JP2017134725A - Travelling route creation device - Google Patents

Travelling route creation device Download PDF

Info

Publication number
JP2017134725A
JP2017134725A JP2016015520A JP2016015520A JP2017134725A JP 2017134725 A JP2017134725 A JP 2017134725A JP 2016015520 A JP2016015520 A JP 2016015520A JP 2016015520 A JP2016015520 A JP 2016015520A JP 2017134725 A JP2017134725 A JP 2017134725A
Authority
JP
Japan
Prior art keywords
travel
vehicle
data
unit
travel route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016015520A
Other languages
Japanese (ja)
Other versions
JP6528696B2 (en
Inventor
尚大 横田
Hisahiro Yokota
尚大 横田
康治 田口
Koji Taguchi
康治 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016015520A priority Critical patent/JP6528696B2/en
Publication of JP2017134725A publication Critical patent/JP2017134725A/en
Application granted granted Critical
Publication of JP6528696B2 publication Critical patent/JP6528696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a travelling route creation device that can suppress creation of a travelling route not suiting sensation of a driver.SOLUTION: A travelling route creation device 100 comprises: a travelling data recording unit 5 that records travelling data about a travelling result of a vehicle on the basis of a location on a map of a vehicle, surrounding environment of the vehicle and travelling state of the vehicle; a travelling trajectory data recording unit 6 that records travelling trajectory data to be used in creation of the travelling route in association with map information on the basis of the travelling data; a travelling route creation unit 14 that creates the travelling route on the basis of the travelling trajectory data; and an operation intervention detection unit 18 that, when the vehicle automatically travels, detects an operation intervention in which the driver of the vehicle performs a driving operation. The travelling trajectory data recording unit is configured to create a travelling route on the basis of travelling trajectory data other than the travelling trajectory data recorded from the detection of the driver's operation intervention to right before a pre-set time.SELECTED DRAWING: Figure 1

Description

本発明は、走行経路生成装置に関する。   The present invention relates to a travel route generation device.

従来、車両の走行する走行経路を生成する走行経路生成装置に関して、特開2015-203972号公報が知られている。この公報には、運転者の癖の学習結果に基づいて走行路(車線)の境界線に接近できる走行許容度を設定すると共に、この走行許容度に基づいて車両の走行する走行経路を生成する走行経路生成装置が記載されている。   Conventionally, JP, 2015-203972, A is known about a course generating device which generates a course which vehicles run. In this publication, a travel tolerance that allows access to the boundary line of the travel path (lane) is set based on the learning result of the driver's bag, and a travel route on which the vehicle travels is generated based on the travel tolerance. A travel route generator is described.

特開2015-203972号公報JP2015-203972A

ところで、運転者は、車両が自動で走行する自動運転中に、車両の走行する軌跡が運転者の感覚に合わないとき、操作介入を行うと考えられる。このため、自動運転中に運転者による操作介入が行われた場合には、車両の走行する軌跡が運転者の感覚に合っていない可能性が高い。この点、従来の走行経路生成装置では考慮されておらず、改善の余地がある。   By the way, it is considered that the driver performs an operation intervention when the trajectory of the vehicle does not match the driver's sense during the automatic driving in which the vehicle automatically travels. For this reason, when an operation intervention by the driver is performed during automatic driving, there is a high possibility that the trajectory of the vehicle does not match the driver's sense. In this regard, the conventional travel route generation device is not considered and there is room for improvement.

そこで、本技術分野では、運転者の感覚に合わない走行経路を生成することを抑制できる走行経路生成装置を提供することが望まれている。   Therefore, in this technical field, it is desired to provide a travel route generation device that can suppress the generation of a travel route that does not match the driver's feeling.

上記課題を解決するため、本発明は、自動運転において車両が走行する目標となる走行経路を生成する走行経路生成装置であって、地図情報が記録される地図情報記録部と、車両の地図上の位置を認識する車両位置認識部と、車両の周辺環境を認識する周辺環境認識部と、車両の走行状態を認識する走行状態認識部と、車両の地図上の位置、車両の周辺環境、及び車両の走行状態に基づいて、車両の走行した軌跡に対応する位置情報である走行軌跡データを地図情報に関連付けて記録する走行軌跡データ記録部と、車両の地図上の位置、車両の周辺環境、車両の走行状態、及び、走行軌跡データに基づいて、走行経路を生成する走行経路生成部と、車両が自動運転中である場合に、車両の運転者が運転操作を開始する操作介入を検出する操作介入検出部と、を備え、走行経路生成部は、操作介入検出部が操作介入を検出したときから予め設定された時間前までの間に車両が走行した軌跡に対応する走行軌跡データを走行経路の生成に使用しない。   In order to solve the above-described problems, the present invention provides a travel route generation device that generates a travel route that is a target for a vehicle to travel in automatic driving, and includes a map information recording unit that records map information, and a map on the vehicle. A vehicle position recognition unit that recognizes the position of the vehicle, a surrounding environment recognition unit that recognizes the surrounding environment of the vehicle, a traveling state recognition unit that recognizes the traveling state of the vehicle, a position on the map of the vehicle, a surrounding environment of the vehicle, and Based on the traveling state of the vehicle, a traveling locus data recording unit that records the traveling locus data, which is position information corresponding to the traveling locus of the vehicle, in association with the map information, the position on the map of the vehicle, the surrounding environment of the vehicle, Based on the traveling state of the vehicle and the traveling locus data, a traveling route generation unit that generates a traveling route, and an operation intervention by which the driver of the vehicle starts a driving operation when the vehicle is in automatic driving are detected. operation A travel path generator that generates travel path data corresponding to a path traveled by the vehicle between a time when the operation intervention detection unit detects the operation intervention and before a preset time. Not used to generate

本発明によれば、運転者の感覚に合わない走行経路を生成することを抑制できる。   ADVANTAGE OF THE INVENTION According to this invention, it can suppress producing | generating the driving | running route which does not match a driver | operator's sense.

本実施形態に係る走行経路生成装置を示すブロック図である。It is a block diagram which shows the travel route production | generation apparatus which concerns on this embodiment. (a)走行軌跡データを用いた走行経路生成を説明するための図である。(b)走行軌跡データを用いた走行経路生成の他の例を説明するための図である。(A) It is a figure for demonstrating the driving | running route production | generation using driving | running | working locus data. (B) It is a figure for demonstrating the other example of the driving | running route production | generation using traveling locus data. (a)動的ロジックを選択する必要性がある場合を説明するための図である。(b)動的ロジックを選択する必要性がある場合の他の例を説明するための図である。(A) It is a figure for demonstrating the case where it is necessary to select a dynamic logic. (B) It is a figure for demonstrating the other example when there exists a need to select a dynamic logic. 走行軌跡データの演算を説明するための図である。It is a figure for demonstrating the calculation of traveling locus data. 走行経路生成装置による走行経路生成処理を示すフローチャートである。It is a flowchart which shows the driving route generation process by a driving route generator. (a)走行経路生成装置による走行データの記録処理を示すフローチャートである。(b)走行経路生成装置による走行軌跡データの記録処理を示すフローチャートである。(A) It is a flowchart which shows the recording process of the travel data by a travel route production | generation apparatus. (B) It is a flowchart which shows the recording process of the travel locus data by a travel route production | generation apparatus. 走行経路生成の第1変形例を説明するための図である。It is a figure for demonstrating the 1st modification of driving | running route generation. (a)走行経路生成の第2変形例の一態様を説明するための図である。(b)走行経路生成の第2変形例の他の態様を説明するための図である。(c)走行経路生成の第2変形例の更に他の態様を説明するための図である。(A) It is a figure for demonstrating the one aspect | mode of the 2nd modification of driving | running route generation. (B) It is a figure for demonstrating the other aspect of the 2nd modification of driving | running route generation. (C) It is a figure for demonstrating the further another aspect of the 2nd modification of driving | running route generation. 走行経路生成の第3変形例を説明するための図である。It is a figure for demonstrating the 3rd modification of driving | running route generation.

以下、本発明の実施形態について図面を参照して説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.

図1は、本実施形態に係る走行経路生成装置を示すブロック図である。図1に示す走行経路生成装置100は、乗用車等の車両に搭載され、車両の自動運転において走行する走行経路を生成する装置である。自動運転とは、運転者が運転操作を行うことなく、自動で車両を走行させる車両制御である。本実施形態に係る自動運転には、運転者の運転支援として、一時的に車両を自動で走行させる車両制御(運転支援としての自動運転)も含まれる。走行経路とは、自動運転において車両の走行する目標となる経路である。   FIG. 1 is a block diagram illustrating a travel route generation device according to the present embodiment. A travel route generation device 100 shown in FIG. 1 is a device that is mounted on a vehicle such as a passenger car and generates a travel route that travels during automatic driving of the vehicle. Automatic driving is vehicle control that causes a vehicle to travel automatically without the driver performing a driving operation. The automatic driving according to the present embodiment includes vehicle control (automatic driving as driving assistance) for automatically driving the vehicle temporarily as driving assistance for the driver. The travel route is a route that is a target traveled by the vehicle in automatic driving.

[走行経路生成装置の構成]
図1に示されるように、走行経路生成装置100は、走行経路の生成を行うためのECU[Electronic Control Unit]10を備えている。ECU10は、CPU[Central Processing Unit]、ROM[Read Only Memory]、RAM[Random Access Memory]、CAN[Controller Area Network]通信回路等を有する電子制御ユニットである。ECU10では、ROMに記憶されているプログラムをRAMにロードし、RAMにロードされたプログラムをCPUで実行することにより各種の機能を実現する。ECU10は、複数の電子制御ユニットから構成されていてもよい。
[Configuration of Travel Route Generation Device]
As shown in FIG. 1, the travel route generation device 100 includes an ECU [Electronic Control Unit] 10 for generating a travel route. The ECU 10 is an electronic control unit having a CPU [Central Processing Unit], a ROM [Read Only Memory], a RAM [Random Access Memory], a CAN [Controller Area Network] communication circuit, and the like. In the ECU 10, various functions are realized by loading a program stored in the ROM into the RAM and executing the program loaded in the RAM by the CPU. The ECU 10 may be composed of a plurality of electronic control units.

