JP2017133080A - Oriented electromagnetic steel sheet and manufacturing method therefor - Google Patents

Oriented electromagnetic steel sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2017133080A
JP2017133080A JP2016015465A JP2016015465A JP2017133080A JP 2017133080 A JP2017133080 A JP 2017133080A JP 2016015465 A JP2016015465 A JP 2016015465A JP 2016015465 A JP2016015465 A JP 2016015465A JP 2017133080 A JP2017133080 A JP 2017133080A
Authority
JP
Japan
Prior art keywords
mass
annealing
steel sheet
grain
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016015465A
Other languages
Japanese (ja)
Other versions
JP6512412B2 (en
Inventor
渡辺 誠
Makoto Watanabe
渡辺  誠
高宮 俊人
Toshito Takamiya
俊人 高宮
敬 寺島
Takashi Terajima
寺島  敬
龍一 末廣
Ryuichi Suehiro
龍一 末廣
聡一郎 吉▲崎▼
Soichiro Yoshizaki
聡一郎 吉▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016015465A priority Critical patent/JP6512412B2/en
Publication of JP2017133080A publication Critical patent/JP2017133080A/en
Application granted granted Critical
Publication of JP6512412B2 publication Critical patent/JP6512412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To propose an oriented electromagnetic steel sheet excellent not only in magnetic property, but also in film characteristics after stress relieving annealing, and a manufacturing method therefor.SOLUTION: In a manufacturing method of an oriented electromagnetic steel sheet consisting of a series of processes including hot rolling a steel raw material containing, by mass%, C:0.03 to 0.08%, Si:2.5 to 4.5% and Mn:0.03 to 0.30% to make a hot rolled sheet, cold rolling the same, conducting decarbonization annealing which serves a primary recrystallization annealing, then coating a surface of the steel sheet with an annealing separator and conducting finish annealing, the oriented electromagnetic steel sheet having average of standard deviation of O strength during mapping analysis of a forsterite under coated film surface with EPMA of 0.15 or less and flexure detachment diameter after conducting stress relieving annealing under DX gas atmosphere of 30 mmφ or less is obtained by precipitating 25/μmor more of metal particles with average particle diameter of 70 nm or less on a steel sheet surface between the cold rolling and the decarbonization annealing to make a final sheet thickness.SELECTED DRAWING: Figure 1

Description

本発明は、方向性電磁鋼板とその製造方法に関し、具体的には優れた磁気特性と被膜特性を有する方向性電磁鋼板とその製造方法に関するものである。   The present invention relates to a grain-oriented electrical steel sheet and a method for producing the grain-oriented electrical steel sheet, and more particularly to a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties and a method for producing the grain-oriented electrical steel sheet.

電磁鋼板は、変圧器やモータの鉄心等として広く用いられている軟磁性材料であり、中でも方向性電磁鋼板は、結晶方位がGoss方位と呼ばれる{110}<001>方位に高度に集積し、磁気特性に優れていることから、主として大型の変圧器の鉄心等に使用されている。   Electrical steel sheets are soft magnetic materials that are widely used as iron cores for transformers and motors. Among them, grain oriented electrical steel sheets are highly integrated in the {110} <001> orientation, in which the crystal orientation is called the Goss orientation, Because of its excellent magnetic properties, it is mainly used for iron cores of large transformers.

変圧器における無負荷損(エネルギーロス)を低減するためには、低鉄損であることが必要である。方向性電磁鋼板の鉄損を低減する方法としては、Si含有量の増加や、板厚の低減、結晶方位の配向性向上、鋼板への張力付与、鋼板表面の平滑化、二次再結晶組織の細粒化などが有効であることが知られている。   In order to reduce the no-load loss (energy loss) in the transformer, it is necessary to have a low iron loss. Methods for reducing the iron loss of grain-oriented electrical steel sheets include increasing the Si content, reducing the plate thickness, improving the orientation of the crystal orientation, imparting tension to the steel sheet, smoothing the steel sheet surface, and secondary recrystallization structure. It is known that grain refinement and the like are effective.

上記方法において、二次再結晶をコントロールして結晶方位の配向性を向上させたり、二次再結晶組織の細粒化を図ったりするためには、インヒビタ成分の種類や量、冷延圧下率、一次再結晶焼鈍パターン、二次再結晶焼鈍前の鋼板表面状態など様々な要素を最適化する必要がある。   In the above method, in order to improve the orientation of the crystal orientation by controlling the secondary recrystallization or to refine the secondary recrystallization structure, the type and amount of the inhibitor component, the cold rolling reduction rate It is necessary to optimize various factors such as the primary recrystallization annealing pattern and the surface state of the steel plate before the secondary recrystallization annealing.

ところで、上記二次再結晶焼鈍前の鋼板表面状態を改善して、良好な磁気特性を得る方法としては、例えば、特許文献1には、冷間圧延で最終板厚に仕上げた鋼板表面に、Cu,Sn,CoおよびNiのうちから選ばれる1種または2種以上の金属または合金を0.1〜85mg/m電着させ、しかる後に脱炭焼鈍を行うことで、コイルの全長および全幅にわたって欠陥のない均一で密着性に優れた被膜を有し、かつ、磁気特性にも優れた方向性けい素鋼板を製造する方法が開示されている。 By the way, as a method of improving the steel sheet surface state before the secondary recrystallization annealing and obtaining good magnetic properties, for example, in Patent Document 1, the steel sheet surface finished to the final sheet thickness by cold rolling, One or two or more metals or alloys selected from Cu, Sn, Co, and Ni are electrodeposited in an amount of 0.1 to 85 mg / m 2 , and then decarburized and annealed, so that the total length and width of the coil are reduced. A method for producing a grain-oriented silicon steel sheet having a uniform and excellent adhesive film without defects and excellent magnetic properties is disclosed.

また、特許文献2には、インヒビタ成分を含有しない鋼スラブを素材として、一次再結晶焼鈍後、鋼板表面にSi,Cu,Sn,Co,Niのうちから選ばれる1種または2種以上の金属含有物を該金属換算の合計量で0.1〜50mg/mの範囲で電着し、しかる後、焼鈍分離剤を塗布することによって、優れた磁気特性、被膜特性を得る方向性電磁鋼板の製造方法が開示されている。 In Patent Document 2, a steel slab containing no inhibitor component is used as a raw material, and after primary recrystallization annealing, one or more metals selected from Si, Cu, Sn, Co, and Ni are selected on the steel sheet surface. The grain-oriented electrical steel sheet that obtains excellent magnetic properties and coating properties by electrodeposition of inclusions in a total amount in terms of the metal in the range of 0.1 to 50 mg / m 2 and then applying an annealing separator. A manufacturing method is disclosed.

また、特許文献3には、最終冷間圧延後の鋼板表面の算術平均粗さを0.40μm以下に調整し、その後の脱炭焼鈍に先立って、電解脱脂法で鋼板表面にSiを含有する電着物を0.1mg/m以上付着させる洗浄処理を施し、次いで、雰囲気を調整した脱炭焼鈍を施すことにより、工業的生産においても安定して高磁束密度の方向性電磁鋼板を製造する方法が開示されている。 In Patent Document 3, the arithmetic average roughness of the steel sheet surface after the final cold rolling is adjusted to 0.40 μm or less, and Si is contained on the steel sheet surface by electrolytic degreasing prior to subsequent decarburization annealing. A directional electrical steel sheet having a high magnetic flux density is stably produced even in industrial production by performing a cleaning process for depositing electrodeposits of 0.1 mg / m 2 or more and then performing decarburization annealing with an adjusted atmosphere. A method is disclosed.

特開平09−087744号公報JP 09-087744 A 特開2008−144231号公報JP 2008-144231 A 特開平09−031546号公報JP 09-031546 A

しかしながら、発明者らの検証結果によれば、上記特許文献1に開示の方法は、磁気特性や被膜特性が改善される効果にバラツキが大きく、安定した効果は得られない。また、特許文献2に開示の方法は、主に被膜特性を改善する技術であり、磁気特性については、やはりバラツキが大きく、場合によっては劣化することもある。さらに、特許文献3に開示の方法は、脱炭焼鈍前にSi電着物を形成させているが、Siの電着物自体が脱炭焼鈍時のバリアとなってSiOの内部酸化を不均一にすることが頻発した。すなわち、わずかな電解浴の経時変化や、電解前の洗浄の不均一などがあると、Si電着物が板面に均一に付着しないため、脱炭焼鈍で形成されるサブスケールの保護性がコイル内で不均一となり、磁気特性のバラツキが大きくなったり、被膜特性のムラが増大したりする。 However, according to the verification results of the inventors, the method disclosed in Patent Document 1 has a large variation in the effect of improving the magnetic characteristics and the film characteristics, and a stable effect cannot be obtained. Further, the method disclosed in Patent Document 2 is a technique mainly for improving the film characteristics, and the magnetic characteristics are also largely varied and may be deteriorated in some cases. Further, in the method disclosed in Patent Document 3, the Si electrodeposit is formed before decarburization annealing, but the Si electrodeposit itself becomes a barrier at the time of decarburization annealing, and the internal oxidation of SiO 2 is made non-uniform. It happened frequently. That is, if there is a slight aging of the electrolytic bath or non-uniform cleaning before electrolysis, the Si electrodeposits do not adhere uniformly to the plate surface, so the subscale protection formed by decarburization annealing has a coil And unevenness in the magnetic properties increases, and unevenness in the coating properties increases.

