JP2017134935A - Deterioration diagnosis device - Google Patents

Deterioration diagnosis device Download PDF

Info

Publication number
JP2017134935A
JP2017134935A JP2016012247A JP2016012247A JP2017134935A JP 2017134935 A JP2017134935 A JP 2017134935A JP 2016012247 A JP2016012247 A JP 2016012247A JP 2016012247 A JP2016012247 A JP 2016012247A JP 2017134935 A JP2017134935 A JP 2017134935A
Authority
JP
Japan
Prior art keywords
voltage
zinc oxide
deterioration
test voltage
discharge gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016012247A
Other languages
Japanese (ja)
Other versions
JP6082882B1 (en
Inventor
佳康 古賀
Yoshiyasu Koga
佳康 古賀
佐藤 智之
Tomoyuki Sato
智之 佐藤
征紀 廣岡
Masaki Hirooka
征紀 廣岡
靖章 米田
Yasuaki Yoneda
靖章 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otowa Electric Co Ltd
Tohoku Electric Power Co Inc
Original Assignee
Otowa Electric Co Ltd
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otowa Electric Co Ltd, Tohoku Electric Power Co Inc filed Critical Otowa Electric Co Ltd
Priority to JP2016012247A priority Critical patent/JP6082882B1/en
Application granted granted Critical
Publication of JP6082882B1 publication Critical patent/JP6082882B1/en
Publication of JP2017134935A publication Critical patent/JP2017134935A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine deterioration of a zinc oxide element with simple means, for an arrestor of sealed structure where a principal section, consisting of a series connection of the zinc oxide element and a discharge gap, is coated with an insulation enclosure.SOLUTION: A deterioration diagnosis device 17 for applying a test voltage to an arrestor 11 where the principal section, consisting of a series connection of a zinc oxide element 12 and a discharge gap 13, is coated with an insulation enclosure 14, and determining deterioration state of the arrestor 11 based on the voltage characteristics of the arrestor 11 when the test voltage is increased, is constituted of a voltage supply unit 18 for applying the test voltage to the arrestor 11, and stopping application of the test voltage at a moment in time when the discharge start voltage of the discharge gap 13 is reached by increasing the test voltage, a voltage measurement unit 20 for measuring the voltage in a specified time range of the residual voltage obvious immediately after test voltage application stop, and a determination unit 21 for determining deterioration of the zinc oxide element 12 based on the measured value of the residual voltage.SELECTED DRAWING: Figure 1

Description

本発明は、配電線に設置された耐雷機材の一種である避雷器の劣化状態を判定する劣化診断装置に関する。   The present invention relates to a deterioration diagnosis apparatus that determines a deterioration state of a lightning arrester that is a type of lightning protection equipment installed on a distribution line.

例えば、高圧配電線またはその付近への落雷などによって異常電圧が発生した際に、高圧配電線に接続された各種電気機器を雷サージから保護するための耐雷機材として、高圧配電線の課電側と接地側との間に避雷器を設置するのが一般的である。   For example, when an abnormal voltage occurs due to lightning strikes on or near the high-voltage distribution line, as a lightning protection device to protect various electrical devices connected to the high-voltage distribution line from lightning surge, It is common to install a lightning arrester between the ground and the ground side.

この種の避雷器は、直撃雷や誘導雷による瞬間的な過電圧を制限してサージ電流を大地に放流するためのデバイスとして、酸化亜鉛素子(ZnO素子)と放電ギャップとを直列接続し、主要部を碍子などの絶縁外被体で被覆し、金属蓋で密封した構造のものがある。   This type of lightning arrester is a device to limit the instantaneous overvoltage caused by direct lightning or induced lightning and to discharge surge current to the ground, connecting a zinc oxide element (ZnO element) and a discharge gap in series. Is covered with an insulating jacket such as an insulator and sealed with a metal lid.

このような構造を具備した避雷器では、サージ電圧が繰り返し印加されることによって劣化し、最終的には絶縁抵抗体ではなくなり、電流が常に流れる故障状態に至ることになる。このような避雷器が故障状態になると、金属蓋に膨らみが生じることから、避雷器を外部から目視したり、あるいは避雷器の絶縁抵抗が低抵抗となるので、その絶縁抵抗を測定したりすることで、避雷器の故障を判定するようにしている。   In the lightning arrester having such a structure, it is deteriorated by repeatedly applying a surge voltage, and finally, it is not an insulation resistor, and a failure state in which a current always flows is reached. When such a lightning arrester goes into a failure state, the metal lid swells, so the lightning arrester is visually observed from the outside, or the insulation resistance of the lightning arrester is low, so by measuring the insulation resistance, The failure of the lightning arrester is judged.