ECU10には、GPS受信部1、外部センサ2、内部センサ3、地図情報記録部4、走行データ記録部5、走行軌跡データ記録部6、運転操作検出部7、及び自動運転ECU8が接続されている。   Connected to the ECU 10 are a GPS receiving unit 1, an external sensor 2, an internal sensor 3, a map information recording unit 4, a traveling data recording unit 5, a traveling locus data recording unit 6, a driving operation detecting unit 7, and an automatic driving ECU 8. Yes.

GPS受信部1は、3個以上のGPS衛星から信号を受信することにより、車両の位置(例えば車両の緯度及び経度)を測定する。GPS受信部1は、測定した車両の位置情報をECU10へ送信する。   The GPS receiver 1 measures the position of the vehicle (for example, the latitude and longitude of the vehicle) by receiving signals from three or more GPS satellites. The GPS receiver 1 transmits the measured vehicle position information to the ECU 10.

外部センサ2は、車両の周辺環境を検出する検出機器である。外部センサ2は、カメラ、レーダー[Radar]又はライダー[LIDAR:LaserImaging Detection and Ranging]を含む。カメラは、例えば、車両のフロントガラスの裏側に設けられ、車両の前方を撮像する。カメラは、車両周囲の撮像情報をECU10へ送信する。   The external sensor 2 is a detection device that detects the surrounding environment of the vehicle. The external sensor 2 includes a camera, a radar [Radar], or a rider [LIDAR: Laser Imaging Detection and Ranging]. For example, the camera is provided on the back side of the windshield of the vehicle and images the front of the vehicle. The camera transmits imaging information around the vehicle to the ECU 10.

レーダーは、電波(例えばミリ波)を利用して車両の外部の障害物を検出する。レーダーは、電波を車両の周囲に送信し、障害物で反射された電波を受信することで障害物を検出する。レーダーは、検出した障害物情報をECU10へ送信する。ライダーは、電波に代えて光を用いて障害物を検出する。ライダーは、検出した障害物情報をECU10へ送信する。   The radar detects obstacles outside the vehicle using radio waves (for example, millimeter waves). The radar detects an obstacle by transmitting a radio wave around the vehicle and receiving the radio wave reflected by the obstacle. The radar transmits the detected obstacle information to the ECU 10. The rider detects an obstacle using light instead of radio waves. The rider transmits the detected obstacle information to the ECU 10.

内部センサ3は、車両の走行状態を検出する検出機器である。内部センサ3は、車速センサ、加速度センサ、及びヨーレートセンサを含む。車速センサは、車両の速度を検出する検出器である。車速センサは、検出した車速情報(車輪速情報)をECU10に送信する。加速度センサは、車両の加速度を検出する検出器である。加速度センサは、例えば、車両の加速度情報(前後加速度、横加速度、上下加速度)をECU10に送信する。ヨーレートセンサは、車両の重心の鉛直軸周りのヨーレート(回転角速度)を検出する検出器である。ヨーレートセンサとしては、例えばジャイロセンサを用いることができる。ヨーレートセンサは、検出した車両のヨーレート情報をECU10へ送信する。   The internal sensor 3 is a detection device that detects the traveling state of the vehicle. The internal sensor 3 includes a vehicle speed sensor, an acceleration sensor, and a yaw rate sensor. The vehicle speed sensor is a detector that detects the speed of the vehicle. The vehicle speed sensor transmits the detected vehicle speed information (wheel speed information) to the ECU 10. The acceleration sensor is a detector that detects the acceleration of the vehicle. For example, the acceleration sensor transmits vehicle acceleration information (longitudinal acceleration, lateral acceleration, vertical acceleration) to the ECU 10. The yaw rate sensor is a detector that detects the yaw rate (rotational angular velocity) around the vertical axis of the center of gravity of the vehicle. As the yaw rate sensor, for example, a gyro sensor can be used. The yaw rate sensor transmits the detected yaw rate information of the vehicle to the ECU 10.

地図情報記録部4は、地図情報を記録するデータベースである。地図情報記録部4は、例えば、車両に搭載されたHDD[Hard Disk Drive]内に形成されている。地図情報には、例えば、道路(車線)の位置情報、道路形状の情報(例えばカーブ、直線部の種別、カーブの曲率等)、合流路及び分岐路の位置情報、交差点の位置情報が含まれる。また、地図情報には、車線の左右境界点の情報が含まれる。車線の左右境界点とは、車線を形成する左右二本の白線上にそれぞれ所定間隔で設定される地図上の点である。車線の左右境界点について後述する。   The map information recording unit 4 is a database that records map information. The map information recording unit 4 is formed in, for example, an HDD [Hard Disk Drive] mounted on the vehicle. The map information includes, for example, road (lane) position information, road shape information (for example, curves, straight line types, curve curvature, etc.), junction and branch path position information, and intersection position information. . Further, the map information includes information on the left and right boundary points of the lane. The left and right boundary points of the lane are points on the map that are set at predetermined intervals on the two left and right white lines forming the lane. The left and right boundary points of the lane will be described later.

走行データ記録部5は、走行データを記録するデータベースである。走行データ記録部5も、例えば、車両に搭載されたHDD内に形成されている。走行データは、過去の車両の走行に関するデータである。走行データには、車両の走行した実走行軌跡(X、Y、Z)、車両の車速、天候(晴、雨、雪)、ヘッドライトの点灯の有無、運転状態(自動運転、協調運転、手動運転)、運転技量(上級、中級、初級)、日時(年/月/日/時/分/秒)、車両情報(車両カテゴリ、メーカ、車名、車両ナンバー、車両総重量、ホイールベース、トレッド、地図更新年月日など)が含まれる。   The travel data recording unit 5 is a database that records travel data. The travel data recording unit 5 is also formed in, for example, an HDD mounted on the vehicle. The traveling data is data relating to past traveling of the vehicle. The travel data includes actual travel trajectory (X, Y, Z) traveled by the vehicle, vehicle speed, weather (sunny, rain, snow), presence / absence of headlights, driving state (automatic driving, cooperative driving, manual Driving), driving skill (advanced, intermediate, beginner), date (year / month / day / hour / minute / second), vehicle information (vehicle category, manufacturer, vehicle name, vehicle number, total vehicle weight, wheelbase, tread) , Map update date, etc.).

走行軌跡データ記録部6は、走行記録データを記録するデータベースである。走行軌跡データ記録部6も、例えば、車両に搭載されたHDD内に形成されている。走行記録データは、車両の走行した軌跡(実走行軌跡)に対応するデータであり、地図情報に関連付けられて記録されている。走行軌跡データは、走行経路生成に用いるために、地図情報に基づき走行データから演算される。走行軌跡データは、経路生成補正情報として用いられる。走行軌跡データ及び走行軌跡データの演算について詳しくは後述する。   The travel locus data recording unit 6 is a database that records travel record data. The travel locus data recording unit 6 is also formed in, for example, an HDD mounted on the vehicle. The travel record data is data corresponding to the trajectory traveled by the vehicle (actual travel trajectory), and is recorded in association with the map information. The travel locus data is calculated from the travel data based on the map information to be used for travel route generation. The travel locus data is used as route generation correction information. Details of the travel locus data and the computation of the travel locus data will be described later.

地図情報記録部4、走行データ記録部5、及び走行軌跡データ記録部6は、別々のデータベースである必要はなく、一つ又は二つのデータベースとしてまとめて構成されていてもよい。また、地図情報記録部4、走行データ記録部5、及び走行軌跡データ記録部6は、必ずしも車両に搭載されている必要はなく、車両と通信可能なサーバ等に設けられていてもよい。   The map information recording unit 4, the traveling data recording unit 5, and the traveling locus data recording unit 6 do not have to be separate databases, and may be configured as one or two databases. Further, the map information recording unit 4, the traveling data recording unit 5, and the traveling locus data recording unit 6 are not necessarily installed in the vehicle, and may be provided in a server or the like that can communicate with the vehicle.

運転操作検出部7は、運転者による車両の運転操作を検出する。運転操作検出部7には、操舵センサ、アクセルペダルセンサ、ブレーキペダルセンサが含まれる。操舵センサは、例えば操舵トルクセンサ及び操舵タッチセンサを有している。操舵トルクセンサは、車両のステアリングシャフトに対して設けられ、運転者がステアリングホイールに与える操舵トルクを検出する。操舵タッチセンサは、車両のステアリングホイールに設けられ、ステアリングホイールに対する運転者の接触及び運転者がステアリングホイールを握る圧力を検出する。アクセルペダルセンサは、アクセルペダルのシャフト部分に対して設けられ、運転者によるアクセルペダルの踏力又は踏込み量(アクセルペダルの位置)を検出する。ブレーキペダルセンサは、ブレーキペダルのシャフト部分に対して設けられ、運転者によるブレーキペダルの踏力又は踏込み量(ブレーキペダルの位置)を検出する。   The driving operation detection unit 7 detects the driving operation of the vehicle by the driver. The driving operation detection unit 7 includes a steering sensor, an accelerator pedal sensor, and a brake pedal sensor. The steering sensor has, for example, a steering torque sensor and a steering touch sensor. The steering torque sensor is provided with respect to the steering shaft of the vehicle, and detects the steering torque applied to the steering wheel by the driver. The steering touch sensor is provided on the steering wheel of the vehicle, and detects the contact of the driver with the steering wheel and the pressure with which the driver grips the steering wheel. The accelerator pedal sensor is provided for the shaft portion of the accelerator pedal, and detects the depression force or the depression amount (accelerator pedal position) of the accelerator pedal by the driver. The brake pedal sensor is provided for the shaft portion of the brake pedal, and detects the depression force or the depression amount (brake pedal position) of the brake pedal by the driver.

自動運転ECU8は、車両の自動運転を実行するため電子制御ユニットである。自動運転ECU8は、自動運転を開始する場合、車両の走行する走行経路の生成をECU10に要求する。自動運転ECU8は、車両の各種アクチュエータに制御信号を送信することで、走行経路に沿った車両の自動運転を実行する。   The automatic driving ECU 8 is an electronic control unit for executing automatic driving of the vehicle. When starting automatic driving, the automatic driving ECU 8 requests the ECU 10 to generate a travel route on which the vehicle travels. The automatic driving ECU 8 performs automatic driving of the vehicle along the traveling route by transmitting control signals to various actuators of the vehicle.