また、方向性電磁鋼板をトランスの鉄心として巻きコアやEIコアなどに利用する場合、加工時に導入される歪みを除去するため、800℃程度の温度で歪取焼鈍を施すことが行われているが、この際、大気やDXガスなど、被膜や地鉄との反応性が高い雰囲気で焼鈍することが多い。このような雰囲気で焼鈍を行うと、被膜が損傷して被膜密着性が劣化することがある。特にスリットした鋼板の端面近傍では、被膜が剥離しやすいため、トランス使用時に、鋼板が導通し、場合によってはコアが溶損するという大きなトラブルに発展することもある。   In addition, when a grain-oriented electrical steel sheet is used as a core of a transformer for a wound core, an EI core, etc., strain relief annealing is performed at a temperature of about 800 ° C. in order to remove strain introduced during processing. However, in this case, annealing is often performed in an atmosphere having high reactivity with the coating or the ground iron, such as air or DX gas. When annealing is performed in such an atmosphere, the coating film may be damaged and the coating adhesion may deteriorate. In particular, in the vicinity of the end face of the slit steel plate, the coating is easily peeled off, so that when the transformer is used, the steel plate conducts, and in some cases, the core may be melted down.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、磁気特性に優れるだけでなく、DXガスのような反応性の高い雰囲気で歪取焼鈍を行う場合でも被膜特性に優れる方向性電磁鋼板を提供するとともに、その有利な製造方法を提案することにある。   The present invention has been made in view of the above-described problems of the prior art, and its purpose is not only excellent in magnetic properties, but also when performing strain relief annealing in a highly reactive atmosphere such as DX gas. An object is to provide a grain-oriented electrical steel sheet having excellent coating properties and to propose an advantageous manufacturing method thereof.

発明者らは、上記課題の解決に向けて鋭意検討を重ねた。その結果、脱炭焼鈍前に鋼板表面に電着する金属の種類ではなく、電着粒子の析出形態が重要であり、これを適性化することによって、脱炭焼鈍の際に形成される内部酸化層が改善され、ひいては磁気特性や被膜特性が改善されることを見出し、本発明を開発するに至った。   The inventors have intensively studied to solve the above problems. As a result, not the type of metal electrodeposited on the steel sheet surface before decarburization annealing, but the deposition form of electrodeposited particles is important, and by optimizing this, internal oxidation formed during decarburization annealing It has been found that the layer is improved, and consequently the magnetic properties and film properties are improved, and the present invention has been developed.

すなわち、本発明は、フォルステライト質下地被膜を有する方向性電磁鋼板であって、上記下地被膜表面をEPMAでマッピング分析したときのO強度の標準偏差が平均値の0.15以下であり、DXガス雰囲気下で歪取焼鈍を施した後の曲げ剥離径が30mmφ以下であることを特徴とする方向性電磁鋼板である。   That is, the present invention is a grain-oriented electrical steel sheet having a forsterite undercoating, wherein the standard deviation of O intensity when mapping analysis of the surface of the undercoating with EPMA is 0.15 or less of the average value, A grain-oriented electrical steel sheet characterized by having a bending peel diameter of 30 mmφ or less after strain relief annealing in a gas atmosphere.

また、本発明は、上記C:0.03〜0.08mass%、Si:2.5〜4.5mass%およびMn:0.03〜0.30mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施した後あるいは熱延板焼鈍を施すことなく、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、上記最終板厚とする冷間圧延から脱炭焼鈍までの間において、鋼板表面に平均粒径が70nm以下の金属粒子を25個/μm以上析出させることを特徴とする上記の方向性電磁鋼板の製造方法を提案する。 Further, the present invention contains C: 0.03 to 0.08 mass%, Si: 2.5 to 4.5 mass%, and Mn: 0.03 to 0.30 mass%, with the balance being Fe and inevitable impurities. After hot-rolling a steel material consisting of the above-mentioned steel into a hot-rolled sheet, or after subjecting to hot-rolled sheet annealing or without performing hot-rolled sheet annealing, it is cold-rolled twice or more sandwiched between intermediate annealing and final In the manufacturing method of grain-oriented electrical steel sheet consisting of a series of steps of applying a annealing separator to the steel sheet surface and finishing annealing after performing decarburization annealing that also serves as primary recrystallization annealing, as a cold-rolled sheet of plate thickness, The grain-oriented electrical steel sheet according to the above, characterized in that metal particles having an average particle size of 70 nm or less are deposited on the steel sheet surface by 25 particles / μm 2 or more between the cold rolling and the decarburization annealing with the final sheet thickness. We propose a manufacturing method.

本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Al:0.01〜0.03mass%およびN:0.003〜0.01mass%を含有し、あるいは、Al:0.01〜0.03mass%、N:0.003〜0.01mass%、Se:0.01〜0.025mass%および/またはS:0.01〜0.025mass%を含有することを特徴とする。   The steel material used in the method for producing a grain-oriented electrical steel sheet of the present invention further contains Al: 0.01 to 0.03 mass% and N: 0.003 to 0.01 mass% in addition to the above component composition. Alternatively, Al: 0.01-0.03 mass%, N: 0.003-0.01 mass%, Se: 0.01-0.025 mass% and / or S: 0.01-0.025 mass% are contained. It is characterized by that.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Se:0.01〜0.025mass%および/またはS:0.01〜0.025mass%を含有することを特徴とする。   Moreover, in addition to the said component composition, the said steel raw material used for the manufacturing method of the grain-oriented electrical steel sheet of this invention is further Se: 0.01-0.025mass% and / or S: 0.01-0.025mass%. It is characterized by containing.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材に含まれる上記不可避的不純物中のAl,N,SおよびSeは、それぞれAl:0.01mass%未満、N:0.0050mass%未満、S:0.0050mass%未満およびSe:0.0030mass%未満であること特徴とする。   Further, Al, N, S and Se in the inevitable impurities contained in the steel material used in the method for producing a grain-oriented electrical steel sheet according to the present invention are Al: less than 0.01 mass% and N: 0.0050 mass%, respectively. Less than, S: less than 0.0050 mass% and Se: less than 0.0030 mass%.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Ni:0.01〜0.4mass%、Cr:0.01〜0.25mass%、Cu:0.01〜0.30mass%、P:0.005〜0.10mass%、Sb:0.005〜0.10mass%、Sn;0.005〜0.10mass%、Bi:0.005〜0.10mass%、Mo:0.005〜0.10mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.01mass%、Nb:0.001〜0.01mass%、V:0.001〜0.01mass%およびTa:0.001〜0.01mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   Moreover, in addition to the said component composition, the said steel raw material used for the manufacturing method of the grain-oriented electrical steel sheet of this invention is further Ni: 0.01-0.4mass%, Cr: 0.01-0.25mass%, Cu : 0.01 to 0.30 mass%, P: 0.005 to 0.10 mass%, Sb: 0.005 to 0.10 mass%, Sn; 0.005 to 0.10 mass%, Bi: 0.005 to 0 .10 mass%, Mo: 0.005-0.10 mass%, B: 0.0002-0.0025 mass%, Te: 0.0005-0.01 mass%, Nb: 0.001-0.01 mass%, V: It contains one or more selected from 0.001 to 0.01 mass% and Ta: 0.001 to 0.01 mass%.

本発明によれば、磁気特性と被膜特性が共に優れる方向性電磁鋼板を安定して提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the grain-oriented electrical steel sheet which is excellent in both a magnetic characteristic and a film characteristic can be provided stably.

酸洗条件およびCuの電着有無が磁気特性と被膜特性に及ぼす影響を示すグラフである。It is a graph which shows the influence which pickling conditions and the electrodeposition of Cu have on a magnetic characteristic and a film characteristic. 酸洗有無が下地被膜表面をEPMAでマッピング分析したときのO分布に及ぼす影響を示すSEM像である。It is a SEM image which shows the influence which the presence or absence of pickling has on the O distribution when the undercoat surface is subjected to mapping analysis by EPMA. 酸洗条件およびCuの電着有無が下地被膜表面をEPMAでマッピング分析したときのO分布の(標準偏差/平均値)に及ぼす影響を示すグラフである。金属電着後の鋼板表面のSEM像の一例を示す図である。It is a graph which shows the influence which pickling conditions and the presence or absence of electrodeposition of Cu have on the (standard deviation / average value) of O distribution when the undercoat surface is subjected to mapping analysis by EPMA. It is a figure which shows an example of the SEM image of the steel plate surface after metal electrodeposition. 酸洗有無が電着した金属粒子の析出状態に及ぼす影響を示すSEM像である。It is a SEM image which shows the influence which the presence or absence of pickling has on the precipitation state of the electrodeposited metal particle. 塩酸酸洗条件が、電着した金属粒子の平均粒径および析出密度に及ぼす影響を示すグラフである。It is a graph which shows the influence which hydrochloric acid pickling conditions have on the average particle diameter and precipitation density of electrodeposited metal particles.

発明者らは、脱炭焼鈍前の鋼板表面に金属粒子を電着させる処理を行ったとき、磁気特性が大きく改善されたり、全く改善されなかったりして、バラツキが大きい原因について調査するため、以下の実験を行った。
C:0.065mass%、Si:3.44mass%、Mn:0.08mass%、Al:0.03mass%およびN:0.008mass%を含有する鋼を溶製し、連続鋳造法で鋼スラブとした後、1410℃に再加熱し、熱間圧延して板厚2.4mmの熱延板とし、1050℃×60sの熱延板焼鈍を施した後、一次冷間圧延して中間板厚1.8mmとし、1120℃×80sの中間焼鈍を施した後、200℃の温度で二次冷間圧延して、最終板厚0.23mmの冷延板とした。
When investigating the cause of the large variation, the inventors have greatly improved the magnetic properties when the electrodeposition of metal particles is performed on the steel plate surface before decarburization annealing, or not improved at all. The following experiment was conducted.
Steel containing C: 0.065 mass%, Si: 3.44 mass%, Mn: 0.08 mass%, Al: 0.03 mass% and N: 0.008 mass%, and a steel slab by a continuous casting method Then, it was reheated to 1410 ° C., hot-rolled to obtain a hot-rolled sheet having a thickness of 2.4 mm, subjected to hot-rolled sheet annealing at 1050 ° C. × 60 s, and then subjected to primary cold rolling to an intermediate thickness of 1 After being subjected to intermediate annealing of 1120 ° C. × 80 s, secondary cold rolling was performed at a temperature of 200 ° C. to obtain a cold-rolled sheet having a final thickness of 0.23 mm.