また、避雷器に直流電圧を印加することにより、避雷器の構成要素の一つである放電ギャップの放電開始電圧を測定することで、避雷器の劣化あるいは故障を判定するようにしている(例えば、特許文献1参照)。つまり、放電開始電圧の測定値が基準値よりも低ければ、放電ギャップが劣化していることになり、放電開始電圧の測定値が0であれば、故障していることになる。   In addition, by applying a DC voltage to the lightning arrester, the discharge start voltage of the discharge gap, which is one of the components of the lightning arrester, is measured to determine whether the lightning arrester has deteriorated or failed (for example, Patent Literature 1). That is, if the measured value of the discharge start voltage is lower than the reference value, the discharge gap is degraded, and if the measured value of the discharge start voltage is 0, it means that there is a failure.

特開2013−131391号公報JP 2013-131391 A

ところで、避雷器の点検では前述したように、避雷器を外部から目視したり、あるいは避雷器の絶縁抵抗を測定することにより、避雷器の故障を判定するようにしている。しかしながら、避雷器が故障状態に至るまでの劣化状態では、金属蓋に膨らみが生じず、また、放電ギャップが酸化亜鉛素子と直列接続されているので、酸化亜鉛素子の絶縁抵抗を直接測定することができず、絶縁抵抗の低下を検出できないため、避雷器の劣化を判定することができない。   By the way, in the lightning arrester inspection, as described above, the lightning arrester failure is determined by visually observing the lightning arrester from the outside or by measuring the insulation resistance of the lightning arrester. However, in a deteriorated state until the lightning arrester reaches a failure state, the metal lid does not bulge, and since the discharge gap is connected in series with the zinc oxide element, it is possible to directly measure the insulation resistance of the zinc oxide element. Since it is not possible to detect a decrease in insulation resistance, it is not possible to determine the deterioration of the lightning arrester.

一方、前述の特許文献1では、避雷器に直流電圧を印加して放電ギャップの放電開始電圧を測定することにより、避雷器の劣化を判定するようにしている。しかしながら、この避雷器の劣化は、避雷器の構成要素の一つである放電ギャップに起因するものである。避雷器の他の構成要素である酸化亜鉛素子は、放電ギャップよりも劣化しやすい傾向にある。従来では、酸化亜鉛素子と放電ギャップとが直列接続された主要部を絶縁外被体で被覆した避雷器について、放電ギャップよりも早く劣化する可能性がある酸化亜鉛素子の劣化を判定することができないというのが現状であった。   On the other hand, in Patent Document 1 described above, the deterioration of the lightning arrester is determined by applying a DC voltage to the lightning arrester and measuring the discharge start voltage of the discharge gap. However, the deterioration of the lightning arrester is caused by a discharge gap that is one of the components of the lightning arrester. Zinc oxide elements, which are other components of the lightning arrester, tend to deteriorate more than the discharge gap. Conventionally, regarding a lightning arrester in which a main part in which a zinc oxide element and a discharge gap are connected in series is covered with an insulating jacket, it is impossible to determine the deterioration of a zinc oxide element that may deteriorate earlier than the discharge gap. That was the current situation.

前述したように、劣化判定の対象物である避雷器は、酸化亜鉛素子と放電ギャップとが直列接続された主要部を絶縁外被体で被覆した密封構造を具備する。そのため、放電ギャップの劣化判定時のように、避雷器の課電側端子と接地側端子との間の両端電圧を取り出すことにより、放電ギャップの放電開始電圧を測定することができても、酸化亜鉛素子のみの劣化を判定するために、酸化亜鉛素子の両端電圧を取り出すことができない。   As described above, a lightning arrester that is an object of deterioration determination includes a sealed structure in which a main part in which a zinc oxide element and a discharge gap are connected in series is covered with an insulating jacket. Therefore, even when the discharge start voltage of the discharge gap can be measured by taking out the voltage between both terminals of the lightning arrester side and the ground side terminal as in the case of determining the deterioration of the discharge gap, In order to determine the deterioration of only the element, the voltage across the zinc oxide element cannot be taken out.

そこで、本発明は、前述の課題に鑑みて提案されたもので、その目的とするところは、酸化亜鉛素子と放電ギャップとが直列接続された主要部を絶縁外被体で被覆した密封構造の避雷器において、簡易な手段でもって酸化亜鉛素子の劣化を判定し得る劣化診断装置を提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is a sealed structure in which a main part in which a zinc oxide element and a discharge gap are connected in series is covered with an insulating jacket. An object of the present invention is to provide a deterioration diagnosis device capable of determining deterioration of a zinc oxide element with a simple means in a lightning arrester.

