JP2017132953A - Adhesive composition for structure - Google Patents
Adhesive composition for structure Download PDFInfo
- Publication number
- JP2017132953A JP2017132953A JP2016016069A JP2016016069A JP2017132953A JP 2017132953 A JP2017132953 A JP 2017132953A JP 2016016069 A JP2016016069 A JP 2016016069A JP 2016016069 A JP2016016069 A JP 2016016069A JP 2017132953 A JP2017132953 A JP 2017132953A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- viscosity
- weight
- modified epoxy
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 219
- 239000000853 adhesive Substances 0.000 title claims abstract description 218
- 239000000203 mixture Substances 0.000 title claims abstract description 191
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 434
- 239000003822 epoxy resin Substances 0.000 claims abstract description 432
- 229920001971 elastomer Polymers 0.000 claims abstract description 132
- 239000005060 rubber Substances 0.000 claims abstract description 131
- 239000002245 particle Substances 0.000 claims abstract description 104
- 239000011258 core-shell material Substances 0.000 claims abstract description 96
- 239000003085 diluting agent Substances 0.000 claims abstract description 73
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 30
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 127
- 238000000034 method Methods 0.000 abstract description 115
- 238000000576 coating method Methods 0.000 abstract description 109
- 238000002156 mixing Methods 0.000 abstract description 97
- 238000004140 cleaning Methods 0.000 abstract description 63
- 239000011248 coating agent Substances 0.000 abstract description 63
- 230000008569 process Effects 0.000 abstract description 61
- 238000004070 electrodeposition Methods 0.000 abstract description 58
- 230000009467 reduction Effects 0.000 abstract description 5
- 238000001723 curing Methods 0.000 description 64
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 46
- 238000003466 welding Methods 0.000 description 41
- 238000010438 heat treatment Methods 0.000 description 39
- 239000000463 material Substances 0.000 description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 35
- 230000000052 comparative effect Effects 0.000 description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 30
- 239000000178 monomer Substances 0.000 description 28
- 238000005304 joining Methods 0.000 description 27
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 26
- 230000008859 change Effects 0.000 description 26
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 25
- 230000002829 reductive effect Effects 0.000 description 23
- 239000010410 layer Substances 0.000 description 22
- -1 for example Substances 0.000 description 20
- 239000000047 product Substances 0.000 description 20
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 16
- 239000007788 liquid Substances 0.000 description 16
- 229920000459 Nitrile rubber Polymers 0.000 description 14
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 14
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 14
- 229920005989 resin Polymers 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 229910000831 Steel Inorganic materials 0.000 description 12
- 239000012792 core layer Substances 0.000 description 12
- 125000003700 epoxy group Chemical group 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- 239000004593 Epoxy Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000013329 compounding Methods 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 229930185605 Bisphenol Natural products 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- 239000000945 filler Substances 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 8
- 229910000019 calcium carbonate Inorganic materials 0.000 description 8
- 238000011109 contamination Methods 0.000 description 8
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 230000009477 glass transition Effects 0.000 description 8
- 150000001412 amines Chemical class 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 239000013008 thixotropic agent Substances 0.000 description 7
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 150000001993 dienes Chemical class 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- ZWOULFZCQXICLZ-UHFFFAOYSA-N 1,3-dimethyl-1-phenylurea Chemical compound CNC(=O)N(C)C1=CC=CC=C1 ZWOULFZCQXICLZ-UHFFFAOYSA-N 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 3
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 3
- 238000013007 heat curing Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 description 2
- FCYVWWWTHPPJII-UHFFFAOYSA-N 2-methylidenepropanedinitrile Chemical compound N#CC(=C)C#N FCYVWWWTHPPJII-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 229920003006 Polybutadiene acrylonitrile Polymers 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- IBVAQQYNSHJXBV-UHFFFAOYSA-N adipic acid dihydrazide Chemical compound NNC(=O)CCCCC(=O)NN IBVAQQYNSHJXBV-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- IRLQAJPIHBZROB-UHFFFAOYSA-N buta-2,3-dienenitrile Chemical compound C=C=CC#N IRLQAJPIHBZROB-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009957 hemming Methods 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 150000003672 ureas Chemical class 0.000 description 2
- GAFWRUXZGSUTHS-UHFFFAOYSA-N (3-chloro-4-methylphenyl)urea Chemical class CC1=CC=C(NC(N)=O)C=C1Cl GAFWRUXZGSUTHS-UHFFFAOYSA-N 0.000 description 1
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- HCNHNBLSNVSJTJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)ethane Chemical compound C=1C=C(O)C=CC=1C(C)C1=CC=C(O)C=C1 HCNHNBLSNVSJTJ-UHFFFAOYSA-N 0.000 description 1
- OWEYKIWAZBBXJK-UHFFFAOYSA-N 1,1-Dichloro-2,2-bis(4-hydroxyphenyl)ethylene Chemical compound C1=CC(O)=CC=C1C(=C(Cl)Cl)C1=CC=C(O)C=C1 OWEYKIWAZBBXJK-UHFFFAOYSA-N 0.000 description 1
- ZXHZWRZAWJVPIC-UHFFFAOYSA-N 1,2-diisocyanatonaphthalene Chemical compound C1=CC=CC2=C(N=C=O)C(N=C=O)=CC=C21 ZXHZWRZAWJVPIC-UHFFFAOYSA-N 0.000 description 1
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- BBBUAWSVILPJLL-UHFFFAOYSA-N 2-(2-ethylhexoxymethyl)oxirane Chemical compound CCCCC(CC)COCC1CO1 BBBUAWSVILPJLL-UHFFFAOYSA-N 0.000 description 1
- JJRUAPNVLBABCN-UHFFFAOYSA-N 2-(ethenoxymethyl)oxirane Chemical compound C=COCC1CO1 JJRUAPNVLBABCN-UHFFFAOYSA-N 0.000 description 1
- JPEGUDKOYOIOOP-UHFFFAOYSA-N 2-(hexoxymethyl)oxirane Chemical compound CCCCCCOCC1CO1 JPEGUDKOYOIOOP-UHFFFAOYSA-N 0.000 description 1
- RUGWIVARLJMKDM-UHFFFAOYSA-N 2-(oxiran-2-ylmethoxymethyl)furan Chemical compound C1OC1COCC1=CC=CO1 RUGWIVARLJMKDM-UHFFFAOYSA-N 0.000 description 1
- BTBGDFGJZOTWNA-UHFFFAOYSA-N 2-(oxiran-2-ylmethoxymethyl)oxolane Chemical compound C1OC1COCC1CCCO1 BTBGDFGJZOTWNA-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- HJEORQYOUWYAMR-UHFFFAOYSA-N 2-[(2-butylphenoxy)methyl]oxirane Chemical compound CCCCC1=CC=CC=C1OCC1OC1 HJEORQYOUWYAMR-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- YTWBFUCJVWKCCK-UHFFFAOYSA-N 2-heptadecyl-1h-imidazole Chemical compound CCCCCCCCCCCCCCCCCC1=NC=CN1 YTWBFUCJVWKCCK-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 1
- LLEASVZEQBICSN-UHFFFAOYSA-N 2-undecyl-1h-imidazole Chemical compound CCCCCCCCCCCC1=NC=CN1 LLEASVZEQBICSN-UHFFFAOYSA-N 0.000 description 1
- JSIAIROWMJGMQZ-UHFFFAOYSA-N 2h-triazol-4-amine Chemical class NC1=CNN=N1 JSIAIROWMJGMQZ-UHFFFAOYSA-N 0.000 description 1
- XYXBMCIMPXOBLB-UHFFFAOYSA-N 3,4,5-tris(dimethylamino)-2-methylphenol Chemical compound CN(C)C1=CC(O)=C(C)C(N(C)C)=C1N(C)C XYXBMCIMPXOBLB-UHFFFAOYSA-N 0.000 description 1
- KDQTUCKOAOGTLT-UHFFFAOYSA-N 3-[3-(dimethylcarbamoylamino)-4-methylphenyl]-1,1-dimethylurea Chemical compound CN(C)C(=O)NC1=CC=C(C)C(NC(=O)N(C)C)=C1 KDQTUCKOAOGTLT-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- XOJWAAUYNWGQAU-UHFFFAOYSA-N 4-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCOC(=O)C(C)=C XOJWAAUYNWGQAU-UHFFFAOYSA-N 0.000 description 1
- BATCUENAARTUKW-UHFFFAOYSA-N 4-[(4-hydroxyphenyl)-diphenylmethyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 BATCUENAARTUKW-UHFFFAOYSA-N 0.000 description 1
- IJWIRZQYWANBMP-UHFFFAOYSA-N 4-[2-(4-hydroxy-3-propan-2-ylphenyl)propan-2-yl]-2-propan-2-ylphenol Chemical compound C1=C(O)C(C(C)C)=CC(C(C)(C)C=2C=C(C(O)=CC=2)C(C)C)=C1 IJWIRZQYWANBMP-UHFFFAOYSA-N 0.000 description 1
- PVFQHGDIOXNKIC-UHFFFAOYSA-N 4-[2-[3-[2-(4-hydroxyphenyl)propan-2-yl]phenyl]propan-2-yl]phenol Chemical compound C=1C=CC(C(C)(C)C=2C=CC(O)=CC=2)=CC=1C(C)(C)C1=CC=C(O)C=C1 PVFQHGDIOXNKIC-UHFFFAOYSA-N 0.000 description 1
- TYOXIFXYEIILLY-UHFFFAOYSA-N 5-methyl-2-phenyl-1h-imidazole Chemical compound N1C(C)=CN=C1C1=CC=CC=C1 TYOXIFXYEIILLY-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- VOWWYDCFAISREI-UHFFFAOYSA-N Bisphenol AP Chemical compound C=1C=C(O)C=CC=1C(C=1C=CC(O)=CC=1)(C)C1=CC=CC=C1 VOWWYDCFAISREI-UHFFFAOYSA-N 0.000 description 1
- HTVITOHKHWFJKO-UHFFFAOYSA-N Bisphenol B Chemical compound C=1C=C(O)C=CC=1C(C)(CC)C1=CC=C(O)C=C1 HTVITOHKHWFJKO-UHFFFAOYSA-N 0.000 description 1
- GIXXQTYGFOHYPT-UHFFFAOYSA-N Bisphenol P Chemical compound C=1C=C(C(C)(C)C=2C=CC(O)=CC=2)C=CC=1C(C)(C)C1=CC=C(O)C=C1 GIXXQTYGFOHYPT-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- LICBDGNNWXCPTO-UHFFFAOYSA-N C(C)(=O)OC=C=C=C Chemical compound C(C)(=O)OC=C=C=C LICBDGNNWXCPTO-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 239000004838 Heat curing adhesive Substances 0.000 description 1
- HJOVHMDZYOCNQW-UHFFFAOYSA-N Isophorone Natural products CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 241000238367 Mya arenaria Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NJYZCEFQAIUHSD-UHFFFAOYSA-N acetoguanamine Chemical compound CC1=NC(N)=NC(N)=N1 NJYZCEFQAIUHSD-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 238000007718 adhesive strength test Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 229910052661 anorthite Inorganic materials 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- UTTHLMXOSUFZCQ-UHFFFAOYSA-N benzene-1,3-dicarbohydrazide Chemical compound NNC(=O)C1=CC=CC(C(=O)NN)=C1 UTTHLMXOSUFZCQ-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- ZFVMWEVVKGLCIJ-UHFFFAOYSA-N bisphenol AF Chemical compound C1=CC(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C=C1 ZFVMWEVVKGLCIJ-UHFFFAOYSA-N 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- DGJMPUGMZIKDRO-UHFFFAOYSA-N cyanoacetamide Chemical compound NC(=O)CC#N DGJMPUGMZIKDRO-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- GWWPLLOVYSCJIO-UHFFFAOYSA-N dialuminum;calcium;disilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] GWWPLLOVYSCJIO-UHFFFAOYSA-N 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- VVYDVQWJZWRVPE-UHFFFAOYSA-L dimethyltin(2+);diiodide Chemical compound C[Sn](C)(I)I VVYDVQWJZWRVPE-UHFFFAOYSA-L 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- GRGBENNNGZARRZ-UHFFFAOYSA-N dodecanedihydrazide Chemical compound NNC(=O)CCCCCCCCCCC(=O)NN GRGBENNNGZARRZ-UHFFFAOYSA-N 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- KLFSCDLQXKYZFJ-UHFFFAOYSA-N ethanamine trihydrofluoride Chemical compound F.F.F.C(C)N KLFSCDLQXKYZFJ-UHFFFAOYSA-N 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- XXOYNJXVWVNOOJ-UHFFFAOYSA-N fenuron Chemical compound CN(C)C(=O)NC1=CC=CC=C1 XXOYNJXVWVNOOJ-UHFFFAOYSA-N 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- LULWTBQRAIOSQN-UHFFFAOYSA-N hydroxymethyl 2-methylprop-2-enoate Chemical compound C(C(=C)C)(=O)OCO.C(C(=C)C)(=O)OCO LULWTBQRAIOSQN-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine powder Natural products NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- ULLDRQCJTSHDDT-UHFFFAOYSA-N penta-2,3,4-trienenitrile Chemical compound C=C=C=CC#N ULLDRQCJTSHDDT-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006295 polythiol Polymers 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- DUIOPKIIICUYRZ-UHFFFAOYSA-N semicarbazide Chemical compound NNC(N)=O DUIOPKIIICUYRZ-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- XFVUECRWXACELC-UHFFFAOYSA-N trimethyl oxiran-2-ylmethyl silicate Chemical compound CO[Si](OC)(OC)OCC1CO1 XFVUECRWXACELC-UHFFFAOYSA-N 0.000 description 1
- DSROZUMNVRXZNO-UHFFFAOYSA-K tris[(1-naphthalen-1-yl-3-phenylnaphthalen-2-yl)oxy]alumane Chemical compound C=1C=CC=CC=1C=1C=C2C=CC=CC2=C(C=2C3=CC=CC=C3C=CC=2)C=1O[Al](OC=1C(=C2C=CC=CC2=CC=1C=1C=CC=CC=1)C=1C2=CC=CC=C2C=CC=1)OC(C(=C1C=CC=CC1=C1)C=2C3=CC=CC=C3C=CC=2)=C1C1=CC=CC=C1 DSROZUMNVRXZNO-UHFFFAOYSA-K 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Epoxy Resins (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
本発明は、自動車、産業用車両の車体パネル等の構造接着に使用する構造用接着剤組成物であって、特に、被塗布物に塗布する際に加熱によって減粘させて塗布する構造用接着剤組成物に関するものである。 The present invention relates to a structural adhesive composition for use in structural bonding of automobiles, industrial vehicle body panels, and the like, and in particular, structural bonding applied by reducing the viscosity by heating when applied to an object to be coated. It is related with an agent composition.
近年、地球温暖化の抑制と地球環境の保護を究極の目標とした自動車等の車両の燃費の向上を主目的として、低燃費化の動きが加速しているのに伴い、車両の軽量化の検討が活発に試みられている。軽量化実現の一手段として、例えば、自動車等の車両の車体パネル等では、鋼板の厚みを薄くする薄肉化を行ったり、アルミニウム等の軽量な材料を使用したりすることで、軽量化する試みがなされている。
一方で、消費者のニーズに対応して自動車の高性能化や高級化も進んでおり、走行性能、操作性能、衝突安全性等の向上を目的として車体の剛性を高める検討もなされている。車体の剛性を高めるために、従来は構造部材の厚肉化や補強板の組み付け等が行われていたが、構造部材の厚肉化や補強板の組み付けは、車体の重量増加に繋がり、自動車の軽量化のトレンドに対応できないでいた。
In recent years, with the aim of improving the fuel efficiency of vehicles such as automobiles with the ultimate goal of suppressing global warming and protecting the global environment, the trend toward lighter fuel consumption has been accelerating. Consideration is being actively attempted. As a means of realizing weight reduction, for example, in a body panel of a vehicle such as an automobile, an attempt to reduce the weight by reducing the thickness of the steel plate or using a lightweight material such as aluminum. Has been made.
On the other hand, in response to the needs of consumers, the performance and upgrading of automobiles are also progressing, and studies have been made to increase the rigidity of the vehicle body for the purpose of improving running performance, operation performance, collision safety, and the like. In order to increase the rigidity of the vehicle body, thickening of the structural member and assembly of the reinforcing plate were conventionally performed. However, thickening of the structural member and assembly of the reinforcing plate led to an increase in the weight of the vehicle body. Could not respond to the trend of weight reduction.
そこで、車体の軽量化と剛性の向上を両立させる技術として、構造部材の接合を強化させる方法が試みられており、その接合方法の一つとして、接着剤とスポット溶接との併用による接合技術(ウエルドボンド工法)が注目されている。このウエルドボンド工法においては、一般的に、まず接合部位に接着剤が塗布され、次いでスポット溶接がなされる。ここでのスポット溶接は、接合部位に接着剤(接着剤組成物)が塗布された複数の鋼板等の構造部材を重ね合わせ、それらを棒状の電極で挟んで接合させる鋼板等の構造部材を圧着し、そこに大電流を流すことによって行われ、電極間に通電されたその抵抗熱で鋼板等の構造部材を高温化して溶接するものである。
スポット溶接前に接合部位に塗布される接着剤としては、エポキシ樹脂系の加熱硬化型接着剤(構造用接着剤)が広く用いられており、接合部位に塗布した接合部間の接着剤はスポット溶接直後に加熱によって硬化させることも可能であるが、工数の低減やコスト削減等の観点から、通常は、車体組み立て工程の後に行われる電着塗装工程後の塗装乾燥炉での電着塗膜の焼付と同時に、塗装乾燥炉の熱を利用して硬化される。
Therefore, as a technique to achieve both weight reduction and rigidity improvement of the vehicle body, a method of strengthening the joining of structural members has been tried. As one of the joining methods, a joining technique using a combination of an adhesive and spot welding ( Weld bond method is attracting attention. In this weld bond method, in general, an adhesive is first applied to a joining portion, and then spot welding is performed. In this spot welding, a plurality of structural members such as steel plates coated with an adhesive (adhesive composition) are overlapped at the joining site, and the structural members such as steel plates are joined by sandwiching them with rod-shaped electrodes. However, this is performed by passing a large current therethrough, and the structural member such as a steel plate is heated at a high temperature and welded by the resistance heat applied between the electrodes.
Epoxy resin-based heat-curing adhesives (structural adhesives) are widely used as adhesives that are applied to joints before spot welding, and the adhesive between joints applied to joints is a spot. Although it is possible to cure by heating immediately after welding, from the viewpoint of reducing man-hours and cost, etc., it is usually an electrodeposition coating film in a coating drying furnace after the electrodeposition coating process performed after the body assembly process At the same time as baking, it is cured using the heat of the paint drying furnace.
ところで、車体組み立て工程後に行われる電着塗装工程では、防錆を目的とした下地処理(電着塗装)の前処理として、一般的に、車体の洗浄が行われている。
ここで、上述したように、車体組立工程で接合部位に塗布した接着剤は電着塗装工程後の塗装乾燥炉の熱を利用して硬化させているため、電着塗装工程における洗浄処理の際には、かかる接着剤は未硬化の状態にある。
このため、電着塗装工程内において電着塗装の前処理で施される洗浄処理に使用される水流の力(流水圧)によって、接合部位に塗布した接着剤が千切れたり破壊されたりして、飛散、変形(位置ずれ)、流出、脱落等する恐れがある。
By the way, in the electrodeposition coating process performed after the vehicle body assembly process, the vehicle body is generally cleaned as a pretreatment for the base treatment (electrodeposition coating) for the purpose of rust prevention.
Here, as described above, since the adhesive applied to the joining part in the vehicle body assembly process is cured by using the heat of the coating drying furnace after the electrodeposition coating process, the cleaning process in the electrodeposition coating process is performed. In some cases, such an adhesive is in an uncured state.
For this reason, the adhesive applied to the joint site may be broken or destroyed by the force of the water flow (flowing water pressure) used in the cleaning treatment performed in the electrodeposition coating pretreatment in the electrodeposition coating process. , Scattering, deformation (position shift), outflow, dropout, etc.
特に、鋼板等の接合部位に適用する接着剤は、接合強度、防錆性、塗布状態の管理の観点から、鋼板端部から食み出す程に接合部全面に塗布するのが好ましいが、鋼板の接合部位から食み出た接着剤が、電着塗装工程内の洗浄処理における流水圧によって飛散、流出等して車体表面に付着することで塗装不良を引き起こしたり、電着液を汚染したり、また、流水圧によって接着剤が変形(位置ずれ)等した場合には、後のシーラ塗布工程で不具合を生じさせたりする恐れがある。このため、現状では接着剤の適用は接合部位の一部採用に留まっている。 In particular, it is preferable that the adhesive applied to the joining portion of the steel plate or the like is applied to the entire surface of the joint so as to protrude from the end of the steel plate from the viewpoint of joining strength, rust prevention, and application state management. Adhesive that protrudes from the joints of the splatters may cause coating defects or contaminate the electrodeposition liquid by adhering to the surface of the vehicle body due to splashing, outflowing, etc. due to flowing water pressure in the cleaning process in the electrodeposition coating process. In addition, when the adhesive is deformed (position misalignment) due to flowing water pressure, there is a risk of causing problems in a later sealer coating process. For this reason, at present, the application of the adhesive is limited to a part of the joining portion.