次に、ECU10の機能的構成について説明する。ECU10は、車両位置認識部11、周辺環境認識部12、走行状態認識部13、走行経路生成部14、経路選択部15、走行データ取得部16、走行軌跡データ演算部17、及び操作介入検出部18を有している。   Next, a functional configuration of the ECU 10 will be described. The ECU 10 includes a vehicle position recognition unit 11, a surrounding environment recognition unit 12, a travel state recognition unit 13, a travel route generation unit 14, a route selection unit 15, a travel data acquisition unit 16, a travel locus data calculation unit 17, and an operation intervention detection unit. 18.

車両位置認識部11は、GPS受信部1の位置情報及び地図情報記録部4の地図情報に基づいて、車両の地図上の位置を認識する。車両位置認識部11は、地図情報記録部4の地図情報に含まれた電柱等の固定障害物の位置情報及び外部センサ2の検出結果を利用して、SLAM[Simultaneous Localization and Mapping]技術により車両の位置を認識してもよい。また、車両位置認識部11は、車載のカメラにより撮像された車両前方の撮像画像(白線の画像)に基づいて、周知の画像処理手法により、車両の横位置を認識する。   The vehicle position recognition unit 11 recognizes the position of the vehicle on the map based on the position information of the GPS reception unit 1 and the map information of the map information recording unit 4. The vehicle position recognizing unit 11 uses the position information of a fixed obstacle such as a power pole and the detection result of the external sensor 2 included in the map information of the map information recording unit 4 to detect the vehicle by SLAM [Simultaneous Localization and Mapping] technology. May be recognized. In addition, the vehicle position recognition unit 11 recognizes the lateral position of the vehicle by a known image processing method based on a captured image (white line image) in front of the vehicle captured by an in-vehicle camera.

周辺環境認識部12は、外部センサ2の検出結果に基づいて、車両の周辺環境を認識する。周辺環境には、車両に対する障害物の位置、車両に対する障害物の相対速度、車両に対する障害物の移動方向などが含まれる。周辺環境認識部12は、カメラの撮像画像、レーダーの障害物情報、又はライダーの障害物情報に基づいて、周知の技術により、車両の周辺環境を認識する。周辺環境認識部12は、カメラの撮像画像に基づいて、周知の技術により路面摩擦係数や路面カントを認識してもよい。   The surrounding environment recognition unit 12 recognizes the surrounding environment of the vehicle based on the detection result of the external sensor 2. The surrounding environment includes the position of the obstacle with respect to the vehicle, the relative speed of the obstacle with respect to the vehicle, the moving direction of the obstacle with respect to the vehicle, and the like. The surrounding environment recognition unit 12 recognizes the surrounding environment of the vehicle by a known technique based on the captured image of the camera, the obstacle information of the radar, or the obstacle information of the rider. The surrounding environment recognition unit 12 may recognize the road surface friction coefficient and the road surface cant by a known technique based on the captured image of the camera.

走行状態認識部13は、車両の走行状態を認識する。車両の走行状態には、車両の速度、車両の加速度、車両の舵角などが含まれる。走行状態認識部13は、内部センサ3の検出結果に基づいて、車両の走行状態を認識する。   The traveling state recognition unit 13 recognizes the traveling state of the vehicle. The traveling state of the vehicle includes the speed of the vehicle, the acceleration of the vehicle, the steering angle of the vehicle, and the like. The traveling state recognition unit 13 recognizes the traveling state of the vehicle based on the detection result of the internal sensor 3.

走行経路生成部14は、自動運転において車両が走行する目標となる走行経路を生成する。走行経路生成部14は、静的ロジックによる走行経路の生成と動的ロジックによる走行経路の生成とを行う。   The travel route generation unit 14 generates a travel route that is a target for the vehicle to travel in automatic driving. The travel route generation unit 14 generates a travel route based on static logic and a travel route based on dynamic logic.

静的ロジックによる走行経路の生成とは、過去の走行軌跡データを用いない、走行経路の生成である。走行経路生成部14は、車両の地図上の位置、車両の周辺環境、及び車両の走行状態に基づいて、周知の技術により、静的ロジックによる走行経路の生成を行う。走行経路生成部14は、地図情報に記録された車線の左右境界点から車両トレッド、マージンを考慮し、車両を質点として扱うことで走行可能な走路境界(車線幅方向における車線内の走行可能な範囲)を算出し、その走路境界内で目的関数を最適化する走行経路を生成する。具体的に、静的ロジックによる走行経路の生成として、2014 IEEE Intelligent Vehicles Symposium(IV) Trajectory Planning forBERTHA−a Local, Continuous Method に記載の内容を採用することができる。   The generation of a travel route by static logic is the generation of a travel route without using past travel locus data. The travel route generation unit 14 generates a travel route by static logic based on the position on the map of the vehicle, the surrounding environment of the vehicle, and the traveling state of the vehicle by a known technique. The travel route generation unit 14 considers the vehicle tread and the margin from the left and right boundary points of the lane recorded in the map information, and treats the vehicle as a mass point so that the travel route boundary can travel within the lane in the lane width direction. Range) is calculated, and a travel route that optimizes the objective function within the travel route boundary is generated. Specifically, the contents described in 2014 IEEE Intelligent Vehicles Symposium (IV) Trajectory Planning for BERTHA-a Local, Continuous Method can be adopted as the generation of the travel route by static logic.

動的ロジックによる走行経路の生成とは、過去の走行軌跡データを用いた走行経路の生成である。走行経路生成部14は、車両の地図上の位置、車両の周辺環境、車両の走行状態、及び、走行軌跡データ記録部6に記録された走行軌跡データに基づいて、動的ロジックによる走行経路の生成を行う。   The generation of a travel route by dynamic logic is the generation of a travel route using past travel locus data. The travel route generation unit 14 determines the travel route based on the dynamic logic based on the position on the map of the vehicle, the surrounding environment of the vehicle, the travel state of the vehicle, and the travel locus data recorded in the travel locus data recording unit 6. Generate.

ここで、図2(a)は、走行軌跡データを用いた走行経路生成(すなわち動的ロジックによる走行経路の生成)を説明するための図である。図2(a)に、車線R、車線Rの白線L1,L2、車線Rの左境界点E1a〜E1e、車線Rの右境界点E2a〜E2e、車線Rにおける走行軌跡データDb〜Dd、走行可能な走路境界Ka〜Keを示す。車線Rの左境界点E1a〜E1eは、白線L1上に所定間隔で設定された地図上の点である。車線Rの右境界点E2a〜E2eは、白線L2上に所定間隔で設定された地図上の点である。左境界点E1a〜E1e及び左境界点E2a〜E2eの情報は、地図情報記録部4の地図情報に含まれている。   Here, FIG. 2A is a diagram for explaining travel route generation using travel locus data (that is, generation of a travel route by dynamic logic). FIG. 2A shows the lane R, the white lines L1 and L2 of the lane R, the left boundary points E1a to E1e of the lane R, the right boundary points E2a to E2e of the lane R, the travel locus data Db to Dd in the lane R, and the travel possible Lane boundaries Ka to Ke are shown. Left boundary points E1a to E1e of the lane R are points on the map set at predetermined intervals on the white line L1. The right boundary points E2a to E2e of the lane R are points on the map set at predetermined intervals on the white line L2. Information of the left boundary points E1a to E1e and the left boundary points E2a to E2e is included in the map information of the map information recording unit 4.

走行軌跡データDb〜Ddは、走行軌跡データ記録部6に記録された複数の走行軌跡データである。走行軌跡データDbは、左境界点E1bと右境界点E2bとを結ぶ線(車線Rの車線幅方向に平行な線)上に位置する走行軌跡データである。走行軌跡データDcは、左境界点E1cと右境界点E2cとを結ぶ線上に位置する走行軌跡データである。走行軌跡データDdは、左境界点E1dと右境界点E2dとを結ぶ線上に位置する走行軌跡データである。   The traveling locus data Db to Dd are a plurality of traveling locus data recorded in the traveling locus data recording unit 6. The travel locus data Db is travel locus data located on a line (a line parallel to the lane width direction of the lane R) connecting the left boundary point E1b and the right boundary point E2b. The travel locus data Dc is travel locus data located on a line connecting the left boundary point E1c and the right boundary point E2c. The travel locus data Dd is travel locus data located on a line connecting the left boundary point E1d and the right boundary point E2d.

走行可能な走路境界Ka〜Keは、生成される走行経路が通ることが可能な範囲である。走路境界Kaは、左境界点E1aと右境界点E2aとを結ぶ線上に設定されている。走路境界Kbは、左境界点E1bと右境界点E2bとを結ぶ線上に設定されている。走路境界Kc〜Keも同様である。図2(a)に示す走行可能な走路境界Kb〜Kdは、走行軌跡データDb〜Ddの位置と対応している。すなわち、走路境界Kbの左端は、走行軌跡データDbのうち最も左側の点の位置に相当する。走路境界Kbの右端の位置は、走行軌跡データDbのうち最も右側の点の位置に相当する。走路境界Kc,Kdも同様である。   The travelable road boundaries Ka to Ke are ranges in which the generated travel route can pass. The runway boundary Ka is set on a line connecting the left boundary point E1a and the right boundary point E2a. The track boundary Kb is set on a line connecting the left boundary point E1b and the right boundary point E2b. The same applies to the runway boundaries Kc to Ke. The travelable road boundaries Kb to Kd shown in FIG. 2A correspond to the positions of the travel locus data Db to Dd. That is, the left end of the road boundary Kb corresponds to the position of the leftmost point in the travel locus data Db. The position of the right end of the track boundary Kb corresponds to the position of the rightmost point in the travel locus data Db. The same applies to the runway boundaries Kc and Kd.