前述の目的を達成するための技術的手段として、本発明は、酸化亜鉛素子と放電ギャップとを直列接続した主要部が絶縁外被体で被覆された耐雷機材に試験電圧を印加し、その試験電圧を増大させた時の耐雷機材の電圧特性に基づいて耐雷機材の劣化状態を判定する劣化診断装置であって、耐雷機材に試験電圧を印加し、その試験電圧を増大させて放電ギャップの放電開始電圧に達した時点で試験電圧の印加を停止する電圧供給部と、試験電圧の印加停止直後に顕在化した残留電圧の規定時間範囲で電圧測定をする電圧計測部と、残留電圧の測定値に基づいて酸化亜鉛素子の劣化状態を判定する判定部とで構成されていることを特徴とする。   As a technical means for achieving the above-mentioned object, the present invention applies a test voltage to a lightning proof device in which a main part in which a zinc oxide element and a discharge gap are connected in series is covered with an insulation jacket, and the test is performed. A deterioration diagnosis device that determines the deterioration state of lightning-resistant equipment based on the voltage characteristics of lightning-proof equipment when the voltage is increased, and applies a test voltage to the lightning-proof equipment and increases the test voltage to discharge the discharge gap. A voltage supply unit that stops the application of the test voltage when the start voltage is reached, a voltage measurement unit that measures the voltage in the specified time range of the residual voltage that has become apparent immediately after the application of the test voltage is stopped, and a measured value of the residual voltage And a determination unit for determining the deterioration state of the zinc oxide element based on the above.

本発明において、電圧供給部では、耐雷機材に試験電圧を印加し、その試験電圧を増大させて放電ギャップの放電開始電圧に達した時点で試験電圧の印加を停止する。このギャップ放電後、試験電圧の印加停止により、耐雷機材の電圧は低下するが、酸化亜鉛素子の特性に応じた残留電圧が顕在化する。試験電圧の印加停止直後に顕在化する残留電圧の規定時間範囲での電圧を電圧計測部で測定する。   In the present invention, the voltage supply unit applies a test voltage to the lightning protection device, increases the test voltage, and stops applying the test voltage when the discharge start voltage of the discharge gap is reached. After this gap discharge, the voltage of the lightning protection device decreases due to the stop of the application of the test voltage, but the residual voltage corresponding to the characteristics of the zinc oxide element becomes obvious. The voltage measurement unit measures the voltage in the specified time range of the residual voltage that becomes apparent immediately after the application of the test voltage is stopped.

判定部では、この残留電圧の測定値に基づいて酸化亜鉛素子の劣化状態を判定する。つまり、酸化亜鉛素子が劣化している不良品における規定時間範囲での残留電圧は、酸化亜鉛素子が劣化していない良品における規定時間範囲での残留電圧よりも低いことから、測定値が良品よりも低い残留電圧であれば、酸化亜鉛素子が劣化していると判定することができる。   The determination unit determines the deterioration state of the zinc oxide element based on the measured value of the residual voltage. In other words, the residual voltage in the specified time range for a defective product with a deteriorated zinc oxide element is lower than the residual voltage in the specified time range for a good product with no deteriorated zinc oxide element. If the residual voltage is too low, it can be determined that the zinc oxide element has deteriorated.

本発明における判定部は、放電ギャップの放電開始電圧の測定値に基づいて放電ギャップの劣化状態を判定するように構成することが望ましい。このような構成を採用すれば、酸化亜鉛素子の劣化を判定することに加えて、放電ギャップの劣化状態も判定することができる。これにより、耐雷機材の劣化を判定する上で信頼性の向上が図れる。   The determination unit in the present invention is preferably configured to determine the deterioration state of the discharge gap based on the measured value of the discharge start voltage of the discharge gap. By adopting such a configuration, it is possible to determine the deterioration state of the discharge gap in addition to determining the deterioration of the zinc oxide element. Thereby, it is possible to improve reliability in determining deterioration of lightning-resistant equipment.

本発明によれば、耐雷機材に試験電圧を印加し、その試験電圧を増大させて放電ギャップの放電開始電圧に達した時点で試験電圧の印加を停止する電圧供給部と、試験電圧の印加停止直後に顕在化した残留電圧の規定時間範囲で電圧測定をする電圧計測部と、残留電圧の測定値に基づいて酸化亜鉛素子の劣化状態を判定する判定部とで構成したことにより、酸化亜鉛素子と放電ギャップとが直列接続された主要部を絶縁外被体で被覆した密封構造の耐雷機材についても、簡易な手段でもって酸化亜鉛素子の劣化を判定することができる。その結果、酸化亜鉛素子の劣化を的確に把握することができ、耐雷機材の劣化を判定する上で信頼性の向上が図れる。   According to the present invention, the test voltage is applied to the lightning protection equipment, and the test voltage is increased to stop the application of the test voltage when the discharge start voltage of the discharge gap is reached, and the test voltage application is stopped. By comprising a voltage measuring unit that measures voltage in the specified time range of the residual voltage that has become apparent immediately after and a determination unit that determines the deterioration state of the zinc oxide element based on the measured value of the residual voltage, the zinc oxide element The degradation of the zinc oxide element can be determined by a simple means even for a lightning-resistant device having a sealed structure in which a main part in which a discharge gap is connected in series is covered with an insulating jacket. As a result, the deterioration of the zinc oxide element can be accurately grasped, and the reliability can be improved in determining the deterioration of the lightning resistant equipment.