次いで、上記冷延板をアルカリ液で脱脂した後、塩酸酸洗し、さらに電解脱脂を行った。この際、上記塩酸酸洗の条件を、下記4水準に振り分けた。
水準1)塩酸酸洗なし
水準2)液温が50℃の3mass%塩酸水溶液に10s間浸漬
水準3)液温が60℃の5mass%塩酸水溶液に10s間浸漬
水準4)液温が70℃の10mass%塩酸水溶液に10s間浸漬
Next, the cold-rolled sheet was degreased with an alkaline solution, then washed with hydrochloric acid, and further subjected to electrolytic degreasing. At this time, the conditions of the hydrochloric acid pickling were divided into the following four levels.
Level 1) Without hydrochloric acid pickling Level 2) Immersion in 3 mass% hydrochloric acid aqueous solution with a liquid temperature of 50 ° C. Level 3) Immersion in 5 mass% hydrochloric acid aqueous solution with a liquid temperature of 60 ° C. Level 4) Liquid temperature is 70 ° C. Immerse in 10 mass% aqueous hydrochloric acid for 10 s

また、上記電解脱脂の電解浴には、3mass%NaOH+0.5mass%界面活性剤+1.5mass%グルコン酸銅(C122214Cu)よりなる水溶液を用いた。この浴中で鋼板を陰極として電解処理し、Cuを金属換算で、片面当たり50mg/m電着させた。なお、Cuの電着量は、蛍光X線で分析した、予め作成しておいた検量線に基づき定量した。また、比較として、グルコン酸銅を添加しない電解浴でも電解脱脂も行った。 Further, above the electrolytic degreasing in an electrolytic bath, using an aqueous solution consisting of 3mass% NaOH + 0.5mass% surfactant + 1.5 mass% copper gluconate (C 12 H 22 O 14 Cu ). In this bath, the steel plate was electrolyzed as a cathode, and Cu was electrodeposited at 50 mg / m 2 per side in terms of metal. The amount of electrodeposition of Cu was quantified based on a calibration curve prepared in advance analyzed by fluorescent X-rays. For comparison, electrolytic degreasing was also performed in an electrolytic bath to which copper gluconate was not added.

次いで、50vol%H−50vol%N、露点62℃の湿潤雰囲気下で、840℃の温度に100s間保持する、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。
その後、鋼板表面に、MgOを主剤とし添加剤として酸化チタンをTi換算で5mass%添加した焼鈍分離剤を塗布し、乾燥した後、二次再結晶焼鈍と水素雰囲気下で1200℃×7hrの純化処理とからなる仕上焼鈍を施した。
その後、未反応の焼鈍分離剤を除去し、絶縁被膜を塗布し、該被膜の焼付けと形状矯正を兼ねた平坦化焼鈍を800℃×30sで行い、製品板とした。
Next, decarburization annealing was performed that also served as primary recrystallization annealing that was maintained at a temperature of 840 ° C. for 100 s in a humid atmosphere of 50 vol% H 2 -50 vol% N 2 and a dew point of 62 ° C.
After that, an annealing separator containing MgO as the main ingredient and titanium oxide added as 5 mass% in terms of Ti was applied to the steel sheet surface, dried, and then subjected to secondary recrystallization annealing and purification at 1200 ° C. × 7 hr in a hydrogen atmosphere. Finish annealing consisting of treatment was performed.
Thereafter, the unreacted annealing separator was removed, an insulating film was applied, and flattening annealing that combined baking and shape correction of the film was performed at 800 ° C. × 30 s to obtain a product plate.

斯くして得た製品板について、磁気特性と被膜密着性を調査した。
ここで、磁気特性は、JIS C2550に規定された方法で、磁束密度Bおよび鉄損W17/50を測定した。
また、被膜の密着性は、850℃×3hrのDXガス雰囲気(CO:1vol%+H:1vol%+CO:12vol%+残部:N、露点10℃)で歪取焼鈍を施した後、径の異なる丸棒に鋼板を巻き付けたときに被膜が剥離しなかった最小の径(曲げ剥離径)を測定した。
The product plate thus obtained was examined for magnetic properties and film adhesion.
Here, the magnetic characteristics were measured by the method defined in JIS C2550, and the magnetic flux density B 8 and the iron loss W 17/50 were measured.
Further, the adhesion of the film was subjected to strain relief annealing in a DX gas atmosphere (CO: 1 vol% + H 2 : 1 vol% + CO 2 : 12 vol% + balance: N 2 , dew point: 10 ° C.) at 850 ° C. × 3 hr. The minimum diameter (bending peel diameter) at which the coating did not peel when the steel plate was wound around round bars having different diameters was measured.

上記測定の結果を図1に示した。この図から、グルコン酸銅を添加しない、即ち、Cu電着をさせない条件では、電着前の酸洗条件によらず、磁気特性、被膜密着性はほぼ一定の値を示しているのに対して、Cu電着をさせた条件では、適度に酸洗した、水準2)および3)では、顕著に磁気特性と被膜特性が改善されている。しかし、過度に酸洗した水準3)では、磁気特性、被膜特性は電着させない条件と同レベルにまで低下した。また、酸洗しない水準1)では、磁気特性、被膜特性とも、Cuを電着させない場合より大きく劣化している。   The results of the measurement are shown in FIG. From this figure, under the conditions where copper gluconate is not added, that is, when Cu electrodeposition is not performed, the magnetic properties and film adhesion show almost constant values regardless of the pickling conditions before electrodeposition. Under the conditions where Cu electrodeposition was performed, the magnetic properties and film properties were remarkably improved in the levels 2) and 3) which were pickled moderately. However, at the level 3) that was pickled excessively, the magnetic properties and the film properties were reduced to the same level as the conditions for non-electrodeposition. Further, in the level 1) where pickling is not performed, both the magnetic characteristics and the film characteristics are greatly deteriorated compared with the case where Cu is not electrodeposited.

この原因を調査するために、仕上焼鈍後の鋼板表面(下地被膜付き)表面をEPMAで分析した。分析した領域は50μm×50μmで、この領域について0.2μmピッチで酸素(O)分析を行い、マッピング表示した。一例として、酸洗しない水準1)の結果と、5mass%塩酸で酸洗した水準3)の結果を図2に示した。この図から、酸洗しない水準1)では、酸素の分布が不均一となっているのに対して、5mass%塩酸で酸洗した水準3)では酸素の分布が均一であり、下地被膜が均一に形成されていることがわかる。   In order to investigate this cause, the surface of the steel sheet (with a base coat) after finish annealing was analyzed by EPMA. The analyzed region was 50 μm × 50 μm, and this region was subjected to oxygen (O) analysis at a 0.2 μm pitch and displayed as a mapping. As an example, the results of level 1) without pickling and the results of level 3) pickled with 5 mass% hydrochloric acid are shown in FIG. From this figure, the oxygen distribution is uneven in level 1) without pickling, whereas the oxygen distribution is uniform in level 3) pickled with 5 mass% hydrochloric acid, and the undercoat is uniform. It can be seen that it is formed.

次いで、上記マッピングデータのO強度について、全測定値の平均値と標準偏差を求め、各水準ごとの平均値に対する標準偏差の比率を求めた結果を図3に示した。この図から、3〜5mass%塩酸で酸洗してCuを電着させた水準2,3で最も低い値を示し、下地被膜の均一性が増していることがわかる。また、この傾向は、磁気特性や被膜密着性の傾向ともよく一致していることがわかる。   Next, with respect to the O intensity of the mapping data, the average value and standard deviation of all measured values were obtained, and the result of obtaining the ratio of the standard deviation to the average value for each level is shown in FIG. From this figure, it can be seen that levels 2 and 3 where pickling with 3 to 5 mass% hydrochloric acid and electrodeposition of Cu are the lowest, indicating that the uniformity of the undercoat is increased. Moreover, it turns out that this tendency is in good agreement with the tendency of magnetic characteristics and film adhesion.

また、酸洗しない水準1)と、5mass%塩酸で酸洗した水準3)のCu電着後のSEM像を図4に示した。塩酸で酸洗していない水準1)では、大きさの異なる不均一なCu粒子が析出しているのに対して、5mass%塩酸で酸洗した水準3)では、微細なCu粒子が均一に析出している。さらに、電着したCu粒子の平均粒径と析出密度を、SEM像を画像解析して求め、その結果を図5に示した。この図から、磁気特性や被膜密着性が良好であった水準2)や水準3では、電着したCu粒子の平均粒径が70nm以下で、電着したCu粒子の析出密度が25個/μm以上であり、中でも、最も良好な特性を示した水準3)では、Cu粒子が最も微細かつ均一に析出していることがわかる。 Moreover, the SEM image after Cu electrodeposition of the level 1) not pickled and the level 3) pickled with 5 mass% hydrochloric acid is shown in FIG. In level 1) not pickled with hydrochloric acid, non-uniform Cu particles of different sizes are precipitated, whereas in level 3) pickled with 5 mass% hydrochloric acid, fine Cu particles are uniformly distributed. Precipitates. Furthermore, the average particle diameter and precipitation density of the electrodeposited Cu particles were determined by image analysis of the SEM image, and the results are shown in FIG. From this figure, at level 2) and level 3 where the magnetic properties and film adhesion were good, the average particle size of the electrodeposited Cu particles was 70 nm or less, and the precipitation density of the electrodeposited Cu particles was 25 particles / μm. It can be seen that Cu particles are most finely and uniformly deposited at level 3), which is 2 or more, and shows the best characteristics.

上記のように、同じ目付量でCuを電着させても、Cuの析出形態に大きな変化が生じる原因について、発明者らは以下のように考える。
仕上焼鈍時の雰囲気が磁気特性に大きく影響することは従来から知られている。これは、仕上焼鈍中に雰囲気中に含まれる水分や窒素分が鋼中に侵入して、インヒビタを分解したり粗大化したりして、粒成長抑制力を低下させるためであるとされている。この対策としては、脱炭焼鈍で形成される内部酸化膜を均一かつ緻密にすることが有効であると考えられている。そのため、従来技術の多くは、内部酸化膜の断面構造に着目して、均一で緻密な構造の内部酸化膜を得る方法について検討してきた。
As described above, the inventors consider as follows the cause of a large change in the precipitation form of Cu even when electrodepositing Cu with the same basis weight.
It has been known that the atmosphere during finish annealing greatly affects the magnetic properties. This is because moisture and nitrogen contained in the atmosphere enter into the steel during the finish annealing, and the inhibitor is decomposed or coarsened to reduce the grain growth inhibiting power. As a countermeasure, it is considered effective to make the internal oxide film formed by decarburization annealing uniform and dense. For this reason, many of the conventional techniques have focused on the cross-sectional structure of the internal oxide film and studied methods for obtaining an internal oxide film having a uniform and dense structure.