走行経路生成部14は、図2(a)に示すように走行軌跡データDb〜Ddと対応するように走行可能な走路境界Kb〜Kdを設定する。また、走行経路生成部14は、対応する走行軌跡データが存在しない走路境界Ka,Keは白線L1と白線K2との間の範囲として設定する。走行経路生成部14は、車両の地図上の位置、車両の周辺環境、及び車両の走行状態に基づいて、これらの走路境界Ka〜Keを通るように走行経路を生成する。なお、走路境界Kb〜Kdの範囲を走行軌跡データDb〜Ddの標準偏差2σに対応する範囲として設定してもよい。   The travel route generation unit 14 sets travel route boundaries Kb to Kd that correspond to the travel locus data Db to Dd as shown in FIG. In addition, the travel route generation unit 14 sets the travel route boundaries Ka and Ke where no corresponding travel locus data exists as a range between the white line L1 and the white line K2. The travel route generation unit 14 generates a travel route so as to pass through these travel route boundaries Ka to Ke based on the position on the map of the vehicle, the surrounding environment of the vehicle, and the traveling state of the vehicle. Note that the range of the travel path boundaries Kb to Kd may be set as a range corresponding to the standard deviation 2σ of the travel locus data Db to Dd.

図2(b)は、走行軌跡データを用いた走行経路生成の他の例を説明するための図である。図2(b)に、車線を車線幅方向に三分割する分割線H1,H2を示す。図2(b)に示すように、走行経路生成部14は、白線L1から分割線H1までの範囲、分割線H1から分割線H2までの範囲、分割線H2から白線L2までの範囲の3つの範囲のうち、走行軌跡データDb〜Ddが最も少ない範囲を除外してもよい。図2(b)に示す状況では、走行経路生成部14は、走行軌跡データDb〜Ddが存在する分割線H1から分割線H2までの範囲と分割線H2から白線L2までの範囲を、走路境界Kb〜Kdとして設定している。   FIG. 2B is a diagram for explaining another example of travel route generation using travel locus data. FIG. 2B shows dividing lines H1 and H2 that divide the lane in three in the lane width direction. As shown in FIG. 2B, the travel route generation unit 14 has three ranges: a range from the white line L1 to the dividing line H1, a range from the dividing line H1 to the dividing line H2, and a range from the dividing line H2 to the white line L2. Of the ranges, the range with the smallest travel locus data Db to Dd may be excluded. In the situation shown in FIG. 2B, the travel route generation unit 14 determines the range from the dividing line H1 to the dividing line H2 and the range from the dividing line H2 to the white line L2 in which the traveling locus data Db to Dd exist. Kb to Kd are set.

また、走行経路生成部14は、操作介入検出部18が運転者の操作介入を検出したときから予め設定された時間前までの間に車両が走行した軌跡に対応する走行軌跡データを走行経路の生成に使用しない。この点について詳しくは後述する。   In addition, the travel route generation unit 14 uses the travel route data corresponding to the travel route of the vehicle between the time when the operation intervention detection unit 18 detects the driver's operation intervention and the time before the preset time. Not used for generation. This will be described in detail later.

経路選択部15は、静的ロジックにより生成された走行経路と、動的ロジックにより生成された走行経路から、出力する走行経路を選択する。静的ロジックと動的ロジックを比較すると、静的ロジックは走路境界Ka〜Keの制限を受けないため、静的ロジックにより生成された走行経路の方が動的ロジックにより生成された走行経路より曲率変化が滑らかになる。このため、経路選択部15は、動的ロジックを選択する必要性がある場合に、動的ロジックによる走行経路を選択する。経路選択部15は、動的ロジックを選択する必要性がない場合、静的ロジックによる走行経路を選択する。   The route selection unit 15 selects a travel route to be output from the travel route generated by the static logic and the travel route generated by the dynamic logic. Comparing static logic and dynamic logic, static logic is not limited by the road boundaries Ka to Ke, so the driving route generated by the static logic is more curved than the driving route generated by the dynamic logic. The change becomes smooth. For this reason, the route selection unit 15 selects a travel route based on dynamic logic when there is a need to select dynamic logic. When there is no need to select dynamic logic, the route selection unit 15 selects a travel route based on static logic.

以下、動的ロジックを選択する必要性がある場合について図3(a)及び図3(b)を参照して説明する。図3(a)は、動的ロジックを選択する必要性がある場合を説明するための図である。図3(a)に、静的ロジックにより生成された走行経路Tsと、動的ロジックにより生成された走行経路Td、偏差eを示す。偏差eは、車線幅方向における走行経路Tsと走行経路Tdの差である。経路選択部15は、図3(a)に示す状況において、偏差eが閾値(例えば30cm)以上である場合、動的ロジックによる走行経路Tdを選択する。   Hereinafter, a case where there is a need to select a dynamic logic will be described with reference to FIGS. 3 (a) and 3 (b). FIG. 3A is a diagram for explaining a case where there is a need to select dynamic logic. FIG. 3A shows a travel route Ts generated by static logic, a travel route Td generated by dynamic logic, and a deviation e. The deviation e is a difference between the travel route Ts and the travel route Td in the lane width direction. In the situation shown in FIG. 3A, the route selection unit 15 selects a travel route Td based on dynamic logic when the deviation e is greater than or equal to a threshold value (for example, 30 cm).

図3(b)は、動的ロジックを選択する必要性がある場合の他の例を説明するための図である。図3(b)に、走行軌跡データDb〜Ddの標準偏差2σの範囲であるQb〜Qdを示す。経路選択部15は、図3(b)に示す状況において、静的ロジックによる走行経路Tsが、走行軌跡データDb〜Ddの標準偏差2σの範囲Qb〜Qdに入らなかった場合、動的ロジックによる走行経路Tdを選択する。   FIG. 3B is a diagram for explaining another example when there is a need to select dynamic logic. FIG. 3B shows Qb to Qd that are within the range of the standard deviation 2σ of the travel locus data Db to Dd. In the situation shown in FIG. 3B, the route selection unit 15 uses dynamic logic when the travel route Ts based on static logic does not fall within the range Qb to Qd of the standard deviation 2σ of the travel locus data Db to Dd. A travel route Td is selected.

走行データ取得部16は、車両の走行データを取得する。走行データ取得部16は、自動運転又は手動運転に関わらず走行データを取得する。走行データ取得部16は、車両位置認識部11の認識した車両の地図上の位置に基づいて、車両が実際に走行した軌跡(実走行軌跡)上の位置情報である実走行軌跡データを走行データとして取得する。走行データ取得部16は、周辺環境認識部12の認識した車両の周辺環境に基づいて、周辺障害物の有無を走行データとして取得する。走行データ取得部16は、走行状態認識部13の認識した走行状態に基づいて、車両の車速、ハンドル角、前後加速度、横加速度、上下加速度、ヨーレート、車体スリップ角、タイヤスリップ率、路面摩擦係数を走行データとして取得する。走行データ取得部16は、自動運転ECU8から車両の運転状態(自動運転、協調運転、手動運転)の情報を走行データとして取得する。また、走行データ取得部16は、自動運転ECU8から障害物回避のブレーキ制御やステア制御、衝突回避制御、横滑り防止制御を行っているか否かの情報を走行データとして取得する。   The travel data acquisition unit 16 acquires travel data of the vehicle. The travel data acquisition unit 16 acquires travel data regardless of automatic operation or manual operation. Based on the position of the vehicle on the map recognized by the vehicle position recognizing unit 11, the travel data acquisition unit 16 obtains actual travel locus data, which is position information on a locus (actual travel locus) where the vehicle actually traveled, from the travel data. Get as. The travel data acquisition unit 16 acquires the presence / absence of a surrounding obstacle as travel data based on the surrounding environment of the vehicle recognized by the surrounding environment recognition unit 12. The travel data acquisition unit 16 is based on the travel state recognized by the travel state recognition unit 13, such as the vehicle speed, steering wheel angle, longitudinal acceleration, lateral acceleration, vertical acceleration, yaw rate, vehicle body slip angle, tire slip ratio, road surface friction coefficient. Is acquired as travel data. The travel data acquisition unit 16 acquires information on the driving state of the vehicle (automatic driving, cooperative driving, manual driving) from the automatic driving ECU 8 as driving data. In addition, the travel data acquisition unit 16 acquires information on whether or not the brake control, the steer control, the collision avoidance control, and the skid prevention control for obstacle avoidance are performed from the automatic operation ECU 8 as travel data.

また、走行データ取得部16は、車両のワイパーの作動の有無と外気温センサから、車両の外の天候を走行データとして取得してもよい。走行データ取得部16は、例えば、ワイパーの作動が無い場合には晴、ワイパーの作動が有り外気温が0度を超えていれば雨、ワイパーの作動が有り外気温が0度以下であれば雪として天候を決定する。また、走行データ取得部16は、周知の運転技量判定手法を利用して運転者の運転技量(初級、中級、上級)を判定し、その運転技量を走行データとして取得する。また、走行データ取得部16は、日時についても走行データとして取得する。   Further, the travel data acquisition unit 16 may acquire weather outside the vehicle as travel data from the presence / absence of the operation of the wiper of the vehicle and the outside air temperature sensor. For example, the driving data acquisition unit 16 is fine when the wiper is not operated, rainy when the wiper is operated and the outside air temperature exceeds 0 degrees, and when the outside temperature is 0 degrees or less when the wiper is operated. Determine the weather as snow. The travel data acquisition unit 16 determines a driver's driving skill (beginner, intermediate, advanced) using a known driving skill determination method, and acquires the driving skill as travel data. The travel data acquisition unit 16 also acquires date and time as travel data.

走行データ取得部16は、走行データを取得した場合、後述する操作介入検出部18において自動運転中に運転者による操作介入を検出したときから予め設定された時間前までの間に取得された走行データであるか否かを判定する。予め設定された時間とは、例えば2秒である。走行データ取得部16は、操作介入を検出したときから予め設定された時間前までの間に取得された走行データであると判定した場合、当該走行データを不使用走行データとして走行データ記録部5に記録する。走行データ取得部16は、操作介入を検出したときから予め設定された時間前までの間に取得された走行データではないと判定した場合、当該走行データをそのまま走行データとして走行データ記録部5に記録する。   When the travel data is acquired, the travel data acquisition unit 16 acquires the travel from the time when the operation intervention detection unit 18 described later detects operation intervention by the driver during automatic driving until the time set in advance. It is determined whether it is data. The preset time is, for example, 2 seconds. When it is determined that the travel data acquisition unit 16 is travel data acquired from the time when the operation intervention is detected to the time set in advance, the travel data recording unit 5 uses the travel data as unused travel data. To record. If the travel data acquisition unit 16 determines that the travel data is not travel data acquired between the time when the operation intervention is detected and before a preset time, the travel data is directly used as travel data in the travel data recording unit 5. Record.

