | positioned suitably in a required place. Therefore, when providing corresponding to two sides orthogonal to each other on the outer periphery of the lid 11b, as shown in FIG.2 (b), at the corners where the projecting parts abut, the ends of the projecting parts 12 are It is preferable from the standpoint of pressure resistance that the bumps are stepped through the joint. Reference numeral 17 in FIG. 2 (b) denotes a protruding portion combination portion formed of a bonding material that bonds the ends of the protruding portions 12 and 12 on the two sides. When combined in a staircase shape in this way, the length of the protrusion combination part 17 that connects the inside and outside of the insulating container 11 can be made longer than when combined linearly at right angles or diagonally, and the pressure resistance is improved. The protrusion combination part 17 may be engaged, but it is more preferable to join the protrusion part 17 in terms of pressure resistance.

本発明において、突出元接合部15、板間接合部16、突出部組合せ部17に用いられる接合材は、絶縁性流体4との相性が良い瞬間接着剤やエポキシ系接着剤が好ましく用いられる。特に、エポキシ系接着剤を用いた場合、接着剤中に気泡が入らなければ絶縁性流体4よりも耐圧が高いため、突出部12の突出方向の長さL1が突出元接合部15の長さL2よりも長い形態に好ましく適用される。   In the present invention, as the bonding material used for the protruding joint 15, the inter-plate bonding 16, and the protruding portion combination 17, an instantaneous adhesive or an epoxy adhesive that is compatible with the insulating fluid 4 is preferably used. In particular, when an epoxy-based adhesive is used, since pressure resistance is higher than that of the insulating fluid 4 unless bubbles enter the adhesive, the length L1 of the protruding portion 12 in the protruding direction is the length of the protruding joint 15. It is preferably applied to a form longer than L2.

本発明に係る絶縁性容器11、突出部12の絶縁板21の材料としては、耐油性と耐圧性能を併せ持つ樹脂が好ましく用いられる。具体的には、アクリル樹脂、ABS樹脂、エポキシ樹脂、フッ素系樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂や、ガラス繊維の入ったガラスエポキシなどが使用可能である。   As a material for the insulating container 11 and the insulating plate 21 of the protruding portion 12 according to the present invention, a resin having both oil resistance and pressure resistance is preferably used. Specifically, acrylic resin, ABS resin, epoxy resin, fluororesin, polyimide resin, polyetherimide resin, polycarbonate resin, polypropylene resin, glass epoxy containing glass fiber, and the like can be used.

本発明においては、突出部12は絶縁性容器11の本体11aの側壁に設けても良く、この場合、突出部12と蓋体11bとに係合部13が形成される。また、蓋体11bは複数あっても良く、本発明が適宜適用される。   In the present invention, the protruding portion 12 may be provided on the side wall of the main body 11a of the insulating container 11, and in this case, the engaging portion 13 is formed on the protruding portion 12 and the lid body 11b. Further, there may be a plurality of lids 11b, and the present invention is appropriately applied.

本発明に用いられる絶縁性流体4は、絶縁性容器11内の余空間に充填され、容器内に収納された部材の冷却と放電防止を担うため、電気絶縁性が高く、冷却能力が高く、熱による変質の少ないものが好ましい。特に絶縁性液体が好ましく用いられる。例えば電気絶縁油として、鉱物油、PFPE油(パーフルオロポリエーテル)、シリコーン油等が使用可能である。また、非液体の絶縁性流体4としては、SF6(六フッ化硫黄ガス)が好ましく用いられる。絶縁性流体4は収納容器3に設けた不図示の注油口から充填する。 The insulating fluid 4 used in the present invention fills the extra space in the insulating container 11 and is responsible for cooling and preventing discharge of the members stored in the container, so that the electrical insulation is high and the cooling capacity is high. Those that are less likely to be altered by heat are preferred. In particular, an insulating liquid is preferably used. For example, mineral oil, PFPE oil (perfluoropolyether), silicone oil, etc. can be used as the electrical insulating oil. As the non-liquid insulating fluid 4, SF 6 (sulfur hexafluoride gas) is preferably used. The insulating fluid 4 is filled from an oil filling port (not shown) provided in the storage container 3.