しかし、本発明の上記実験の結果では、鋼板表面内での内部酸化膜のバラツキが大きく、これが製品板の磁気特性、被膜特性に強く影響していることが明らかになった。すなわち、断面における内部酸化膜が均一で緻密であったとしても、鋼板表面内の一部に粗雑で雰囲気の遮蔽性が弱い部分があれば、そこから雰囲気ガスの成分が侵入して、磁気特性や被膜特性に悪影響を及ぼすことになる。これを防ぐには、鋼板表面内での内部酸化膜の均一性を高めなければならない。そのために重要なのが、金属電着した金属粒子の析出状態である。金属粒子が析出した状態で脱炭焼鈍を行うと、析出粒子を核にして内部酸化が進行する。従って、金属粒子を均一に析出させることによって、内部酸化も均一に起こさせることができる。   However, as a result of the above-described experiment of the present invention, it has been clarified that the variation of the internal oxide film on the surface of the steel plate is large, which strongly influences the magnetic properties and coating properties of the product plate. In other words, even if the internal oxide film in the cross section is uniform and dense, if there is a rough part of the steel sheet surface that is rough and the shielding property of the atmosphere is weak, the components of the atmospheric gas enter from there and the magnetic properties And the film properties will be adversely affected. In order to prevent this, the uniformity of the internal oxide film within the steel sheet surface must be increased. Therefore, what is important is the deposited state of metal particles electrodeposited with metal. When decarburization annealing is performed in a state where metal particles are precipitated, internal oxidation proceeds with the precipitated particles as nuclei. Therefore, the internal oxidation can be caused uniformly by depositing the metal particles uniformly.

さらに、金属粒子を均一に析出させるためには、電解処理前の鋼板表面を均一にしておくことが必要であり、そのためには、事前の酸洗等で表面状態を均一化しておくことが重要となる。ただし、上記実験結果では、酸洗し過ぎると金属粒子は均一に析出しなかった。この原因は不明であるが、過度の酸洗によって鋼板表面にピットや肌荒れが発生し、そこが起点となって粗大な金属粒子の析出が起こったためと考えられる。   Furthermore, in order to deposit metal particles uniformly, it is necessary to make the steel plate surface before electrolytic treatment uniform, and for that purpose, it is important to make the surface state uniform by prior pickling etc. It becomes. However, in the above experimental results, the metal particles did not precipitate uniformly when pickled too much. The cause of this is unknown, but it is thought that pits and rough skin were generated on the surface of the steel sheet due to excessive pickling and precipitation of coarse metal particles occurred from that point.

なお、鋼板表面を酸洗等で均一な状態にすれば、金属を析出させなくても均一酸化が進行するとも考えられるが、上記の実験では、このような結果は得られなかった。これは、表面状態を均一化したつもりであっても、結晶方位の違いにより、脱炭焼鈍中の酸化のされ方は異なってしまう、つまり、結晶方位により表面エネルギーが異なるため、酸化のために吸着する酸素分子や水分子の量が異なるためであると考えられる。そして、この違いを緩和するのが、電解で析出した金属粒子であると考えられる。   In addition, if the steel plate surface is made uniform by pickling or the like, it is considered that uniform oxidation proceeds without depositing metal, but in the above experiment, such a result was not obtained. This is because even if we intend to make the surface state uniform, the way of oxidation during decarburization annealing differs due to the difference in crystal orientation, that is, the surface energy differs depending on the crystal orientation. This is probably because the amount of adsorbed oxygen molecules and water molecules is different. And it is thought that it is the metal particles deposited by electrolysis that alleviate this difference.

上記のように、酸洗と金属粒子の電着処理を行い、鋼板の断面方向のみならず表面方向にも均一な内部酸化膜を得ることによって、仕上焼鈍後のフォルステライト被膜(下地被膜)の均一化が促進される。上記均一化の程度は、EPMAでマッピング分析することにより得られる下地被膜表面のO強度の平均値に対する標準偏差の比で評価することができる。そして、この比が小さい、すなわち、均一な下地被膜を形成させることによって、優れた磁気特性と被膜特性が達成されるのである。   As mentioned above, pickling and electrodeposition treatment of metal particles are performed to obtain a uniform internal oxide film not only in the cross-sectional direction but also in the surface direction of the steel sheet, so that the forsterite film (base film) after finish annealing is obtained. Uniformity is promoted. The degree of homogenization can be evaluated by the ratio of the standard deviation to the average value of O intensity on the surface of the undercoat obtained by mapping analysis with EPMA. And, when this ratio is small, that is, by forming a uniform undercoat, excellent magnetic properties and coating properties are achieved.

次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.03〜0.08mass%
Cは、0.03mass%に満たないと、粒界強化効果が失われ、スラブに割れが生じるなど、製造に支障を来たす欠陥を生ずるようになる。一方、0.08mass%を超えると、脱炭焼鈍で、磁気時効の起こらない0.005mass%以下に低減することが難しくなる。よって、Cは0.03〜0.08mass%の範囲とする。好ましくは0.035〜0.075mass%の範囲である。
Next, the component composition of the steel material (slab) used for manufacture of the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.03-0.08 mass%
If C is less than 0.03 mass%, the grain boundary strengthening effect is lost, and defects such as cracks in the slab are produced. On the other hand, if it exceeds 0.08 mass%, it becomes difficult to reduce to 0.005 mass% or less at which no magnetic aging occurs due to decarburization annealing. Therefore, C is in the range of 0.03 to 0.08 mass%. Preferably it is the range of 0.035-0.075 mass%.

Si:2.5〜4.5mass%
Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。この効果は、2.5mass%未満では十分ではなく、一方、4.5mass%を超えると、加工性が低下し、圧延して製造すること困難となる。よって、Siは2.5〜4.5mass%の範囲とする。好ましくは2.8〜4.0mass%の範囲である。
Si: 2.5-4.5 mass%
Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. If this effect is less than 2.5 mass%, it is not sufficient. On the other hand, if it exceeds 4.5 mass%, the workability deteriorates and it becomes difficult to roll and manufacture. Therefore, Si is set to a range of 2.5 to 4.5 mass%. Preferably it is the range of 2.8-4.0 mass%.

Mn:0.03〜0.3mass%
Mnは、鋼の熱間加工性を改善するために必要な元素である。上記効果は、0.03mass%未満では十分ではなく、一方、0.3mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.03〜0.3mass%の範囲とする。好ましくは0.04〜0.2mass%の範囲である。
Mn: 0.03-0.3 mass%
Mn is an element necessary for improving the hot workability of steel. If the effect is less than 0.03 mass%, it is not sufficient. On the other hand, if it exceeds 0.3 mass%, the magnetic flux density of the product plate decreases. Therefore, Mn is set to a range of 0.03 to 0.3 mass%. Preferably it is the range of 0.04-0.2 mass%.

上記C,SiおよびMn以外の成分については、二次再結晶を生じさせるために、インヒビタを利用する場合と、しない場合とで異なる。
まず、二次再結晶を生じさせるために、インヒビタを利用する場合で、例えば、AlN系インヒビタを利用するときには、AlおよびNを、それぞれAl:0.01〜0.03mass%、N:0.003〜0.01mass%の範囲で含有させるのが好ましい。また、MnS・MnSe系インヒビタを利用するときには、前述した量のMnの他に、S:0.01〜0.025mass%およびSe:0.01〜0.025mass%のうちの1種または2種を含有させることが好ましい。それぞれ添加量が、上記下限値より少ないと、インヒビタ効果が十分に得られず、一方、上限値を超えると、インヒビタ成分がスラブ加熱時に未固溶で残存し、磁気特性の低下をもたらす。なお、上記AlN系とMnS・MnSe系のインヒビタは併用してもよい。
About components other than said C, Si, and Mn, in order to produce secondary recrystallization, it differs with the case where an inhibitor is utilized and the case where it does not.
First, when an inhibitor is used to cause secondary recrystallization, for example, when an AlN inhibitor is used, Al and N are changed to Al: 0.01 to 0.03 mass%, N: 0.00, respectively. It is preferable to make it contain in the range of 003-0.01 mass%. When using MnS / MnSe inhibitors, one or two of S: 0.01 to 0.025 mass% and Se: 0.01 to 0.025 mass% in addition to the amount of Mn described above. It is preferable to contain. If the addition amount is less than the above lower limit value, the inhibitor effect cannot be sufficiently obtained. On the other hand, if the addition amount exceeds the upper limit value, the inhibitor component remains undissolved during slab heating, resulting in a decrease in magnetic properties. The above-described AlN-based and MnS / MnSe-based inhibitors may be used in combination.

一方、二次再結晶を生じさせるためにインヒビタを利用しない場合には、上述したインヒビタ形成成分であるAl,N,SおよびSeの含有量を極力低減し、Al:0.01mass%未満、N:0.0050mass%未満、S:0.0050mass%未満およびSe:0.0030mass%未満に低減した鋼素材を用いるのが好ましい。   On the other hand, when an inhibitor is not used to cause secondary recrystallization, the contents of Al, N, S and Se as the inhibitor forming components described above are reduced as much as possible, and Al: less than 0.01 mass%, N : It is preferable to use a steel material reduced to less than 0.0050 mass%, S: less than 0.0050 mass%, and Se: less than 0.0030 mass%.