なお、走行データ取得部16は、走行データとして走行データ記録部5に記録した後に操作介入が検出された場合、操作介入を検出したときから予め設定された時間前までの間に取得された走行データを走行データ記録部5から削除すると共に不使用走行データとして記録し直す。   When the operation intervention is detected after recording the travel data in the travel data recording unit 5 as the travel data, the travel data acquisition unit 16 acquires the travel acquired from the time when the operation intervention was detected until a preset time. The data is deleted from the travel data recording unit 5 and re-recorded as unused travel data.

走行軌跡データ演算部17は、走行データ記録部5に記録された走行データに基づいて地図情報に関連付けられた走行軌跡データを演算する。走行軌跡データ演算部17は、車両が実際に走行した実走行軌跡に対応する位置情報である走行軌跡データを演算する。走行軌跡データ演算部17は、走行軌跡データの演算に不使用走行データを用いない。   The traveling locus data calculation unit 17 calculates the traveling locus data associated with the map information based on the traveling data recorded in the traveling data recording unit 5. The travel locus data calculation unit 17 calculates travel locus data that is position information corresponding to an actual travel locus on which the vehicle has actually traveled. The travel locus data calculation unit 17 does not use the unused travel data for the calculation of the travel locus data.

走行軌跡データ演算部17は、走行データ記録部5に記録された走行データのうち、所定の条件を一定時間(例えば2秒)以上連続して満たす走行データに基づいて、走行軌跡データを演算する。所定の条件とは、一例として、車速>30km/h、ハンドル角速度絶対値<50deg/s、前後加速度絶対値<2m/s、横加速度絶対値<2m/s、上下加速度絶対値<2m/s、ヨーレート絶対値<20deg/s、車体スリップ角絶対値<1deg、タイヤスリップ率絶対値<2%、路面摩擦係数推定値>0.5、ブレーキ制御無し、緊急回避のためのステア作動無し、周辺障害物無し、障害物回避無しである。 The traveling locus data calculation unit 17 calculates the traveling locus data based on the traveling data recorded in the traveling data recording unit 5 that continuously satisfies a predetermined condition for a predetermined time (for example, 2 seconds). . The predetermined conditions include, for example, vehicle speed> 30 km / h, steering wheel angular velocity absolute value <50 deg / s, longitudinal acceleration absolute value <2 m / s 2 , lateral acceleration absolute value <2 m / s 2 , vertical acceleration absolute value <2 m / S 2 , yaw rate absolute value <20 deg / s, body slip angle absolute value <1 deg, tire slip rate absolute value <2%, road surface friction coefficient estimated value> 0.5, no brake control, steering operation for emergency avoidance None, no surrounding obstacles, no obstacle avoidance.

ここで、図4は、走行軌跡データの演算を説明するための図である。図4に、走行データに含まれる実走行軌跡データCa〜Ce、実走行軌跡データCa〜Ceを結ぶ曲線(実走行軌跡)Tを示す。   Here, FIG. 4 is a diagram for explaining the calculation of the travel locus data. FIG. 4 shows actual travel locus data Ca to Ce included in the travel data, and a curve (actual travel locus) T connecting the actual travel locus data Ca to Ce.

図4に示されるように、実走行軌跡データCa〜Ceは、車両側のタイミングで取得されるため、地図情報における左境界点E1a〜E1d及び左境界点E2a〜E2dと対応していない。そこで、走行軌跡データ演算部17は、走行データに含まれる実走行軌跡データCa〜Ceを曲線関数(Bスプライン、スプライン曲線、クロソイドなど)を用いて補間することで、実走行軌跡Tを演算する。走行軌跡データ演算部17は、実走行軌跡T上で左境界点E1a〜E1d及び左境界点E2a〜E2dに対応する位置を、走行軌跡データDa〜Ddとして演算する。走行軌跡データDaは、左境界点E1aと右境界点E2aとを結ぶ線と実走行軌跡Tとの交点に設定される。走行軌跡データDbは、左境界点E1bと右境界点E2bとを結ぶ線と実走行軌跡Tとの交点に設定される。走行軌跡データDc,Ddも同様である。   As shown in FIG. 4, the actual travel trajectory data Ca to Ce are acquired at the vehicle-side timing, and thus do not correspond to the left boundary points E1a to E1d and the left boundary points E2a to E2d in the map information. Therefore, the traveling locus data calculation unit 17 calculates the actual traveling locus T by interpolating the actual traveling locus data Ca to Ce included in the traveling data using a curve function (B spline, spline curve, clothoid, etc.). . The travel locus data calculation unit 17 calculates the positions corresponding to the left boundary points E1a to E1d and the left boundary points E2a to E2d on the actual travel locus T as the travel locus data Da to Dd. The travel locus data Da is set at the intersection of a line connecting the left boundary point E1a and the right boundary point E2a and the actual travel locus T. The travel locus data Db is set at the intersection of a line connecting the left boundary point E1b and the right boundary point E2b and the actual travel locus T. The same applies to the travel locus data Dc and Dd.

走行軌跡データ演算部17は、走行軌跡データDaの直前の実走行軌跡データCaに対応する車速、天候、ヘッドライトの点灯の有無、運転状態、運転技量、日時を、走行軌跡データDaと関連付けて走行軌跡データ記録部6に記録する。複数車両で走行軌跡データ記録部6を共有する場合には、車両ナンバーなどの車両情報も走行軌跡データDaに関連付けて記録する。走行軌跡データ演算部17は、走行軌跡データDb〜Ddも同様にして走行軌跡データ記録部6に記録する。   The travel locus data calculation unit 17 associates the vehicle speed, the weather, the presence / absence of lighting of the headlight, the driving state, the driving skill, and the date / time corresponding to the actual travel locus data Ca immediately before the travel locus data Da in association with the travel locus data Da. Recorded in the travel locus data recording unit 6. When the traveling locus data recording unit 6 is shared by a plurality of vehicles, vehicle information such as a vehicle number is also recorded in association with the traveling locus data Da. The traveling locus data calculation unit 17 records the traveling locus data Db to Dd in the traveling locus data recording unit 6 in the same manner.

操作介入検出部18は、車両が自動運転中である場合に、運転者が運転操作を開始する操作介入を検出する。操作介入検出部18は、自動運転ECU8からの信号に基づいて、車両が自動運転中であるか否かを認識する。操作介入検出部18は、運転操作検出部7の検出結果に基づいて、運転者による操作介入を検出する。操作介入検出部18は、車両が自動運転中である場合に、運転者の操作するステアリングホイールの操舵角が閾値以上になったときに、操作介入を検出する。操作介入検出部18は、車両が自動運転中である場合に、運転者によるブレーキペダル又はアクセルペダルの踏込み量が閾値以上になったときに、操作介入を検出してもよい。   The operation intervention detection unit 18 detects an operation intervention by which the driver starts a driving operation when the vehicle is in an automatic driving. The operation intervention detection unit 18 recognizes whether or not the vehicle is in automatic driving based on a signal from the automatic driving ECU 8. The operation intervention detection unit 18 detects an operation intervention by the driver based on the detection result of the driving operation detection unit 7. The operation intervention detection unit 18 detects an operation intervention when the steering angle of the steering wheel operated by the driver becomes equal to or greater than a threshold value when the vehicle is in automatic driving. The operation intervention detection unit 18 may detect the operation intervention when the amount of depression of the brake pedal or the accelerator pedal by the driver becomes equal to or greater than a threshold value when the vehicle is in automatic driving.

[走行経路生成装置による走行経路生成処理]
次に、本実施形態に係る走行経路生成装置100による走行経路生成処理について図5を参照して説明する。図5は、走行経路生成装置100による走行経路生成処理を示すフローチャートである。図5に示すフローチャートは、自動運転ECU8から走行経路生成の要求を受けた場合に実行される。
[Travel route generation processing by the travel route generator]
Next, a travel route generation process performed by the travel route generation device 100 according to the present embodiment will be described with reference to FIG. FIG. 5 is a flowchart showing a travel route generation process performed by the travel route generation device 100. The flowchart shown in FIG. 5 is executed when a request for generating a travel route is received from the automatic driving ECU 8.

図5に示すように、走行経路生成装置100のECU10は、S10において車両位置認識部11による車両の地図上の位置の認識を行う。車両位置認識部11は、GPS受信部1の位置情報及び地図情報記録部4の地図情報に基づいて、車両の地図上の位置を認識する。ECU10は、車両の地図上の位置を認識した場合、S12に移行する。   As shown in FIG. 5, the ECU 10 of the travel route generation device 100 recognizes the position of the vehicle on the map by the vehicle position recognition unit 11 in S10. The vehicle position recognition unit 11 recognizes the position of the vehicle on the map based on the position information of the GPS reception unit 1 and the map information of the map information recording unit 4. When the ECU 10 recognizes the position of the vehicle on the map, the ECU 10 proceeds to S12.

S12において、ECU10は、走行経路生成部14により静的ロジックによる走行経路の生成を行う。走行経路生成部14は、車両の地図上の位置、車両の周辺環境、及び車両の走行状態に基づいて、周知の技術により、静的ロジックによる走行経路の生成を行う。ECU10は、静的ロジックによる走行経路の生成が行われた場合、S14に移行する。   In S <b> 12, the ECU 10 generates a travel route using static logic by the travel route generation unit 14. The travel route generation unit 14 generates a travel route by static logic based on the position on the map of the vehicle, the surrounding environment of the vehicle, and the traveling state of the vehicle by a known technique. When the travel route is generated by the static logic, the ECU 10 proceeds to S14.