本発明の実施形態で、劣化診断装置の概略構成を示すブロック図である。In an embodiment of the present invention, it is a block diagram showing a schematic structure of a degradation diagnostic device. 放電ギャップの劣化を判定する要領を示す動作フローチャートである。It is an operation | movement flowchart which shows the point which determines deterioration of a discharge gap. 酸化亜鉛素子の劣化を判定する要領を示す動作フローチャートである。It is an operation | movement flowchart which shows the point which determines degradation of a zinc oxide element. 図1の劣化診断装置に接続された避雷器の出力特性を示す波形図である。It is a wave form diagram which shows the output characteristic of the lightning arrester connected to the degradation diagnostic apparatus of FIG. 図4のA部を拡大した避雷器の出力特性を示す波形図である。It is a wave form diagram which shows the output characteristic of the lightning arrester which expanded the A section of FIG.

本発明に係る劣化診断装置の実施形態を以下に詳述する。以下の実施形態では、劣化診断装置による劣化判定の対象物として、配電線に設置された耐雷機材の一種である避雷器を例示する。なお、本発明は、これに限定されることなく、避雷器以外の他の耐雷機材に対しても適用可能である。   Embodiments of the deterioration diagnosis apparatus according to the present invention will be described in detail below. In the following embodiments, a lightning arrester, which is a kind of lightning protection equipment installed on a distribution line, is exemplified as an object of deterioration determination by the deterioration diagnosis device. In addition, this invention is not limited to this, It is applicable also to lightning-resistant equipment other than a lightning arrester.

避雷器11は、図1に示すように、耐雷素子である酸化亜鉛素子12(ZnO素子)と放電ギャップ13とが直列接続された主要部を碍子などの絶縁外被体14で被覆した密封構造を具備する。この避雷器11は、配電線に接続される課電側端子15と、大地に接続される接地側端子16とを有する。   As shown in FIG. 1, the lightning arrester 11 has a sealed structure in which a main part in which a zinc oxide element 12 (ZnO element), which is a lightning protection element, and a discharge gap 13 are connected in series is covered with an insulating envelope 14 such as an insulator. It has. The lightning arrester 11 has a power transmission side terminal 15 connected to the distribution line and a ground side terminal 16 connected to the ground.

この実施形態の劣化診断装置17は、前述した避雷器11の課電側端子15と接地側端子16との間に接続される。この劣化診断装置17は、放電ギャップ13の劣化を判定する機能と、酸化亜鉛素子12の劣化を判定する機能とを具備する。   The deterioration diagnosis device 17 of this embodiment is connected between the power application side terminal 15 and the ground side terminal 16 of the lightning arrester 11 described above. The deterioration diagnosis device 17 has a function of determining deterioration of the discharge gap 13 and a function of determining deterioration of the zinc oxide element 12.

劣化診断装置17は、図1に示すように、避雷器11の課電側端子15と接地側端子16との間に直流の試験電圧を印加し、その試験電圧を増大させて放電ギャップ13の放電開始電圧に達した時点で試験電圧の印加を停止する電圧供給部18と、放電ギャップ13の劣化を判定する場合と酸化亜鉛素子12の劣化を判定する場合とで電圧供給部18のモードを切り替える切替部19と、試験電圧の印加で放電ギャップ13の放電開始電圧を測定すると共に、試験電圧の印加停止直後に顕在化した残留電圧の規定時間範囲で電圧測定をする電圧計測部20と、放電開始電圧の測定値に基づいて放電ギャップ13の劣化状態を判定すると共に、残留電圧の測定値に基づいて酸化亜鉛素子12の劣化状態を判定する判定部21とで構成されている。   As shown in FIG. 1, the deterioration diagnosis device 17 applies a DC test voltage between the power application side terminal 15 and the ground side terminal 16 of the lightning arrester 11 and increases the test voltage to discharge the discharge gap 13. When the start voltage is reached, the voltage supply unit 18 stops applying the test voltage, and the mode of the voltage supply unit 18 is switched between when the deterioration of the discharge gap 13 is determined and when the deterioration of the zinc oxide element 12 is determined. A switching unit 19, a voltage measuring unit 20 that measures a discharge start voltage of the discharge gap 13 by applying a test voltage, and measures a voltage within a specified time range of a residual voltage that is manifested immediately after the application of the test voltage is stopped; The determination unit 21 includes a determination unit 21 that determines the deterioration state of the discharge gap 13 based on the measurement value of the starting voltage and determines the deterioration state of the zinc oxide element 12 based on the measurement value of the residual voltage.