次に、図8に基づいて、本発明に係るX線撮影システムの一実施形態を説明する。X線撮影システムは、工業製品の非破壊検査や人体や動物の病理診断に用いることができる。   Next, an embodiment of the X-ray imaging system according to the present invention will be described with reference to FIG. The X-ray imaging system can be used for nondestructive inspection of industrial products and pathological diagnosis of human bodies and animals.

図8に示すように、本発明のX線発生装置1は、X線発生管2と管電圧回路32を有し、必要に応じて、そのX線放出窓14部分に設けられた可動絞りユニット18を備えている。可動絞りユニット18は、X線発生装置1から照射されるX線19の照射野の広さを調整する機能を有する。また、可動絞りユニット18として、X線19の照射野を可視光により模擬表示できる機能が付加されたものを用いることもできる。   As shown in FIG. 8, the X-ray generator 1 of the present invention has an X-ray generator tube 2 and a tube voltage circuit 32, and a movable aperture unit provided in the X-ray emission window 14 portion as necessary. 18 is provided. The movable aperture unit 18 has a function of adjusting the width of the irradiation field of the X-ray 19 irradiated from the X-ray generator 1. Further, as the movable aperture unit 18, a unit to which a function capable of simulating and displaying the irradiation field of the X-rays 19 with visible light can be used.

システム制御装置30は、X線発生装置1とX線検出装置31とを連携制御する。管電圧回路32は、システム制御装置30による制御の下に、X線発生管2に各種の制御信号を出力する。この制御信号により、X線発生装置1から放出されるX線19の放出状態が制御される。X線発生装置1から放出されたX線19は、被検体33を透過して検出器34で検出される。検出器34は、検出したX線を画像信号に変換して信号処理部35に出力する。信号処理部35は、システム制御装置30による制御の下に、画像信号に所定の信号処理を施し、処理された画像信号をシステム制御装置30に出力する。システム制御装置30は、処理された画像信号に基づいて、表示装置36に画像を表示させるための表示信号を表示装置36に出力する。表示装置36は、表示信号に基づく画像を、被検体33の撮影画像としてスクリーンに表示する。   The system control device 30 controls the X-ray generation device 1 and the X-ray detection device 31 in a coordinated manner. The tube voltage circuit 32 outputs various control signals to the X-ray generation tube 2 under the control of the system control device 30. The emission state of the X-rays 19 emitted from the X-ray generator 1 is controlled by this control signal. X-rays 19 emitted from the X-ray generator 1 pass through the subject 33 and are detected by the detector 34. The detector 34 converts the detected X-rays into image signals and outputs them to the signal processing unit 35. The signal processing unit 35 performs predetermined signal processing on the image signal under the control of the system control device 30, and outputs the processed image signal to the system control device 30. The system control device 30 outputs a display signal for displaying an image on the display device 36 to the display device 36 based on the processed image signal. The display device 36 displays an image based on the display signal on the screen as a captured image of the subject 33.

<実施例1、比較例1>
図1に示す構造のX線発生装置1を作製した。陰極5及び陽極6にはFeNiCo合金を用い、絶縁管7にはアルミナを用い、ろう付けにより接合した。電子銃8は含浸カソード電子放出源と、ゲート電極及び集束電極を備えている。ターゲット9はダイアモンド基板上にタングステンを成膜したものを用いた。
<Example 1, comparative example 1>
An X-ray generator 1 having the structure shown in FIG. 1 was produced. FeNiCo alloy was used for the cathode 5 and the anode 6, alumina was used for the insulating tube 7, and they were joined by brazing. The electron gun 8 includes an impregnated cathode electron emission source, a gate electrode, and a focusing electrode. The target 9 was a diamond substrate on which a tungsten film was formed.

導電性容器10は真鍮製の直方体であり、本体10aは折り曲げ加工後にろう付けにより接合した5面からなる容器であり、本体10aに板状の蓋体10bを二トリルゴム製のOリング(不図示)を介してネジ留め(不図示)して密閉した。絶縁性容器11はガラスエポキシからなる直方体であり、本体11aはガラスエポキシ板をエポキシ接着剤により貼り合わせた5面からなる容器であり、蓋体11bを係合して密閉される。ガラスエポキシ板は板厚2mmで、本体11aの接合部分は、高電圧部分との距離を離すことや絶縁性の邪魔板を設けることで耐圧を確保した。   The conductive container 10 is a rectangular parallelepiped made of brass, the main body 10a is a five-faced container joined by brazing after bending, and a plate-like lid 10b is attached to the main body 10a with an O-ring made of nitrile rubber (not shown). ) And screwed (not shown) and sealed. The insulating container 11 is a rectangular parallelepiped made of glass epoxy, and the main body 11a is a five-faced container in which a glass epoxy plate is bonded with an epoxy adhesive, and is sealed by engaging the lid 11b. The glass epoxy plate had a thickness of 2 mm, and the junction portion of the main body 11a secured a withstand voltage by separating the distance from the high voltage portion or providing an insulating baffle plate.