S14において、ECU10は、走行経路生成部14により動的ロジックによる走行経路の生成を行う。走行経路生成部14は、車両の地図上の位置、車両の周辺環境、車両の走行状態、及び、走行軌跡データ記録部6に記録された走行軌跡データに基づいて、動的ロジックによる走行経路の生成を行う。   In S <b> 14, the ECU 10 causes the travel route generation unit 14 to generate a travel route using dynamic logic. The travel route generation unit 14 determines the travel route based on the dynamic logic based on the position on the map of the vehicle, the surrounding environment of the vehicle, the travel state of the vehicle, and the travel locus data recorded in the travel locus data recording unit 6. Generate.

この走行軌跡データの演算には、操作介入検出部18が運転者の操作介入を検出したときから予め設定された時間前までの間に走行データ取得部16が取得した走行データ(不使用走行データ)は含まれない。すなわち、走行経路生成部14は、操作介入検出部18が運転者の操作介入を検出したときから予め設定された時間前までの間に車両が走行した軌跡に対応する走行軌跡データを走行経路の生成に使用しない。ECU10は、動的ロジックによる走行経路の生成が行われた場合、S16に移行する。なお、S12とS14の順番は逆であってもよく、同時に行われてもよい。   For the calculation of the travel locus data, the travel data (unused travel data) acquired by the travel data acquisition unit 16 between the time when the operation intervention detection unit 18 detects the driver's operation intervention and before the preset time. ) Is not included. That is, the travel route generation unit 14 uses the travel route data corresponding to the travel route of the vehicle between the time when the operation intervention detection unit 18 detects the driver's operation intervention and the time before the preset time. Not used for generation. When the travel route is generated by the dynamic logic, the ECU 10 proceeds to S16. Note that the order of S12 and S14 may be reversed or may be performed simultaneously.

S16において、ECU10は、経路選択部15により走行経路の選択を行う。経路選択部15は、動的ロジックを選択する必要性がある場合、動的ロジックによる走行経路を選択する。経路選択部15は、動的ロジックを選択する必要性がない場合、静的ロジックによる走行経路を選択する。ECU10は、走行経路が選択された場合、今回の走行経路生成処理を終了する。ECU10は、選択された走行経路を自動運転ECU8に送信する。   In S <b> 16, the ECU 10 selects a travel route by the route selection unit 15. When there is a need to select dynamic logic, the route selection unit 15 selects a travel route based on dynamic logic. When there is no need to select dynamic logic, the route selection unit 15 selects a travel route based on static logic. When the travel route is selected, the ECU 10 ends the current travel route generation process. The ECU 10 transmits the selected travel route to the automatic operation ECU 8.

[走行経路生成装置による走行データの記録処理]
続いて、走行経路生成装置100による走行データの記録処理について説明する。図6(a)は、走行経路生成装置100による走行データの記録処理を示すフローチャートである。図6(a)に示すフローチャートは、車両が走行中である場合に実行される。
[Recording process of travel data by travel route generator]
Next, the travel data recording process performed by the travel route generation device 100 will be described. FIG. 6A is a flowchart illustrating a travel data recording process performed by the travel route generation device 100. The flowchart shown in FIG. 6A is executed when the vehicle is traveling.

図6(a)に示すように、ECU10は、S20として、走行データ取得部16による走行データの取得を行う。走行データ取得部16は、車両位置認識部11の認識した車両の地図上の位置に基づいて、車両が実際に走行した軌跡である実走行軌跡データを走行データとして取得する。走行データ取得部16は、走行状態、運転状態、日時などを含む各種のデータを走行データとして取得する。ECU10は、走行データを取得した場合、S22に移行する。   As shown in FIG. 6A, the ECU 10 acquires travel data by the travel data acquisition unit 16 in S20. The travel data acquisition unit 16 acquires, as travel data, actual travel locus data, which is a locus on which the vehicle has actually traveled, based on the position of the vehicle on the map recognized by the vehicle position recognition unit 11. The travel data acquisition unit 16 acquires various data including travel state, driving state, date and time as travel data. When the ECU 10 acquires the travel data, the ECU 10 proceeds to S22.

S22において、ECU10は、走行データ取得部16により、S20で取得した走行データが、操作介入を検出したときから予め設定された時間(所定時間)前までの間に取得された走行データであるか否かの判定を行う。走行データ取得部16は、操作介入検出部18の検出結果に基づいて、操作介入を検出したときから所定時間前までの間に取得された走行データであるか否かを判定する。ECU10は、操作介入を検出したときから所定時間前までの間に取得された走行データであると判定した場合(S22:YES)、S24に移行する。ECU10は、操作介入を検出したときから所定時間前までの間に取得された走行データではないと判定した場合(S22:NO)、S26に移行する。   In S22, the ECU 10 determines whether the travel data acquired in S20 by the travel data acquisition unit 16 is travel data acquired from when the operation intervention is detected until a preset time (predetermined time). Determine whether or not. The travel data acquisition unit 16 determines, based on the detection result of the operation intervention detection unit 18, whether or not the travel data is acquired from when the operation intervention is detected until a predetermined time before. If the ECU 10 determines that the travel data is acquired between the time when the operation intervention is detected and the predetermined time before (S22: YES), the ECU 10 proceeds to S24. When the ECU 10 determines that the travel data is not acquired between the time when the operation intervention is detected and the predetermined time before (S22: NO), the ECU 10 proceeds to S26.

S24において、ECU10は、走行データ取得部16によりS20で取得した走行データを不使用走行データとして走行データ記録部5に記録する。その後、ECU10は、S20に戻って新たな走行データを取得する。   In S24, the ECU 10 records the travel data acquired in S20 by the travel data acquisition unit 16 in the travel data recording unit 5 as unused travel data. Thereafter, the ECU 10 returns to S20 and acquires new travel data.

S26において、ECU10は、走行データ取得部16によりS20で取得した走行データを走行データとして走行データ記録部5に記録する。その後、ECU10は、S20に戻って新たな走行データを取得する。   In S <b> 26, the ECU 10 records the travel data acquired in S <b> 20 by the travel data acquisition unit 16 in the travel data recording unit 5 as travel data. Thereafter, the ECU 10 returns to S20 and acquires new travel data.

[走行経路生成装置による走行軌跡データの記録処理]
次に、走行経路生成装置100による走行軌跡データの記録処理について説明する。図6(b)は、走行経路生成装置100による走行軌跡データの記録処理を示すフローチャートである。図6(b)に示すフローチャートは、走行データ記録部5に複数の走行データが記録されて走行軌跡データを演算可能になった場合に実行される。なお、定期的(数時間毎、1日毎)に実行される態様であってもよい。
[Recording process of travel locus data by travel route generator]
Next, the travel locus data recording process performed by the travel route generation device 100 will be described. FIG. 6B is a flowchart showing a process for recording travel locus data by the travel route generation device 100. The flowchart shown in FIG. 6B is executed when a plurality of travel data is recorded in the travel data recording unit 5 and the travel locus data can be calculated. In addition, the aspect performed regularly (every several hours, every day) may be sufficient.

図6(b)に示されるように、ECU10は、S30において、走行軌跡データ演算部17により走行軌跡データを演算する。走行軌跡データ演算部17は、走行データ記録部5に記録された走行データに基づいて、車両が実際に走行した実走行軌跡に対応する位置情報である走行軌跡データを演算する。走行軌跡データ演算部17は、不使用走行データに基づいて走行軌跡データを演算しない。ECU10は、走行軌跡データを演算した場合、S32に移行する。   As shown in FIG. 6B, the ECU 10 calculates travel locus data by the travel locus data calculation unit 17 in S30. Based on the travel data recorded in the travel data recording unit 5, the travel trajectory data calculation unit 17 calculates travel trajectory data that is position information corresponding to an actual travel trajectory on which the vehicle has actually traveled. The traveling locus data calculation unit 17 does not calculate traveling locus data based on the unused traveling data. When the ECU 10 calculates the travel locus data, the ECU 10 proceeds to S32.

S32において、ECU10は、走行軌跡データ演算部17により走行軌跡データを走行軌跡データ記録部6に記録する。走行軌跡データ演算部17は、地図情報に関連付けて走行軌跡データを走行軌跡データ記録部6に記録する。その後、ECU10は、一例として、他の走行軌跡データを演算可能である場合、再びS30から処理を繰り返す。ECU10は、演算可能な全ての走行軌跡データを走行軌跡データ記録部6に記録した場合、処理を終了する。   In S <b> 32, the ECU 10 records the traveling locus data in the traveling locus data recording unit 6 by the traveling locus data calculation unit 17. The traveling locus data calculation unit 17 records the traveling locus data in the traveling locus data recording unit 6 in association with the map information. Thereafter, as an example, the ECU 10 repeats the process from S30 again when other travel locus data can be calculated. ECU10 complete | finishes a process, when all the driving trajectory data which can be calculated are recorded on the driving locus data recording part 6. FIG.

[走行経路生成装置の作用効果]
以上説明した本実施形態に係る走行経路生成装置100によれば、運転者は自動運転の走行経路が自らの感覚に合わない場合に操作介入を行うと考えられることから、操作介入検出部18が操作介入を検出したときから予め設定された時間前までの間に車両が走行した軌跡に対応する走行軌跡データを走行経路の生成に使用しないことで、運転者の感覚に合わない走行経路を生成することを抑制することができる。
[Operational effects of travel route generator]
According to the travel route generation device 100 according to the present embodiment described above, it is considered that the driver performs the operation intervention when the travel route of the automatic driving does not match his / her sense. A travel route that does not fit the driver's sense is generated by not using the travel track data corresponding to the trajectory traveled by the vehicle between the time when the operation intervention is detected and the preset time before. Can be suppressed.

以上、本発明の好適な実施形態について説明したが、本発明は上述した実施形態に限定されるものではない。本発明は、上述した実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to embodiment mentioned above. The present invention can be implemented in various forms including various modifications and improvements based on the knowledge of those skilled in the art including the above-described embodiments.