ここで、洗浄処理時の流水圧による接着剤の飛散等を防止する技術として、例えば、被接着体に接着剤を塗布したのち、電着塗装工程前に、短時間で高温加熱して疑似硬化を行うことが知られており、例えば、特許文献1には、エポキシ樹脂と、ガラス転移温度−30℃以下の(メタ)アクリレート系重合体から成るコア及びガラス転移温度70℃以上の架橋性単量体単位を含有する(メタ)アクリレート系重合体から成るシェルから構成された重量平均粒子径が0.1〜3.0μmのコアを用いて得られるコアシェル型粉末状重合体と、エポキシ樹脂用潜在型硬化剤とを含有することで、疑似硬化性を有するエポキシ樹脂系接着性組成物が開示されている。 Here, as a technique for preventing the scattering of the adhesive due to the flowing water pressure during the cleaning process, for example, after applying the adhesive to the adherend, it is heated at a high temperature in a short time and pseudo-cured before the electrodeposition coating process For example, Patent Document 1 discloses a crosslinkable monomer having an epoxy resin, a core composed of a (meth) acrylate polymer having a glass transition temperature of −30 ° C. or lower, and a glass transition temperature of 70 ° C. or higher. A core-shell type powdery polymer obtained by using a core composed of a (meth) acrylate polymer containing a monomer unit and having a weight average particle diameter of 0.1 to 3.0 μm, and an epoxy resin An epoxy resin-based adhesive composition having pseudo-curability by containing a latent curing agent is disclosed.
しかし、このような予備加熱による疑似硬化は、予備加熱作業及び加熱後の冷却作業等の煩雑な工程が必要で時間や手間を要し、工数とコストの増加を伴うものである。このため、工程上十分な加熱温度と時間をかけることができず、接着剤を十分に硬化させて、洗浄処理時の流水圧による飛散等を防止するにも限界が生じる。加えて、エポキシ系接着剤は、反応性が高く加熱によって発泡し易い傾向があることから、短時間で高温まで急激に加熱させる予備加熱によって疑似硬化させた場合、接着剤の層の内部に発泡が生じやすく、それによって接着強度が低下する恐れがある。 However, such pseudo-curing by preheating requires complicated steps such as preheating work and cooling work after heating, which requires time and labor, and increases man-hours and costs. For this reason, a sufficient heating temperature and time cannot be applied in the process, and there is a limit in preventing the scattering due to the flowing water pressure during the cleaning process by sufficiently curing the adhesive. In addition, epoxy adhesives are highly reactive and tend to foam by heating, so if they are pseudo-cured by preheating that rapidly heats up to a high temperature in a short time, foam is formed inside the adhesive layer. Is likely to occur, which may reduce the adhesive strength.
そこで、洗浄処理時の流水圧による接着剤の飛散、変形(位置ずれ)、流出、脱落等の対応として、洗浄処理工程を有する電着塗装工程内の雰囲気温度である40℃付近の温度領域における接着剤の粘度の高設定化が考えられる。 Therefore, in response to the scattering, deformation (position shift), outflow, dropout, etc. of the adhesive due to the flowing water pressure during the cleaning process, in the temperature region around 40 ° C. which is the atmospheric temperature in the electrodeposition coating process having the cleaning process. It is conceivable to increase the viscosity of the adhesive.
しかしながら、例えば、単純に、高粘度樹脂の多量添加により、または、コロイダル炭酸カルシウムやシリカゲル等のチキソ性(チキソトロピー)を付与する充填剤の多量添加等により高粘度化して電着塗装工程内の雰囲気温度での粘度が高くなるように設計しても、温度変化に対する粘度変動も大きくなることから、塗布時の温度環境条件下での粘度も高いものとなってしまい塗布作業性の低下を招くことになる。また、充填剤の多量添加によって、接着強度にも悪影響を及ぼすことが予想される。 However, the atmosphere in the electrodeposition coating process is increased by simply adding a large amount of a high viscosity resin, or by adding a large amount of a filler that imparts thixotropy (thixotropy) such as colloidal calcium carbonate or silica gel. Even if it is designed to increase the viscosity at temperature, the viscosity variation with respect to the temperature change also increases, so the viscosity under the temperature environment condition at the time of coating also becomes high, leading to a decrease in coating workability. become. In addition, the addition of a large amount of filler is expected to adversely affect the adhesive strength.
ここで、接着剤の塗布時には作業性に優れるとともに、電着塗装工程あるいはその後の洗浄工程においては高粘度となって飛散・流出を防止できるとして、特許文献2では、ビスフェノールを原料として合成された20℃で液状の主エポキシ樹脂と、NBR及びSBRから選ばれる少なくとも一種からなり主エポキシ樹脂と反応しない固形ゴム成分と、加熱により活性化されるエポキシ樹脂用潜在性硬化剤とを含み、JIS−K2220に基づき剪断速度が15.5sec−1の条件で測定される見掛け粘度において、20℃における見掛け粘度(V20)が200〜500Pa・sの範囲にあり、40℃における見掛け粘度(V40)に対する20℃における見掛け粘度(V20)の比(V20/V40)の値が2.0以上かつ3.0未満の範囲にある構造用接着剤組成物を開示している。 Here, in addition to being excellent in workability at the time of applying the adhesive and being able to prevent scattering and outflow in the electrodeposition coating process or the subsequent cleaning process, it was synthesized using bisphenol as a raw material. A main epoxy resin that is liquid at 20 ° C., a solid rubber component that is at least one selected from NBR and SBR and does not react with the main epoxy resin, and a latent curing agent for epoxy resin that is activated by heating, JIS- The apparent viscosity measured at a shear rate of 15.5 sec −1 based on K2220 has an apparent viscosity (V 20 ) at 20 ° C. in the range of 200 to 500 Pa · s, and an apparent viscosity at 40 ° C. (V 40 ). and the value of the ratio of the apparent viscosity (V 20) (V 20 / V 40) is 2.0 or more at 20 ° C. for less than 3.0 It discloses a structural adhesive composition in the range.
また、塗布作業性、接着強度等の物性を損なうことなく、耐流水圧性に優れるとして、特許文献3において、少なくともエポキシ樹脂と、一次粒子と二次凝集体とが混在する分散形態をなすコアシェル型ゴム粒子と硬化剤とを含有する構造用接着剤組成物が開示されている。 In addition, in Patent Document 3, a core-shell type having a dispersion form in which at least an epoxy resin, primary particles, and secondary aggregates are mixed is assumed to be excellent in flowing water pressure resistance without impairing physical properties such as coating workability and adhesive strength. A structural adhesive composition containing rubber particles and a curing agent is disclosed.
ところが、特許文献2においては、塗布時に加温しないことを前提としており、また、特許文献3でも、実施例において40℃の塗布作業性を評価基準としていることから、室温条件での塗布作業性を考慮すると、洗浄処理工程を有する電着塗装工程内の雰囲気温度(40℃付近)での粘度を高くするにも限度があった。 However, in Patent Document 2, it is premised that heating is not performed at the time of coating, and in Patent Document 3, the coating workability at 40 ° C. is used as an evaluation standard in the examples. In view of the above, there is a limit to increasing the viscosity at the atmospheric temperature (around 40 ° C.) in the electrodeposition coating process having the cleaning process.
ここで、一般的には未硬化状態の接着剤の粘度(材料粘度)を高く設定するほど温度変化に対する粘度変動も大きくなることから、電着塗装工程内の雰囲気温度条件での粘度が高くなるようにしようとすると、その他の温度領域の粘度も高くなる。このため、上述した接着剤とスポット溶接を併用して接合するウエルドボンド工法において、冬場の低温下では、接合部位に接着剤を塗布して重ね合わせた鋼板等の構造部材をスポット溶接時の電極で挟んだ際でも、鋼板等の構造部材の接合部位に塗布した接着剤が押しつぶされ難くなり、それによって、重ね合わせた鋼板等の構造部材が密着されずに通電不良が生じ、スポット溶接不良となって接合部の接合強度が低下する問題が生じる。
また、被塗布物に塗布する際に加熱によって減粘させて塗布するホットアプライとすることにより塗布作業性を改善できも、粘度が高すぎる場合には、塗布する際の加熱によって十分に減粘させることができず、良好な塗布作業性を確保できない。
Here, in general, as the viscosity (material viscosity) of the uncured adhesive is set higher, the viscosity fluctuation with respect to the temperature change becomes larger, so that the viscosity under the atmospheric temperature condition in the electrodeposition coating process becomes higher. When trying to do so, the viscosity in other temperature ranges also increases. For this reason, in the weld bond method in which the above-mentioned adhesive and spot welding are jointly used, in a low temperature in winter, an electrode at the time of spot welding is applied to a structural member such as a steel plate that is laminated by applying an adhesive to the joint part. Even when sandwiched between, the adhesive applied to the joint part of the structural member such as steel plate is difficult to be crushed, thereby causing the energization failure without causing the structural member such as the overlapped steel plate to adhere, and spot welding failure and As a result, there arises a problem that the joint strength of the joint portion is lowered.
In addition, the coating workability can be improved by applying a hot-applied coating by reducing the viscosity by heating at the time of application to the object to be coated. However, if the viscosity is too high, the viscosity is sufficiently reduced by heating at the time of application. It is not possible to ensure good coating workability.
そこで、本発明は、接着性を低下させることなく、かつ、ホットアプライによる塗布作業性の低下やウエルドボンド工法における低温下での接合強度の低下を招くことなく、洗浄工程を有する電着塗装工程内の雰囲気温度における粘度を向上させることができる構造用接着剤組成物の提供を課題とするものである。 Therefore, the present invention provides an electrodeposition coating process having a cleaning process without reducing adhesiveness and without causing deterioration in application workability by hot apply and reduction in bonding strength at low temperatures in the weld bond method. An object of the present invention is to provide a structural adhesive composition capable of improving the viscosity at the ambient temperature.
請求項1の構造用接着剤組成物は、少なくともエポキシ樹脂と、コアシェル型ゴム粒子と、硬化剤と、反応性希釈剤とを含有したものについて発明者らが追及すると、前記エポキシ樹脂として汎用エポキシ樹脂と変性エポキシ樹脂を配合重量比1:2〜2:1の範囲内(1:1を中間として1:2以上、2:1以下)で併用し、前記コアシェル型ゴム粒子が45〜90重量部の範囲内(45重量部以上、90重量部以下)、前記反応性希釈剤が18〜40重量部の範囲内(18重量部以上、40重量部以下)で配合されたものが好適であることが確認された。
なお、上記の数値は、厳格なものでなく概ねであり、当然、材料の種類、測定等による誤差を含む概略値であり、数割の誤差を否定するものではない。
The structural adhesive composition according to claim 1 is a general-purpose epoxy resin as the epoxy resin when the inventors have pursued at least an epoxy resin, core-shell type rubber particles, a curing agent, and a reactive diluent. Resin and modified epoxy resin are used in combination within a blending weight ratio range of 1: 2 to 2: 1 (1: 2 to 2: 1 with 1: 1 as the middle), and the core-shell type rubber particles are 45 to 90 weights. In which the reactive diluent is blended within the range of 18 to 40 parts by weight (18 parts by weight or more and 40 parts by weight or less). It was confirmed.
In addition, said numerical value is not a strict thing but is approximate, and naturally, it is an approximate value including an error due to the type of material, measurement, etc., and does not deny an error of several percent.
請求項2の構造用接着剤組成物は、発明者らの実験によれば、特に、好ましくは、前記汎用エポキシ樹脂と前記変性エポキシ樹脂は、それぞれ粘度が5000〜200000mPa・s/25℃の範囲内であるものである。
ここで、上記粘度は、JIS−K2220に基づき剪断速度15.5s-1の測定条件で測定されたものである。
なお、上記の数値は、厳格なものでなく概ねであり、当然、材料の種類、測定等による誤差を含む概略値であり、数割の誤差を否定するものではない。
According to the experiments by the inventors, the structural adhesive composition according to claim 2 is particularly preferably in the range where the viscosity of the general-purpose epoxy resin and the modified epoxy resin is 5000 to 200000 mPa · s / 25 ° C., respectively. It is what is inside.
Here, the viscosity is measured under a measurement condition of a shear rate of 15.5 s −1 based on JIS-K2220.
In addition, said numerical value is not a strict thing but is approximate, and naturally, it is an approximate value including an error due to the type of material, measurement, etc., and does not deny an error of several percent.
請求項3の構造用接着剤組成物の前記汎用エポキシ樹脂は、ビフェノールA型エポキシ樹脂であり、前記変性エポキシ樹脂は、ウレタン変性エポキシ樹脂及び/またはゴム変性エポキシ樹脂であるものである。 The general-purpose epoxy resin of the structural adhesive composition according to claim 3 is a biphenol A type epoxy resin, and the modified epoxy resin is a urethane-modified epoxy resin and / or a rubber-modified epoxy resin.
請求項4の構造用接着剤組成物は、発明者らの実験によれば、特に、好ましくは、5℃の粘度が5000〜8000Pa・sの範囲内であり、40℃の粘度が500〜700Pa・sの範囲内であり、60℃の粘度が140〜280Pa・sの範囲内であるものである。
ここで、上記粘度は、JIS−K2220に基づき剪断速度15.5s-1の測定条件で測定されたものである。
なお、上記の数値は、厳格なものでなく概ねであり、当然、材料の種類、測定等による誤差を含む概略値であり、数割の誤差を否定するものではない。
According to the experiments by the inventors, the structural adhesive composition of claim 4 is particularly preferably a viscosity at 5 ° C. in the range of 5000 to 8000 Pa · s and a viscosity at 40 ° C. of 500 to 700 Pa. It is in the range of s, and the viscosity at 60 ° C. is in the range of 140 to 280 Pa · s.
Here, the viscosity is measured under a measurement condition of a shear rate of 15.5 s −1 based on JIS-K2220.
In addition, said numerical value is not a strict thing but is approximate, and naturally, it is an approximate value including an error due to the type of material, measurement, etc., and does not deny an error of several percent.
請求項5の構造用接着剤組成物は、発明者らの実験によれば、特に、好ましくは、40℃の粘度が500〜700Pa・sの範囲内であり、40℃の粘度に対する60℃の粘度比が0.28〜0.40の範囲内であり、かつ、40℃の粘度に対する5℃の粘度比が9.3〜12.3の範囲内であるものである。
ここで、上記粘度は、JIS−K2220に基づき剪断速度15.5s-1の測定条件で測定されたものである。
なお、上記の数値は、厳格なものでなく概ねであり、当然、材料の種類、測定等による誤差を含む概略値であり、数割の誤差を否定するものではない。
According to the experiments by the inventors, the structural adhesive composition according to claim 5 is particularly preferable when the viscosity at 40 ° C. is in the range of 500 to 700 Pa · s and the viscosity at 40 ° C. The viscosity ratio is in the range of 0.28 to 0.40, and the viscosity ratio of 5 ° C. to the viscosity of 40 ° C. is in the range of 9.3 to 12.3.
Here, the viscosity is measured under a measurement condition of a shear rate of 15.5 s −1 based on JIS-K2220.
In addition, said numerical value is not a strict thing but is approximate, and naturally, it is an approximate value including an error due to the type of material, measurement, etc., and does not deny an error of several percent.
請求項1の発明の構造用接着剤組成物によれば、少なくとも汎用エポキシ樹脂と、変性エポキシ樹脂と、コアシェル型ゴム粒子と、反応性希釈剤と、硬化剤とを含有し、汎用エポキシ樹脂と変性エポキシ樹脂の配合重量比を1:2〜2:1の範囲内とし、変性エポキシ樹脂の配合量100重量部に対して、コアシェル型ゴム粒子が45重量部〜90重量部の範囲内で配合され、反応性希釈剤が18重量部〜40重量部の範囲内で配合されている。 According to the structural adhesive composition of the invention of claim 1, it contains at least a general-purpose epoxy resin, a modified epoxy resin, core-shell type rubber particles, a reactive diluent, and a curing agent, The blended weight ratio of the modified epoxy resin is in the range of 1: 2 to 2: 1, and the core shell type rubber particles are blended in the range of 45 to 90 parts by weight with respect to 100 parts by weight of the modified epoxy resin. The reactive diluent is blended in the range of 18 to 40 parts by weight.
このように、エポキシ樹脂として汎用エポキシ樹脂及び変性エポキシ樹脂を併用して、その配合バランスを所定の範囲内に制御し、また、コアシェル型ゴム粒子の配合量を所定量とし、更に、反応性希釈剤の配合量を所定量に規定することで、洗浄工程を有する電着塗装工程内の雰囲気温度条件(40℃付近)での粘度特性が向上し、しかも、温度変化に対する粘度変動は小さく、ホットアプライによる塗布作業性を確保でき、かつ、低温下でもウエルドボンド工法による接合部の接合強度を確保でき、硬化後の接着性も確保できる。 In this way, a general-purpose epoxy resin and a modified epoxy resin are used in combination as an epoxy resin, the blending balance is controlled within a predetermined range, and the blending amount of the core-shell type rubber particles is set to a predetermined amount. By prescribing the compounding amount of the agent to a predetermined amount, the viscosity characteristics under the atmospheric temperature condition (around 40 ° C.) in the electrodeposition coating process having the cleaning process are improved, and the viscosity fluctuation with respect to the temperature change is small, and the hot The application workability by applying can be ensured, the bonding strength of the bonded portion by the weld bond method can be ensured even at low temperatures, and the adhesiveness after curing can also be ensured.
特に、高粘度特性を有する変性エポキシ樹脂を汎用エポキシ樹脂と併用し、その配合バランスが汎用エポキシ樹脂:変性エポキシ樹脂=1:2〜2:1の範囲内であり、更に、発明者らの実験によれば、特に、好ましくは、変性エポキシ樹脂の配合量100重量部に対して、コアシェル型ゴム粒子が45重量部〜90重量部の範囲内、反応性希釈剤が18重量部〜40重量部の範囲内であれば、40℃における粘度が例えば、500〜700Pa・sの高い粘度特性とすることができ、そのうえ、40℃の粘度に対する60℃の粘度比を例えば、0.28〜0.40とすることができて、60℃の粘度が例えば、140〜280Pa・sで、加熱塗布時に塗布に適度な粘度特性を有し良好な塗布作業性が得られる。また、40℃の粘度に対する5℃の粘度比を例えば、9.3〜12.3とすることができ、5℃の粘度が例えば、5000〜8000Pa・sで、冬場の低温下でもウエルドボンド工法においてスポット溶接に際して接合部位に塗布された接着剤組成物が十分に押し潰される程度に適度な粘度特性を有し、接合する構造部材同士が密着されることで通電不良を生じさせることがなく、接合部において良好な接合強度が得られ、かつ、硬化後の接着性も良好に確保できる。 In particular, a modified epoxy resin having high viscosity characteristics is used in combination with a general-purpose epoxy resin, and the blending balance thereof is within a range of general-purpose epoxy resin: modified epoxy resin = 1: 2 to 2: 1. In particular, preferably, the core-shell type rubber particles are within a range of 45 to 90 parts by weight and the reactive diluent is 18 to 40 parts by weight with respect to 100 parts by weight of the modified epoxy resin. Within the range, the viscosity at 40 ° C. can be as high as 500 to 700 Pa · s, and the viscosity ratio at 60 ° C. to the viscosity at 40 ° C. is 0.28 to 0.00, for example. 40, and the viscosity at 60 ° C. is, for example, 140 to 280 Pa · s, and it has an appropriate viscosity characteristic for application at the time of heat application, and good application workability is obtained. Further, the viscosity ratio of 5 ° C. to the viscosity of 40 ° C. can be set to, for example, 9.3 to 12.3, and the viscosity at 5 ° C. is, for example, 5000 to 8000 Pa · s. In the spot welding, the adhesive composition applied to the joining site has a suitable viscosity characteristic to such an extent that the adhesive composition is sufficiently crushed, and without causing poor conduction due to close contact between the structural members to be joined, Good joint strength can be obtained at the joint, and good adhesion after curing can be secured.
こうして、本発明の構造用接着剤組成物によれば、洗浄工程を有する電着塗装工程内の雰囲気温度条件(40℃付近)における粘度が極めて高いにも関わらず、温度変化に対する粘度変動が小さくて、硬化を生じさせない温度での加熱によって十分に減粘が可能な粘度特性を有し、また、低温下でもウエルドボンド工法における構造用接着剤組成物塗布後のスポット溶接に際して接合部位に塗布された接着剤組成物が十分に押し潰されて接合する構造部材同士が密着されることで通電不良を生じさせることがなく、良好な塗布作業性及び接合強度が得られ、更に、接着性も確保できる。
即ち、接着性を低下させることなく、かつ、ホットアプライによる塗布作業性や低温下でのウエルドボンド工法による接合強度の低下を招くことなく、洗浄工程を有する電着塗装工程内の雰囲気温度における粘度を向上させることができる。
Thus, according to the structural adhesive composition of the present invention, although the viscosity at the atmospheric temperature condition (around 40 ° C.) in the electrodeposition coating process having the cleaning process is extremely high, the viscosity fluctuation with respect to the temperature change is small. In addition, it has a viscosity characteristic that can be sufficiently reduced by heating at a temperature that does not cause curing, and is applied to the joint site during spot welding after applying the structural adhesive composition in the weld bond method even at low temperatures. Adhesive composition is sufficiently crushed and the structural members to be joined are brought into close contact with each other so that poor electrical conduction does not occur, good coating workability and bonding strength are obtained, and adhesion is also secured. it can.