この劣化診断装置における切替部19は、機械式スイッチあるいは半導体スイッチのいずれであっても構成することが可能である。また、電圧供給部18、電圧計測部20および判定部21は、CPUを含む回路構成でもってハードウェアあるいはソフトウェアのいずれであっても構築することが可能である。さらに、判定部21では、図示しないが、劣化判定の結果を表示するランプあるいはブザー等が付設されている。   The switching unit 19 in this deterioration diagnosis apparatus can be configured with either a mechanical switch or a semiconductor switch. In addition, the voltage supply unit 18, the voltage measurement unit 20, and the determination unit 21 can be constructed with a circuit configuration including a CPU, either hardware or software. Furthermore, although not shown, the determination unit 21 is provided with a lamp or buzzer for displaying the result of deterioration determination.

この実施形態の特徴的な構成を説明する前に、前述の劣化診断装置17による放電ギャップ13の劣化状態を判定する要領について、図2を参照しながら以下に詳述する。   Before describing the characteristic configuration of this embodiment, the point of determining the deterioration state of the discharge gap 13 by the above-described deterioration diagnosis device 17 will be described in detail below with reference to FIG.

まず、切替部19により、放電ギャップ13の劣化状態を判定するためのモードに設定する(STEP1)。このモードでは、電圧供給部18により、避雷器11の課電側端子15と接地側端子16との間に直流の試験電圧を印加する。このモードでの試験電圧の印加は、例えば1kV/s程度の割合で試験電圧を徐々に増加させる(STEP2)。このように、試験電圧を徐々に増大させることにより、放電ギャップ13の放電開始電圧のバラツキを抑制するようにしている。   First, the switching unit 19 sets a mode for determining the deterioration state of the discharge gap 13 (STEP 1). In this mode, the voltage supply unit 18 applies a DC test voltage between the power application side terminal 15 and the ground side terminal 16 of the lightning arrester 11. Application of the test voltage in this mode gradually increases the test voltage at a rate of, for example, about 1 kV / s (STEP 2). As described above, by gradually increasing the test voltage, variations in the discharge start voltage of the discharge gap 13 are suppressed.

この試験電圧を増大させて放電ギャップ13の放電開始電圧に達した時点で試験電圧の印加を停止する(STEP3)。判定部21では、放電ギャップ13の放電開始電圧の測定値を判定値として、放電ギャップ13の劣化状態を判定する(STEP4)。例えば、判定値が20.0kV〜29.9kVの範囲内であれば、放電ギャップ13が劣化していない良品として判定する(STEP5)。また、判定値が19.9kV以下、あるいは30.0kV以上であれば、放電ギャップ13が劣化している不良品として判定する(STEP6)。   When the test voltage is increased to reach the discharge start voltage of the discharge gap 13, the application of the test voltage is stopped (STEP 3). The determination unit 21 determines the deterioration state of the discharge gap 13 using the measured value of the discharge start voltage of the discharge gap 13 as a determination value (STEP 4). For example, if the determination value is in the range of 20.0 kV to 29.9 kV, it is determined that the discharge gap 13 is not deteriorated (STEP 5). If the determination value is 19.9 kV or less, or 30.0 kV or more, it is determined that the discharge gap 13 has deteriorated (STEP 6).

以上のように、放電ギャップ13の放電開始電圧の測定値に基づいて放電ギャップ13の劣化状態を判定することにより、後述する酸化亜鉛素子12の劣化状態を判定することに加えて、放電ギャップ13の劣化状態も判定することができる。これにより、避雷器11の劣化を判定する上で信頼性の向上が図れる。   As described above, by determining the deterioration state of the discharge gap 13 based on the measured value of the discharge start voltage of the discharge gap 13, in addition to determining the deterioration state of the zinc oxide element 12 described later, the discharge gap 13 It is also possible to determine the state of deterioration. Thereby, the reliability can be improved in determining the deterioration of the lightning arrester 11.

次に、この実施形態の特徴的な構成として、劣化診断装置17による酸化亜鉛素子12の劣化状態を判定する要領について、図3を参照しながら以下に詳述する。   Next, as a characteristic configuration of this embodiment, a procedure for determining the deterioration state of the zinc oxide element 12 by the deterioration diagnosis device 17 will be described in detail below with reference to FIG.

切替部19により、酸化亜鉛素子12の劣化状態を判定するためのモードに設定する(STEP1)。このモードでは、電圧供給部18により、避雷器11の課電側端子15と接地側端子16との間に直流の試験電圧を印加する。このモードでの試験電圧の印加(1回目)は、例えば30kV/s程度の割合で試験電圧を一気に増加させる(STEP2)。このように、試験電圧を一気に増加させることにより、後述するように試験電圧の印加を複数回(例えば5回)繰り返す上で、処理時間の短縮化を図るようにしている。また、このモードでは、放電ギャップ13の放電開始電圧のバラツキを考慮する必要がない。   The switching unit 19 sets a mode for determining the deterioration state of the zinc oxide element 12 (STEP 1). In this mode, the voltage supply unit 18 applies a DC test voltage between the power application side terminal 15 and the ground side terminal 16 of the lightning arrester 11. In the test voltage application (first time) in this mode, for example, the test voltage is increased at a rate of about 30 kV / s (STEP 2). In this way, by increasing the test voltage at once, the processing time is shortened when applying the test voltage a plurality of times (for example, five times) as will be described later. In this mode, it is not necessary to consider variations in the discharge start voltage of the discharge gap 13.