例えば、走行経路生成部14における動的ロジックによる走行経路の生成は、上述した実施形態に限定されない。走行経路生成部14は、走行軌跡データを直近(例えば1ヶ月内)のデータに限定して用いてもよい。また、走行経路生成部14は、記録されたときの車速が現在の車速と同じ範囲(例えば四捨五入して同じ値となる範囲)の走行軌跡データに限定して用いてもよく、記録されたときの天候(晴、雨、雪)が現在の天候と同じデータに限定して用いてもよい。また、走行経路生成部14は、ヘッドライトの点灯の有無が現在の状態と同じ走行軌跡データに限定して用いてもよく、運転者の運転技量の判定結果が現在の運転技量の判定結果と同じ走行軌跡データに限定して用いてもよい。走行経路生成部14は、車両の運転状態(自動運転、協調運転、手動運転)が現在の運転状態と同じ走行軌跡データに限定して用いてもよい。   For example, generation of a travel route by dynamic logic in the travel route generation unit 14 is not limited to the above-described embodiment. The travel route generation unit 14 may use the travel locus data limited to the latest (for example, within one month) data. Further, the travel route generation unit 14 may be used only for travel locus data in which the recorded vehicle speed is in the same range as the current vehicle speed (for example, a range that is rounded to the same value). The weather (clear, rain, snow) may be limited to the same data as the current weather. Further, the travel route generation unit 14 may be used by limiting the use of the headlights to the travel locus data that is the same as the current state, and the determination result of the driver's driving skill is the current driving skill determination result. It may be limited to the same travel locus data. The travel route generation unit 14 may be used by limiting the travel state data of the vehicle (automatic operation, cooperative operation, manual operation) to the same travel locus data as the current operation state.

また、走行軌跡データを複数の車両で共有する場合には、車両情報で走行軌跡データを限定してもよい。例えば、走行経路生成部14は、車両のカテゴリが自車と同じで、ホイールベース及びトレッドの差が自車と20mm以内であり、地図更新年月日が3年以内の車両から得られた走行軌跡データに限定して用いてもよい。なお、車両ナンバーの情報を用いて、自車の走行軌跡データに限定することも可能である。   Further, when the traveling locus data is shared by a plurality of vehicles, the traveling locus data may be limited by vehicle information. For example, the travel route generation unit 14 is a travel obtained from a vehicle whose vehicle category is the same as that of the host vehicle, the difference between the wheel base and the tread is within 20 mm from the host vehicle, and the map update date is within three years. You may limit and use for locus | trajectory data. In addition, it is also possible to limit to the driving | running | working locus data of the own vehicle using the information of a vehicle number.

上述した実施形態の変形例(参考例)として、操作介入を検出したときから予め設定された時間前までの間に車両が走行した軌跡に対応する位置情報である走行軌跡データを避けるように、走行経路を生成することも考えられる。この場合には、走行軌跡データ演算部17は、不使用走行データに基づいて、避けるための走行軌跡データを演算し、走行軌跡データ記録部6に記録する。走行経路生成部14は、不使用走行データに基づいて演算された走行軌跡データを避けるように走行経路を生成することで、運転者の感覚に合わない走行経路を生成することを抑制する(受容性の高い走行経路の生成が可能となる)。なお、走行経路生成部14は、周知の経路生成の評価関数に、不使用走行データに基づいて演算された走行軌跡データに類似する走行経路を悪く評価する項を加えることで、不使用走行データに基づいて演算された走行軌跡データを避けるように、走行経路を生成してもよい。   As a modified example (reference example) of the above-described embodiment, so as to avoid travel locus data that is position information corresponding to a locus on which the vehicle has traveled between the time when an operation intervention is detected and the time set in advance, It is also possible to generate a travel route. In this case, the travel locus data calculation unit 17 calculates travel locus data to avoid based on the unused travel data, and records it in the travel locus data recording unit 6. The travel route generation unit 14 suppresses generation of a travel route that does not match the driver's feeling by generating a travel route so as to avoid travel locus data calculated based on unused travel data (acceptance). It is possible to generate a highly reliable driving route). The travel route generation unit 14 adds a term that badly evaluates a travel route similar to the travel locus data calculated based on the non-use travel data to the well-known route generation evaluation function. The travel route may be generated so as to avoid the travel locus data calculated based on the above.

更に、上述した実施形態の変形例として、走行軌跡データ記録部6に記録された走行軌跡データの網羅性向上の観点から次のように走行経路を生成する態様も考えられる。図7は、走行経路生成の第1変形例を説明するための図である。図7に示すように、走行経路生成部14は、白線L1から分割線H1までの範囲、分割線H1から分割線H2までの範囲、分割線H2から白線L2までの範囲の3つの範囲のうち、走行軌跡データDb〜Ddが無い範囲を通るように走路境界Kb〜Kdを設定し、走路境界Kb〜Kdを通るように走行経路を生成することが考えられる。これにより、走行軌跡データDb〜Ddが無い範囲に対応する走行軌跡データを得ることができ、走行軌跡データの網羅性を向上させることができる。   Furthermore, as a modified example of the above-described embodiment, a mode in which a travel route is generated as follows from the viewpoint of improving the comprehensiveness of the travel track data recorded in the travel track data recording unit 6 is also conceivable. FIG. 7 is a diagram for explaining a first modified example of travel route generation. As shown in FIG. 7, the travel route generation unit 14 includes a range from the white line L1 to the dividing line H1, a range from the dividing line H1 to the dividing line H2, and a range from the dividing line H2 to the white line L2. It is conceivable that the travel path boundaries Kb to Kd are set so as to pass through the range without the travel track data Db to Dd, and the travel path is generated so as to pass through the travel path boundaries Kb to Kd. As a result, it is possible to obtain travel locus data corresponding to a range where there is no travel locus data Db to Dd, and it is possible to improve the completeness of the travel locus data.

また、走行軌跡データの網羅性向上と道路劣化度合いを均等化させることを目的として、車線を車線幅方向に三分割し、1台もしくは複数台の車両に対して異なる領域を走行するように走行経路を生成することが考えられる。図8(a)は、走行経路生成の第2変形例の一態様を説明するための図である。図8(b)は、走行経路生成の第2変形例の他の態様を説明するための図である。図8(c)は、走行経路生成の第2変形例の更に他の態様を説明するための図である。走行経路生成部14は、車両が図8(a)〜図8(c)に示される異なる走路境界Ka〜Keを通るように走行経路を生成する。   In addition, for the purpose of improving the comprehensiveness of the travel trajectory data and equalizing the degree of road degradation, the lane is divided into three in the lane width direction, and the vehicle travels in different areas for one or more vehicles. It is conceivable to generate a route. Fig.8 (a) is a figure for demonstrating the one aspect | mode of the 2nd modification of driving | running route generation. FIG. 8B is a diagram for explaining another aspect of the second modified example of the travel route generation. FIG. 8C is a diagram for explaining still another aspect of the second modified example of travel route generation. The travel route generation unit 14 generates a travel route so that the vehicle passes through different travel route boundaries Ka to Ke shown in FIGS. 8 (a) to 8 (c).

また、上述した実施形態の変形例として、車両挙動が複雑な状況においては、走行軌跡データ記録部6の各種パラメータのデータ精度が劣化する。劣化を最小限とするために複数の車両に一時的に、あるパラメータの精度を向上させるタスク(例えば、直進状態、速度低下など)を割り振り、その一時的な区間の走行データを集めることにより、高精度で網羅的な走行軌跡データ記録部6を構築する。   As a modification of the above-described embodiment, in a situation where the vehicle behavior is complicated, the data accuracy of various parameters of the travel locus data recording unit 6 is degraded. By assigning tasks (eg, straight ahead, speed reduction, etc.) that temporarily improve the accuracy of certain parameters to multiple vehicles in order to minimize deterioration, and collecting travel data for that temporary section, A highly accurate and comprehensive travel locus data recording unit 6 is constructed.

図9は、走行経路生成の第3変形例を説明するための図である。図9に、ある車両の分担する走路境界の範囲B1、別の車両の分担する走路境界の範囲B2を示す。範囲B1には、走路境界Ka〜Kdが含まれる。範囲B1には、走路境界Kc〜Keが含まれる。図9に示す状況では、精度を向上させるパラメータとして路面カントを対象としている。路面カントは、車両が直進走行中であれば精度良く推定できるため、直進走行できる範囲を各車両に分担してもらう。直進走行中の走行データを取得することで、路面カントの情報の精度を高める。   FIG. 9 is a diagram for explaining a third modified example of travel route generation. FIG. 9 shows a range B1 of the road boundary shared by a certain vehicle and a range B2 of the road boundary shared by another vehicle. The range B1 includes the runway boundaries Ka to Kd. The range B1 includes the runway boundaries Kc to Ke. In the situation shown in FIG. 9, the road surface cant is targeted as a parameter for improving accuracy. Since the road surface cant can be accurately estimated if the vehicle is traveling straight ahead, each vehicle is assigned a range in which the vehicle can travel straight ahead. The accuracy of the road surface cant information is improved by acquiring the traveling data during straight traveling.

その他、上述した実施形態の変形例として、走行軌跡データの中から所望の項目で抽出した走行軌跡データを運転者の感覚に合うものとして採用することが考えられる。但し、この変形例では走行経路だけではなく、車両の目標となる目標車速も合わせて生成する。走行軌跡データには、過去の車両の車速も関連付けられている。この場合、走行経路生成部14は、走行軌跡データに関連付けられている車速のデータの標準偏差2σの範囲に含まれるように、車両の目標車速を生成する。   In addition, as a modified example of the above-described embodiment, it is conceivable to employ the travel locus data extracted from the travel locus data with a desired item as appropriate for the driver's feeling. However, in this modification, not only the travel route but also the target vehicle speed that is the target of the vehicle is generated. The vehicle speed of the past vehicle is also associated with the travel locus data. In this case, the travel route generation unit 14 generates the target vehicle speed of the vehicle so as to be included in the standard deviation 2σ range of the vehicle speed data associated with the travel locus data.