絶縁性容器11の蓋体11bの周縁部には、図2(a)に示すような突出部12を設けた。突出元接合部15の短手方向の長さL2を4.2mm、突出部12の突出方向の長さL1を8mmとした。そして、突出元接合部15を2分割するように厚さ2mmのガラスエポキシ板(絶縁板21)を2枚積層し、積層面同士を板間接合部16を介して接合させた。突出元接合部15及び板間接合部16にはエポキシ接着剤を用い、加重しながら乾燥させ、接合部の厚みは0.2mm程度とした。   Protruding portions 12 as shown in FIG. 2A are provided on the periphery of the lid 11b of the insulating container 11. The length L2 in the short direction of the protruding joint 15 is 4.2 mm, and the length L1 in the protruding direction of the protruding portion 12 is 8 mm. Then, two glass epoxy plates (insulating plate 21) having a thickness of 2 mm were laminated so as to divide the protruding joint 15 into two, and the laminated surfaces were joined via the inter-plate joint 16. An epoxy adhesive was used for the protruding joint 15 and the inter-plate joint 16 and dried while applying a weight. The thickness of the joint was about 0.2 mm.

係合部13の隙間の厚みは、実測していないが、加工精度から0.3mm程度と推測される。   The thickness of the gap of the engaging portion 13 is not actually measured, but is estimated to be about 0.3 mm from the processing accuracy.

絶縁性容器11の内側には、X線発生管2及び管電圧回路(不図示)を収容して、導電性容器10を密閉した後、絶縁性流体4として高圧絶縁油A(JX日鉱日石エネルギー製)を、収納容器3に設けた注油口(不図示)より充填した。   An X-ray generator tube 2 and a tube voltage circuit (not shown) are accommodated inside the insulating container 11, and after the conductive container 10 is sealed, the high-pressure insulating oil A (JX Nippon Oil & Gas Company) is used as the insulating fluid 4. Energy) was filled from an oil filling port (not shown) provided in the storage container 3.

陰極5と陽極6との間に印加する電圧をVaとして、導電性容器10と陽極6を接地電位、陰極5を−Vaに規定し、電子銃8を駆動せずに耐電圧効果を評価した。管電圧回路によりVaを10kVずつ昇圧し、各電圧で30分保持したところ、60kVまで放電することが無かった。   The voltage applied between the cathode 5 and the anode 6 is defined as Va, the conductive container 10 and the anode 6 are defined as the ground potential, the cathode 5 is defined as −Va, and the withstand voltage effect is evaluated without driving the electron gun 8. . Va was boosted by 10 kV by a tube voltage circuit and held at each voltage for 30 minutes, but no discharge was made to 60 kV.

比較例1として、図4(b)に示すように、突出部12の積層方向F及び積層数を変える以外は本実施例と同じ構成とし、耐圧を評価したところ、60kVで放電することがあった。   As Comparative Example 1, as shown in FIG. 4B, the same configuration as in this example except that the stacking direction F and the number of stacks of the protrusions 12 were changed, and the breakdown voltage was evaluated. It was.

次に、本実施例のX線発生装置1において電子銃8を駆動してX線を発生させたところ、60kVで所望のX線を発生することができた。   Next, when X-rays were generated by driving the electron gun 8 in the X-ray generator 1 of this example, desired X-rays could be generated at 60 kV.

<実施例2、比較例2>
図7(b)に示されるように、突出部12において絶縁板21の積層数を3枚に増やし、突出元接合部15の短手方向の長さL2を6.4mm、突出部12の突出方向の長さL1を12mmとした以外は実施例1と同様にしてX線発生装置1を作製した。得られたX線発生装置において、実施例1と同様にして耐電圧効果を評価したところ、90kVまで放電することが無かった。
<Example 2, comparative example 2>
As shown in FIG. 7B, the number of laminated insulating plates 21 is increased to three in the protruding portion 12, the length L2 in the short direction of the protruding joint 15 is 6.4 mm, and the protruding portion 12 protrudes. An X-ray generator 1 was produced in the same manner as in Example 1 except that the length L1 in the direction was 12 mm. When the withstand voltage effect was evaluated in the same manner as in Example 1 in the obtained X-ray generator, there was no discharge up to 90 kV.