本発明の方向性電磁鋼板に用いる鋼素材は、上記成分以外に、磁気特性の改善を目的として、Ni:0.01〜0.4mass%、Cr:0.01〜0.25mass%、Cu:0.01〜0.30mass%、P:0.005〜0.10mass%、Sb:0.005〜0.10mass%、Sn;0.005〜0.10mass%、Bi:0.005〜0.10mass%、Mo:0.005〜0.10mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.01mass%、Nb:0.001〜0.01mass%、V:0.001〜0.01mass%およびTa:0.001〜0.01mass%のうちから選ばれる1種または2種以上を適宜含有してもよい。   In addition to the above components, the steel material used for the grain-oriented electrical steel sheet of the present invention is Ni: 0.01-0.4 mass%, Cr: 0.01-0.25 mass%, Cu: 0.01-0.30 mass%, P: 0.005-0.10 mass%, Sb: 0.005-0.10 mass%, Sn; 0.005-0.10 mass%, Bi: 0.005-0. 10 mass%, Mo: 0.005-0.10 mass%, B: 0.0002-0.0025 mass%, Te: 0.0005-0.01 mass%, Nb: 0.001-0.01 mass%, V: 0 One or two or more selected from 0.001 to 0.01 mass% and Ta: 0.001 to 0.01 mass% may be appropriately contained.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)は、上述した成分組成を有する鋼を常法の精錬プロセスで溶製した後、従来公知の造塊−分塊圧延法または連続鋳造法で製造してもよいし、あるいは、直接鋳造法で100mm以下の厚さの薄鋳片としてもよい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
The steel material (slab) used for the production of the grain-oriented electrical steel sheet of the present invention is prepared by melting a steel having the above-described composition by a conventional refining process, and then performing a conventionally known ingot-bundling rolling method or continuous casting. It may be manufactured by a method, or may be a thin cast piece having a thickness of 100 mm or less by a direct casting method.

上記スラブは常法に従い、例えばインヒビタ成分を含有する場合には1400℃程度の温度に再加熱した後、一方、インヒビタ成分を含まない場合は1300℃以下の温度に再加熱した後、熱間圧延に供する。なお、インヒビタ成分を含有しない場合には、連続鋳造後、再加熱することなく直ちに熱間圧延してもよい。また、薄鋳片の場合には、熱間圧延してもよいし、熱間圧延を省略してそのまま以後の工程に進めてもよい。   According to a conventional method, the slab is reheated to a temperature of about 1400 ° C. when it contains an inhibitor component, and then reheated to a temperature of 1300 ° C. or less when it does not contain an inhibitor component. To serve. In addition, when an inhibitor component is not contained, you may perform hot rolling immediately after continuous casting, without reheating. In the case of a thin slab, hot rolling may be performed, or hot rolling may be omitted and the subsequent process may be performed as it is.

次いで、熱間圧延して得た熱延板は、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の均熱温度は、良好な磁気特性を得るためには、800〜1150℃の範囲とするのが好ましい。800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなり、二次再結晶の発達が阻害される。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、やはり整粒の一次再結晶組織を得ることが難しくなるからである。   Next, the hot-rolled sheet obtained by hot rolling is subjected to hot-rolled sheet annealing as necessary. The soaking temperature of this hot-rolled sheet annealing is preferably in the range of 800 to 1150 ° C. in order to obtain good magnetic properties. If it is less than 800 degreeC, the band structure formed by hot rolling will remain, it will become difficult to obtain the primary recrystallized structure of a sized particle, and the development of secondary recrystallization will be inhibited. On the other hand, when the temperature exceeds 1150 ° C., the grain size after hot-rolled sheet annealing becomes too coarse, and it becomes difficult to obtain a primary recrystallized structure of sized particles.

熱延後あるいは熱延板焼鈍後の熱延板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とする。上記中間焼鈍の均熱温度は、900〜1200℃の範囲とするのが好ましい。900℃未満では中間焼鈍後の再結晶粒が細かくなり過ぎたり、一次再結晶組織におけるGoss核が減少して製品板の磁気特定が低下したりするおそれがある。一方、1200℃を超えると、熱延板焼鈍のときと同様、結晶粒が粗大化し過ぎて整粒の一次再結晶組織を得ることが難しくなる。   The hot-rolled sheet after hot-rolling or after hot-rolled sheet annealing is subjected to one or more cold rollings or two or more cold-rolling sandwiching the intermediate annealing to form a cold-rolled sheet having a final thickness. The soaking temperature of the intermediate annealing is preferably in the range of 900 to 1200 ° C. If the temperature is lower than 900 ° C., the recrystallized grains after the intermediate annealing may become too fine, or the Gos nuclei in the primary recrystallized structure may decrease and the magnetic characteristics of the product plate may decrease. On the other hand, when the temperature exceeds 1200 ° C., the crystal grains become too coarse as in the case of hot-rolled sheet annealing, and it becomes difficult to obtain a primary recrystallized structure of grain size.

また、最終板厚とする冷間圧延(最終冷間圧延)は、圧延時の鋼板温度を100〜300℃の温度に上昇させて圧延する温間圧延としたり、圧延の途中で100〜300℃の温度で時効処理を1回または複数回施したりすることが、一次再結晶集合組織を改善し、磁気特性を向上させるのに有効である。   Moreover, the cold rolling (final cold rolling) which makes the final sheet thickness is warm rolling in which the steel sheet temperature during rolling is raised to a temperature of 100 to 300 ° C., or 100 to 300 ° C. during the rolling. It is effective to improve the primary recrystallization texture and improve the magnetic properties by performing aging treatment once or a plurality of times at the above temperature.

次いで、最終板厚とした冷延板は、脱炭焼鈍前までの段階で、鋼板表面に金属粒子を電着させる。電着させる金属元素としては特に限定しないが、Si,Cu,Sn,Co,Ni,Ti,Mn,Ta,Zn,Cr等が好適である。
このとき、電析させる金属粒子の平均粒径を70nm以下とし、析出密度を25個/μm以上とすることが必要である。平均粒径が大き過ぎたり、析出密度が低過ぎたりすると、脱炭焼鈍時の内部酸化を十分に均一化することができない。好ましくは、金属粒子の平均粒径は50nm以下、析出密度は45個/μm以上である。
Next, the cold-rolled sheet having the final sheet thickness is electrodeposited with metal particles on the surface of the steel sheet in a stage before decarburization annealing. Although it does not specifically limit as a metal element to electrodeposit, Si, Cu, Sn, Co, Ni, Ti, Mn, Ta, Zn, Cr etc. are suitable.
At this time, it is necessary that the average particle diameter of the metal particles to be electrodeposited is 70 nm or less and the precipitation density is 25 particles / μm 2 or more. If the average particle size is too large or the precipitation density is too low, the internal oxidation during decarburization annealing cannot be made sufficiently uniform. Preferably, the average particle diameter of the metal particles is 50 nm or less, and the precipitation density is 45 particles / μm 2 or more.

また、上記金属粒子の電着量は、片面あたりで0.1〜70mg/mの範囲とするのが好ましい。なお、複数の金属を電着させてもよいが、その場合でも0.1〜70mg/mの範囲とするのが好ましい。0.1mg/m未満では、電着効果が十分ではなく、一方、70mg/mよりも多いと、電着させた金属によって脱炭焼鈍中に鋼板表面に酸素が拡散するのが過度に妨げられ、酸素目付量不足となり、却って被膜特性が劣化するからである。より好ましい範囲は0.1〜50mg/mの範囲である。 The amount of electrodeposition of the metal particles is preferably in the range of 0.1 to 70 mg / m 2 per side. A plurality of metals may be electrodeposited, but even in that case, the range of 0.1 to 70 mg / m 2 is preferable. If it is less than 0.1 mg / m 2 , the electrodeposition effect is not sufficient. On the other hand, if it exceeds 70 mg / m 2 , oxygen is diffused excessively on the steel sheet surface during decarburization annealing by the electrodeposited metal. This is because the amount of oxygen per unit area is hindered and the film properties are deteriorated. A more preferred range is from 0.1 to 50 mg / m 2 .

なお、本発明では、鋼板表面への金属の付着を電着によって行うものとする。これは、電着物の密着性を確保するためと、電着量の制御が容易であるからである。電着方法としては、通常の電気めっきによる方法が好適である。めっき浴は、地鉄の溶解を防ぐために、水酸化ナトリウムや珪酸ナトリウムなどを溶解させたアルカリ浴に、所望の金属イオンを含む化合物を溶解させることで調整する。アルカリ浴に溶解させる化合物としては、エチレンジアミン四酢酸EDTAやグルコン酸などの金属キレート塩を用いるのが好適である。このような液で電解すると、金属電着と電解脱脂を兼ねて行うことができる。さらに、この際、鋼板に付着した油分を離脱、乳化させるための界面活性剤を添加してもよい。   In the present invention, the metal is attached to the surface of the steel plate by electrodeposition. This is because the adhesion of the electrodeposit is ensured and the amount of electrodeposition is easily controlled. As the electrodeposition method, an ordinary electroplating method is suitable. The plating bath is adjusted by dissolving a compound containing a desired metal ion in an alkaline bath in which sodium hydroxide, sodium silicate, or the like is dissolved in order to prevent dissolution of the base iron. As the compound dissolved in the alkaline bath, it is preferable to use a metal chelate salt such as ethylenediaminetetraacetic acid EDTA or gluconic acid. When electrolysis is performed with such a liquid, it can be performed both as metal electrodeposition and electrolytic degreasing. Further, at this time, a surfactant for releasing and emulsifying oil adhering to the steel plate may be added.

なお、電解条件としては、所定量の金属を付着させるために、電流密度や電解時間を適宜調節する必要があるが、本発明程度の金属電着量であれば、電流密度0.1〜100A/dm、電解時間0.1〜10s程度となる。電解処理は、定電流電解、交番電流電解のいずれでも可能である。ただし、交番電流電解では、鋼板がマイナス極となるときの電解時間の合計が上記範囲に収まるようにするのが好ましい。また、金属粒子を、本発明が規定する析出密度となるよう均一微細に析出させるためには、例えば、電解前の鋼板を酸洗や研削などして清浄度を高めたり、電解浴のアルカリ濃度を高くし、金属化合物濃度を低くしたりすることなどが有効である。 In addition, as electrolysis conditions, in order to adhere a predetermined amount of metal, it is necessary to appropriately adjust the current density and electrolysis time. However, if the metal electrodeposition amount is about the present invention, the current density is 0.1 to 100 A. / Dm 2 , and the electrolysis time is about 0.1 to 10 s. The electrolytic treatment can be either constant current electrolysis or alternating current electrolysis. However, in the alternating current electrolysis, it is preferable that the total electrolysis time when the steel plate becomes a negative pole falls within the above range. Further, in order to deposit metal particles uniformly and finely so as to have a deposition density specified by the present invention, for example, the steel plate before electrolysis is pickled or ground to increase cleanliness, or the alkaline concentration of the electrolytic bath It is effective to increase the value and decrease the concentration of the metal compound.