この試験電圧を増大させて放電ギャップ13の放電開始電圧に達した時点で試験電圧の印加を停止する(STEP3)。この試験電圧の印加停止により、避雷器11の端子電圧、つまり、避雷器11の課電側端子15と接地側端子16との間の両端電圧は低下して0となる。ギャップ放電から例えば2秒経過後、再度、試験電圧の印加(2回目)を開始して試験電圧を1回目と同様に一気に増加させる(STEP4)。この試験電圧を増大させて放電ギャップ13の放電開始電圧に達した時点で試験電圧の印加を停止する(STEP5)。この測定電圧の印加停止により、避雷器11の端子電圧は0となる。   When the test voltage is increased to reach the discharge start voltage of the discharge gap 13, the application of the test voltage is stopped (STEP 3). By stopping the application of the test voltage, the terminal voltage of the lightning arrester 11, that is, the voltage between both terminals of the lightning arrester 11 and the grounding side terminal 16 is reduced to zero. For example, after 2 seconds have elapsed from the gap discharge, the application of the test voltage (second time) is started again, and the test voltage is increased at once in the same manner as in the first time (STEP 4). When the test voltage is increased to reach the discharge start voltage of the discharge gap 13, the application of the test voltage is stopped (STEP 5). By stopping the application of the measurement voltage, the terminal voltage of the lightning arrester 11 becomes zero.

前述した試験電圧の印加開始と印加停止を5回まで繰り返すことにより、図4の波形で示すような避雷器11の出力特性が得られる。同図に示すように、1回目の放電開始電圧V1は、2回目以降の放電開始電圧V2〜V5よりも低くなることから、2回目以降で測定値のサンプリングを行う(STEP6)。2回目から5回目までの測定値のサンプリングは、電圧計測部20にて次の要領でもって行われる。   By repeating the start and stop of application of the test voltage described above up to five times, the output characteristics of the lightning arrester 11 as shown by the waveform in FIG. 4 can be obtained. As shown in the figure, since the first discharge start voltage V1 is lower than the second and subsequent discharge start voltages V2 to V5, the measured values are sampled after the second (STEP 6). Sampling of measured values from the second time to the fifth time is performed by the voltage measuring unit 20 in the following manner.

図4に示す避雷器11の電圧特性において、例えば2回目の波形のA部の時間軸を拡大したものを図5に示す。図5に示すように、ギャップ放電後、試験電圧の印加停止により、避雷器11の両端電圧は低下するが、酸化亜鉛素子12の特性に応じた残留電圧Vが極めて短時間であるが顕在化する。このギャップ放電から極めて短時間である一定時間経過後における残留電圧Vの規定時間範囲T(例えば100μs〜200μs)でその残留電圧Vを電圧計測部20で測定する(STEP7)。これは、3回目、4回目および5回目についても同様である。   In the voltage characteristics of the lightning arrester 11 shown in FIG. 4, for example, an enlarged time axis of the A part of the second waveform is shown in FIG. 5. As shown in FIG. 5, after the gap discharge, the voltage across the lightning arrester 11 decreases due to the stop of the application of the test voltage, but the residual voltage V corresponding to the characteristics of the zinc oxide element 12 becomes apparent for a very short time. . The residual voltage V is measured by the voltage measuring unit 20 within a specified time range T (for example, 100 μs to 200 μs) of the residual voltage V after a lapse of a certain time, which is an extremely short time from the gap discharge (STEP 7). The same applies to the third, fourth and fifth times.

ここで、ギャップ放電から一定時間経過後の100μs〜200μsの範囲をサンプリング期間とすることにより、準安定した残留電圧Vに基づいて測定値のサンプリングを行うことができる。つまり、ギャップ放電から100μsの時間が経過するまでは、残留電圧Vが安定していないので不適である。また、ギャップ放電から200μsの時間が経過した後では、残留電圧Vが低下していくので不適である。   Here, the measurement value can be sampled based on the metastable residual voltage V by setting the range of 100 μs to 200 μs after a certain time has elapsed from the gap discharge as the sampling period. In other words, the residual voltage V is not stable until the time of 100 μs has elapsed from the gap discharge, which is inappropriate. In addition, after the time of 200 μs has elapsed since the gap discharge, the residual voltage V decreases, which is not suitable.