比較例2として、積層方向Fが突出部12の突出方向に沿うように、厚さ2mmのガラスエポキシ板6枚を積層させた以外は本実施例と同じ構成で耐圧を評価したところ、80kVで放電することがあった。   As Comparative Example 2, when the withstand voltage was evaluated with the same configuration as in this example except that 6 glass epoxy plates having a thickness of 2 mm were laminated so that the lamination direction F was along the protruding direction of the protruding portion 12, the breakdown voltage was 80 kV. There was a case of discharge.

次に、本実施例のX線発生装置1において電子銃8を駆動してX線を発生させたところ、90kVで所望のX線を発生することができた。   Next, when X-rays were generated by driving the electron gun 8 in the X-ray generator 1 of this example, desired X-rays could be generated at 90 kV.

<実施例3、比較例3>
図7(c)に示されるように、絶縁板21を3枚、絶縁性容器10の内側に向かって、順次長さが短くなるように積層した以外は、実施例2と同様にして突出部12を形成し、X線発生装置1を作製した。絶縁板21の長さは、係合部13に近い側から順に、12mm、4mm、2mmとした。この場合、各板間接合部16の突出部12の突出方向の長さは、当該板間接合部16よりも内側の絶縁板21の合計板厚以上となる。よって、接合部を通って絶縁性容器11の内部から導電性容器10に向かう経路としては、突出元接合部15のみを通る経路が最短となり、板間接合部16による耐圧劣化を低減しながらも、収納容器3の小型化が図れる。本例では、絶縁性容器11の周囲を内側に向かって5mm程度小さくすることができた。
<Example 3, Comparative Example 3>
As shown in FIG. 7C, the protruding portion is the same as in Example 2 except that three insulating plates 21 are stacked so that the length is sequentially reduced toward the inside of the insulating container 10. 12 was formed, and the X-ray generator 1 was produced. The length of the insulating plate 21 was 12 mm, 4 mm, and 2 mm in order from the side closer to the engaging portion 13. In this case, the length in the protruding direction of the protruding portion 12 of each inter-plate bonding portion 16 is equal to or greater than the total thickness of the insulating plate 21 inside the inter-plate bonding portion 16. Therefore, as the path from the inside of the insulating container 11 to the conductive container 10 through the joint portion, the path passing only the protruding source joint portion 15 is the shortest, while reducing the breakdown voltage degradation due to the inter-plate joint portion 16. The storage container 3 can be downsized. In this example, the periphery of the insulating container 11 could be reduced by about 5 mm toward the inside.

得られたX線発生装置1において、実施例1と同様にして耐電圧効果を評価したところ、80kVまで放電することが無かった。   In the obtained X-ray generator 1, when the withstand voltage effect was evaluated in the same manner as in Example 1, it was not discharged to 80 kV.

比較例3として、積層方向Fが突出部12の突出方向に沿うように、厚さ2mmのガラスエポキシ板6枚を三段の階段状に積層させた以外は本実施例と同じ構成で耐圧を評価したところ、80kVで放電することがあった。   As Comparative Example 3, the pressure resistance is the same as in this example except that six glass epoxy plates having a thickness of 2 mm are stacked in a three-step shape so that the stacking direction F is along the protruding direction of the protruding portion 12. As a result of evaluation, there was a case of discharging at 80 kV.

次に、本実施例のX線発生装置1において電子銃8を駆動してX線を発生させたところ、80kVで所望のX線を発生することができた。   Next, when the X-ray was generated by driving the electron gun 8 in the X-ray generator 1 of this example, it was possible to generate a desired X-ray at 80 kV.