That is, the viscosity at the atmospheric temperature in the electrodeposition coating process having a cleaning process without lowering the adhesiveness and without lowering the bonding workability by hot apply and the weld bond method at a low temperature. Can be improved.
請求項2の発明の構造用接着剤組成物は、発明者らの実験によると、特に、好ましくは、前記汎用エポキシ樹脂と前記変性エポキシ樹脂は、それぞれ粘度が5000〜200000mPa・s/25℃の範囲内である。エポキシ樹脂の粘度が5000〜20000mPa・s/25℃の範囲内であれば、請求項1に記載の効果に加えて、所望とする粘度特性の調製が容易にできる。 According to the experiments by the inventors, the structural adhesive composition of the invention of claim 2 is particularly preferably that the general-purpose epoxy resin and the modified epoxy resin have a viscosity of 5000 to 200000 mPa · s / 25 ° C., respectively. Within range. If the viscosity of the epoxy resin is in the range of 5000 to 20000 mPa · s / 25 ° C., in addition to the effect of the first aspect, the desired viscosity characteristics can be easily prepared.
請求項3の発明の構造用接着剤組成物によれば、前記汎用エポキシ樹脂は、ビフェノールA型エポキシ樹脂であり、前記変性エポキシ樹脂は、ウレタン変性エポキシ樹脂及び/またはゴム変性エポキシ樹脂であるから、請求項1または請求項2に記載の効果に加えて、低コストで、高い剪断強度や剥離強度が得られて高い接着性を確保できる。 According to the structural adhesive composition of the invention of claim 3, the general-purpose epoxy resin is a biphenol A type epoxy resin, and the modified epoxy resin is a urethane-modified epoxy resin and / or a rubber-modified epoxy resin. In addition to the effects of claim 1 or claim 2, high shear strength and peel strength can be obtained at low cost, and high adhesiveness can be ensured.
請求項4の発明の構造用接着剤組成物によれば、発明者らの実験によれば、特に、好ましくは、5℃の粘度が5000〜8000Pa・sの範囲内であり、40℃の粘度が500〜700Pa・sの範囲内であり、60℃の粘度が140〜280Pa・sの範囲内である。
40℃の粘度が500〜700Pa・sの範囲内であり、洗浄工程を有する電着塗装工程内の雰囲気温度条件(40℃付近)での粘度が極めて高いことで、請求項1乃至請求項3の何れか1つに記載の効果に加えて、耐流水圧性が極めて高くなり洗浄時の流水圧等によって未硬化状態の接着剤組成物が飛散等し難くなるから、接合部位への塗布範囲を広げたり塗布厚みを増やしたりすることが可能である。即ち、接合部位への塗布範囲を広げることで、また、塗布厚みを増やすことで接合端部から接着剤組成物が食み出したとしても、その接着剤組成物の余剰部が洗浄時の流水圧等によって未硬化状態の接着剤組成物が飛散等し難いことで車体に付着して塗装不良や電着液の汚染を招く恐れがない。
また、5℃の粘度が5000〜8000Pa・sの範囲内であるから、低温下でもウエルドボンド工法のスポット溶接時において接合部位に塗布された接着剤組成物が十分に押し潰されて接合する構造部材同士が密着されることで通電不良を生じさせることがなく、 また、適度な定着性で、高い接合強度が得られる。
更に、60℃の粘度が140〜280Pa・sの範囲内であるから、硬化を生じさせない温度での加熱によって塗布作業に適した粘度特性を有し、塗布後も垂れ難く形状保持性が高い。
According to the structural adhesive composition of the invention of claim 4, according to the experiments by the inventors, the viscosity at 5 ° C. is particularly preferably in the range of 5000 to 8000 Pa · s, and the viscosity at 40 ° C. Is in the range of 500 to 700 Pa · s, and the viscosity at 60 ° C. is in the range of 140 to 280 Pa · s.
The viscosity at 40 ° C. is in the range of 500 to 700 Pa · s, and the viscosity at the atmospheric temperature condition (around 40 ° C.) in the electrodeposition coating process having a cleaning process is extremely high. In addition to the effect described in any one of the above, the resistance to flowing water is extremely high, and the adhesive composition in an uncured state is hardly scattered by the flowing water pressure at the time of cleaning, etc. It is possible to widen or increase the coating thickness. That is, even if the adhesive composition protrudes from the joint end by expanding the application range to the joining site or by increasing the application thickness, the surplus part of the adhesive composition is washed with running water during cleaning. Since the uncured adhesive composition is less likely to scatter due to pressure or the like, there is no risk of adhering to the vehicle body and causing poor coating or contamination of the electrodeposition liquid.
In addition, since the viscosity at 5 ° C. is in the range of 5000 to 8000 Pa · s, the adhesive composition applied to the joining portion is sufficiently crushed and joined at the time of spot welding in the weld bond method even at low temperatures. When the members are brought into close contact with each other, there is no failure in energization, and high bonding strength can be obtained with appropriate fixing properties.
Furthermore, since the viscosity at 60 ° C. is in the range of 140 to 280 Pa · s, it has a viscosity characteristic suitable for coating work by heating at a temperature that does not cause curing, and it is difficult to sag after coating and has high shape retention.
請求項5の発明の構造用接着剤組成物は、40℃の粘度が500〜700Pa・sの範囲内であり、40℃の粘度に対する60℃の粘度比が0.28〜0.40の範囲内であり、かつ、40℃の粘度に対する5℃の粘度比が9.3〜12.3の範囲内であるものである。 The structural adhesive composition of the invention of claim 5 has a viscosity at 40 ° C. in the range of 500 to 700 Pa · s, and a viscosity ratio at 60 ° C. to the viscosity at 40 ° C. in the range of 0.28 to 0.40. And a viscosity ratio of 5 ° C. to a viscosity of 40 ° C. is in the range of 9.3 to 12.3.
40℃の粘度が500〜700Pa・sの範囲内であり、洗浄工程を有する電着塗装工程内の雰囲気温度条件(40℃付近)での粘度が極めて高いことで、請求項1乃至請求項3の何れか1つに記載の効果に加えて、耐流水圧性が極めて高くなり洗浄時の流水圧等によって未硬化状態の接着剤組成物が飛散等し難くなるから、接合部位への塗布範囲を広げたり塗布厚みを増やしたりすることが可能である。即ち、接合部位への塗布範囲を広げることで、また、塗布厚みを増やすことで接合端部から接着剤組成物が食み出したとしても、その接着剤組成物の余剰部が洗浄時の流水圧等によって未硬化状態の接着剤組成物が飛散等し難いことで車体に付着して塗装不良や電着液の汚染を招く恐れがない。
また、40℃の粘度に対する60℃の粘度比が0.28〜0.40の範囲内であるから、洗浄工程を有する電着塗装工程内の雰囲気温度条件(40℃付近)での粘度特性が極めて高くても温度変化に対する粘度変動が小さいことで、低温下でもウエルドボンド工法において接合部位に塗布された接着剤組成物が十分に押し潰される粘度特性を有し、接合する構造部材同士を密着できて通電不良を生じさせることがなく、高い接合強度が得られる。
更に、40℃の粘度に対する5℃の粘度比が9.3〜12.3の範囲内であるから、洗浄工程を有する電着塗装工程内の雰囲気温度条件(40℃付近)での粘度特性が極めて高くても温度変化に対する粘度変動が小さいことで、硬化を生じさせない温度での加熱によって十分に減粘が可能な粘度特性を有して塗布作業性を確保でき、塗布後も垂れ難いものとなっている。
The viscosity at 40 ° C. is in the range of 500 to 700 Pa · s, and the viscosity at the atmospheric temperature condition (around 40 ° C.) in the electrodeposition coating process having a cleaning process is extremely high. In addition to the effect described in any one of the above, the resistance to flowing water is extremely high, and the adhesive composition in an uncured state is hardly scattered by the flowing water pressure at the time of cleaning, etc. It is possible to widen or increase the coating thickness. That is, even if the adhesive composition protrudes from the joint end by expanding the application range to the joining site or by increasing the application thickness, the surplus part of the adhesive composition is washed with running water during cleaning. Since the uncured adhesive composition is less likely to scatter due to pressure or the like, there is no risk of adhering to the vehicle body and causing poor coating or contamination of the electrodeposition liquid.
Moreover, since the viscosity ratio of 60 ° C. to the viscosity of 40 ° C. is in the range of 0.28 to 0.40, the viscosity characteristic under the atmospheric temperature condition (around 40 ° C.) in the electrodeposition coating process having the cleaning process is Even if it is extremely high, the viscosity variation with respect to temperature change is small, so that the adhesive composition applied to the joint site in the weld bond method is sufficiently crushed even at low temperatures, and the structural members to be joined are in close contact with each other It is possible to obtain a high bonding strength without causing energization failure.
Furthermore, since the viscosity ratio of 5 ° C. to the viscosity of 40 ° C. is in the range of 9.3 to 12.3, the viscosity characteristic under the atmospheric temperature condition (around 40 ° C.) in the electrodeposition coating process having the cleaning process is Even if it is extremely high, the viscosity fluctuation with respect to temperature change is small, it has a viscosity characteristic that can be sufficiently reduced by heating at a temperature that does not cause curing, it can ensure application workability, and it is difficult to drip after application It has become.
[実施の形態]
以下、本発明の実施の形態について説明する。
本実施の形態の構造用接着剤組成物(以下、「接着剤組成物」と省略することもある)は、少なくとも汎用エポキシ樹脂と、変性エポキシ樹脂と、コアシェル型ゴム粒子と、反応性希釈剤と、硬化剤とを含有するものである。
[Embodiment]
Embodiments of the present invention will be described below.
The structural adhesive composition of the present embodiment (hereinafter sometimes abbreviated as “adhesive composition”) includes at least a general-purpose epoxy resin, a modified epoxy resin, core-shell type rubber particles, and a reactive diluent. And a curing agent.
本実施の形態においては、エポキシ樹脂として汎用エポキシ樹脂と変性エポキシ樹脂が併用される。
汎用エポキシ樹脂は、一般的に変性エポキシ樹脂と比較して、接着剤組成物硬化後の硬化物(接着剤組成物の塗膜)において高い柔軟性や強度を付与できるものであり、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂を始めとし、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAP型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールBP型エポキシ樹脂、ビスフェノールC型エポキシ樹脂、ビスフェノールG型エポキシ樹脂、ビスフェノールM型エポキシ樹脂ビスフェノールP型エポキシ樹脂等のビスフェノール型のニ官能エポキシ樹脂が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることが可能である。
中でも、入手が容易で安価であり、高粘度の選択が可能で粘度調整も容易にできることから、また、硬化した際の強度や硬さの観点から、ビスフェノールA型エポキシ樹脂が好ましい。
In the present embodiment, a general-purpose epoxy resin and a modified epoxy resin are used in combination as the epoxy resin.
A general-purpose epoxy resin can generally give higher flexibility and strength in a cured product (coating film of an adhesive composition) after curing of the adhesive composition, compared with a modified epoxy resin. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol AP type epoxy resin, bisphenol AD type epoxy resin, bisphenol AF type epoxy resin, bisphenol B type epoxy resin, Examples thereof include bisphenol type bifunctional epoxy resins such as bisphenol BP type epoxy resin, bisphenol C type epoxy resin, bisphenol G type epoxy resin, bisphenol M type epoxy resin and bisphenol P type epoxy resin. These can be used alone or in combination of two or more.
Among them, a bisphenol A type epoxy resin is preferable because it is easily available and inexpensive, can be selected with high viscosity, and can be easily adjusted in viscosity, and from the viewpoint of strength and hardness when cured.
変性エポキシ樹脂は、一般的に汎用エポキシ樹脂よりも高粘度特性を有し、硬化物(塗膜)において高い強靭性や可塑性を付与できるものであり、例えば、ウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂、ダイマー酸変性エポキシ樹脂、チオコール変性エポキシ樹脂等が挙げられる。これらはそれぞれ単独でまたは2種以上を組み合わせて用いることが可能である。中でも、ウレタン変性エポキシ樹脂や、CTBN変性エポキシ樹脂、NBR変性エポキシ樹脂等のゴム変性エポキシ樹脂が、汎用エポキシ樹脂や硬化剤との相溶性にも優れ、また、入手が容易であり安価であることから好ましい。 Modified epoxy resins generally have higher viscosity characteristics than general-purpose epoxy resins and can impart high toughness and plasticity in cured products (coating films). For example, urethane-modified epoxy resins, rubber-modified epoxy resins , Dimer acid-modified epoxy resins, thiocol-modified epoxy resins, and the like. These can be used alone or in combination of two or more. Of these, rubber-modified epoxy resins such as urethane-modified epoxy resins, CTBN-modified epoxy resins, and NBR-modified epoxy resins are excellent in compatibility with general-purpose epoxy resins and curing agents, and are easily available and inexpensive. To preferred.
なお、ウレタン変性エポキシ樹脂は、分子中にウレタン結合と2個以上のエポキシ基とを有する樹脂であればよく、例えば、水酸基を有するポリヒドロキシ化合物(ポリエーテルポリオール、ポリエステルポリオール、ポリブタジエンポリオール、ポリオレフィンポリオール、ヒドロキシカルボン酸とアルキレンオキシドの付加物等)及びイソシアネート基を有するポリイソシアネート化合物(トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート等)の付加反応により得られるウレタン結合を有する化合物と、ビスフェノール型エポキシ樹脂(ヒドロキシ基を有するエポキシ化合物)とを反応させて得られる樹脂が使用される。
また、ゴム変性エポキシ樹脂は、分子内にエポキシ基を2個以上有し、骨格がゴムであるエポキシ樹脂であればよく、骨格を形成するゴムとしては、例えば、ポリブタジエン、アクリロニトリルブタジエンゴム(NBR)、両末端にカルボキシル基を有するブタジエン−アクリロニトリルゴム(カルボキシル基末端ポリブタジエン−アクリロニトリルゴム(carboxyl-terminated butadiene-nitrile rubber:CTBN))、両末端にアミノ基を有するブタジエン−アクリロニトリルゴム(アミノ基末端ポリブタジエン−アクリロニトリルゴム(amino-terminated butadiene-nitrile rubber:ATBN))、両末端にカルボキシル基およびアミノ基を有するブタジエン−アクリロニトリルゴム(カルボキシル基末端及びアミノ基末端ポリブタジエン−アクリロニトリルゴム)等が挙げられる。
The urethane-modified epoxy resin may be a resin having a urethane bond and two or more epoxy groups in the molecule, such as a polyhydroxy compound having a hydroxyl group (polyether polyol, polyester polyol, polybutadiene polyol, polyolefin polyol). , Hydroxycarboxylic acid and alkylene oxide adducts) and polyisocyanate compounds having an isocyanate group (tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, etc.) and a compound having a urethane bond, and a bisphenol type epoxy resin ( A resin obtained by reacting with an epoxy compound having a hydroxy group) is used.
The rubber-modified epoxy resin may be an epoxy resin having two or more epoxy groups in the molecule and having a skeleton made of rubber. Examples of the rubber forming the skeleton include polybutadiene and acrylonitrile butadiene rubber (NBR). Butadiene-acrylonitrile rubber having carboxyl groups at both ends (carboxyl-terminated butadiene-nitrile rubber (CTBN)), butadiene-acrylonitrile rubber having amino groups at both ends (amino group-terminated polybutadiene- Acrylonitrile rubber (amino-terminated butadiene-nitrile rubber: ATBN), butadiene-acrylonitrile rubber having carboxyl groups and amino groups at both ends (carboxy group-terminated and amino group-terminated polybutadiene-acrylonitrile rubbers) Etc.
このような汎用エポキシ樹脂と変性エポキシ樹脂を併用することによって、接着剤組成物を硬化して得られる硬化物(接着剤組成物の塗膜)において、汎用エポキシ樹脂による適度な強度と柔軟性が付与され、また、変性エポキシ樹脂による適度な強靭性や可撓性が付与され、洗浄工程時の雰囲気温度条件下で所定の高粘度となり、かつ、良好な接着特性を確保できる。
なお、汎用エポキシ樹脂や変性エポキシ樹脂は、取扱性や接着剤組成物の調製の点から、室温で液状のものが好ましい。室温で液状の汎用エポキシ樹脂は、通常、数平均分子量が300〜1000、エポキシ当量が150〜600である。
さらに、本発明を実施する場合には、必要に応じて、汎用エポキシ樹脂及び変性エポキシ樹脂の他に、例えば、ビフェニル型エポキシ樹脂、クレゾールまたはフェノール・ノボラック型エポキシ樹脂、鎖状・脂環式エポキシ樹脂等の三官能以上の多官能エポキシ樹脂を配合することも可能である。
By using such a general-purpose epoxy resin and a modified epoxy resin in combination, the cured product obtained by curing the adhesive composition (coating film of the adhesive composition) has an appropriate strength and flexibility due to the general-purpose epoxy resin. Appropriate toughness and flexibility are imparted by the modified epoxy resin, a predetermined high viscosity is obtained under the atmospheric temperature conditions during the washing step, and good adhesive properties can be secured.
In addition, the general-purpose epoxy resin and the modified epoxy resin are preferably liquid at room temperature from the viewpoint of handleability and preparation of the adhesive composition. The general-purpose epoxy resin that is liquid at room temperature usually has a number average molecular weight of 300 to 1000 and an epoxy equivalent of 150 to 600.
Furthermore, when practicing the present invention, if necessary, in addition to general-purpose epoxy resin and modified epoxy resin, for example, biphenyl type epoxy resin, cresol or phenol / novolak type epoxy resin, chain / alicyclic epoxy It is also possible to blend a polyfunctional epoxy resin having three or more functions such as a resin.
また、コアシェル型ゴム粒子は、ゴム特性または弾性を有するコア層、及び、非ゴム弾性のシェル層の少なくとも2層を有し、シェル層によって中心のコア層を封じ込めた構造からなる粒状材料である。
ここで、コアシェル型ゴム粒子のコア層は、コアシェル型ゴム粒子の内側部分を意味し、コアシェル型ゴム粒子の内部のドメインを形成し得るものである。このコア層としては、ゴム弾性状物質であればよく、典型的には、エラストマーであり、例えば、共役ジエン及び/または低級アルキル(メタ)アクリレートが重合してなるポリマーや、これらと共重合可能なモノマーとが共重合したコポリマーや、ポリシロキサンゴム等からなることが好ましく、更に、エポキシ樹脂に不要であることが好ましい。
The core-shell type rubber particle is a granular material having a structure in which at least two layers of a core layer having rubber characteristics or elasticity and a non-rubber elastic shell layer are contained, and the central core layer is enclosed by the shell layer. .
Here, the core layer of the core-shell type rubber particle means an inner portion of the core-shell type rubber particle and can form a domain inside the core-shell type rubber particle. The core layer may be an elastic rubber material, and is typically an elastomer. For example, a polymer obtained by polymerizing a conjugated diene and / or a lower alkyl (meth) acrylate, or copolymerizable therewith. It is preferably made of a copolymer obtained by copolymerization with a monomer, polysiloxane rubber, or the like, and is preferably unnecessary for the epoxy resin.
なお、共役ジエンとしてはブタジエン、イソプレン、クロロプレン等を挙げることができ、中でも、安価に入手でき、得られる重合体のゴムとしての性質が良好で重合が容易である点から、ブタジエンが特に好ましい。
低級アルキル(メタ)アクリレートとしては、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート等を挙げることができ、中でも、n−ブチルアクリレート、2−エチルヘキシルアクリレートは、得られる重合体のゴムとしての性質が良好で、重合が容易である点から特に好ましい。
Examples of the conjugated diene include butadiene, isoprene, chloroprene, and the like. Among them, butadiene is particularly preferable because it is available at a low price, and the resulting polymer has good rubber properties and is easily polymerized.
Examples of lower alkyl (meth) acrylates include ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like. Among them, n-butyl acrylate and 2-ethylhexyl acrylate are particularly preferable because the properties of the resulting polymer as rubber are good and polymerization is easy.
共役ジエンまたはアルキル(メタ)アクリレートと共重合可能なモノマーとしては、例えば、スチレン、ビニルトルエン、ビニルナフタレン、α−メチルスチレン等の芳香族ビニル、芳香族ビニリデン、アクリロニトリル、メタクリロニトリル等のシアン化ビニル・シアン化ビニリデン、メチル(メタ)アクリレート、ブチル(メタ)アクリレート等のアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香族(メタ)アクリレート、酢酸ビニル、塩化ビニル、シリコーンゴム等が挙げられる。
また、エポキシ基、カルボキシル基、水酸基、アミノ基等の官能基を持ったモノマーを共重合させることもできる。例えば、エポキシ基を持つモノマーとしては、グリシジル(メタ)アクリレート等が挙げられ、カルボキシル基を持つモノマーとしては、(メタ)アクリル酸、マレイン酸、イタコン酸等が挙げられ、水酸基を持つモノマーとしては、2−ヒドロキシ(メタ)アクリレート等が挙げられる。
Examples of monomers copolymerizable with conjugated dienes or alkyl (meth) acrylates include, for example, aromatic vinyl such as styrene, vinyltoluene, vinylnaphthalene, and α-methylstyrene, cyanidation such as aromatic vinylidene, acrylonitrile, and methacrylonitrile. Vinyl / vinylidene cyanide, alkyl (meth) acrylates such as methyl (meth) acrylate and butyl (meth) acrylate, aromatic (meth) acrylates such as benzyl (meth) acrylate and phenoxyethyl (meth) acrylate, vinyl acetate, chloride Examples include vinyl and silicone rubber.