この規定時間範囲T(100μs〜200μs)において、例えば5ポイントで残留電圧Vを測定する。判定部21では、この5ポイントの測定値のうち、最大値および最小値を除く3ポイントの測定値を試験電圧の印加開始および印加停止の繰り返し(2回目から5回目までの4回分)について合算し、その合算値を測定値の総数(12個)で除算した平均値を酸化亜鉛素子12の劣化の判定値とする(STEP8)。   In this specified time range T (100 μs to 200 μs), for example, the residual voltage V is measured at 5 points. The determination unit 21 adds the measurement values of 3 points excluding the maximum value and the minimum value among the measurement values of 5 points for the repetition of starting and stopping the application of the test voltage (4 times from the second time to the fifth time). Then, an average value obtained by dividing the total value by the total number of measurement values (12) is used as a determination value for deterioration of the zinc oxide element 12 (STEP 8).

判定部21では、この判定値に基づいて酸化亜鉛素子12の劣化状態を判定する。つまり、酸化亜鉛素子12が劣化している不良品における残留電圧Vは、酸化亜鉛素子12が劣化していない良品における残留電圧Vよりも低いことから、測定値が良品よりも低い残留電圧Vであれば、酸化亜鉛素子12が劣化していると判定することができる。例えば、判定値が13.0kV以上であれば、酸化亜鉛素子12が劣化していない良品として判定する(STEP9)。また、判定値が12.9kV以下であれば、酸化亜鉛素子12が劣化している不良品として判定する(STEP10)。   In the determination part 21, the deterioration state of the zinc oxide element 12 is determined based on this determination value. That is, since the residual voltage V in the defective product in which the zinc oxide element 12 is deteriorated is lower than the residual voltage V in the good product in which the zinc oxide element 12 is not deteriorated, the measured value is a residual voltage V lower than that of the good product. If there is, it can be determined that the zinc oxide element 12 is deteriorated. For example, if the determination value is 13.0 kV or more, it is determined that the zinc oxide element 12 has not deteriorated (STEP 9). If the determination value is 12.9 kV or less, it is determined as a defective product in which the zinc oxide element 12 is deteriorated (STEP 10).

以上のように、試験電圧の印加を複数回繰り返し、その試験電圧の印加繰り返しごとに、残留電圧Vの規定時間範囲Tにおける複数ポイントで残留電圧Vを測定し、複数個の測定値のうち、最大値および最小値を除く残余の測定値を試験電圧の印加繰り返しについて合算し、その合算値を測定値の総数で除算した平均値を酸化亜鉛素子12の劣化の判定値とする。これにより、測定ごとに発生する残留電圧Vのバラツキによる測定誤差を抑制することができ、酸化亜鉛素子12の劣化を精度よく判定することができる。   As described above, the application of the test voltage is repeated a plurality of times, and each time the test voltage is repeatedly applied, the residual voltage V is measured at a plurality of points in the specified time range T of the residual voltage V. The remaining measured values excluding the maximum value and the minimum value are added together for repeated application of the test voltage, and an average value obtained by dividing the total value by the total number of measured values is used as a judgment value for deterioration of the zinc oxide element 12. Thereby, the measurement error by the variation of the residual voltage V which generate | occur | produces for every measurement can be suppressed, and deterioration of the zinc oxide element 12 can be determined accurately.

なお、酸化亜鉛素子12の劣化は避雷器11の極性によっても異なる。そのため、前述の場合とは逆極性で避雷器11を劣化診断装置17に接続した状態で、以上で説明した放電ギャップ13の劣化判定および酸化亜鉛素子12の劣化判定を実施することが有効である。この逆極性による放電ギャップ13の劣化判定および酸化亜鉛素子12の劣化判定の要領については、前述の場合と同様であるため、重複説明は省略する。   The deterioration of the zinc oxide element 12 varies depending on the polarity of the lightning arrester 11. For this reason, it is effective to carry out the deterioration determination of the discharge gap 13 and the deterioration determination of the zinc oxide element 12 described above in a state where the lightning arrester 11 is connected to the deterioration diagnosis device 17 with the opposite polarity to the above case. Since the procedure for determining the deterioration of the discharge gap 13 due to the reverse polarity and the determination of the deterioration of the zinc oxide element 12 is the same as that described above, a duplicate description is omitted.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

11 耐雷機材(避雷器)
12 酸化亜鉛素子
13 放電ギャップ
14 絶縁外被体
17 劣化診断装置
18 電圧供給部
20 電圧計測部
21 判定部
11 Lightning protection equipment (lightning arrester)
12 Zinc Oxide Element 13 Discharge Gap 14 Insulation Enclosure 17 Deterioration Diagnosis Device 18 Voltage Supply Unit 20 Voltage Measurement Unit 21 Determination Unit

Claims (2)