1:X線発生装置、2:X線発生管、3:収納容器、4:絶縁性流体、10:導電性容器、11:絶縁性容器、11a:本体、11b:蓋体、12:突出部、13:係合部、15:突出元接合部、16:板間接合部、19:X線、21:絶縁板、30:制御装置、31:X線検出装置、33:被検体 1: X-ray generator, 2: X-ray generator tube, 3: storage container, 4: insulating fluid, 10: conductive container, 11: insulating container, 11a: main body, 11b: lid, 12: protrusion , 13: engaging portion, 15: protruding joint portion, 16: inter-plate joining portion, 19: X-ray, 21: insulating plate, 30: control device, 31: X-ray detection device, 33: subject

Claims (12)

X線発生管と、前記X線発生管を収容する絶縁性容器と、前記絶縁性容器を収納する導電性容器と、を備え、
前記絶縁性容器は、開口を規定する側壁を有する本体と、取り外し可能かつ前記開口を塞ぐ蓋体と、を有し、
前記蓋体及び前記側壁のいずれか一方は、前記蓋体及び前記側壁のいずれか他方の内面に沿って突出している突出部と、前記突出部が前記いずれか一方の内面に接合されている突出元接合部と、を備えるX線発生装置であって、
前記突出部は、前記突出部の突出方向の長さと前記突出元接合部の短手方向の長さのうち長くない方の方向に沿って、電気的絶縁性を有する複数の絶縁板が、隣接する前記絶縁板を接合する板間接合部を介して積層されていることを特徴とするX線発生装置。
An X-ray generation tube, an insulating container for storing the X-ray generation tube, and a conductive container for storing the insulating container,
The insulating container has a main body having a side wall that defines an opening, and a lid that is removable and closes the opening,
One of the lid and the side wall is a protrusion that protrudes along the inner surface of the other of the lid and the side wall, and the protrusion that is joined to the inner surface of either one of the lid and the side wall. An X-ray generator comprising a former joint,
The projecting portion is adjacent to a plurality of insulating plates having electrical insulation properties along a direction that is not longer between a length in the projecting direction of the projecting portion and a length in the short direction of the projecting joint portion. An X-ray generator characterized in that the X-ray generator is laminated via an inter-plate joint for joining the insulating plates.
前記突出部は、前記蓋体に備えられていることを特徴とする請求項1に記載のX線発生装置。   The X-ray generator according to claim 1, wherein the protrusion is provided on the lid. 前記突出部の突出方向の長さが、前記突出元接合部の短手方向の長さよりも長いことを特徴とする請求項1又は2に記載のX線発生装置。   The X-ray generator according to claim 1 or 2, wherein a length of the protruding portion in a protruding direction is longer than a length in a short direction of the protruding source joint portion. 前記突出部を形成する複数の絶縁板の前記突出部の突出方向の長さが、前記絶縁性容器の内側に向かって漸減することを特徴とする請求項1乃至3のいずれか一項に記載のX線発生装置。   The length of the protrusion direction of the protrusions of the plurality of insulating plates forming the protrusions gradually decreases toward the inside of the insulating container. X-ray generator. 前記突出部を形成する任意の絶縁板の前記突出部の突出方向の長さが、前記任意の絶縁板とこれよりも内側に位置する絶縁板との合計板厚以上であることを特徴とする請求項4に記載のX線発生装置。   The length in the protruding direction of the protruding portion of the arbitrary insulating plate forming the protruding portion is equal to or greater than the total plate thickness of the arbitrary insulating plate and the insulating plate positioned on the inner side thereof. The X-ray generator according to claim 4. 前記突出部の突出方向に平行な断面において、前記板間接合部及び前記突出元接合部を通って前記絶縁性容器の内側から外側に向かう経路が、前記突出元接合部のみを通って前記絶縁性容器の内側から外側に向かう経路よりも長いことを特徴とする請求項4に記載のX線発生装置。   In a cross section parallel to the projecting direction of the projecting portion, a path from the inner side to the outer side of the insulating container through the inter-plate joint portion and the projecting source joint portion passes through only the projecting source joint portion and the insulation. The X-ray generator according to claim 4, wherein the X-ray generator is longer than a path from the inner side to the outer side of the conductive container. 前記絶縁板の板厚は、前記絶縁性容器の板厚に等しいことを特徴とする請求項1乃至6のいずれか一項に記載のX線発生装置。   The X-ray generator according to claim 1, wherein a thickness of the insulating plate is equal to a thickness of the insulating container. 前記絶縁性容器内の余空間に絶縁性流体が充填されていることを特徴とする請求項1乃至7のいずれか一項に記載のX線発生装置。   The X-ray generator according to any one of claims 1 to 7, wherein an extra space in the insulating container is filled with an insulating fluid. 前記絶縁板は、前記突出元接合部と前記板間接合部とに含まれる接合材、及び前記絶縁性流体よりも、単位体積当たりの耐圧が高いことを特徴とする請求項8に記載のX線発生装置。   9. The X according to claim 8, wherein the insulating plate has a pressure resistance per unit volume higher than that of the bonding material and the insulating fluid included in the protruding joint portion and the inter-plate bonding portion. Line generator. 前記突出元接合部の耐圧は、前記係合部の耐圧より高いことを特徴とする請求項1乃至9のいずれか一項に記載のX線発生装置。   The X-ray generator according to any one of claims 1 to 9, wherein a pressure resistance of the projecting joint portion is higher than a pressure resistance of the engaging portion. 前記絶縁性容器の内部において、前記X線発生管に管電圧を印加する管電圧回路を備えていることを特徴とする請求項1乃至10のいずれか一項に記載のX線発生装置。   The X-ray generator according to any one of claims 1 to 10, further comprising a tube voltage circuit that applies a tube voltage to the X-ray generator tube inside the insulating container. 請求項1乃至11のいずれか一項に記載のX線発生装置と、
前記X線発生装置から放出され、被検体を透過したX線を検出するX線検出装置と、
前記X線発生装置と前記X線検出装置とを連携制御する制御装置とを備えたことを特徴とするX線撮影システム。
An X-ray generator according to any one of claims 1 to 11,
An X-ray detector that detects X-rays emitted from the X-ray generator and transmitted through the subject;
An X-ray imaging system comprising: a control device that controls the X-ray generation device and the X-ray detection device in a coordinated manner.
JP2016013359A 2016-01-27 2016-01-27 X-ray generator and X-ray imaging system using the same Pending JP2017134984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016013359A JP2017134984A (en) 2016-01-27 2016-01-27 X-ray generator and X-ray imaging system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016013359A JP2017134984A (en) 2016-01-27 2016-01-27 X-ray generator and X-ray imaging system using the same