なお、走行軌跡データに関連付けられている車速のデータの標準偏差2σの範囲内の値の最小値(車線の最低制限速度より低い場合には最低制限速度)を目標車速としてもよい。走行経路生成部14は、走行軌跡データを直近(例えば1ヶ月内)のデータなどに限定することなく、全ての走行軌跡データに関連付けられている車速の標準偏差2σの範囲に含まれるように、車両の目標車速を生成してもよい。また、車速は環境に合致した値を選択することが望ましい。具体的に、天候が現在と同じ、ヘッドライトの点灯の有無が現在と同じ、日時に関して季節が現在と同じ走行軌跡データに関連付けられている車速を用いることが望ましい。   Note that the minimum value of the values within the range of the standard deviation 2σ of the vehicle speed data associated with the travel locus data (the minimum speed limit when lower than the minimum speed limit of the lane) may be set as the target vehicle speed. The travel route generation unit 14 does not limit the travel locus data to the most recent (for example, within one month) data and the like, so that the travel route data is included in the range of the standard deviation 2σ of the vehicle speed associated with all the travel locus data. A target vehicle speed of the vehicle may be generated. In addition, it is desirable to select a vehicle speed that matches the environment. Specifically, it is desirable to use a vehicle speed that is associated with traveling locus data that is the same as the current weather, whether or not the headlights are turned on as the current time, and the season is the same as the current time.

その他、走行軌跡データ記録部6に記録された走行軌跡データについて、走行経路の生成に用いる走行軌跡データの抽出条件を運転者(ユーザ)が設定可能であってもよい。ユーザ設定及び車両の状況を鑑みて、装置が抽出条件を動的に変化させてもよい。   In addition, with respect to the travel locus data recorded in the travel locus data recording unit 6, the driver (user) may be able to set the extraction conditions of the travel locus data used for generating the travel route. The apparatus may dynamically change the extraction conditions in view of user settings and vehicle conditions.

1…GPS受信部、2…外部センサ、3…内部センサ、4…地図情報記録部、5…走行データ記録部、6…走行軌跡データ記録部、7…運転操作検出部、10…ECU、11…車両位置認識部、12…周辺環境認識部、13…走行状態認識部、14…走行経路生成部、15…経路選択部、16…走行データ取得部、17…走行軌跡データ演算部、18…操作介入検出部、100…走行経路生成装置。   DESCRIPTION OF SYMBOLS 1 ... GPS receiving part, 2 ... External sensor, 3 ... Internal sensor, 4 ... Map information recording part, 5 ... Traveling data recording part, 6 ... Traveling track data recording part, 7 ... Driving operation detection part, 10 ... ECU, 11 ... vehicle position recognition unit, 12 ... ambient environment recognition unit, 13 ... travel state recognition unit, 14 ... travel route generation unit, 15 ... route selection unit, 16 ... travel data acquisition unit, 17 ... travel locus data calculation unit, 18 ... Operation intervention detection unit, 100...

Claims (1)

自動運転において車両が走行する目標となる走行経路を生成する走行経路生成装置であって、
地図情報が記録される地図情報記録部と、
前記車両の地図上の位置を認識する車両位置認識部と、
前記車両の周辺環境を認識する周辺環境認識部と、
前記車両の走行状態を認識する走行状態認識部と、
前記車両の地図上の位置、前記車両の前記周辺環境、及び前記車両の前記走行状態に基づいて、前記車両の走行した軌跡に対応する位置情報である走行軌跡データを前記地図情報に関連付けて記録する走行軌跡データ記録部と、
前記車両の地図上の位置、前記車両の前記周辺環境、前記車両の前記走行状態、及び、前記走行軌跡データに基づいて、前記走行経路を生成する走行経路生成部と、
前記車両が自動運転中である場合に、前記車両の運転者が運転操作を開始する操作介入を検出する操作介入検出部と、
を備え、
前記走行経路生成部は、前記操作介入検出部が前記操作介入を検出したときから予め設定された時間前までの間に前記車両が走行した軌跡に対応する前記走行軌跡データを前記走行経路の生成に使用しない、走行経路生成装置。
A travel route generation device that generates a travel route that is a target for a vehicle to travel in automatic driving,
A map information recording unit in which map information is recorded;
A vehicle position recognition unit for recognizing a position of the vehicle on a map;
A surrounding environment recognition unit for recognizing the surrounding environment of the vehicle;
A traveling state recognition unit for recognizing the traveling state of the vehicle;
Based on the position of the vehicle on the map, the surrounding environment of the vehicle, and the running state of the vehicle, travel locus data, which is position information corresponding to the locus traveled by the vehicle, is recorded in association with the map information. A running locus data recording unit,
A travel route generating unit that generates the travel route based on a position on the map of the vehicle, the surrounding environment of the vehicle, the travel state of the vehicle, and the travel locus data;
An operation intervention detection unit for detecting an operation intervention in which the driver of the vehicle starts a driving operation when the vehicle is in an automatic driving;
With
The travel route generation unit generates the travel route data corresponding to a trajectory traveled by the vehicle between when the operation intervention detection unit detects the operation intervention and before a preset time. Travel route generator that is not used for
JP2016015520A 2016-01-29 2016-01-29 Travel route generator Active JP6528696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015520A JP6528696B2 (en) 2016-01-29 2016-01-29 Travel route generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015520A JP6528696B2 (en) 2016-01-29 2016-01-29 Travel route generator

Publications (2)

Publication Number Publication Date
JP2017134725A true JP2017134725A (en) 2017-08-03
JP6528696B2 JP6528696B2 (en) 2019-06-12

Family

ID=59502898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015520A Active JP6528696B2 (en) 2016-01-29 2016-01-29 Travel route generator

Country Status (1)

Country Link
JP (1) JP6528696B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088019A1 (en) * 2017-10-30 2019-05-09 株式会社デンソー Driving control device and driving control method
EP3674664A1 (en) 2018-12-26 2020-07-01 Clarion Co., Ltd. In-vehicle processing device
JP2020119060A (en) * 2019-01-21 2020-08-06 先進モビリティ株式会社 Trajectory-design travel control verification method of automatic driving vehicle
EP3767237A2 (en) 2019-07-16 2021-01-20 Clarion Co., Ltd. In-vehicle processing device
WO2021245721A1 (en) * 2020-06-01 2021-12-09 三菱電機株式会社 Travel route generation device, automatic travel control device, and automatic travel control system
CN117068199A (en) * 2023-08-08 2023-11-17 广州汽车集团股份有限公司 Method and device for generating vehicle running space, vehicle and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003162799A (en) * 2001-11-28 2003-06-06 Hitachi Ltd Method and device for controlling vehicle traveling
US9274525B1 (en) * 2012-09-28 2016-03-01 Google Inc. Detecting sensor degradation by actively controlling an autonomous vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003162799A (en) * 2001-11-28 2003-06-06 Hitachi Ltd Method and device for controlling vehicle traveling
US9274525B1 (en) * 2012-09-28 2016-03-01 Google Inc. Detecting sensor degradation by actively controlling an autonomous vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088019A1 (en) * 2017-10-30 2019-05-09 株式会社デンソー Driving control device and driving control method
JP2019081440A (en) * 2017-10-30 2019-05-30 株式会社デンソー Driving control device and driving control method
US11280628B2 (en) 2018-12-26 2022-03-22 Clarion Co., Ltd. In-vehicle processing device
JP2020106904A (en) * 2018-12-26 2020-07-09 クラリオン株式会社 On-vehicle processing device
EP3674664A1 (en) 2018-12-26 2020-07-01 Clarion Co., Ltd. In-vehicle processing device
JP7256639B2 (en) 2018-12-26 2023-04-12 フォルシアクラリオン・エレクトロニクス株式会社 In-vehicle processing equipment
JP2020119060A (en) * 2019-01-21 2020-08-06 先進モビリティ株式会社 Trajectory-design travel control verification method of automatic driving vehicle
JP6995068B2 (en) 2019-01-21 2022-01-14 先進モビリティ株式会社 Trajectory design driving control verification method for autonomous vehicles
EP3767237A2 (en) 2019-07-16 2021-01-20 Clarion Co., Ltd. In-vehicle processing device
US11345366B2 (en) 2019-07-16 2022-05-31 Clarion Co., Ltd. In-vehicle processing device
WO2021245721A1 (en) * 2020-06-01 2021-12-09 三菱電機株式会社 Travel route generation device, automatic travel control device, and automatic travel control system
JPWO2021245721A1 (en) * 2020-06-01 2021-12-09
JP7325633B2 (en) 2020-06-01 2023-08-14 三菱電機株式会社 Driving route generation device, automatic driving control device and automatic driving control system
CN117068199A (en) * 2023-08-08 2023-11-17 广州汽车集团股份有限公司 Method and device for generating vehicle running space, vehicle and storage medium

Also Published As

Publication number Publication date
JP6528696B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
US10310508B2 (en) Vehicle control apparatus
KR101901024B1 (en) Map update determination system
JP6528696B2 (en) Travel route generator
JP6815724B2 (en) Autonomous driving system
US10048699B2 (en) Vehicle control apparatus
US11313976B2 (en) Host vehicle position estimation device
JP6985203B2 (en) Behavior prediction device
JP6705414B2 (en) Operating range determination device
US11467576B2 (en) Autonomous driving system
US20160018229A1 (en) Accurate curvature estimation algorithm for path planning of autonomous driving vehicle
US11217045B2 (en) Information processing system and server
JP6930152B2 (en) Autonomous driving system
US11092442B2 (en) Host vehicle position estimation device
US20210248391A1 (en) Surroundings recognition device, surroundings recognition method, and storage medium
US10990108B2 (en) Vehicle control system
US11433897B2 (en) Method and apparatus for determination of optimal cruising lane in an assisted driving system
US11042160B2 (en) Autonomous driving trajectory determination device
JP6579119B2 (en) Vehicle control device
JP2021026387A (en) Vehicle traveling control device
WO2016194168A1 (en) Travel control device and method
KR20190030757A (en) A driving control method and a driving control apparatus for a vehicle
JP2018106490A (en) Automatic driving device
US10839678B2 (en) Vehicle identifying device
JP2005182186A (en) Vehicular travel track setting system
JP2020175893A (en) Automated driving system, automated driving apparatus, and automated driving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190429

R151 Written notification of patent or utility model registration

Ref document number: 6528696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151