In addition, a monomer having a functional group such as an epoxy group, a carboxyl group, a hydroxyl group, and an amino group can be copolymerized. For example, examples of the monomer having an epoxy group include glycidyl (meth) acrylate, and examples of the monomer having a carboxyl group include (meth) acrylic acid, maleic acid, itaconic acid, and the like. , 2-hydroxy (meth) acrylate and the like.
加えて、このような共役ジエンまたはアルキル(メタ)アクリレートと共重合可能なモノマーに代えて、または、それらモノマーと併用して、ジメチルシリルオキシ、メチルフェニルシリルオキシ、ジフェニルシリルオキシ等のアルキル或いはアリル2置換シリルオキシ単位から構成されるポリシロキサンゴムを使用することもできる。このようなポリシロキサンゴムを使用する場合には、必要に応じて、重合時に多官能性のアルコキシシラン化合物を一部併用するか、ビニル反応性基を持ったシラン化合物をラジカル反応させること等により、予めポリシロキサンに架橋構造を導入しておくことが好ましい。
更に、コアシェル型ゴム粒子のコアを構成する成分として、ジビニルベンゼン、ブタンジオールジ(メタ)アクリレート、(イソ)シアヌル酸トリアリル、(メタ)アクリル酸アリル、イタコン酸ジアリル、フタル酸ジアリル等の架橋性モノマー(多官能性モノマー)や、マレイン酸ジアリル、フマール酸モノアリル等の反応性の等しくない2つ以上の不飽和部位を有し反応部位の少なくとも1つは非共役であるグラフト用モノマーを用いることもできる。このような架橋性モノマーまたはグラフト用モノマーを少量、好ましくは、コアシェル型ゴム粒子全体の10重量%以下で用いた場合には、層間の結合が得られ、加熱時においても粒子が変形し難いものとなる。
In addition, alkyl or allyl such as dimethylsilyloxy, methylphenylsilyloxy, diphenylsilyloxy, etc., instead of, or in combination with, monomers copolymerizable with such conjugated dienes or alkyl (meth) acrylates Polysiloxane rubber composed of disubstituted silyloxy units can also be used. When such a polysiloxane rubber is used, if necessary, by partially using a polyfunctional alkoxysilane compound at the time of polymerization or by radically reacting a silane compound having a vinyl reactive group. It is preferable to introduce a crosslinked structure into the polysiloxane in advance.
Furthermore, as a component constituting the core of the core-shell type rubber particles, crosslinkability such as divinylbenzene, butanediol di (meth) acrylate, triallyl (iso) cyanurate, allyl (meth) acrylate, diallyl itaconate, diallyl phthalate, etc. Use a grafting monomer that has two or more unsaturated sites with unequal reactivity, such as monomer (polyfunctional monomer), diallyl maleate, monoallyl fumarate, etc., and at least one of the reactive sites is unconjugated You can also. When such a crosslinkable monomer or grafting monomer is used in a small amount, preferably 10% by weight or less of the entire core-shell type rubber particle, a bond between layers is obtained, and the particle is not easily deformed even when heated. It becomes.
一方、コアシェル型ゴム粒子のシェル層は、コアシェル型ゴム粒子の外側部分を形成するものであり、通常は、コアシェル型ゴム粒子の最外殻を形成し、エポキシ樹脂に対する親和性(相容性)を有している。このシェル層を構成する物質はゴム弾性を示さない材料であれば特に限定されないが、メチルメタクリレートおよび/またはスチレンのモノマーが重合してなるポリマー、またはこれらと共重合可能なモノマーとが共重合したコポリマーからなることが好ましい。これらは、安価に入手でき、また、良好なグラフト重合性とエポキシ樹脂に対する親和性の双方を可能にでき、広範囲の温度で接着強度を良好にできる。 On the other hand, the shell layer of the core-shell type rubber particles forms the outer part of the core-shell type rubber particles, and usually forms the outermost shell of the core-shell type rubber particles, and has an affinity for the epoxy resin (compatibility). have. The material constituting the shell layer is not particularly limited as long as it is a material that does not exhibit rubber elasticity. However, a polymer obtained by polymerizing monomers of methyl methacrylate and / or styrene, or a copolymerizable monomer thereof is copolymerized. It preferably consists of a copolymer. These can be obtained at a low price, can have both good graft polymerizability and affinity for epoxy resins, and can have good adhesive strength over a wide range of temperatures.
なお、メチルメタクリレートまたはスチレンと共重合可能なモノマーとしては、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のアルキル(メタ)アクリレート、ビニルトルエン、α−メチルスチレン、モノクロルスチレン、3,4−ジクロロスチレン、ブロモスチレン等の芳香族ビニル、芳香族ビニリデン、酢酸ビニル、塩化ビニル、アクリロニトリル、メタクリロニトリル等のシアン化ビニルやシアン化ビニリデン等のビニル重合性モノマーを挙げることができる。中でもエチル(メタ)アクリレートまたはアクリロニトリルが好ましい。 Examples of monomers copolymerizable with methyl methacrylate or styrene include alkyl (meth) acrylates such as ethyl (meth) acrylate and butyl (meth) acrylate, vinyltoluene, α-methylstyrene, monochlorostyrene, and 3,4-dichloro. Examples thereof include vinyl polymerizable monomers such as aromatic vinyl such as styrene and bromostyrene, aromatic vinylidene, vinyl acetate, vinyl chloride, acrylonitrile and methacrylonitrile, and vinyl cyanide and vinylidene cyanide. Of these, ethyl (meth) acrylate or acrylonitrile is preferred.
更に、メチルメタクリレートまたはスチレンと共重合可能なモノマーとして、エポキシ基および/またはエポキシ基と反応する官能基、例えば、カルボキシル基、水酸基、アミノ基等の官能基を持ったモノマーを共重合させることによって、シェル層表面をエポキシ基および/またはエポキシ基と反応する官能基で修飾することも可能である。例えば、エポキシ基を持つモノマーとしては、グリシジルメタクリレート等が挙げられ、カルボキシル基を持つモノマーとしては、(メタ)アクリル酸、マレイン酸、イタコン酸等が挙げられ、水酸基を持つモノマーとしては、2−ヒドロキシ(メタ)アクリレート等が挙げられる。 Further, as a monomer copolymerizable with methyl methacrylate or styrene, by copolymerizing a monomer having an epoxy group and / or a functional group that reacts with the epoxy group, for example, a carboxyl group, a hydroxyl group, an amino group, or the like. The shell layer surface may be modified with an epoxy group and / or a functional group that reacts with the epoxy group. For example, examples of the monomer having an epoxy group include glycidyl methacrylate, examples of the monomer having a carboxyl group include (meth) acrylic acid, maleic acid, and itaconic acid. Examples of the monomer having a hydroxyl group include 2- Hydroxy (meth) acrylate etc. are mentioned.
なお、シェル層において接着剤組成物が硬化する際に接着剤組成物を構成する他の成分との化学反応性を求める場合には、ヒドロキシアルキル(メタ)アクリレート、エポキシアルキル(メタ)アクリレート等の反応性側鎖を有する(メタ)アクリル酸エステル類、エポキシアルキルビニルエーテル、(メタ)アクリルアミド(N−置換物を含む)、α,β−不飽和酸、α,β−不飽和酸無水物、及びマレイミド誘導体等からなるモノマー群より選ばれる1種以上の成分を共重合して得られる共重合体がより好ましい。具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、スチレン、α−メチルスチレン、(メタ)アクリロニトリル、(メタ)アクリル酸、2−ヒドロキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、グリシジルビニルエーテル、(メタ)アクリルアミド、マレイン酸無水物、マレイン酸イミド等が挙げられる。また、エポキシ樹脂や硬化剤等と反応する反応基、例えば、グリシジルメタクリレート等のモノマーによって提供されるグリシジル基や、エポキシ基等をシェル層中に含有させることによって反応性(相互作用性)を高めることも可能である。 In addition, when calculating | requiring the chemical reactivity with the other component which comprises an adhesive composition when an adhesive composition hardens | cures in a shell layer, hydroxyalkyl (meth) acrylate, epoxy alkyl (meth) acrylate, etc. (Meth) acrylic acid esters having reactive side chains, epoxy alkyl vinyl ethers, (meth) acrylamides (including N-substituents), α, β-unsaturated acids, α, β-unsaturated acid anhydrides, and A copolymer obtained by copolymerizing at least one component selected from the monomer group consisting of maleimide derivatives and the like is more preferable. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, styrene, α-methylstyrene, (meth) acrylonitrile, (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, Examples thereof include glycidyl (meth) acrylate, glycidyl vinyl ether, (meth) acrylamide, maleic anhydride, and maleic imide. Moreover, the reactivity (interaction property) is improved by including the reactive group which reacts with an epoxy resin, a hardening | curing agent, etc., for example, the glycidyl group provided by monomers, such as glycidyl methacrylate, an epoxy group, etc. in a shell layer. It is also possible.
また、シェル層は、コア層にグラフト及び/または架橋されていてもよく、メチルメタクリレートまたはスチレンと共重合可能なモノマーとして、架橋性モノマーまたはグラフト用モノマーを10重量%以下で用いることも可能である。層間の結合が得られ、加熱時においても粒子が変形し難いものとなる。架橋性モノマーとしては、例えば、ジビニルベンゼン等の芳香族ジビニル化合物、ヘキサンジオールジアクリレート、ブチレングリコールジメタクリレート、ノルボルネンジメチロールジメタクリレート等のアルカンポリオールポリアクリレート等を挙げることができ、グラフト用モノマーとしては、例えば、アリルメタクリレート等の不飽和カルボン酸アリルエステル等を挙げることができる。 The shell layer may be grafted and / or cross-linked to the core layer, and a crosslinkable monomer or grafting monomer may be used at 10% by weight or less as a monomer copolymerizable with methyl methacrylate or styrene. is there. Bonding between layers is obtained, and the particles are difficult to deform even during heating. Examples of the crosslinkable monomer include aromatic divinyl compounds such as divinylbenzene, alkane polyol polyacrylates such as hexanediol diacrylate, butylene glycol dimethacrylate, norbornene dimethylol dimethacrylate, and the like. Examples thereof include unsaturated carboxylic acid allyl esters such as allyl methacrylate.
なお、ゴム状のコア層は、ガラス転移点(Tg)が−20℃以下の物質であり、シェル層は、ガラス転移点(Tg)が50℃以上の物質であることが好ましい。低温での弾性率を下げ、剥離強度を上げることができ、また、高温下でも高い接着性や柔軟性が得られるからである。因みに、ガラス転移点(Tg)とは、動的な粘弾性測定におけるtanδのピーク値の温度をいう。
更に、本発明を実施する場合においては、コアシェル型ゴム粒子が、ゴム弾性を示すコア層が、ゴム弾性を示さないシェル層によって被覆された構造であれば、2層より多い層数で構成されていてもよい。例えば、1つのゴム状材料からなる中心コア層は、その内側に非弾性材料からなる別の層を設けてもよく、また、異なるゴム状材料からなる第2のコア層で囲まれていてもよい。更に、ゴム状コア層は異なる化学組成および/または特性を有する2つ以上のシェル層によって囲まれていてもよく、例えば、軟質(ソフト)コア層、硬質(ハード)シェル層、軟質シェル層、硬質シェル層の構造等とすることも可能である。
The rubbery core layer is preferably a material having a glass transition point (Tg) of −20 ° C. or lower, and the shell layer is preferably a material having a glass transition point (Tg) of 50 ° C. or higher. This is because the elastic modulus at low temperature can be lowered and the peel strength can be increased, and high adhesiveness and flexibility can be obtained even at high temperature. Incidentally, the glass transition point (Tg) refers to the temperature of the peak value of tan δ in dynamic viscoelasticity measurement.
Furthermore, in the case of carrying out the present invention, the core-shell type rubber particles are constituted by more than two layers if the core layer showing rubber elasticity is covered with a shell layer not showing rubber elasticity. It may be. For example, the central core layer made of one rubber-like material may be provided with another layer made of an inelastic material on the inside thereof, or may be surrounded by a second core layer made of a different rubber-like material. Good. Further, the rubbery core layer may be surrounded by two or more shell layers having different chemical compositions and / or properties, such as a soft (soft) core layer, a hard (hard) shell layer, a soft shell layer, A structure of a hard shell layer or the like is also possible.
そして、このようなコアシェル型ゴム粒子は、その製造方法について特に問われるものではなく、例えば、乳化重合、濁重合、マイクロ懸濁重合等の手法によって製造された市販の製品を使用することが可能である。
なお、接着剤組成物中におけるコアシェル型ゴム粒子の分散形態は、粒子単体としての一次粒子状態、及び/または、単体の粒子が集まって不定形の凝集状態となった二次凝集体状態で分散される。また、コアシェル型ゴム粒子は、乾燥粉末状態の形態で接着剤組成物に添加してもよいし、エポキシ樹脂中に分散された状態で添加してもよい。好ましいコアシェル型ゴム粒子の一次平均粒径は、100nm〜500nmの範囲内であり、該範囲内であれば、分散性も良く、接着強度、粘度特性等の物性が安定的に得られる。
Such a core-shell type rubber particle is not particularly limited with respect to its production method. For example, it is possible to use a commercial product produced by a technique such as emulsion polymerization, turbid polymerization, or microsuspension polymerization. It is.
The dispersion form of the core-shell type rubber particles in the adhesive composition is dispersed in a primary particle state as a single particle and / or a secondary aggregate state in which the single particles are aggregated into an irregular aggregate state. Is done. The core-shell type rubber particles may be added to the adhesive composition in a dry powder state, or may be added in a state dispersed in an epoxy resin. The primary average particle diameter of preferable core-shell type rubber particles is in the range of 100 nm to 500 nm, and within this range, the dispersibility is good, and physical properties such as adhesive strength and viscosity characteristics can be stably obtained.
反応性希釈剤としては、エポキシ基を有するエポキシ系希釈剤が使用され、具体的には、一官能基型のn−ブタノールグリシジルエーテル、ブチルグリシジルエーテル、ブチルフェニルグリシジルエーテル、ヘキシルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、アリルグリシジルエーテル、テトラヒドロフルフリルグリシジルエーテル、フルフリルグリシジルエーテル、トリメトキシシリルグリシジルエーテル、その他高級アルコール系グリシジルエーテル、メタアクリル酸グリシジルエステル等や、多官能基型の1,4−ブタンジオール・ジグリシジルエーテル、1,6−ヘキサンジオール・ジグリシジルエーテル、トリメチロールプロパン・トリグリシジルエーテル、ポリエチレングリコール・ジグリシジルエーテル、ダイマー酸・ジグリシジルエステル等が挙げられる。 As the reactive diluent, an epoxy-based diluent having an epoxy group is used. Specifically, monofunctional n-butanol glycidyl ether, butyl glycidyl ether, butylphenyl glycidyl ether, hexyl glycidyl ether, 2- Ethylhexyl glycidyl ether, allyl glycidyl ether, tetrahydrofurfuryl glycidyl ether, furfuryl glycidyl ether, trimethoxysilyl glycidyl ether, other higher alcohol glycidyl ether, methacrylic acid glycidyl ester, etc., polyfunctional 1,4-butane Diol / diglycidyl ether, 1,6-hexanediol / diglycidyl ether, trimethylolpropane / triglycidyl ether, polyethylene glycol / diglycidyl ether, Examples include dimer acid and diglycidyl ester.
更に、本実施の形態の構造用接着剤組成物においては、硬化剤が配合され、加熱によって硬化剤が活性化されることで、例えば、車体の電着塗装工程後の焼き付けと同時に高温で加熱硬化されるようになっている。
硬化剤としては、通常、エポキシ樹脂の硬化剤に用いられるもの、即ち、加熱活性形(一般的に、80〜250℃で活性化)の共反応型(多官能型)である潜在性硬化剤や触媒性硬化剤(硬化触媒、硬化促進剤、硬化助剤とも呼ばれる)として知られた任意のものを使用することができ、加熱によって活性化されるものであれば良く、触媒的に機能するものも含まれる。例えば、ジシアンジアミド(DICY)、4,4'−ジアミノジフェニルスルホン(DDS)等のポリアミン、2−n−ヘプタデシルイミダゾール等のイミダゾール系化合物、アジピン酸ジヒドラジド、ステアリン酸ジヒドラジド、イソフタル酸ジヒドラジド、二塩基酸ヒドラジド等の有機酸ヒドラジド系化合物、N,N−ジアルキル尿素誘導体やN,N−ジアルキルチオ尿素誘導体等の尿素系化合物、テトラヒドロ無水フタル酸等の酸無水物、セミカルバジド、シアノアセトアミド、ジアミノジフェニルメタン、イソホロンジアミン、m−フェニレンジアミン、3級アミン等のアミン系化合物、3−アミノ−1,2,4−トリアゾール等のアミノトリアゾール、N−アミノエチルピペラジン、メラミン類、アセトグアナミンやベンゾグアナミン等のグアナミン類、グアニジン類、ジメチルウレア類、三フッ化ホウ素錯化合物、三塩化ホウ素錯化合物、トリスジメチルアミノメチルフェノール等の液状フェノール、ポリチオール、トリフェニルホスフィン、ケチミン化合物、スルホニウム塩、オニウム塩、フェノールノボラック樹脂等のエポキシ基と反応する共反応性(多官能性)硬化剤や、アミン系(例えば、3−(3,4−ジクロロフェニル)−N,N−ジメチル尿素(DCMU)、三級アミン、三フッ化モノエチルアミン、三塩化アミン錯体等のアミン錯体、アミンアダクト化合物等)、イミダゾール系(例えば、2−ペプタデシルイミダゾール(C17Z)、2−ウンデシルイミダゾール(C11Z)、2−フェニルイミダゾール(2PZ)、1,2−ジメチルイミダゾール(1,2DMZ)、2−フェニル−4−メチルイミダゾール、イミダゾールアダクト化合物等)、ヒドラジッド化合物(例えば、アジピン酸ジヒドラジッド、ドデカン二酸ジヒドラジッド)、尿素化合物(例えば、1,1’−(4−メチル−1,3−フェニレン)ビス(3,3−ジメチル尿素)、フェニル−ジメチル尿素、メチレン−ジフェニル−ビスジメチル尿素、3−フェニル−1,1−ジメチル尿素、3−(3−クロロ−4−メチルフェニル)−1,1−ジメチル尿素等の尿素誘導体、フェニルジメチルウレア(PDMU))等の触媒性硬化剤等を用いることができる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いることもできる。中でも、接着強度、保存安定性、ポットライフ等の観点から、ジシアンジアミドまたはその誘導体(例えば、ポリエポキシド付加変性物、アミド化変性物、マンニッヒ化変性物、ミカエル付加変性物)が好適である。
Further, in the structural adhesive composition of the present embodiment, a curing agent is blended, and the curing agent is activated by heating, for example, heating at a high temperature simultaneously with baking after the electrodeposition coating process of the vehicle body. It is supposed to be cured.
As the curing agent, a latent curing agent that is usually used as a curing agent for epoxy resins, that is, a co-reactive type (multifunctional type) of a heat activated type (generally activated at 80 to 250 ° C.). Any catalyst known as a catalytic curing agent (also called a curing catalyst, a curing accelerator, or a curing aid) can be used, as long as it is activated by heating and functions catalytically. Also included. For example, polyamines such as dicyandiamide (DICY), 4,4′-diaminodiphenylsulfone (DDS), imidazole compounds such as 2-n-heptadecylimidazole, adipic acid dihydrazide, stearic acid dihydrazide, isophthalic acid dihydrazide, dibasic acid Organic acid hydrazide compounds such as hydrazide, urea compounds such as N, N-dialkylurea derivatives and N, N-dialkylthiourea derivatives, acid anhydrides such as tetrahydrophthalic anhydride, semicarbazide, cyanoacetamide, diaminodiphenylmethane, isophorone Amine compounds such as diamine, m-phenylenediamine and tertiary amine, aminotriazoles such as 3-amino-1,2,4-triazole, N-aminoethylpiperazine, melamines, acetoguanamine and benzoguanamine Guanamines, guanidines, dimethylureas, boron trifluoride complex compounds, boron trichloride complex compounds, liquid phenols such as trisdimethylaminomethylphenol, polythiols, triphenylphosphine, ketimine compounds, sulfonium salts, onium salts, phenols A co-reactive (polyfunctional) curing agent that reacts with an epoxy group such as a novolak resin, an amine (for example, 3- (3,4-dichlorophenyl) -N, N-dimethylurea (DCMU), a tertiary amine, Amine complexes such as monoethylamine trifluoride, amine trichloride complexes, amine adduct compounds, etc.), imidazole series (for example, 2-peptadecylimidazole (C17Z), 2-undecylimidazole (C11Z), 2-phenylimidazole ( 2PZ), 1,2-dimethylimidazole (1 2DMZ), 2-phenyl-4-methylimidazole, imidazole adduct compounds, etc.), hydrazide compounds (for example, adipic acid dihydrazide, dodecanedioic acid dihydrazide), urea compounds (for example, 1,1 ′-(4-methyl-1, 3-phenylene) bis (3,3-dimethylurea), phenyl-dimethylurea, methylene-diphenyl-bisdimethylurea, 3-phenyl-1,1-dimethylurea, 3- (3-chloro-4-methylphenyl) Urea derivatives such as -1,1-dimethylurea, and catalytic curing agents such as phenyldimethylurea (PDMU) can be used. These may be used alone or in combination of two or more. Among these, dicyandiamide or a derivative thereof (for example, polyepoxide addition-modified product, amidation-modified product, Mannich-modified product, Michael addition-modified product) is preferable from the viewpoint of adhesive strength, storage stability, pot life, and the like.