上記の金属粒子を電着させた鋼板は、その後、一次再結晶焼鈍を兼ねた脱炭焼鈍を施す。脱炭処理の均熱温度は700〜900℃、均熱時間は30〜300sの範囲とするのが好ましい。均熱温度が700℃未満、均熱時間が30s未満では、脱炭が不十分となったり、一次再結晶粒が小さくなり過ぎたりして、磁気特性が劣化するおそれがある。一方、均熱温度が900℃を超えたり、脱炭時間が300sを超えたりすると、一次再結晶粒が大きくなり過ぎ、やはり磁気特性が劣化する。   The steel plate electrodeposited with the above metal particles is then subjected to decarburization annealing that also serves as primary recrystallization annealing. The soaking temperature in the decarburization treatment is preferably 700 to 900 ° C., and the soaking time is preferably in the range of 30 to 300 s. If the soaking temperature is less than 700 ° C. and the soaking time is less than 30 s, the decarburization may be insufficient or the primary recrystallized grains may become too small, and the magnetic characteristics may be deteriorated. On the other hand, when the soaking temperature exceeds 900 ° C. or the decarburization time exceeds 300 s, the primary recrystallized grains become too large, and the magnetic properties are deteriorated.

なお、この脱炭焼鈍では、鋼板表層内部にサブスケール(内部酸化層)を形成させるが、前工程で均一微細に電着した金属粒子が、脱炭焼鈍時に形成される内部酸化層を厚さ方向、表面方向に均一化する。また、電着した金属粒子は、脱炭焼鈍中に自らが鋼中に拡散して侵入したり、鋼板表面で酸化されたりする。この酸化物は、後の仕上焼鈍における追加酸化を抑制して、磁気特性を改善する効果がある。   In this decarburization annealing, a subscale (internal oxide layer) is formed inside the surface layer of the steel sheet, but the metal particles uniformly and finely electrodeposited in the previous step have a thickness of the internal oxide layer formed during the decarburization annealing. Uniform in the direction and surface direction. In addition, the electrodeposited metal particles themselves diffuse into the steel during decarburization annealing and are oxidized on the surface of the steel plate. This oxide has the effect of suppressing the additional oxidation in the subsequent finish annealing and improving the magnetic properties.

脱炭焼鈍の雰囲気は、水蒸気−水素分圧PH2O/PH2(酸素ポテンシャル)で0.3〜0.6の範囲とするのが好ましい。これにより、鋼板表層のSiO形成量および電着金属の酸化量を適正化することができる。 The atmosphere of decarburization annealing is preferably in the range of 0.3 to 0.6 in terms of water vapor-hydrogen partial pressure P H2O / P H2 (oxygen potential). Thereby, the amount of SiO 2 formation on the surface layer of the steel sheet and the amount of oxidation of the electrodeposited metal can be optimized.

なお、上記脱炭焼鈍時の雰囲気は、必ずしも一定とする必要はなく、例えば、前半と後半の2段階に分けて、後半を低露点にして還元処理を施したり、あるいは、加熱時の雰囲気と均熱時の雰囲気を別々にしたりしてもよい。また、加熱時の昇温速度を急速加熱としたり、脱炭焼鈍後に窒化処理を施したりしてもよい。   The atmosphere during the decarburization annealing is not necessarily constant. For example, it is divided into two stages, the first half and the second half, and the reduction process is performed with the second half being a low dew point, or the atmosphere during heating is The atmosphere at the time of soaking may be made different. In addition, the heating rate during heating may be rapid heating, or nitriding may be performed after decarburization annealing.

上記脱炭焼鈍後は、鋼板表面に焼鈍分離剤を塗布する。この焼鈍分離剤は、主剤として少なくとも50mass%のMgOを含み、これに、TiやCa,Sr,Mn,Mo,Fe,Cu,Zn,Ni,Sn,Al,K,LiKなどの酸化物、硫酸塩、塩化物、ホウ酸塩、珪酸塩、硝酸塩、チタン酸塩、水酸化物などを1種または2種以上添加したものを用いるのが好ましい。   After the decarburization annealing, an annealing separator is applied to the steel sheet surface. This annealing separator contains at least 50 mass% MgO as a main agent, and includes oxides such as Ti, Ca, Sr, Mn, Mo, Fe, Cu, Zn, Ni, Sn, Al, K, and LiK, sulfuric acid. It is preferable to use a salt, chloride, borate, silicate, nitrate, titanate, hydroxide or the like to which one or more are added.

上記焼鈍分離剤を塗布した鋼板は、その後、コイル状に巻き取った状態で、二次再結晶焼鈍と、それに続いて純化処理する仕上焼鈍を施す。これにより、Goss方位に高度に集積した二次再結晶組織を発達させるとともに、フォルステライト被膜を形成させることができる。上記仕上焼鈍は、二次再結晶を発現させるためには800℃以上に、また、二次再結晶を十分に完了させるためには1100℃程度まで加熱するのが好ましい。また、引き続き行う純化処理では、フォルステライト被膜を形成させるためには1200℃程度の温度まで加熱するのが好ましい。なお、インヒビタ形成成分を含まない素材を用いる場合は、純化処理は省略してもよい。   The steel sheet coated with the annealing separator is then subjected to secondary recrystallization annealing and subsequent finishing annealing for purification treatment in a coiled state. As a result, a secondary recrystallized structure highly accumulated in the Goss orientation can be developed and a forsterite film can be formed. The finish annealing is preferably heated to 800 ° C. or higher in order to develop secondary recrystallization, and to about 1100 ° C. in order to sufficiently complete secondary recrystallization. Further, in the subsequent purification treatment, it is preferable to heat to a temperature of about 1200 ° C. in order to form a forsterite film. In addition, when using the raw material which does not contain an inhibitor formation component, you may abbreviate | omit a refinement | purification process.

このようにして製造した方向性電磁鋼板のフォルステライト被膜(下地被膜)は、下地被膜表面をEPMAでマッピング分析したときのO強度の平均値に対する標準偏差の比率が0.15以下の均一なものとなる。その結果、DXガスのような反応性の高い雰囲気での歪取焼鈍でも、下地被膜が劣化せず、密着性に優れる被膜が得られる。なお、上記EPMAのマッピング分析は、50μm×50μmの領域を0.2μmピッチで測定するものとする。   The forsterite coating (undercoating) of the grain-oriented electrical steel sheet thus manufactured has a uniform ratio of the standard deviation with respect to the average value of O intensity when the undercoating surface is subjected to mapping analysis by EPMA. It becomes. As a result, even with strain relief annealing in a highly reactive atmosphere such as DX gas, the base film does not deteriorate and a film having excellent adhesion can be obtained. In the EPMA mapping analysis, an area of 50 μm × 50 μm is measured at a pitch of 0.2 μm.

上記仕上焼鈍後の鋼板は、その後、鋼板表面に付着した未反応の焼鈍分離剤を除去するための水洗やブラッシング、酸洗等を行った後、絶縁被膜を塗布し、この焼付けと形状矯正を兼ねた平坦化焼鈍を施して最終製品の方向性電磁鋼板とするのが好ましい。   The steel sheet after the above finish annealing is then washed with water, brushed, pickled, etc. to remove the unreacted annealing separator adhering to the steel sheet surface, and then coated with an insulating film, and this baking and shape correction are performed. It is preferable that the grain-oriented electrical steel sheet of the final product is obtained by performing planarization annealing that also serves as the end product.

なお、製品板の鉄損をより低減するためには、磁区細分化処理を施すことが有効である。磁区細分化の方法としては、一般的に実施されている、最終製品板に溝を形成したり、レーザーや電子ビームを照射して線状または点状の熱歪や衝撃歪を導入する方法、最終板厚に冷間圧延した鋼板表面にエッチング加工を施して溝を形成したりする方法等を用いることができる。なお、本発明では、電子ビーム照射しても被膜が剥落することがない強固な被膜を形成することができるので、電子ビーム照射が好適である。   In order to further reduce the iron loss of the product plate, it is effective to perform a magnetic domain subdivision process. As a method of magnetic domain subdivision, a method of generally forming a groove in the final product plate or irradiating a laser or an electron beam to introduce linear or dotted thermal strain or impact strain, For example, a method of forming a groove by etching the steel sheet surface cold-rolled to the final thickness can be used. In the present invention, since a strong film that does not peel off even when irradiated with an electron beam can be formed, electron beam irradiation is preferable.