酸化亜鉛素子と放電ギャップとを直列接続した主要部が絶縁外被体で被覆された耐雷機材に試験電圧を印加し、前記試験電圧を増大させた時の前記耐雷機材の電圧特性に基づいて耐雷機材の劣化状態を判定する劣化診断装置であって、
前記耐雷機材に試験電圧を印加し、前記試験電圧を増大させて放電ギャップの放電開始電圧に達した時点で試験電圧の印加を停止する電圧供給部と、前記試験電圧の印加停止直後に顕在化した残留電圧の規定時間範囲で電圧測定をする電圧計測部と、前記残留電圧の測定値に基づいて酸化亜鉛素子の劣化状態を判定する判定部とで構成されていることを特徴とする劣化診断装置。
Lightning protection based on the voltage characteristics of the lightning protection device when a test voltage is applied to the lightning protection device whose main part, in which the zinc oxide element and the discharge gap are connected in series, is covered with an insulation jacket, and the test voltage is increased. A deterioration diagnosis device for determining the deterioration state of equipment,
Applying a test voltage to the lightning proof equipment, increasing the test voltage and stopping the application of the test voltage when the discharge start voltage of the discharge gap is reached, and manifesting immediately after the application of the test voltage is stopped A deterioration diagnosis comprising: a voltage measurement unit that measures a voltage within a specified time range of the residual voltage; and a determination unit that determines a deterioration state of the zinc oxide element based on the measurement value of the residual voltage apparatus.
前記判定部は、放電ギャップの放電開始電圧の測定値に基づいて放電ギャップの劣化状態を判定するように構成した請求項1に記載の劣化診断装置。   The deterioration diagnosis device according to claim 1, wherein the determination unit is configured to determine a deterioration state of the discharge gap based on a measured value of the discharge start voltage of the discharge gap.
JP2016012247A 2016-01-26 2016-01-26 Deterioration diagnosis device Active JP6082882B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016012247A JP6082882B1 (en) 2016-01-26 2016-01-26 Deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016012247A JP6082882B1 (en) 2016-01-26 2016-01-26 Deterioration diagnosis device

Publications (2)

Publication Number Publication Date
JP6082882B1 JP6082882B1 (en) 2017-02-22
JP2017134935A true JP2017134935A (en) 2017-08-03

Family

ID=58095147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016012247A Active JP6082882B1 (en) 2016-01-26 2016-01-26 Deterioration diagnosis device

Country Status (1)

Country Link
JP (1) JP6082882B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912587A (en) * 1982-07-12 1984-01-23 株式会社東芝 Deterioration detector for oxidized zinc type arrester with serial gap
JPH0797124B2 (en) * 1988-02-29 1995-10-18 日本碍子株式会社 Continuity current interruption characteristic test device of lightning arrester device with series gap
JP5478375B2 (en) * 2010-06-16 2014-04-23 北陸電力株式会社 Fault diagnosis method and fault diagnosis device for lightning arrester

Also Published As

Publication number Publication date
JP6082882B1 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
US8547112B2 (en) Introduced in monitoring system of dielectric state of high voltage equipments with capacitive insulation, such as condensive bushings, current transformers, potential transformers and similar
US10078105B2 (en) Electrical system with arc fault detection
Bassi et al. Early prediction of surge arrester failures by dielectric characterization
US10684315B2 (en) System for indicating the presence of voltage in a high-voltage network
JP4993117B2 (en) High voltage rectifier stack integrity test method
CN112098900B (en) Testing device and testing method for cable connection state
JP5478375B2 (en) Fault diagnosis method and fault diagnosis device for lightning arrester
JP6082882B1 (en) Deterioration diagnosis device
KR20170028535A (en) Integrity Evaluation Instrument and Method for Power Line Surge Protective Device
JP5792051B2 (en) Arrestor failure determination method and failure determination apparatus
Munir et al. Ageing Detection of Metal Oxide Surge Arrester using Fifth Harmonic Resistive Current
KR20100031919A (en) Device for measuring leakage current of dc lightning arrester
Ghosh et al. Simulation and Real-Time Generation of Non-Standard Lightning Impulse Voltage Waveforms
JP2011244420A (en) Coupling circuit
Mashaba et al. Deducing metal oxide varistor life span from pulse rating curves for surges of different magnitudes
Yoneda et al. A study of degradation characteristics and diagnostic method of lightning surge arrester for 6.6 kV power distribution lines
RU2337449C1 (en) Device for equipment overvoltage protection
Osmokrovic et al. Aging of the over-voltage protection elements caused by over-voltages
RU78327U1 (en) DEVICE FOR CONNECTING TO MEASURING OUTPUTS OF HIGH VOLTAGE INPUTS FOR EQUIPMENT FOR CONTROL OF THEIR INSULATION (OPTIONS)
JPH05159909A (en) Fault monitor for lightning arrestor
US11092638B2 (en) Impulse voltage tester
Tatizawa et al. Analysis and location of partial discharges in power transformers by means of electrical methods
Pejovic et al. Delay response of gas discharge tubes
Feilat et al. Total Leakage Current Decomposition of Surge Arresters Using Discrete Fourier Transform
Joskowicz et al. Evaluation of comparing algorithms used in chopped impulse transformer measurements

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161130

R150 Certificate of patent or registration of utility model

Ref document number: 6082882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250