なお、硬化剤は、使用するエポキシ樹脂(エポキシ当量、配合量等)や硬化条件等に応じて適宜配合されるが、例えば、汎用エポキシ樹脂と変性エポキシ樹脂の合計配合量100重量部に対して、0.1重量部〜40重量部の範囲内で配合される。0.1重量部〜40重量部の範囲内であれば、構造用接着剤組成物に要求される所望の接着強度等の高い物性が得られる。より好ましは、1重量部〜30重量部の範囲内である。 In addition, although a hardening | curing agent is mix | blended suitably according to the epoxy resin (epoxy equivalent, compounding quantity etc.) to be used, curing conditions, etc., for example with respect to 100 weight part of total compounding quantities of a general purpose epoxy resin and a modified epoxy resin , Within the range of 0.1 to 40 parts by weight. If it is in the range of 0.1 to 40 parts by weight, high physical properties such as desired adhesive strength required for the structural adhesive composition can be obtained. More preferably, it is in the range of 1 to 30 parts by weight.
更に、本発明を実施する場合には、接着剤組成物調製時の取扱い性向上等のために、チキソ剤(揺変性付与剤)を配合することも可能である。このようなチキソ剤(揺変性付与剤)としては、例えば、ケッチェンブラック等のカーボンブラック、シリカ、微粒炭酸カルシウム、セピオライト等を用いることができ、これらは1種を単独でまたは2種類以上を組み合わせてもよい。 Furthermore, when implementing this invention, it is also possible to mix | blend a thixotropic agent (thixotropic agent) for the handleability improvement at the time of adhesive composition preparation. As such a thixotropic agent (thixotropic agent), for example, carbon black such as ketjen black, silica, fine calcium carbonate, sepiolite and the like can be used, and these can be used alone or in combination of two or more. You may combine.
加えて、接着剤組成物の粘性の調整、硬化後の機械特性の向上、低コスト化等のために、充填剤を配合することもできる。このような充填剤としては、炭酸カルシウム、タルク、マグネシア、ケイ酸カルシウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、アルミナ、ジルコン、グラファイト、硫酸バリウム、クレー、マイカ、カオリン、ウォラストナイト、雲母、長石、閃長石(シエナイト)、緑泥石(クロライト)、ベントナイト、モンモリロナイト、バライト、クリストバライト、ドロマイト、石英、珪藻土、ケイ酸アルミニウム、炭酸バリウム、炭酸マグネシウム、炭酸亜鉛、鉱物繊維、織物繊維、ガラス繊維、アラミドパルプ、ホウ素繊維、炭素繊維、リン酸塩、結晶シリカ、非晶シリカ、溶融シリカ、ヒュームドシリカ、焼成シリカ、沈降シリカ、粉砕(微粉末)シリカ等のシリカ、ろう石、ケイ砂、セルロース、セメント、ポリエチレン等の樹脂粉末、酸化カルシウム、酸化鉄、酸化亜鉛、酸化チタン、酸化バリウム、酸化マグネシウム、二酸化チタン、中空セラミックビーズ、中空ガラスビーズ等の中空無機ビーズ、ポリエステル樹脂等による中空有機ビーズ、ガラスビーズ、金属粉末、瀝青物質等が例示できる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。中でも、分散性や粘性調整等の点から、例えば、炭酸カルシウムが好適である。 In addition, a filler can be blended for adjusting the viscosity of the adhesive composition, improving the mechanical properties after curing, and reducing the cost. Such fillers include calcium carbonate, talc, magnesia, calcium silicate, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, alumina, zircon, graphite, barium sulfate, clay, mica, kaolin, wollastonite, Mica, feldspar, anorthite (sienite), chlorite, bentonite, montmorillonite, barite, cristobalite, dolomite, quartz, diatomaceous earth, aluminum silicate, barium carbonate, magnesium carbonate, zinc carbonate, mineral fiber, textile fiber, Silica such as glass fiber, aramid pulp, boron fiber, carbon fiber, phosphate, crystalline silica, amorphous silica, fused silica, fumed silica, calcined silica, precipitated silica, ground (fine powder) silica, wax, silica Sand, cellulose, cement, poly Resin powder such as Tylene, calcium oxide, iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide, titanium dioxide, hollow ceramic beads, hollow inorganic beads such as hollow glass beads, hollow organic beads such as polyester resin, glass beads Examples thereof include metal powders and bitumen substances. These may be used alone or in combination of two or more. Among these, calcium carbonate is preferable from the viewpoint of dispersibility and viscosity adjustment.
その他、必要に応じて、各種添加剤、例えば、反応遅延剤、老化防止剤、酸化防止剤、顔料、染料、可塑剤、シランカップリング剤、接着付与剤、難燃剤、帯電防止剤、紫外線吸収剤、界面活性剤、分散剤、脱水剤、溶剤、エポキシ樹脂以外の熱硬化性樹脂、熱可塑性樹脂等を適宜、組み合わせて用いることも可能である。 In addition, various additives as required, such as reaction retardants, anti-aging agents, antioxidants, pigments, dyes, plasticizers, silane coupling agents, adhesion promoters, flame retardants, antistatic agents, UV absorption An agent, a surfactant, a dispersant, a dehydrating agent, a solvent, a thermosetting resin other than an epoxy resin, a thermoplastic resin, or the like can be used in appropriate combination.
このように本実施の形態の構造用接着剤組成物においては、少なくとも汎用エポキシ樹脂と、変性エポキシ樹脂と、コアシェル型ゴム粒子と、反応性希釈剤と、硬化剤を含有する。
ここで、接着剤組成物の材料粘度を上昇させるために、単純に、高粘度のエポキシ樹脂や、炭酸カルシウム等の充填剤や、コアシェル型ゴム粒子の配合を増やしても、その分だけ相対的に硬化後の接着性が低下する。また、一般的には粘度が高くなるほど温度変化に対する粘度変動も大きくなることから、洗浄工程を有する電着塗装工程内の雰囲気温度(40℃付近)での粘度を従来よりも高く設計しようにも、その他の温度領域の粘度も高くなるため、低温下ではウエルドボンド工法においてスポット溶接時に通電不良が生じたり、また、塗布する際に加熱しても十分に減粘できず塗布が困難となったりする。
Thus, the structural adhesive composition of the present embodiment contains at least a general-purpose epoxy resin, a modified epoxy resin, core-shell type rubber particles, a reactive diluent, and a curing agent.
Here, in order to increase the material viscosity of the adhesive composition, even if the blending of a high-viscosity epoxy resin, a filler such as calcium carbonate, or core-shell type rubber particles is increased, the relative amount is increased accordingly. In addition, the adhesiveness after curing decreases. In general, the higher the viscosity, the greater the viscosity fluctuation with respect to temperature change. Therefore, it is also possible to design a higher viscosity at the ambient temperature (around 40 ° C) in the electrodeposition coating process that has a cleaning process. Also, because the viscosity in other temperature ranges becomes high, poor conduction may occur at the time of spot welding in the weld bond method at low temperatures, and it may be difficult to apply due to insufficient viscosity reduction even when heated during application. To do.
そこで、本実施の形態の構造用接着剤組成物では、硬化後の硬化物(接着剤組成物の塗膜)において適度な強度と柔軟性を付与する汎用エポキシ樹脂と、汎用エポキシ樹脂よりも高粘度特性を有し硬化物において適度な強靭性や可撓性を付与する変性エポキシ樹脂を併用し、かつ、汎用エポキシ樹脂と変性エポキシ樹脂の配合バランスを所定量に制御し、更に、コアシェル型ゴム粒子の配合量と反応性希釈剤の配合量を所定量に規定することにより、それらの連携によって、洗浄処理を有する電着塗装工程内の雰囲気温度条件(40℃付近)で高粘度特性を有するも、硬化物において良好な接着性が確保され、かつ、温度変化に対する粘度変動が小さく、塗布する際に所定温度での加熱によって十分な減粘が可能となり、また、自動車製造ラインにおいては最も低温で5℃環境下となるがそのような低温下でもウエルドボンド工法において接合部位に塗布された接着剤組成物が十分に押し潰され、接着剤組成物塗布後のスポット溶接時に接合する鋼板等の構造部材が十分に密着されて通電不良が生じることなく、ホットアプライによる良好な塗布作業性及びウエルドボンド工法による接合の良好な接合強度が得られるものとした。即ち、洗浄処理を有する電着塗装工程内の雰囲気温度(40℃付近)における粘度を向上させるも、ホットアプライに適した粘度特性及びウエルドボンド工法において低温下でも接合部位に塗布された接着剤組成物が十分に押し潰されスポット溶接に適した粘度特性に制御可能とした。 Therefore, in the structural adhesive composition of the present embodiment, a general-purpose epoxy resin that imparts appropriate strength and flexibility in the cured product (coating film of the adhesive composition) after curing, and higher than the general-purpose epoxy resin A modified epoxy resin that has viscosity characteristics and imparts appropriate toughness and flexibility in the cured product is used in combination, and the blending balance of the general-purpose epoxy resin and the modified epoxy resin is controlled to a predetermined amount. By defining the blending amount of the particles and the blending amount of the reactive diluent to a predetermined amount, it has a high viscosity characteristic under the ambient temperature conditions (around 40 ° C.) in the electrodeposition coating process having a cleaning process through their cooperation. However, good adhesiveness is ensured in the cured product, viscosity fluctuation with respect to temperature change is small, and sufficient viscosity reduction can be achieved by heating at a predetermined temperature during application. However, even at such a low temperature, the adhesive composition applied to the joining site in the weld bond method is sufficiently crushed, and during spot welding after application of the adhesive composition. The structural members such as the steel plates to be joined are sufficiently adhered to each other so that good application workability by hot apply and good joint strength by the weld bond method can be obtained without causing a failure of current conduction. In other words, it improves the viscosity at the ambient temperature (around 40 ° C) in the electrodeposition coating process that has a cleaning process, but it also has a viscosity characteristic suitable for hot apply and an adhesive composition applied to the bonding site even at low temperatures in the weld bond method. The object was sufficiently crushed so that the viscosity characteristics suitable for spot welding could be controlled.
ここで、変性エポキシ樹脂と汎用エポキシ樹脂を併用することで、汎用エポキシによって接着強度を確保しつつ、変性エポキシ樹脂によって高粘度特性を確保できるが、汎用エポキシ樹脂と変性エポキシ樹脂の配合関係において、相対的に汎用エポキシ樹脂の量が多くなって変性エポキシ樹脂の量が少なくなると、洗浄処理を有する電着塗装工程内の雰囲気温度(40℃付近)において所望とする高い粘度特性、即ち、洗浄時の流水圧への抵抗性が向上されて接合部位への塗布範囲を広げてもその飛散や流出等が効果的に防止される程度に高い粘度特性が得られない。一方で、相対的に変性エポキシ樹脂の量が多くなって汎用エポキシ樹脂の量が少なくなると、温度変化に対する粘度変動が大きくなり、特に冬場の低温環境下ではウエルドボンド工法のスポット溶接時において接合部位に塗布された接着剤組成物の粘度が高くなりすぎることで、スポット溶接を行う電極を挟んだ際でも十分に押し潰されず、接合する構造部材同士を密着できないことで通電不良が生じやすく、良好な接合強度が得られなくなる。 Here, by using a modified epoxy resin and a general-purpose epoxy resin together, while securing adhesive strength with a general-purpose epoxy, high-viscosity characteristics can be secured with a modified epoxy resin. When the amount of the general-purpose epoxy resin is relatively increased and the amount of the modified epoxy resin is decreased, the desired high viscosity characteristic at the atmospheric temperature (around 40 ° C.) in the electrodeposition coating process having a cleaning treatment, that is, at the time of cleaning Even if the resistance to flowing water pressure is improved and the range of application to the joint site is expanded, high viscosity characteristics cannot be obtained to such an extent that scattering, outflow, etc. are effectively prevented. On the other hand, when the amount of the modified epoxy resin is relatively increased and the amount of the general-purpose epoxy resin is decreased, the viscosity fluctuation with respect to the temperature change becomes large. Especially in the low temperature environment in winter, the joint part is used during the spot welding in the weld bond method. Since the viscosity of the adhesive composition applied to the surface is too high, even when the electrode for spot welding is sandwiched, it is not sufficiently crushed and the structural members to be joined cannot be in close contact with each other. It becomes impossible to obtain a sufficient bonding strength.
発明者らの実験によれば、特に好ましくは、汎用エポキシ樹脂と変性エポキシ樹脂の配合重量比が、1:1の等量を中間にした1:2〜2:1の範囲内であることで、粘度特性と接着性のバランスが良く、洗浄処理を有する電着塗装工程内の雰囲気温度条件(40℃付近)において所望とする高い粘度が得られ、かつ、温度変化に対しての粘度変動も小さく、冬場の低温下でもウエルドボンド工法において接合部位に塗布された接着剤組成物がスポット溶接を行う電極を挟んだ際に十分に押し潰される程度に適度な粘度特性を有し、接合する構造部材同士を密着できて通電不良を生じさせることなく良好な接合強度が得られる。なお、上記数値は、必ずしも厳格であることを要求されず、使用するエポキシ樹脂の種類や、接着剤組成物を構成する他の材料等との関係で上記数値を若干変更してもその実施を否定するものではない。 According to the experiments by the inventors, it is particularly preferable that the blending weight ratio of the general-purpose epoxy resin and the modified epoxy resin is in the range of 1: 2 to 2: 1 with the equivalent of 1: 1 in between. It has a good balance between viscosity characteristics and adhesiveness, and the desired high viscosity can be obtained under the atmospheric temperature conditions (around 40 ° C.) in the electrodeposition coating process having a cleaning process. A structure that is small and has a suitable viscosity characteristic so that the adhesive composition applied to the joining site in the weld bond method can be sufficiently crushed when sandwiching the electrode for spot welding even at low temperatures in winter The members can be brought into close contact with each other, and good bonding strength can be obtained without causing poor conduction. Note that the above numerical values are not necessarily required to be strict, and even if the numerical values are slightly changed in relation to the type of epoxy resin to be used, other materials constituting the adhesive composition, etc. There is no denial.
汎用エポキシ樹脂と変性エポキシ樹脂の粘度は、所望の粘度特性が得られるように樹脂成分の種類(性質等)に応じて選択されるが、発明者らの実験によれば、それぞれ5000(mPa・s/25℃)〜200000(mPa・s/25℃)の範囲内であれば、含有量の調整により所望とする粘度特性の調整が容易にできて好ましいことが確認された。
なお、汎用エポキシ樹脂がビフェノールA型エポキシ樹脂であり、変性エポキシ樹脂がウレタン変性エポキシ樹脂及び/またはゴム変性エポキシ樹脂であれば、低コストで、高い剪断強度や剥離強度が得られて高い接着性を確保できる。
The viscosities of the general-purpose epoxy resin and the modified epoxy resin are selected according to the types (properties, etc.) of the resin component so that a desired viscosity characteristic can be obtained. It was confirmed that the desired viscosity characteristics can be easily adjusted by adjusting the content within the range of s / 25 ° C. to 200000 (mPa · s / 25 ° C.).
If the general-purpose epoxy resin is a biphenol A-type epoxy resin and the modified epoxy resin is a urethane-modified epoxy resin and / or a rubber-modified epoxy resin, high shear strength and peel strength can be obtained at low cost and high adhesiveness. Can be secured.
また、本実施の形態の構造用接着剤組成物においては、コアシェル型ゴム粒子を含有することで、接着剤組成物の粘性や弾性を高め、洗浄処理時に接着剤組成物に衝突する流水に対する抵抗性を高めることができる。更に、温度変化に対する粘度変動を弱めることができる。また、硬化後の硬化物において強靭性が発揮され良好な接着強度が得られる。 In addition, the structural adhesive composition of the present embodiment contains core-shell rubber particles, thereby increasing the viscosity and elasticity of the adhesive composition, and resistance to flowing water that collides with the adhesive composition during the cleaning process. Can increase the sex. Furthermore, the viscosity fluctuation with respect to the temperature change can be weakened. Moreover, toughness is exhibited in the cured product after curing, and good adhesive strength is obtained.
ここで、コアシェル型ゴム粒子の配合量が少なすぎる場合、洗浄処理を有する電着塗装工程内の雰囲気温度条件(40℃付近)において所望とする高い粘度特性、即ち、洗浄時の流水圧への抵抗性が向上されて接合部位への塗布範囲を広げてもその飛散や流出等が効果的に防止される程度に高い粘度特性が得られない。また、硬化物において高い剪断強度が得られず、接着性が低下する。一方で、配合量が多すぎると、相対的にその他の材料の配合量が小さくなることで、硬化物において接着性が低下する。また、可塑性等を低下させる恐れもある。更に、材料の粘度上昇が大きくなって塗布時に所定温度で加熱しても十分に減粘させることができず、塗布作業性が低下する。また、冬場の低温環境下ではウエルドボンド工法において接合部位に塗布された接着剤組成物が十分に押し潰されずに接合する構造部材同士を密着できないことで、スポット溶接時に通電不良が生じやすく接合強度が低下する。 Here, when the blending amount of the core-shell type rubber particles is too small, the desired high viscosity characteristic under the atmospheric temperature condition (around 40 ° C.) in the electrodeposition coating process having a cleaning process, that is, the flowing water pressure at the time of cleaning. Even if the resistance is improved and the range of application to the bonding site is widened, high viscosity characteristics cannot be obtained to such an extent that scattering, outflow, etc. are effectively prevented. Moreover, high shear strength is not obtained in the cured product, and the adhesiveness is lowered. On the other hand, when there is too much compounding quantity, adhesiveness will fall in hardened | cured material because the compounding quantity of another material becomes relatively small. Moreover, there is a risk of reducing plasticity and the like. Furthermore, the increase in the viscosity of the material is large, and even if it is heated at a predetermined temperature during application, it cannot be sufficiently reduced in viscosity, and the application workability is lowered. In addition, under the low temperature environment in winter, the adhesive composition applied to the joint site in the weld bond method cannot be brought into close contact with each other without being sufficiently crushed. Decreases.
発明者らの実験によれば、特に好ましくは、コアシェル型ゴム粒子の配合量が、変性エポキシ樹脂の配合量100重量部に対して、45重量部〜90重量部の範囲内であれば、洗浄処理を有する電着塗装工程内の雰囲気温度条件(40℃付近)において所望とする高い粘度が得られて耐流水圧性をより向上させることができ、かつ、接着剤組成物の加熱塗布時には塗布に適度な粘度特性を有して良好な塗布作業性が得られ、また、冬場の低温下でもウエルドボンド工法において接合部位に塗布された接着剤組成物がスポット溶接を行う電極を挟んだ際に十分に押し潰される程度に適度な粘度特性を有し、接合する構造部材同士を密着できて通電不良を生じさせることなく良好な接合強度が得られ、更に、硬化物において高い剪断強度を確保できる。
なお、上記数値は、必ずしも厳格であることを要求されず、使用するコアシェル型ゴム粒子の種類や、接着剤組成物を構成する他の材料等との関係で上記数値を若干変更してもその実施を否定するものではない。
According to the experiments by the inventors, it is particularly preferable that the amount of the core-shell type rubber particles is within the range of 45 to 90 parts by weight with respect to 100 parts by weight of the modified epoxy resin. The desired high viscosity can be obtained under the atmospheric temperature conditions (around 40 ° C.) in the electrodeposition coating process having treatment, and the water pressure resistance can be further improved. Appropriate workability is obtained with moderate viscosity characteristics, and it is sufficient when the electrode composition for spot welding is sandwiched between the adhesive composition applied to the joint site in the weld bond method even at low temperatures in winter. It has an appropriate viscosity characteristic to such a degree that it can be crushed, it can adhere the structural members to be joined together, and can obtain good joint strength without causing poor electrical conduction. That.
Note that the above numerical values are not necessarily required to be strict, and even if the numerical values are slightly changed in relation to the type of core-shell type rubber particles to be used, other materials constituting the adhesive composition, etc. It does not deny implementation.