C:0.070mass%、Si:3.4mass%、Mn:0.08mass%、Al:0.02mass%およびN:0.008mass%、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、1350℃の温度に再加熱した後、熱間圧延して、板厚2.4mmの熱延板とし、1000℃×50sの熱延板焼鈍を施した後、一次冷間圧延により1.8mmの中間板厚とし、1100℃×20sの中間焼鈍を施した後、二次冷間圧延して最終板厚0.23mmの冷延板に仕上げた。
次いで、上記冷延板を脱脂し、酸洗した後、珪酸ナトリウム30g/L、界面活性剤5g/Lと、種々の金属のEDTA金属塩を添加した電解液を用いて、浴温70℃、電流密度0.1〜20A/dmで、電解時間を0〜15sの範囲で種々に変化させて電解処理して金属粒子を鋼板表面に電着させた。この際、電解液の金属塩濃度および電解処理前の酸洗液濃度を種々に変えて、金属の析出状態を変化させた。
その後、上記冷延板を、50vol%H−50vol%N、露点50〜65℃の湿潤雰囲気下で、840℃の温度に100s間保持する、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した。
次いで、MgOを主体とする焼鈍分離剤をスラリー状にして鋼板表面に塗布、乾燥した後、二次再結晶焼鈍後に1200℃×10hrの純化処理を行う仕上焼鈍を施した。仕上焼鈍の雰囲気は、純化処理する1200℃保定時はH、昇温時(二次再結晶焼鈍を含む)および降温時はNとした。その後、リン酸マグネシウム−コロイド状シリカを主成分とする絶縁被膜を塗布し、平坦化焼鈍で焼き付けて製品板とした。
C: 0.070 mass%, Si: 3.4 mass%, Mn: 0.08 mass%, Al: 0.02 mass% and N: 0.008 mass%, the balance being Fe and inevitable impurities, a steel slab made of continuous casting After being reheated to a temperature of 1350 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.4 mm, subjected to hot-rolled sheet annealing at 1000 ° C. × 50 s, and then subjected to primary cold rolling After an intermediate thickness of 1.8 mm and an intermediate annealing of 1100 ° C. × 20 s, secondary cold rolling was performed to finish a cold rolled sheet having a final thickness of 0.23 mm.
Next, after degreasing and pickling the cold-rolled sheet, using an electrolyte containing sodium silicate 30 g / L, surfactant 5 g / L, and various metal EDTA metal salts, a bath temperature of 70 ° C., At a current density of 0.1 to 20 A / dm 2 , the electrolysis time was variously changed in the range of 0 to 15 s, and electrolytic treatment was performed to deposit metal particles on the steel sheet surface. At this time, the metal deposition state was changed by variously changing the metal salt concentration of the electrolytic solution and the pickling solution concentration before the electrolytic treatment.
Thereafter, the cold-rolled sheet is held in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 and a dew point of 50 to 65 ° C. at a temperature of 840 ° C. for 100 s, and decarburization annealing that also serves as primary recrystallization annealing is performed. gave.
Next, an annealing separator mainly composed of MgO was applied in the form of a slurry to the surface of the steel sheet, dried, and then subjected to a finish annealing for a purification treatment of 1200 ° C. × 10 hr after the secondary recrystallization annealing. The atmosphere of the finish annealing was H 2 at 1200 ° C. holding for purification, and N 2 at the time of temperature rise (including secondary recrystallization annealing) and at the time of temperature fall. Thereafter, an insulating film composed mainly of magnesium phosphate-colloidal silica was applied and baked by flattening annealing to obtain a product plate.

上記のようにして得た製品板からサンプルを採取し、磁気特性と歪取焼鈍を施した後の曲げ密着性を評価した。
ここで、上記磁気特性は、JIS C2550に規定された方法で、磁束密度Bおよび鉄損W17/50を測定した。
また、被膜の密着性は、850℃×3hrのDXガス雰囲気(CO:1vol%+H:1vol%+CO:12vol%+残部:N、露点10℃)で歪取焼鈍を施した後、径の異なる丸棒に鋼板を巻き付けたときに被膜が剥離しなかった最小の径(曲げ剥離径)を測定した
Samples were collected from the product plates obtained as described above, and evaluated for magnetic properties and bending adhesion after being subjected to strain relief annealing.
Here, as for the magnetic characteristics, the magnetic flux density B 8 and the iron loss W 17/50 were measured by the method defined in JIS C2550.
Further, the adhesion of the film was subjected to strain relief annealing in a DX gas atmosphere (CO: 1 vol% + H 2 : 1 vol% + CO 2 : 12 vol% + balance: N 2 , dew point: 10 ° C.) at 850 ° C. × 3 hr. The minimum diameter (bending peel diameter) at which the coating did not peel when the steel plate was wound around round bars with different diameters was measured.

また、上記測定とは別に採取したサンプル表面の絶縁被膜をアルカリ洗浄して除去し、EPMAで下地被膜表面の50μm×50μmの領域を、0.2μmピッチで、O濃度をマッピング分析し、得られたO強度の全測定データの平均値と標準偏差および平均値に対する標準偏差の比を求めた。
上記測定の結果を表1に示した。この表から、本発明に適合する鋼板は、いずれも磁気特性と被膜特性に優れていることがわかる。
In addition, the insulating film on the surface of the sample collected separately from the above measurement is removed by alkali washing, and a 50 μm × 50 μm area of the surface of the base film is analyzed by mapping analysis of O concentration at a 0.2 μm pitch with EPMA. The average value and standard deviation of all measured data of O intensity were determined, and the ratio of the standard deviation to the average value was obtained.
The measurement results are shown in Table 1. From this table, it can be seen that all the steel sheets suitable for the present invention are excellent in magnetic properties and coating properties.

Figure 2017133080
Figure 2017133080

表2にした各種成分組成を有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、1380℃の温度に再加熱した後、熱間圧延して板厚2.0mmの熱延板とし、1030℃×10sの熱延板焼鈍を施した後、冷間圧延して最終板厚が0.23mmの冷延板に仕上げた。
次いで、上記冷延板を脱脂し、酸洗した後、水酸化ナトリウム30g/L、界面活性剤5g/Lと、グルコン酸銅を添加した電解液を用いて、浴温70℃、電流密度2A/dmで、電解時間を1sとする電解処理を施し、鋼板表面にCuを電着させた。この際、酸洗条件と電解浴のグルコン酸銅の濃度を種々に変えることで、電解後のCu粒子の析出形態を種々に変化させた。
その後、50vol%H−50vol%N、露点50〜65℃の湿潤雰囲気下で、840℃の温度に100s間保持する、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、MgOを主体とする焼鈍分離剤をスラリー状にして鋼板表面に塗布、乾燥し、その後、二次再結晶焼鈍後、1200℃×10hrの純化処理を行う仕上焼鈍を施した。なお、仕上焼鈍の雰囲気は、純化処理する1200℃保定時はH、昇温時(二次再結晶焼鈍を含む)および降温時はNとした。その後、リン酸マグネシウム−コロイド状シリカを主成分とする絶縁被膜塗布し、平坦化焼鈍で焼き付けて製品板とした。
A steel slab having various component compositions shown in Table 2 with the balance being Fe and inevitable impurities was manufactured by a continuous casting method, reheated to a temperature of 1380 ° C., and then hot-rolled to a thickness of 2.0 mm. The hot rolled sheet was subjected to hot rolled sheet annealing at 1030 ° C. × 10 s, and then cold rolled to finish a cold rolled sheet having a final sheet thickness of 0.23 mm.
Next, the cold-rolled sheet is degreased and pickled, and then an electrolytic solution to which sodium hydroxide 30 g / L, surfactant 5 g / L, and copper gluconate are added is used. The bath temperature is 70 ° C. and the current density is 2 A. Electrolytic treatment with an electrolytic time of 1 s at / dm 2 was performed, and Cu was electrodeposited on the steel sheet surface. Under the present circumstances, the precipitation form of Cu particle | grains after electrolysis was variously changed by changing pickling conditions and the density | concentration of the copper gluconate of an electrolytic bath variously.
Then, 50vol% H 2 -50vol% N 2, under a humid atmosphere with a dew point of 50-65 ° C., held between 100s at a temperature of 840 ° C., was subjected to decarburization annealing serving also as a primary recrystallization annealing, the MgO A main annealing separator was applied to the surface of the steel sheet in the form of a slurry, dried, and then subjected to a final recrystallization annealing followed by a finish annealing at a temperature of 1200 ° C. for 10 hours. The atmosphere of the finish annealing was H 2 at 1200 ° C. holding for purification, and N 2 at the time of temperature rise (including secondary recrystallization annealing) and at the time of temperature fall. Thereafter, an insulating film composed mainly of magnesium phosphate-colloidal silica was applied and baked by flattening annealing to obtain a product plate.

上記のようにして得た製品板からサンプルを採取し、実施例1と同様にして、磁気特性と被膜密着性を評価した。同表から、本発明に適合する成分組成の鋼素材を用いることで、良好な磁気特性と被膜特性を有する方向性電磁鋼板を得ることができることがわかる。   A sample was collected from the product plate obtained as described above, and the magnetic properties and film adhesion were evaluated in the same manner as in Example 1. It can be seen from the table that a grain-oriented electrical steel sheet having good magnetic properties and coating properties can be obtained by using a steel material having a composition suitable for the present invention.

Figure 2017133080
Figure 2017133080

Claims (6)