Publications (1)

Publication Number Publication Date
JP2017134984A true JP2017134984A (en) 2017-08-03

Family

ID=59503900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013359A Pending JP2017134984A (en) 2016-01-27 2016-01-27 X-ray generator and X-ray imaging system using the same

Country Status (1)

Country Link
JP (1) JP2017134984A (en)

Similar Documents

Publication Publication Date Title
US9036788B2 (en) Radiation generating apparatus and radiation imaging apparatus
JP5713832B2 (en) Radiation generator and radiation imaging apparatus using the same
US9595415B2 (en) X-ray generator and X-ray imaging apparatus
JP6049350B2 (en) Radiation generation tube, radiation generation unit and radiography system
US20140369469A1 (en) X-ray generation apparatus and x-ray radiographic apparatus
JP6573380B2 (en) X-ray generator and X-ray imaging system
US10032597B2 (en) X-ray generating tube, X-ray generating apparatus, X-ray imaging system, and anode used therefor
US8792619B2 (en) X-ray tube with semiconductor coating
RU2668085C2 (en) Anode and x-ray generating tube, x-ray generating apparatus and radiography system using same
JP2016085945A5 (en)
US10062539B2 (en) Anode and x-ray generating tube, x-ray generating apparatus, and radiography system that use the anode
JP2017134984A (en) X-ray generator and X-ray imaging system using the same
JP6611490B2 (en) X-ray generator and X-ray imaging system using the same
JP2014086147A (en) Radiation generating tube, radiation generating unit and radiation image pick-up system
US6775353B2 (en) X-ray generating apparatus
KR20140006638A (en) Mesh electrode adhesion structure, electron emission device and electronic apparatus employing the same
JP6704100B1 (en) X-ray generator and X-ray imaging device
JP2014149932A (en) Radiation generator and radiographic system
JP2015028909A (en) Radiation generator and radiography system using the same
US20030081727A1 (en) X-ray generating apparatus
JP2017120715A (en) X-ray generation apparatus and x-ray imaging system
JP2016100290A (en) X-ray generator and radiographic system using the same
JP2014072158A (en) Radiation generating unit and radiographic system
JP2015090840A (en) Radiation generator and radiography system
US6778634B2 (en) X-ray generating apparatus