特に、本発明者らの実験研究によれば、洗浄工程時の雰囲気温度条件(40℃付近)における粘度を高めるために、多量のゴム単体を配合した場合には、エポキシ樹脂の架橋反応が阻害されたり硬化後の弾性率が小さくなることで硬化物の接着性が低下し、また、その分散が混合条件の影響を受け易くて分散し難いことで貯蔵安定性も悪く安定した物性を確保できず、洗浄工程時の雰囲気温度条件(40℃付近)における粘度を高めるのに限度がある。
これに対し、本実施の形態の構造用接着剤組成物においては、ゴム粒子がコアシェル型であるコアシェル型ゴム粒子が配合されているため、分散性もよく、エポキシ樹脂との反応性も小さいので貯蔵安定性もよく、また、ゴム粒子のゴム成分が硬化後のエポキシ樹脂相に溶解残存することはなく、そして、ゴム成分がエポキシ樹脂相に溶解残存することで生じる弾性率等の物性の低下もなく、洗浄処理を有する電着塗装工程内の雰囲気温度条件(40℃付近)においてより高い粘度を安定して確保でき、信頼性が高いものとなる。
In particular, according to the experimental study by the present inventors, when a large amount of a single rubber is compounded in order to increase the viscosity under the atmospheric temperature condition (around 40 ° C.) during the cleaning process, the crosslinking reaction of the epoxy resin is inhibited. When the elastic modulus after curing is reduced, the adhesiveness of the cured product is lowered, and the dispersion is easily affected by the mixing conditions and difficult to disperse, so the storage stability is poor and stable physical properties can be secured. However, there is a limit to increasing the viscosity under the ambient temperature condition (around 40 ° C.) during the cleaning process.
On the other hand, in the structural adhesive composition of the present embodiment, since the core-shell type rubber particles in which the rubber particles are the core-shell type are blended, the dispersibility is good and the reactivity with the epoxy resin is small. Storage stability is also good, and the rubber component of the rubber particles does not remain dissolved in the epoxy resin phase after curing, and the physical properties such as elastic modulus are reduced by the rubber component remaining dissolved in the epoxy resin phase. In addition, a higher viscosity can be stably secured under the ambient temperature conditions (around 40 ° C.) in the electrodeposition coating process having a cleaning process, and the reliability becomes high.
更に、反応性希釈剤を含有することでも温度変化に対する粘度変動を小さくできる。ここで、反応性希釈剤の配合量が少なすぎると、温度変化に対する材料の粘度変動が大きくなって、塗布時に所定温度で加熱しても十分に減粘させることができず、塗布作業性が低下する。また、冬場のような低温環境下ではウエルドボンド工法において接合部位に塗布された接着剤組成物の粘度が高いことでそれが十分に押し潰されずに接合する構造部材同士を密着できないことで、スポット溶接時に通電不良が生じやすく、接合強度が低下する。一方で、配合量が多すぎると、相対的にその他の材料の配合量が小さくなることで、洗浄処理を有する電着塗装工程内の雰囲気温度条件(40℃付近)下で所望とする高粘度が得られなかったり硬化物の接着性が低下したりする。 Furthermore, the viscosity fluctuation | variation with respect to a temperature change can also be made small by containing a reactive diluent. Here, when the amount of the reactive diluent is too small, the viscosity variation of the material with respect to the temperature change becomes large, and it is not possible to sufficiently reduce the viscosity even when heated at a predetermined temperature at the time of coating, and the coating workability is improved. descend. In addition, in a low temperature environment such as in winter, the adhesive composition applied to the bonding site in the weld bond method has a high viscosity, so that the structural members to be bonded without being sufficiently crushed cannot be spotted. Failure to conduct electricity easily occurs during welding, resulting in a decrease in bonding strength. On the other hand, if the blending amount is too large, the blending amount of other materials becomes relatively small, and the desired high viscosity is obtained under the atmospheric temperature conditions (around 40 ° C.) in the electrodeposition coating process having a cleaning process. May not be obtained, or the adhesiveness of the cured product may be reduced.
発明者らの実験によれば、特に好ましくは、反応性希釈剤の配合量が、変性エポキシ樹脂の配合量100重量部に対して、18重量部〜40重量部の範囲内であれば、洗浄工程時の雰囲気温度条件(40℃付近)において所望とする高い粘度としても、ホットアプライによる接着剤の塗布時には塗布に適度な粘度特性を有して良好な塗布作業性が得られ、また、冬場の低温下でもウエルドボンド工法において接合部位に塗布された接着剤組成物がスポット溶接を行う電極を挟んだ際に十分に押し潰される程度に適度な粘度特性を有し、接合する構造部材同士を密着できて通電不良を生じさせることなく良好な接合強度を確保でき、かつ、硬化物の接着性も確保できる。
なお、上記数値は、必ずしも厳格であることを要求されず、使用する反応性希釈剤の種類や、接着剤組成物を構成する他の材料等との関係で上記数値を若干変更してもその実施を否定するものではない。
According to the experiments by the inventors, it is particularly preferable that the reactive diluent is washed if it is in the range of 18 to 40 parts by weight with respect to 100 parts by weight of the modified epoxy resin. Even if the desired high viscosity is obtained under the atmospheric temperature conditions (around 40 ° C.) during the process, when applying the adhesive by hot apply, it has an appropriate viscosity characteristic for application and good application workability is obtained. Even at low temperatures, the adhesive composition applied to the joining site in the weld bond method has an appropriate viscosity characteristic to the extent that it is sufficiently crushed when sandwiching the electrode for spot welding, and the structural members to be joined together Good bonding strength can be secured without causing poor electrical conduction, and adhesion of the cured product can be secured.
Note that the above numerical values are not necessarily required to be strict, and even if the numerical values are slightly changed depending on the type of reactive diluent used, other materials constituting the adhesive composition, etc. It does not deny implementation.
このように、本実施の形態の構造用接着剤組成物によれば、好適には、汎用エポキシ樹脂と変性エポキシ樹脂の配合重量比を1:2〜2:1の範囲内とし、変性エポキシ樹脂の配合量100重量部(コアゴム型粒子の分散媒としての変性エポキシ樹脂も含まれる)に対して、コアシェル型ゴム粒子を45重量部〜90重量部の範囲内で配合し、反応性希釈剤を18重量部〜40重量部の範囲内で配合していることで、洗浄工程時の雰囲気温度条件(40℃付近)における粘度を向上させても、温度変化に対する粘度変動が小さいことで、低温下でも粘度が高すぎることなくウエルドボンド工法において接合部位に塗布された接着剤組成物が十分に押し潰されて接合する構造部材同士が密着され、スポット溶接時に通電不良を生じさせることがなく、また、硬化を生じさせない温度での加熱によって十分に減粘が可能な粘度特性を有し、良好な塗布作業性及び接合強度が得られ、更に、硬化後の接着性も確保できる。即ち、ホットアプライによる塗布作業性、ウエルドボンド工法による接合強度、硬化物の接着性と洗浄工程時の雰囲気温度(40℃付近)での高粘度特性との両立を可能とし、温度変化に対する粘度変動のバランスに優れる。 As described above, according to the structural adhesive composition of the present embodiment, the blended weight ratio of the general-purpose epoxy resin and the modified epoxy resin is preferably in the range of 1: 2 to 2: 1, and the modified epoxy resin is used. The core-shell type rubber particles are blended in the range of 45 to 90 parts by weight with respect to 100 parts by weight (including a modified epoxy resin as a dispersion medium for the core rubber-type particles), and a reactive diluent is added. By blending within the range of 18 parts by weight to 40 parts by weight, even if the viscosity under the ambient temperature condition (around 40 ° C.) during the cleaning process is improved, the viscosity variation with respect to the temperature change is small, so However, the adhesive composition applied to the joining site in the weld bond method without being too high in viscosity is sufficiently crushed and the structural members to be joined are brought into close contact with each other, which may cause poor conduction during spot welding. Ku, also has a sufficiently thinning capable viscosity characteristics by heating at a temperature not causing curing, good coating workability and the bonding strength is obtained, further, it can be ensured adhesion after curing. In other words, application workability by hot apply, bonding strength by weld bond method, adhesiveness of cured products and high viscosity characteristics at ambient temperature (around 40 ° C) during the cleaning process are made possible, and viscosity fluctuation with temperature change Excellent balance.
このような配合の本実施の形態の構造用接着剤組成物は、配合成分を公知の混合分散機、例えば、プラネタリーミキサー、ディスパー、ヘンシェルミキサー、ニーダー、インクロール、押出機、チェンジ缶式ミキサー等で均質に混合攪拌することによって調製される。
そして、調製した本実施の形態にかかる構造用接着剤組成物は、公知の方法、例えば、スプレー、シーラーガン、刷毛塗り等の方法で被接着体に塗布される。
The structural adhesive composition of the present embodiment having such a composition is prepared by mixing known ingredients with a known mixing and dispersing machine such as a planetary mixer, a disper, a Henschel mixer, a kneader, an ink roll, an extruder, and a change can type mixer. It is prepared by mixing and stirring uniformly.
The prepared structural adhesive composition according to the present embodiment is applied to an adherend by a known method such as spraying, sealer gun, or brushing.
このとき、上述したように、本実施の形態の構造用接着剤組成物によれば、少なくとも汎用エポキシ樹脂と、変性エポキシ樹脂と、コアシェル型ゴム粒子と、反応性希釈剤と、硬化剤とを含有し、好適には、汎用エポキシ樹脂と変性エポキシ樹脂の配合重量比を1:2〜2:1の範囲内とし、変性エポキシ樹脂の合計配合量100重量部に対して、コアシェル型ゴム粒子を45重量部〜90重量部の範囲内で配合し、反応性希釈剤を18重量部〜40重量部の範囲内で配合したことによって、洗浄工程時の雰囲気温度条件(40℃付近)において高い粘度特性を有するものとしたことから、塗布の際には、所定温度で加熱し減粘させる(ホットアプライ型とする)ことで塗布作業性が確保される。 At this time, as described above, according to the structural adhesive composition of the present embodiment, at least the general-purpose epoxy resin, the modified epoxy resin, the core-shell type rubber particles, the reactive diluent, and the curing agent. Preferably, the blending weight ratio of the general-purpose epoxy resin and the modified epoxy resin is in the range of 1: 2 to 2: 1, and the core-shell type rubber particles are added to 100 parts by weight of the total blended amount of the modified epoxy resin. By blending within the range of 45 parts by weight to 90 parts by weight, and by blending the reactive diluent within the range of 18 parts by weight to 40 parts by weight, a high viscosity is obtained at the ambient temperature conditions (around 40 ° C.) during the washing step. Since it has the characteristics, at the time of coating, the coating workability is ensured by heating at a predetermined temperature to reduce the viscosity (a hot apply type).
塗布時の加熱温度は、接着剤組成物の配合内容や粘度に応じ、塗布可能な程度(例えば、ポンプ等による吐出可能な程度)に減粘させることができる温度に適宜設定されるが、塗布時の加熱温度が高すぎると、硬化反応が進行し良好な塗布作業性が得られなくなることから、通常、塗布作業の安全性も考慮し、45℃〜60℃に設定される。
本実施の形態の構造用接着剤組成物によれば、上述の配合によって、洗浄工程時の雰囲気温度条件(40℃付近)において高い粘度特性を有しても、温度変化に対する粘度変動が少ないことで、50℃〜60℃条件下でも粘度が高くなり過ぎることはなく、良好な塗布作業性が確保される。
The heating temperature at the time of application is appropriately set to a temperature at which the viscosity can be reduced to a level that can be applied (for example, a level that can be discharged by a pump, etc.) depending on the content and viscosity of the adhesive composition. If the heating temperature at that time is too high, the curing reaction proceeds and good coating workability cannot be obtained. Therefore, the temperature is usually set to 45 ° C. to 60 ° C. in consideration of the safety of the coating work.
According to the structural adhesive composition of the present embodiment, due to the above-mentioned blending, there is little viscosity variation with respect to temperature change even if it has high viscosity characteristics under the atmospheric temperature conditions (around 40 ° C.) during the cleaning process. Thus, the viscosity does not become too high even under conditions of 50 ° C. to 60 ° C., and good coating workability is ensured.
なお、このように本実施の形態の構造用接着剤組成物は、塗布の際に、所定温度で加熱し減粘させて塗布するものであるが、このときの加熱は、硬化を進行させることのない低い温度での加熱であり、疑似硬化のように短時間で高温の加熱処理を行うものではないことから、エポキシ樹脂の発泡による接着強度の低下は生じ難い。また、加熱温度が低いことで、例えば、汎用ポンプ設備に簡易ヒータを取り付ける程度の改良で加熱塗布を可能とし、製造ラインの大きな仕様変更をしなくとも既存の設備で対応でき、多大なコストがかることもない。 As described above, the structural adhesive composition of the present embodiment is applied by heating at a predetermined temperature to reduce the viscosity at the time of application, and the heating at this time causes the curing to proceed. Since the heating is performed at a low temperature without any heat treatment and the heat treatment is not performed at a high temperature in a short time as in the case of pseudo-curing, the adhesive strength is hardly lowered due to the foaming of the epoxy resin. In addition, the low heating temperature makes it possible to apply heat by, for example, improving the degree to which a simple heater is attached to a general-purpose pump facility. There is nothing.
そして、本実施の形態の構造用接着剤組成物においては、塗布後は、粘度の温度依存性によって雰囲気温度条件に応じた粘度特性を示し、粘度が上昇する。
この際、本実施の形態の構造用接着剤組成物を塗布した被接着体が車体の構造部材等の場合には、ウエルドボンド工法として接着剤組成物の塗布後に適宜スポット溶接を施すことで、接合を強化できる。
And in the structural adhesive composition of this Embodiment, after application | coating, the viscosity characteristic according to atmospheric temperature conditions is shown by the temperature dependence of a viscosity, and a viscosity rises.
At this time, when the adherend to which the structural adhesive composition of the present embodiment is applied is a structural member of a vehicle body, by performing spot welding as appropriate after applying the adhesive composition as a weld bond method, Bonding can be strengthened.
特に、本実施の形態の構造用接着剤組成物によれば、上述の配合によって、洗浄工程時の雰囲気温度条件(40℃付近)において高い粘度特性を有しても、温度変化に対する粘度変動が少ないことで、冬場の低温下でも粘度が高くなりすぎることなく、ウエルドボンド工法において接合部位に塗布された接着剤組成物が十分に押し潰されて接合する構造部材同士が密着されスポット溶接時に通電不良を生じさせることがなく、スポット溶接性が良好であり、冬場の低温下でもウエルドボンド工法による接合強度が確保され、接合の信頼性が高い。 In particular, according to the structural adhesive composition of the present embodiment, even if the composition described above has a high viscosity characteristic under the atmospheric temperature condition (around 40 ° C.) during the cleaning process, the viscosity variation with respect to the temperature change occurs. With less, the viscosity does not become too high even at low temperatures in winter, and the adhesive composition applied to the joint site in the weld bond method is sufficiently crushed and the structural members to be joined are brought into close contact with each other and are energized during spot welding. It does not cause defects, has good spot weldability, ensures the bonding strength by the weld bond method even at low temperatures in winter, and has high bonding reliability.
そして、本実施の形態の構造用接着剤組成物は、エポキシ樹脂の硬化剤を含有することで、加熱によって硬化されるものであり、例えば、本実施の形態の構造用接着剤組成物を塗布した被接着体が車体の構造部材等の場合には、車体組立工程で接着剤組成物が塗布され、電着塗装工程内にて洗浄処理にさらされた後、電着塗装が施され、その後、塗装乾燥炉で電着塗膜の焼き付けを行う工程をたどるが、この焼き付け時に、接着剤組成物が加熱硬化(例えば、約150℃〜約220℃の温度で約20分〜約60分間)される。 The structural adhesive composition of the present embodiment contains an epoxy resin curing agent and is cured by heating. For example, the structural adhesive composition of the present embodiment is applied. When the adherend is a structural member of a vehicle body, the adhesive composition is applied in the vehicle body assembly process, and after being subjected to a cleaning process in the electrodeposition coating process, the electrodeposition coating is performed. The process of baking the electrodeposition coating film in a paint drying oven is followed, and during this baking, the adhesive composition is heat-cured (for example, at a temperature of about 150 ° C. to about 220 ° C. for about 20 minutes to about 60 minutes). Is done.
このとき、被接着体に塗布された接着剤組成物は未硬化の状態で電着塗装工程内にて洗浄処理にさらされるわけだが、本実施の形態の構造用接着剤組成物によれば、上述したように、少なくとも汎用エポキシ樹脂と、変性エポキシ樹脂と、コアシェル型ゴム粒子と、反応性希釈剤と、硬化剤とを含有し、好適には、汎用エポキシ樹脂と変性エポキシ樹脂の配合重量比を1:2〜2:1の範囲内とし、変性エポキシ樹脂の配合量100重量部に対して、コアシェル型ゴム粒子を45重量部〜90重量部の範囲内で配合し、反応性希釈剤を18重量部〜40重量部の範囲内で配合したことによって、ホットアプライでの塗布作業性、ウエルドボンド工法による接合強度、硬化物の接着性等の特性を損なうことなく、洗浄工程時の雰囲気温度条件(40℃付近)において高い粘度特性を有することから、接着強度の低下を招く可能性のある予備加熱(疑似硬化)をしなくとも、洗浄時の流水圧に対して高い抵抗性を示す。即ち、未硬化状態でも形状保持性や被接着体への定着性が発揮されて接着剤組成物の飛散、流出、変形(位置ずれ)等が効果的に防止される。よって、接着剤組成物の飛散、流出、変形(位置ずれ)等による塗装不良や電着液の汚染や後のシーラー塗布工程での処理不良を防止できる。 At this time, the adhesive composition applied to the adherend is exposed to a cleaning process in the electrodeposition coating process in an uncured state, but according to the structural adhesive composition of the present embodiment, As described above, it contains at least a general-purpose epoxy resin, a modified epoxy resin, core-shell type rubber particles, a reactive diluent, and a curing agent, preferably a blending weight ratio of the general-purpose epoxy resin and the modified epoxy resin Is within the range of 1: 2 to 2: 1, and the core-shell type rubber particles are blended within the range of 45 parts by weight to 90 parts by weight with respect to 100 parts by weight of the modified epoxy resin, and the reactive diluent is added. By blending in the range of 18 parts by weight to 40 parts by weight, the atmospheric temperature during the cleaning process without impairing properties such as coating workability with hot apply, bonding strength by weld bond method, adhesion of cured product, etc. conditions( Since it has a high viscosity properties at near 0 ° C.), even without the pre-heating that could lead to a decrease in adhesive strength (pseudo cure), it exhibits high resistance to washing when the flow water pressure. That is, even in an uncured state, shape retention and fixability to the adherend are exhibited, and the scattering, outflow, deformation (position shift), and the like of the adhesive composition are effectively prevented. Therefore, it is possible to prevent coating failure due to scattering, outflow, deformation (position shift), etc. of the adhesive composition, contamination of the electrodeposition liquid, and processing failure in the later sealer coating process.
なお、このようにホットアプライでの塗布作業性、ウエルドボンド工法による接合強度、硬化物の接着性等の特性を損なうことなく、洗浄工程時の雰囲気温度条件(40℃付近)において高い粘度特性を有する本実施の形態の構造用接着剤組成物は、例えば、自動車や車両(新幹線、電車)、土木、建築、エレクトロニクス、船舶、航空機、宇宙産業分野等の構造部材の接着剤として用いることができる。特に、自動車において、ルーフレール、各種ピラー等の構造部位や、ドア、フード、トランクのインナーパネルとアウターパネルの合わせヘミング部や、ホイールアーチ部、サイドシル、アウターシル等のスポット溶接が行われる部材・部位への構造用接着剤として有用である。そして、電極等を使用したスポット溶接等との併用(ウエルドボンド工法)により、構造部位への高い接合強度を確保することができる。また、洗浄工程時の雰囲気温度条件(40℃付近)において高い粘度特性を有することから、被接着体への塗布後に流水にさらされる部材の接着に有用である。 In addition, high viscosity characteristics can be obtained under the atmospheric temperature conditions (around 40 ° C.) during the cleaning process without impairing characteristics such as hot-apply coating workability, weld bond strength by weld bonding, and adhesiveness of the cured product. The structural adhesive composition according to the present embodiment can be used, for example, as an adhesive for structural members in automobiles, vehicles (bullet trains, trains), civil engineering, architecture, electronics, ships, aircraft, space industry, and the like. . Especially in automobiles, structural parts such as roof rails, various pillars, doors, hoods, trunk hemming parts of inner panels and outer panels, wheel arch parts, side sills, outer sills, etc. Useful as a structural adhesive. And high joint strength to a structure part is securable by combined use (weld bond method) with spot welding etc. which used an electrode etc. Moreover, since it has a high viscosity characteristic in the atmospheric temperature conditions (around 40 degreeC) at the time of a washing | cleaning process, it is useful for adhesion | attachment of the member exposed to flowing water after the application to a to-be-adhered body.
[実施例]
次に、本発明の実施の形態にかかる構造用接着剤組成物の実施例を具体的に説明する。
まず、本実施の形態の構造用接着剤組成物の配合組成として表1に示した内容で、実施例1乃至実施例8にかかる接着剤組成物を調製した。また、比較のために、比較例1乃至比較例4にかかる接着剤組成物も調製した。各実施例及び各比較例の配合内容を表1の上段に示す。
[Example]
Next, examples of the structural adhesive composition according to the embodiment of the present invention will be specifically described.