フォルステライト質下地被膜を有する方向性電磁鋼板であって、
上記下地被膜表面をEPMAでマッピング分析したときのO強度の標準偏差が平均値の0.15以下であり、
DXガス雰囲気下で歪取焼鈍を施した後の曲げ剥離径が30mmφ以下であることを特徴とする方向性電磁鋼板。
A grain-oriented electrical steel sheet having a forsterite base coating,
The standard deviation of O intensity when mapping analysis of the surface of the undercoat with EPMA is 0.15 or less of the average value,
A grain oriented electrical steel sheet having a bending peel diameter of 30 mmφ or less after strain relief annealing in a DX gas atmosphere.
C:0.03〜0.08mass%、Si:2.5〜4.5mass%およびMn:0.03〜0.30mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施した後あるいは熱延板焼鈍を施すことなく、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、
上記最終板厚とする冷間圧延から脱炭焼鈍までの間において、鋼板表面に平均粒径が70nm以下の金属粒子を25個/μm以上析出させることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
C: 0.03 to 0.08 mass%, Si: 2.5 to 4.5 mass%, and Mn: 0.03 to 0.30 mass%, and the remaining steel material consisting of Fe and inevitable impurities is hot. Rolled into a hot-rolled sheet, after having been subjected to hot-rolled sheet annealing or without being subjected to hot-rolled sheet annealing, cold-rolled at the final sheet thickness by cold rolling at least once with one or intermediate annealing in between In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of applying a annealing separating agent to the steel sheet surface after finishing decarburization annealing also serving as a primary recrystallization annealing, and finishing annealing,
2. The metal particles having an average particle diameter of 70 nm or less are deposited on the steel sheet surface at 25 particles / μm 2 or more during the period from cold rolling to the final sheet thickness to decarburization annealing. A method for producing grain-oriented electrical steel sheets.
上記鋼素材は、上記成分組成に加えてさらに、Se:0.01〜0.025mass%および/またはS:0.01〜0.025mass%を含有することを特徴とする請求項2に記載の方向性電磁鋼板の製造方法。 The said steel raw material contains Se: 0.01-0.025mass% and / or S: 0.01-0.025mass% further in addition to the said component composition, The Claim 2 characterized by the above-mentioned. A method for producing grain-oriented electrical steel sheets. 上記鋼素材は、上記成分組成に加えてさらに、Al:0.01〜0.03mass%およびN:0.003〜0.01mass%を含有し、あるいは、Al:0.01〜0.03mass%、N:0.003〜0.01mass%、Se:0.01〜0.025mass%および/またはS:0.01〜0.025mass%を含有することを特徴とする請求項2に記載の方向性電磁鋼板の製造方法。 The steel material further contains Al: 0.01 to 0.03 mass% and N: 0.003 to 0.01 mass% in addition to the above component composition, or Al: 0.01 to 0.03 mass%. N: 0.003-0.01 mass%, Se: 0.01-0.025 mass% and / or S: 0.01-0.025 mass%, The direction according to claim 2 Method for producing an electrical steel sheet. 上記鋼素材に含まれる不可避的不純物中のAl,N,SおよびSeは、それぞれAl:0.01mass%未満、N:0.0050mass%未満、S:0.0050mass%未満およびSe:0.0030mass%未満であること特徴とする請求項2に記載の方向性電磁鋼板の製造方法。 Al, N, S and Se in the inevitable impurities contained in the steel material are Al: less than 0.01 mass%, N: less than 0.0050 mass%, S: less than 0.0050 mass%, and Se: 0.0030 mass. The method for producing a grain-oriented electrical steel sheet according to claim 2, wherein the grain-oriented electrical steel sheet is less than%. 上記鋼素材は、上記成分組成に加えてさらに、Ni:0.01〜0.4mass%、Cr:0.01〜0.25mass%、Cu:0.01〜0.30mass%、P:0.005〜0.10mass%、Sb:0.005〜0.10mass%、Sn;0.005〜0.10mass%、Bi:0.005〜0.10mass%、Mo:0.005〜0.10mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.01mass%、Nb:0.001〜0.01mass%、V:0.001〜0.01mass%およびTa:0.001〜0.01mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項2〜5のいずれか1項に記載の方向性電磁鋼板の製造方法。 In addition to the above component composition, the steel material further includes Ni: 0.01 to 0.4 mass%, Cr: 0.01 to 0.25 mass%, Cu: 0.01 to 0.30 mass%, P: 0.00. 005 to 0.10 mass%, Sb: 0.005 to 0.10 mass%, Sn; 0.005 to 0.10 mass%, Bi: 0.005 to 0.10 mass%, Mo: 0.005 to 0.10 mass% , B: 0.0002 to 0.0025 mass%, Te: 0.0005 to 0.01 mass%, Nb: 0.001 to 0.01 mass%, V: 0.001 to 0.01 mass%, and Ta: 0.001. The method for producing a grain-oriented electrical steel sheet according to any one of claims 2 to 5, comprising one or more selected from -0.01 mass%.
JP2016015465A 2016-01-29 2016-01-29 Directional electromagnetic steel sheet and method of manufacturing the same Active JP6512412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015465A JP6512412B2 (en) 2016-01-29 2016-01-29 Directional electromagnetic steel sheet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015465A JP6512412B2 (en) 2016-01-29 2016-01-29 Directional electromagnetic steel sheet and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019024684A Division JP6687919B2 (en) 2019-02-14 2019-02-14 Grain-oriented electrical steel sheet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017133080A true JP2017133080A (en) 2017-08-03
JP6512412B2 JP6512412B2 (en) 2019-05-15

Family

ID=59502460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015465A Active JP6512412B2 (en) 2016-01-29 2016-01-29 Directional electromagnetic steel sheet and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6512412B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067136A1 (en) * 2018-09-27 2020-04-02 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2020111741A1 (en) * 2018-11-30 2020-06-04 주식회사 포스코 Grain-oriented electric steel sheet and manufacturing method therefor
WO2020122558A1 (en) * 2018-12-13 2020-06-18 주식회사 포스코 Grain-oriented electrical steel sheet and method for producing same
CN113088662A (en) * 2021-04-30 2021-07-09 江西红睿马钢管股份有限公司 DX gas carbon potential control method in bearing steel pipe anaerobic spheroidizing annealing process
KR20220089082A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
CN114867882A (en) * 2019-12-20 2022-08-05 Posco公司 Oriented electrical steel sheet and method for manufacturing the same
EP3913087A4 (en) * 2019-01-16 2022-10-12 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
JP7477762B2 (en) 2020-06-24 2024-05-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195239A (en) * 1992-01-16 1993-08-03 Kawasaki Steel Corp Pretreatment for uniform formation of insulating film on magnetic steel sheet
JPH0987744A (en) * 1995-09-25 1997-03-31 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JP2002266027A (en) * 2001-03-09 2002-09-18 Kawasaki Steel Corp Method for manufacturing grain-oriented silicon steel sheet with excellent coating quality of forsterite film
JP2005240096A (en) * 2004-02-26 2005-09-08 Jfe Steel Kk Chromic acid-based insulating film treating liquid for electrical steel sheet and electrical steel sheet with chromic acid-based insulating film treating liquid
JP2008144231A (en) * 2006-12-11 2008-06-26 Jfe Steel Kk Method for manufacturing grain-oriented electrical steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195239A (en) * 1992-01-16 1993-08-03 Kawasaki Steel Corp Pretreatment for uniform formation of insulating film on magnetic steel sheet
JPH0987744A (en) * 1995-09-25 1997-03-31 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JP2002266027A (en) * 2001-03-09 2002-09-18 Kawasaki Steel Corp Method for manufacturing grain-oriented silicon steel sheet with excellent coating quality of forsterite film
JP2005240096A (en) * 2004-02-26 2005-09-08 Jfe Steel Kk Chromic acid-based insulating film treating liquid for electrical steel sheet and electrical steel sheet with chromic acid-based insulating film treating liquid
JP2008144231A (en) * 2006-12-11 2008-06-26 Jfe Steel Kk Method for manufacturing grain-oriented electrical steel sheet

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210042144A (en) * 2018-09-27 2021-04-16 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
CN112771182B (en) * 2018-09-27 2023-03-28 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
RU2765976C1 (en) * 2018-09-27 2022-02-07 ДжФЕ СТИЛ КОРПОРЕЙШН Sheet from textured electrical steel and method of manufacturing thereof
EP3854892A4 (en) * 2018-09-27 2021-07-28 JFE Steel Corporation Grain-oriented electromagnetic steel sheet and method for manufacturing same
JPWO2020067136A1 (en) * 2018-09-27 2021-01-07 Jfeスチール株式会社 Electrical steel sheet and its manufacturing method
CN112771182A (en) * 2018-09-27 2021-05-07 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
KR102542693B1 (en) 2018-09-27 2023-06-13 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for producing same
WO2020067136A1 (en) * 2018-09-27 2020-04-02 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
WO2020111741A1 (en) * 2018-11-30 2020-06-04 주식회사 포스코 Grain-oriented electric steel sheet and manufacturing method therefor
KR102142511B1 (en) * 2018-11-30 2020-08-07 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
JP7221481B2 (en) 2018-11-30 2023-02-14 ポスコ カンパニー リミテッド Grain-oriented electrical steel sheet and manufacturing method thereof
CN113166892A (en) * 2018-11-30 2021-07-23 Posco公司 Oriented electrical steel sheet and method for manufacturing the same
CN113166892B (en) * 2018-11-30 2023-10-13 浦项股份有限公司 Oriented electrical steel sheet and method for manufacturing same
JP2022509864A (en) * 2018-11-30 2022-01-24 ポスコ Directional electrical steel sheet and its manufacturing method
KR20200066062A (en) * 2018-11-30 2020-06-09 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
JP7221481B6 (en) 2018-11-30 2023-02-28 ポスコ カンパニー リミテッド Grain-oriented electrical steel sheet and manufacturing method thereof
KR102171694B1 (en) 2018-12-13 2020-10-29 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
KR20200072859A (en) * 2018-12-13 2020-06-23 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
WO2020122558A1 (en) * 2018-12-13 2020-06-18 주식회사 포스코 Grain-oriented electrical steel sheet and method for producing same
EP3913087A4 (en) * 2019-01-16 2022-10-12 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
CN114867882A (en) * 2019-12-20 2022-08-05 Posco公司 Oriented electrical steel sheet and method for manufacturing the same
JP7477762B2 (en) 2020-06-24 2024-05-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
KR102493775B1 (en) 2020-12-21 2023-01-30 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
WO2022139354A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method therefor
KR20220089082A (en) * 2020-12-21 2022-06-28 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same
CN113088662A (en) * 2021-04-30 2021-07-09 江西红睿马钢管股份有限公司 DX gas carbon potential control method in bearing steel pipe anaerobic spheroidizing annealing process

Also Published As

Publication number Publication date
JP6512412B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP6512412B2 (en) Directional electromagnetic steel sheet and method of manufacturing the same
JP6729821B2 (en) Surface-treated steel sheet and method for producing surface-treated steel sheet
JP7299511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6943335B2 (en) Manufacturing method of Ni diffusion-plated steel sheet and Ni diffusion-plated steel sheet
JP6825681B2 (en) Electrical steel sheet and its manufacturing method
KR20160138253A (en) Method for producing oriented electromagnetic steel sheet
WO2019013351A1 (en) Oriented electromagnetic steel sheet and method for producing same
JP7235058B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6769587B1 (en) Electrical steel sheet and its manufacturing method
JP2009235473A (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JPH11181577A (en) Nonoriented silicon steel sheet excellent in punchability and its production
JP6687919B2 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
JP6341382B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6844110B2 (en) Manufacturing method of grain-oriented electrical steel sheet and manufacturing method of original sheet for grain-oriented electrical steel sheet
JP7299512B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2020149327A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2019099839A (en) Manufacturing method of oriented electromagnetic steel sheet
CN111971419B (en) Ni diffusion-plated steel sheet and method for producing Ni diffusion-plated steel sheet
JP7151792B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2020149323A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP7269504B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2020149325A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP7295394B2 (en) Non-oriented electrical steel sheet
JP2003301246A (en) Grain-oriented silicon steel plate showing ultra-low core loss and excellent cutting characteristic and its manufacturing process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190326

R150 Certificate of patent or registration of utility model

Ref document number: 6512412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250