First, adhesive compositions according to Examples 1 to 8 were prepared with the contents shown in Table 1 as the composition of the structural adhesive composition of the present embodiment. Moreover, the adhesive composition concerning the comparative example 1 thru | or the comparative example 4 was also prepared for the comparison. The composition of each Example and each Comparative Example is shown in the upper part of Table 1.
本実施例及び比較例において、汎用エポキシ樹脂としては、室温で液状のビスフェノールA型エポキシ樹脂(ADEKA(株)社製:「アデカレジンEP−4100」、粘度;13,000〈mPa・s/25℃〉)を使用した。
変性エポキシ樹脂としては、ウレタン変性エポキシ樹脂(ADEKA(株)社製:「アデカレジンEPU−78−11」)、または、ゴム(NBR)変性エポキシ樹脂(ADEKA(株)社製:「アデカレジンEPR−2007」、粘度;120,000〈mPa・s/25℃〉)を使用した。
In this example and comparative example, as a general-purpose epoxy resin, a bisphenol A type epoxy resin that is liquid at room temperature (manufactured by ADEKA Corporation: “Adeka Resin EP-4100”, viscosity: 13,000 <mPa · s / 25 ° C. >)It was used.
As the modified epoxy resin, urethane-modified epoxy resin (ADEKA Co., Ltd .: “Adeka Resin EPU-78-11”) or rubber (NBR) modified epoxy resin (ADEKA Co., Ltd .: “Adeka Resin EPR-2007”). ”, Viscosity: 120,000 <mPa · s / 25 ° C.>).
コアシェル型ゴム粒子としては、ゴム状ポリマー(n−ブチルアクリレートの重合体)からなるコア層をガラス状ポリマー(メチルメタクリレートの重合体)からなるシェル層で被覆した2層構造のもの(アイカ工業(株)製:「ZEFIAC F−351」)を使用した。
反応性希釈剤としては、グリシジルエーテル(ADEKA(株)製:「アデカグリシロールED−503」を使用した。
また、上記エポキシ樹脂に対する硬化剤としては、ジシアンジアミド(ジャパンエポキシレジン(株)製:「jerキュアDICY15」)を用い、更にその硬化触媒として、アミンアダクト系(味の素ファインテクノ(株)製:「アミキュアPN50」)を使用した。
The core-shell type rubber particles have a two-layer structure in which a core layer made of a rubber-like polymer (n-butyl acrylate polymer) is coated with a shell layer made of a glass-like polymer (methyl methacrylate polymer) (Aika Industry ( Co., Ltd .: “ZEFIAC F-351”) was used.
As the reactive diluent, glycidyl ether (manufactured by ADEKA Corporation: “ADEKA GLYCIROL ED-503”) was used.
In addition, as a curing agent for the epoxy resin, dicyandiamide (Japan Epoxy Resin Co., Ltd .: “Jer Cure DICY15”) is used, and as its curing catalyst, an amine adduct system (Ajinomoto Fine Techno Co., Ltd .: “Amicure”). PN50 ") was used.
そして、本実施例及び比較例においては、チキソ剤としてシリカ(日本アエロジル(株)製:「アエロジル#380」)、充填剤として重質炭酸カルシウム(竹原化学工業(株)製)を添加した。 In Examples and Comparative Examples, silica (Nihon Aerosil Co., Ltd .: “Aerosil # 380”) was added as a thixotropic agent, and heavy calcium carbonate (Takehara Chemical Industries, Ltd.) was added as a filler.
表1に示したように、実施例1乃至実施例8及び比較例1乃至比較例4の全てで、硬化剤としてのジシアンジアミドの配合量は15重量部及びアミンアダクト系の触媒の配合量は5重量部、チキソ剤としてのシリカの配合量は10重量部、充填剤として炭酸カルシウムの配合量は120重量部で統一し、エポキシ樹脂、コアシェル型ゴム粒子、反応性希釈剤についてはその配合内容・配合量を変化させている。 As shown in Table 1, in all of Examples 1 to 8 and Comparative Examples 1 to 4, the amount of dicyandiamide as a curing agent was 15 parts by weight, and the amount of amine adduct catalyst was 5 Part by weight, 10 parts by weight of silica as a thixotropic agent, and 120 parts by weight of calcium carbonate as a filler are unified, and the contents of epoxy resin, core-shell rubber particles, and reactive diluent are as follows: The blending amount is changed.
具体的に、実施例1においては、エポキシ樹脂として、汎用エポキシ樹脂のビスフェノールA型エポキシ樹脂と変性エポキシ樹脂のウレタン変性エポキシ樹脂を併用し、ビスフェノールA型エポキシ樹脂を100重量部、ウレタン変性エポキシ樹脂を100重量部、そして、コアシェル型ゴム粒子を60重量部と、反応性希釈剤としてのグリシジルエーテルを25重量部の配合としている。 Specifically, in Example 1, as the epoxy resin, a general-purpose epoxy resin bisphenol A type epoxy resin and a modified epoxy resin urethane modified epoxy resin are used in combination, and bisphenol A type epoxy resin is 100 parts by weight, urethane modified epoxy resin. 100 parts by weight, 60 parts by weight of core-shell type rubber particles, and 25 parts by weight of glycidyl ether as a reactive diluent.
この実施例1の配合では、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂とが重量比で1:1の割合で配合されている。また、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂100重量部に対してコアシェル型ゴム粒子の配合量が60重量部、反応性希釈剤としてのグリシジルエーテルの配合量が25重量部となっている。なお、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との合計配合量を100重量部としたとき、それに対するコアシェル型ゴム粒子の配合量は30重量部、反応性希釈剤としてのグリシジルエーテルの配合量は12.5重量部となっている。 In the blending of Example 1, a bisphenol A type epoxy resin as a general-purpose epoxy resin and a urethane-modified epoxy resin as a modified epoxy resin are blended at a ratio of 1: 1 by weight. Further, the blending amount of the core-shell type rubber particles is 60 parts by weight and the blending amount of glycidyl ether as the reactive diluent is 25 parts by weight with respect to 100 parts by weight of the urethane-modified epoxy resin as the modified epoxy resin. When the total blending amount of the bisphenol A type epoxy resin as a general-purpose epoxy resin and the urethane-modified epoxy resin as a modified epoxy resin is 100 parts by weight, the blending amount of the core-shell type rubber particles is 30 parts by weight, reaction The amount of glycidyl ether as a functional diluent is 12.5 parts by weight.
また、実施例2においては、エポキシ樹脂として、汎用エポキシ樹脂のビスフェノールA型エポキシ樹脂と変性エポキシ樹脂のゴム(NBR)変性エポキシ樹脂を併用し、ビスフェノールA型エポキシ樹脂を100重量部、ゴム(NBR)変性エポキシ樹脂を100重量部、そして、コアシェル型ゴム粒子を60重量部と、反応性希釈剤としてのグリシジルエーテルを25重量部の配合としている。 In Example 2, a general-purpose epoxy resin bisphenol A type epoxy resin and a modified epoxy resin rubber (NBR) modified epoxy resin are used in combination as an epoxy resin, and 100 parts by weight of bisphenol A type epoxy resin and rubber (NBR). ) 100 parts by weight of the modified epoxy resin, 60 parts by weight of the core-shell type rubber particles, and 25 parts by weight of glycidyl ether as the reactive diluent.
この実施例2の配合でも、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのゴム(NBR)変性エポキシ樹脂とが重量比で1:1の割合で配合されている。また、変性エポキシ樹脂としてのゴム(NBR)変性エポキシ樹脂100重量部に対してコアシェル型ゴム粒子の配合量が60重量部、反応性希釈剤としてのグリシジルエーテルの配合量が25重量部となっている。なお、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのゴム(NBR)変性エポキシ樹脂との合計配合量を100重量部としたとき、それに対するコアシェル型ゴム粒子の配合量は30重量部、反応性希釈剤としてのグリシジルエーテルの配合量は12.5重量部となっている。 Even in the blending of Example 2, the bisphenol A type epoxy resin as a general-purpose epoxy resin and the rubber (NBR) -modified epoxy resin as a modified epoxy resin are blended at a ratio of 1: 1 by weight. Further, the blending amount of the core-shell type rubber particles is 60 parts by weight and the blending amount of glycidyl ether as the reactive diluent is 25 parts by weight with respect to 100 parts by weight of the rubber (NBR) -modified epoxy resin as the modified epoxy resin. Yes. When the total blending amount of the bisphenol A type epoxy resin as a general-purpose epoxy resin and the rubber (NBR) modified epoxy resin as a modified epoxy resin is 100 parts by weight, the blending amount of the core-shell type rubber particles is 30 wt. The amount of glycidyl ether as a reactive diluent is 12.5 parts by weight.
実施例3においては、エポキシ樹脂として、汎用エポキシ樹脂のビスフェノールA型エポキシ樹脂と変性エポキシ樹脂のウレタン変性エポキシ樹脂を併用し、ビスフェノールA型エポキシ樹脂を133重量部、ウレタン変性エポキシ樹脂を67重量部、そして、コアシェル型ゴム粒子を60重量部と、反応性希釈剤としてのグリシジルエーテルを25重量部の配合としている。 In Example 3, a general-purpose epoxy resin bisphenol A-type epoxy resin and a modified epoxy resin urethane-modified epoxy resin are used in combination as an epoxy resin, 133 parts by weight of bisphenol A-type epoxy resin, and 67 parts by weight of urethane-modified epoxy resin. In addition, 60 parts by weight of core-shell type rubber particles and 25 parts by weight of glycidyl ether as a reactive diluent are blended.
この実施例3の配合では、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂とが重量比で2:1の割合で配合されている。また、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂100重量部に対してコアシェル型ゴム粒子の配合量が90重量部、反応性希釈剤としてのグリシジルエーテルの配合量が37重量部となっている。なお、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との合計配合量を100重量部としたとき、それに対するコアシェル型ゴム粒子の配合量は30重量部、反応性希釈剤としてのグリシジルエーテルの配合量は12.5重量部となっている。 In the blending of Example 3, a bisphenol A type epoxy resin as a general-purpose epoxy resin and a urethane-modified epoxy resin as a modified epoxy resin are blended in a ratio of 2: 1 by weight. Further, the blending amount of the core-shell type rubber particles is 90 parts by weight and the blending amount of glycidyl ether as the reactive diluent is 37 parts by weight with respect to 100 parts by weight of the urethane-modified epoxy resin as the modified epoxy resin. When the total blending amount of the bisphenol A type epoxy resin as a general-purpose epoxy resin and the urethane-modified epoxy resin as a modified epoxy resin is 100 parts by weight, the blending amount of the core-shell type rubber particles is 30 parts by weight, reaction The amount of glycidyl ether as a functional diluent is 12.5 parts by weight.
実施例4においては、エポキシ樹脂として、汎用エポキシ樹脂のビスフェノールA型エポキシ樹脂と変性エポキシ樹脂のウレタン変性エポキシ樹脂を併用し、ビスフェノールA型エポキシ樹脂を67重量部、ウレタン変性エポキシ樹脂を133重量部、そして、コアシェル型ゴム粒子を60重量部と、反応性希釈剤としてのグリシジルエーテルを25重量部の配合としている。 In Example 4, a general-purpose epoxy resin bisphenol A type epoxy resin and a modified epoxy resin urethane modified epoxy resin were used in combination as an epoxy resin, 67 parts by weight of bisphenol A type epoxy resin, and 133 parts by weight of urethane modified epoxy resin. In addition, 60 parts by weight of core-shell type rubber particles and 25 parts by weight of glycidyl ether as a reactive diluent are blended.
この実施例4の配合では、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂とが重量比で1:2の割合で配合されている。また、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂100重量部に対してコアシェル型ゴム粒子の配合量が45重量部、反応性希釈剤としてのグリシジルエーテルの配合量が18重量部となっている。なお、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との合計配合量を100重量部としたとき、それに対するコアシェル型ゴム粒子の配合量は30重量部、反応性希釈剤としてのグリシジルエーテルの配合量は12.5重量部となっている。 In the blending of Example 4, a bisphenol A type epoxy resin as a general-purpose epoxy resin and a urethane-modified epoxy resin as a modified epoxy resin are blended at a weight ratio of 1: 2. Further, the blending amount of the core-shell type rubber particles is 45 parts by weight and the blending amount of glycidyl ether as the reactive diluent is 18 parts by weight with respect to 100 parts by weight of the urethane-modified epoxy resin as the modified epoxy resin. When the total blending amount of the bisphenol A type epoxy resin as a general-purpose epoxy resin and the urethane-modified epoxy resin as a modified epoxy resin is 100 parts by weight, the blending amount of the core-shell type rubber particles is 30 parts by weight, reaction The amount of glycidyl ether as a functional diluent is 12.5 parts by weight.
実施例5においては、エポキシ樹脂として、汎用エポキシ樹脂のビスフェノールA型エポキシ樹脂と変性エポキシ樹脂のウレタン変性エポキシ樹脂を併用し、ビスフェノールA型エポキシ樹脂を100重量部、ウレタン変性エポキシ樹脂を100重量部、そして、コアシェル型ゴム粒子を50重量部と、反応性希釈剤としてのグリシジルエーテルを25重量部の配合としている。 In Example 5, as the epoxy resin, a general-purpose epoxy resin bisphenol A type epoxy resin and a modified epoxy resin urethane modified epoxy resin are used in combination, and the bisphenol A type epoxy resin is 100 parts by weight and the urethane modified epoxy resin is 100 parts by weight. In addition, 50 parts by weight of core-shell type rubber particles and 25 parts by weight of glycidyl ether as a reactive diluent are blended.
この実施例5の配合では、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂とが重量比で1:1の割合で配合されている。また、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂100重量部に対してコアシェル型ゴム粒子の配合量が50重量部、反応性希釈剤としてのグリシジルエーテルの配合量が25重量部となっている。なお、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との合計配合量を100重量部としたとき、それに対するコアシェル型ゴム粒子の配合量は25重量部、反応性希釈剤としてのグリシジルエーテルの配合量は12.5重量部となっている。 In the blending of Example 5, bisphenol A type epoxy resin as a general-purpose epoxy resin and urethane-modified epoxy resin as a modified epoxy resin are blended at a weight ratio of 1: 1. Further, the blending amount of the core-shell type rubber particles is 50 parts by weight and the blending amount of glycidyl ether as the reactive diluent is 25 parts by weight with respect to 100 parts by weight of the urethane-modified epoxy resin as the modified epoxy resin. In addition, when the total blending amount of the bisphenol A type epoxy resin as a general-purpose epoxy resin and the urethane-modified epoxy resin as a modified epoxy resin is 100 parts by weight, the blending amount of the core-shell type rubber particles is 25 parts by weight. The amount of glycidyl ether as a functional diluent is 12.5 parts by weight.
実施例6においては、エポキシ樹脂として、汎用エポキシ樹脂のビスフェノールA型エポキシ樹脂と変性エポキシ樹脂のウレタン変性エポキシ樹脂を併用し、ビスフェノールA型エポキシ樹脂を100重量部、ウレタン変性エポキシ樹脂を100重量部、そして、コアシェル型ゴム粒子を70重量部と、反応性希釈剤としてのグリシジルエーテルを25重量部の配合としている。 In Example 6, as the epoxy resin, a general-purpose epoxy resin bisphenol A type epoxy resin and a modified epoxy resin urethane modified epoxy resin are used in combination, and the bisphenol A type epoxy resin is 100 parts by weight and the urethane modified epoxy resin is 100 parts by weight. In addition, 70 parts by weight of core-shell type rubber particles and 25 parts by weight of glycidyl ether as a reactive diluent are blended.
この実施例6の配合では、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂とが重量比で1:1の割合で配合されている。また、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂100重量部に対してコアシェル型ゴム粒子の配合量が70重量部、反応性希釈剤としてのグリシジルエーテルの配合量が25重量部となっている。なお、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との合計配合量を100重量部としたとき、それに対するコアシェル型ゴム粒子の配合量は35重量部、反応性希釈剤としてのグリシジルエーテルの配合量は12.5重量部となっている。 In the blending of Example 6, a bisphenol A type epoxy resin as a general-purpose epoxy resin and a urethane-modified epoxy resin as a modified epoxy resin are blended at a weight ratio of 1: 1. Further, the blending amount of the core-shell type rubber particles is 70 parts by weight and the blending amount of glycidyl ether as the reactive diluent is 25 parts by weight with respect to 100 parts by weight of the urethane-modified epoxy resin as the modified epoxy resin. In addition, when the total compounding amount of the bisphenol A type epoxy resin as the general-purpose epoxy resin and the urethane-modified epoxy resin as the modified epoxy resin is 100 parts by weight, the compounding amount of the core-shell type rubber particles is 35 parts by weight. The amount of glycidyl ether as a functional diluent is 12.5 parts by weight.
実施例7においては、エポキシ樹脂として、汎用エポキシ樹脂のビスフェノールA型エポキシ樹脂と変性エポキシ樹脂のウレタン変性エポキシ樹脂を併用し、ビスフェノールA型エポキシ樹脂を100重量部、ウレタン変性エポキシ樹脂を100重量部、そして、コアシェル型ゴム粒子を60重量部と、反応性希釈剤としてのグリシジルエーテルを30重量部の配合としている。 In Example 7, as the epoxy resin, a general-purpose epoxy resin bisphenol A type epoxy resin and a modified epoxy resin urethane modified epoxy resin are used in combination, and the bisphenol A type epoxy resin is 100 parts by weight and the urethane modified epoxy resin is 100 parts by weight. In addition, 60 parts by weight of core-shell type rubber particles and 30 parts by weight of glycidyl ether as a reactive diluent are blended.
この実施例7の配合では、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂とが重量比で1:1の割合で配合されている。また、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂100重量部に対してコアシェル型ゴム粒子の配合量が60重量部、反応性希釈剤としてのグリシジルエーテルの配合量が30重量部となっている。なお、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との合計配合量を100重量部としたとき、それに対するコアシェル型ゴム粒子の配合量は30重量部、反応性希釈剤としてのグリシジルエーテルの配合量は15重量部となっている。 In the blending of Example 7, a bisphenol A type epoxy resin as a general-purpose epoxy resin and a urethane-modified epoxy resin as a modified epoxy resin are blended at a ratio of 1: 1 by weight. Further, the blending amount of the core-shell type rubber particles is 60 parts by weight and the blending amount of glycidyl ether as the reactive diluent is 30 parts by weight with respect to 100 parts by weight of the urethane-modified epoxy resin as the modified epoxy resin. When the total blending amount of the bisphenol A type epoxy resin as a general-purpose epoxy resin and the urethane-modified epoxy resin as a modified epoxy resin is 100 parts by weight, the blending amount of the core-shell type rubber particles is 30 parts by weight, reaction The amount of glycidyl ether as a functional diluent is 15 parts by weight.
実施例8においては、エポキシ樹脂として、汎用エポキシ樹脂のビスフェノールA型エポキシ樹脂と変性エポキシ樹脂のウレタン変性エポキシ樹脂を併用し、ビスフェノールA型エポキシ樹脂を100重量部、ウレタン変性エポキシ樹脂を100重量部、そして、コアシェル型ゴム粒子を60重量部と、反応性希釈剤としてのグリシジルエーテルを40重量部の配合としている。 In Example 8, as the epoxy resin, a general-purpose epoxy resin bisphenol A type epoxy resin and a modified epoxy resin urethane modified epoxy resin are used in combination, and the bisphenol A type epoxy resin is 100 parts by weight and the urethane modified epoxy resin is 100 parts by weight. Then, 60 parts by weight of core-shell type rubber particles and 40 parts by weight of glycidyl ether as a reactive diluent are blended.
この実施例8の配合では、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂とが重量比で1:1の割合で配合されている。また、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂100重量部に対してコアシェル型ゴム粒子の配合量が60重量部、反応性希釈剤としてのグリシジルエーテルの配合量が40重量部となっている。なお、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との合計配合量を100重量部としたとき、それに対するコアシェル型ゴム粒子の配合量は30重量部、反応性希釈剤としてのグリシジルエーテルの配合量は20重量部となっている。 In the formulation of Example 8, a bisphenol A type epoxy resin as a general-purpose epoxy resin and a urethane-modified epoxy resin as a modified epoxy resin are blended at a weight ratio of 1: 1. Further, the blending amount of the core-shell type rubber particles is 60 parts by weight and the blending amount of glycidyl ether as the reactive diluent is 40 parts by weight with respect to 100 parts by weight of the urethane-modified epoxy resin as the modified epoxy resin. When the total blending amount of the bisphenol A type epoxy resin as a general-purpose epoxy resin and the urethane-modified epoxy resin as a modified epoxy resin is 100 parts by weight, the blending amount of the core-shell type rubber particles is 30 parts by weight, reaction The blending amount of glycidyl ether as a functional diluent is 20 parts by weight.
このような配合の実施例に対し、比較例1においては、コアシェル型ゴム粒子の配合を30重量部に減らし、それ以外の配合内容は実施例1と同様にして各種材料を配合した。
即ち、比較例1においては、汎用エポキシ樹脂のビスフェノールA型エポキシ樹脂と変性エポキシ樹脂のウレタン変性エポキシ樹脂を併用し、ビスフェノールA型エポキシ樹脂を100重量部、ウレタン変性エポキシ樹脂を100重量部、そして、コアシェル型ゴム粒子を30重量部と、反応性希釈剤としてのグリシジルエーテルを25重量部の配合としている。
In contrast to the blending examples, in Comparative Example 1, the blending of the core-shell type rubber particles was reduced to 30 parts by weight, and the other blending contents were blended in the same manner as in Example 1, but various materials were blended.
That is, in Comparative Example 1, a general-purpose epoxy resin bisphenol A type epoxy resin and a modified epoxy resin urethane modified epoxy resin are used in combination, bisphenol A type epoxy resin is 100 parts by weight, urethane modified epoxy resin is 100 parts by weight, and In addition, 30 parts by weight of core-shell type rubber particles and 25 parts by weight of glycidyl ether as a reactive diluent are blended.
この比較例1の配合では、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂とが重量比で1:1の割合で配合されており、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂100重量部に対してコアシェル型ゴム粒子の配合量が30重量部、反応性希釈剤としてのグリシジルエーテルの配合量が25重量部となっている。なお、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との合計配合量を100重量部としたとき、それに対するコアシェル型ゴム粒子の配合量は15重量部、反応性希釈剤としてのグリシジルエーテルの配合量は12.5重量部となっている。 In the formulation of Comparative Example 1, bisphenol A type epoxy resin as a general-purpose epoxy resin and urethane-modified epoxy resin as a modified epoxy resin are blended at a ratio of 1: 1 by weight, and urethane as a modified epoxy resin. The blending amount of the core-shell type rubber particles is 30 parts by weight and the blending amount of glycidyl ether as the reactive diluent is 25 parts by weight with respect to 100 parts by weight of the modified epoxy resin. When the total blending amount of the bisphenol A type epoxy resin as a general-purpose epoxy resin and the urethane-modified epoxy resin as a modified epoxy resin is 100 parts by weight, the blending amount of the core-shell type rubber particles is 15 parts by weight, reaction The amount of glycidyl ether as a functional diluent is 12.5 parts by weight.
また、比較例2においては、反応性希釈剤を配合せず、それ以外の配合内容は実施例1と同様にして各種材料を配合した。
比較例2においては、汎用エポキシ樹脂のビスフェノールA型エポキシ樹脂と変性エポキシ樹脂のウレタン変性エポキシ樹脂を併用し、ビスフェノールA型エポキシ樹脂を100重量部、ウレタン変性エポキシ樹脂を100重量部、そして、コアシェル型ゴム粒子を30重量部の配合となっている。
Moreover, in Comparative Example 2, the reactive diluent was not blended, and other materials were blended in the same manner as in Example 1 except that various materials were blended.
In Comparative Example 2, a general-purpose epoxy resin bisphenol A type epoxy resin and a modified epoxy resin urethane modified epoxy resin are used in combination, bisphenol A type epoxy resin 100 parts by weight, urethane modified epoxy resin 100 parts by weight, and core shell The mold rubber particles are blended in 30 parts by weight.
比較例3においては、汎用エポキシ樹脂のビスフェノールA型エポキシ樹脂と変性エポキシ樹脂のウレタン変性エポキシ樹脂を併用するものの、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との配合重量比を1:3とした。それ以外の配合内容は実施例1と同様にして各種材料を配合した。 In Comparative Example 3, although a general-purpose epoxy resin bisphenol A-type epoxy resin and a modified epoxy resin urethane-modified epoxy resin are used in combination, a bisphenol A-type epoxy resin as a general-purpose epoxy resin and a urethane-modified epoxy resin as a modified epoxy resin The blending weight ratio was 1: 3. Other ingredients were blended in the same manner as in Example 1 and various materials were blended.
即ち、比較例3においては、ビスフェノールA型エポキシ樹脂を50重量部、ウレタン変性エポキシ樹脂を150重量部、そして、コアシェル型ゴム粒子を60重量部と、反応性希釈剤としてのグリシジルエーテルを25重量部の配合としている。
この比較例3の配合では、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との配合割合が重量比で1:3であり、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂100重量部に対してコアシェル型ゴム粒子の配合量が40重量部、反応性希釈剤としてのグリシジルエーテルの配合量が22重量部となっている。なお、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との合計配合量を100重量部としたとき、それに対するコアシェル型ゴム粒子の配合量は30重量部、反応性希釈剤としてのグリシジルエーテルの配合量は12.5重量部となっている。
That is, in Comparative Example 3, 50 parts by weight of bisphenol A type epoxy resin, 150 parts by weight of urethane-modified epoxy resin, 60 parts by weight of core-shell type rubber particles, and 25 parts by weight of glycidyl ether as a reactive diluent. The composition of the part.
In the blending of Comparative Example 3, the blending ratio of the bisphenol A type epoxy resin as the general-purpose epoxy resin and the urethane-modified epoxy resin as the modified epoxy resin is 1: 3 by weight, and the urethane-modified epoxy as the modified epoxy resin. The amount of the core-shell type rubber particles is 40 parts by weight and the amount of glycidyl ether as the reactive diluent is 22 parts by weight with respect to 100 parts by weight of the resin. When the total blending amount of the bisphenol A type epoxy resin as a general-purpose epoxy resin and the urethane-modified epoxy resin as a modified epoxy resin is 100 parts by weight, the blending amount of the core-shell type rubber particles is 30 parts by weight, reaction The amount of glycidyl ether as a functional diluent is 12.5 parts by weight.
比較例4においては、汎用エポキシ樹脂のビスフェノールA型エポキシ樹脂と変性エポキシ樹脂のウレタン変性エポキシ樹脂を併用するものの、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との配合重量比を3:1とした。それ以外の配合内容は実施例1と同様にして各種材料を配合した。 In Comparative Example 4, although a general-purpose epoxy resin bisphenol A-type epoxy resin and a modified epoxy resin urethane-modified epoxy resin are used in combination, a bisphenol A-type epoxy resin as a general-purpose epoxy resin and a urethane-modified epoxy resin as a modified epoxy resin The blending weight ratio was 3: 1. Other ingredients were blended in the same manner as in Example 1 and various materials were blended.
即ち、比較例4においては、ビスフェノールA型エポキシ樹脂を150重量部、ウレタン変性エポキシ樹脂を50重量部、そして、コアシェル型ゴム粒子を60重量部と、反応性希釈剤としてのグリシジルエーテルを25重量部の配合としている。
この比較例4の配合では、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との配合割合が重量比で3:1であり、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂100重量部に対してコアシェル型ゴム粒子の配合量が120重量部、反応性希釈剤としてのグリシジルエーテルの配合量が50重量部となっている。なお、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との合計配合量を100重量部としたとき、それに対するコアシェル型ゴム粒子の配合量は30重量部、反応性希釈剤としてのグリシジルエーテルの配合量は12.5重量部となっている。
That is, in Comparative Example 4, 150 parts by weight of bisphenol A type epoxy resin, 50 parts by weight of urethane-modified epoxy resin, 60 parts by weight of core-shell type rubber particles, and 25 parts by weight of glycidyl ether as a reactive diluent. The composition of the part.
In the composition of Comparative Example 4, the blending ratio of the bisphenol A type epoxy resin as the general-purpose epoxy resin and the urethane modified epoxy resin as the modified epoxy resin is 3: 1 by weight, and the urethane modified epoxy as the modified epoxy resin. The amount of the core-shell type rubber particles is 120 parts by weight and the amount of the glycidyl ether as the reactive diluent is 50 parts by weight with respect to 100 parts by weight of the resin. When the total blending amount of the bisphenol A type epoxy resin as a general-purpose epoxy resin and the urethane-modified epoxy resin as a modified epoxy resin is 100 parts by weight, the blending amount of the core-shell type rubber particles is 30 parts by weight, reaction The amount of glycidyl ether as a functional diluent is 12.5 parts by weight.
そして、このように表1に示した配合量で各種材料を配合して室温下で高速ミキサを用いて混合することで、各種接着剤組成物(実施例1乃至実施例8並びに比較例1乃至比較例4)を調製した。 And various materials are mix | blended with the compounding quantity shown in Table 1 in this way, and it mixes using a high-speed mixer at room temperature, Various adhesive composition (Example 1 thru | or Example 8 and Comparative Example 1 thru | or) Comparative Example 4) was prepared.
ここで、これら各配合にかかる接着剤組成物について、自動車車体の鋼板等の構造部材同士の接合への適用(構造用接着剤としての使用)を想定し、所定温度条件下における粘度の測定評価及び剪断強度の測定評価を行った。
粘度については、SOD粘度計((株)離合社製:「Cat.No.860R-01M」)を用いて、JIS−K2220の規定に基づき、剪断速度15.5s-1の測定条件にて、5℃、40℃、60℃の3水準のぞれぞれの温度(循環高温槽またはヒータにて温度制御)での接着剤組成物の粘度(材料粘度)を測定した。
Here, about the adhesive composition concerning these each compounding, application to the joining of structural members, such as a steel plate of an automobile body (use as a structural adhesive), and measurement evaluation of viscosity under a predetermined temperature condition The shear strength was measured and evaluated.
As for the viscosity, using a SOD viscometer (manufactured by Kogyo Co., Ltd .: “Cat. No. 860R-01M”), based on the JIS-K2220, the measurement condition was a shear rate of 15.5 s −1 . The viscosity (material viscosity) of the adhesive composition at each of the three levels of 5 ° C., 40 ° C., and 60 ° C. (temperature control with a circulating high-temperature bath or heater) was measured.
そして、構造部材の接合にウエルドボンド工法が採用されることを考慮して構造部材に接着剤組成物が塗布されたのちスポット溶接が行われる車体組立ラインにおいては、冬場に温度が5℃近くになることから、冬場を想定した5℃での粘度が、4,500Pa・s〜8,000Pa・sの範囲内(4,500Pa・s以上、8,000Pa・s以下)であれば、冬場の低温下ででもウエルドボンド工法において接合部位に塗布された接着剤組成物が十分に押し潰されて接合する構造部材同士が密着されスポット溶接時に通電不良を生じることがないとして○と評価した。4,500Pa・s未満の低粘度のものについては、流動性が高くて接合強度が劣る不具合が生じ、一方で、8,000Pa・sを超える高粘度のものについては、粘度が高すぎてウエルドボンド工法において接合部位に塗布された接着剤組成物が十分に押し潰されず接合する構造部材同士を密着できないことでスポット溶接時に通電不良が生じるとしていずれも×と評価した。 In the body assembly line in which spot welding is performed after the adhesive composition is applied to the structural member in consideration of the use of the weld bond method for joining the structural member, the temperature is close to 5 ° C. in winter. Therefore, if the viscosity at 5 ° C. assuming winter is within the range of 4,500 Pa · s to 8,000 Pa · s (4,500 Pa · s or more, 8,000 Pa · s or less), Even when the temperature was low, the adhesive composition applied to the joining site in the weld bond method was sufficiently crushed and the structural members to be joined were brought into close contact with each other, and evaluated as “◯” because no poor conduction occurred during spot welding. The low viscosity of less than 4,500 Pa · s has a problem that the fluidity is high and the bonding strength is inferior. On the other hand, the high viscosity of more than 8,000 Pa · s is too high and the weld is weak. In the bond method, the adhesive composition applied to the bonding site was not sufficiently crushed and the structural members to be bonded could not be closely adhered to each other.
また、車体組立工程後の電着塗装工程内の洗浄処理における雰囲気温度を想定した40℃での粘度が、500Pa・s〜900Pa・sの範囲内(500Pa・s以上、900Pa・s以下)であれば、洗浄処理での流水圧に対して、十分に抵抗できて、接着剤組成物の飛散等を防止する耐流水圧性が従来よりも高く、構造用接着剤組成物に求められる粘度として十分に高いものであるから、○の評価とした。500Pa・s未満の低粘度のものについては、従来よりも耐流水圧性を高くできないことから×と評価した。 In addition, the viscosity at 40 ° C. assuming the ambient temperature in the cleaning process in the electrodeposition coating process after the body assembly process is in the range of 500 Pa · s to 900 Pa · s (500 Pa · s or more and 900 Pa · s or less). If present, it can sufficiently resist the flowing water pressure in the cleaning treatment, has higher resistance to flowing water pressure to prevent scattering of the adhesive composition, etc., and is sufficient as a viscosity required for the structural adhesive composition. Therefore, it was evaluated as “Good”. Those having a low viscosity of less than 500 Pa · s were evaluated as “x” because the resistance to flowing water pressure could not be made higher than before.
更に、被塗布物(被接着物)に塗布する際に加熱によって減粘させて塗布する(ホットアプライ)ときの加熱温度を接着剤組成物の硬化を生じさせることのない60℃で想定し、この60℃での粘度が、100Pa・s〜300Pa・sの範囲内(100Pa・s以上、300Pa・s以下)であれば、良好な塗布作業性が得られるとして、○の評価とした。300Pa・sを超えるものについては、加熱しても十分に減粘されずに吐出不良等が生じ塗布作業性が低下するとして、×と評価した。なお、100Pa・s未満の低粘度のものについては、60℃では、吐出時にタレやボタ落ちの発生が懸念されるという観点で×と評価した。 Furthermore, when applying to an object to be applied (adhered object), assuming a heating temperature at which the adhesive composition is hardened by applying a reduced viscosity by heating (hot application) at 60 ° C., If the viscosity at 60 ° C. is in the range of 100 Pa · s to 300 Pa · s (100 Pa · s or more and 300 Pa · s or less), good coating workability is obtained, and the evaluation is “◯”. About what exceeded 300 Pa.s, even if it heated, it was evaluated as x, since the discharge | emission defect etc. would arise without being sufficiently reduced in viscosity, and coating workability | operativity will fall. In addition, about the thing with a low viscosity of less than 100 Pa * s, it evaluated as x from a viewpoint that generation | occurrence | production of sagging or a dripping at the time of discharge may be anxious at 60 degreeC.
剪断強度については、JIS K6850に準じて測定を行った。即ち、実施例及び比較例の各接着剤組成物を用いて接着試験体をそれぞれ作製し、次いで引っ張り剪断接着強度試験を行って剪断強度(剪断接着強度)を測定した。
具体的には、試験用パネルとして、10mm×100mm×1.6mmの鋼板を2枚1組で用意し、その一方のパネルの長手方向の一端部から10mmの長さ範囲に亘って、各接着剤組成物を厚さ0.15mmで塗布し、その接着剤組成物が塗布された面にもう一方のパネルの一端部を重ね直線状に接着した(両パネルの接合部間の接着剤層:10mm×10mm×厚さ0.15mm)。次いで、一般的な車体の電着塗装塗膜の焼付条件と同様、各接着剤組成物を170℃×30分の条件で熱風オーブン中で加熱硬化させ、完全に硬化した接着剤組成物層を介して接合された接着試験体を作製した。この接着試験体の両端を、引張り試験機(島津製作所製)を用い、10mm/分の引張り速度で長手方向に引張り、室温(20℃)にて剪断強度を測定した。
このときの剪断強度が25MPa以上であれば構造用接着剤組成物に求められる接着性として十分に高いものであるから○と評価し、25MPa未満のものについては接着性が低いとして×と評価した。
The shear strength was measured according to JIS K6850. That is, an adhesion test body was prepared using each of the adhesive compositions of Examples and Comparative Examples, and then a tensile shear adhesive strength test was performed to measure the shear strength (shear adhesive strength).
Specifically, 10 mm × 100 mm × 1.6 mm steel plates are prepared as a set as a test panel, and each adhesive is bonded over a length range of 10 mm from one longitudinal end of the one panel. The adhesive composition was applied at a thickness of 0.15 mm, and one end of the other panel was overlapped on the surface to which the adhesive composition was applied, and adhered in a straight line (adhesive layer between joints of both panels: 10 mm × 10 mm × thickness 0.15 mm). Next, each adhesive composition was heat-cured in a hot air oven under conditions of 170 ° C. × 30 minutes in the same manner as the baking conditions for a general electrodeposition coating film on a vehicle body, and a completely cured adhesive composition layer was formed. The adhesion test body joined via the was produced. Both ends of this adhesion test body were pulled in the longitudinal direction at a tensile speed of 10 mm / min using a tensile tester (manufactured by Shimadzu Corporation), and the shear strength was measured at room temperature (20 ° C.).
If the shear strength at this time is 25 MPa or more, the adhesiveness required for the structural adhesive composition is sufficiently high, so it was evaluated as “good”, and those having less than 25 MPa were evaluated as “poor” because the adhesiveness was low. .
粘度の測定評価結果及び剪断強度の測定評価の結果については、表1の下段に示した通りである。また、40℃の粘度に対する5℃の粘度の比、40℃の粘度に対する60℃の粘度の比をそれぞれ算出し、その値を表1に示した。 The results of the measurement evaluation of the viscosity and the measurement evaluation of the shear strength are as shown in the lower part of Table 1. Further, the ratio of the viscosity at 5 ° C. to the viscosity at 40 ° C. and the ratio of the viscosity at 60 ° C. to the viscosity at 40 ° C. were calculated, and the values are shown in Table 1.
表1に示したように、実施例1乃至実施例8では、40℃での粘度が500Pa・s〜700Pa・sと高粘度であるが、5℃での粘度が5000Pa・s〜8000Pa・sであり、40℃粘度に対する5℃粘度の粘度比は9.3〜12.3となっており、また、60℃での粘度が140Pa・s〜280Pa・sであり、40℃粘度に対する60℃粘度の粘度比は0.28〜0.40となっている。つまり、40℃における粘度が500Pa・s〜700Pa・sと高粘度であるのにもかかわらず、温度変化に対する粘度変動は小さいものとなっている。更に、硬化後の剪断強度も26MPa〜30MPaと良好である。 As shown in Table 1, in Examples 1 to 8, the viscosity at 40 ° C. is as high as 500 Pa · s to 700 Pa · s, but the viscosity at 5 ° C. is 5000 Pa · s to 8000 Pa · s. The viscosity ratio of the 5 ° C. viscosity to the 40 ° C. viscosity is 9.3 to 12.3, and the viscosity at 60 ° C. is 140 Pa · s to 280 Pa · s. The viscosity ratio of the viscosity is 0.28 to 0.40. That is, although the viscosity at 40 ° C. is as high as 500 Pa · s to 700 Pa · s, the viscosity fluctuation with respect to the temperature change is small. Furthermore, the shear strength after curing is also as good as 26 to 30 MPa.
即ち、実施例1乃至実施例8においては、40℃での粘度が500Pa・s〜700Pa・sと高く、洗浄工程時の雰囲気温度下では高粘度特性を示すが、ホットアプライを想定した60℃での粘度が140Pa・s〜280Pa・sで、ホットアプライでの塗布作業性に適した粘度特性であり、かつ、冬場を想定した5℃での粘度が5000Pa・s〜8000Pa・sで、冬場の低温下でもウエルドボンド工法において接合部位に塗布された接着剤組成物が十分に押し潰されて接合する構造部材同士が密着され、スポット溶接時に通電不良が生じることなくスポット溶接に対して適した粘度特性となることが分かる。
更に、一般的な車体の電着塗装の焼付条件で加熱し、完全に硬化させた後の剪断強度も十分に高いものである。
That is, in Examples 1 to 8, the viscosity at 40 ° C. is as high as 500 Pa · s to 700 Pa · s, and shows high viscosity characteristics under the atmospheric temperature during the cleaning process, but 60 ° C. assuming hot apply. The viscosity is 140 Pa · s to 280 Pa · s, suitable for hot-applying workability, and the viscosity at 5 ° C assuming winter is 5000 Pa · s to 8000 Pa · s. Even under low temperatures, the adhesive composition applied to the joint site in the weld bond method is sufficiently crushed and the structural members to be joined are brought into close contact with each other, making it suitable for spot welding without causing energization failure during spot welding. It turns out that it becomes a viscosity characteristic.
Furthermore, the shear strength after heating under the general baking conditions for electrodeposition coating on the vehicle body and complete curing is sufficiently high.
これに対し、比較例1は、実施例よりもコアシェル型ゴム粒子の配合量が少なく、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂の配合量100重量部に対してコアシェル型ゴム粒子の配合量が30重量部となっているものである。
このような配合の比較例1においては、コアシェル型ゴム粒子の配合が少ないことで、40℃における粘度が300Pa・sと低粘度であり、300Pa・sの低粘度では、接着剤組成物の塗布範囲を広くしたり塗布厚みを増やしたりした場合、洗浄処理時の流水圧に対して十分に抵抗できず、接着剤組成物の飛散、変位(位置ずれ)、流出等が多く生じて塗装不良や電着液の汚染等を招きやすい。また、5℃における粘度が3500Pa・s、60℃における粘度が90Pa・sの低粘度であることで、塗布後の垂れ等により接合強度の低下を招く。更に、比較例1では剪断強度も劣っている。
On the other hand, in Comparative Example 1, the amount of the core-shell type rubber particles is less than that of the example, and the amount of the core-shell type rubber particles is 30 parts per 100 parts by weight of the urethane-modified epoxy resin as the modified epoxy resin. It is a part by weight.
In Comparative Example 1 having such a composition, the viscosity at 40 ° C. is as low as 300 Pa · s due to the small amount of the core-shell rubber particles, and when the viscosity is as low as 300 Pa · s, the adhesive composition is applied. If the range is widened or the coating thickness is increased, it will not be able to sufficiently resist the flowing water pressure during the cleaning process, resulting in a lot of scattering, displacement (displacement), outflow, etc. of the adhesive composition. It easily causes contamination of the electrodeposition liquid. Moreover, the viscosity at 5 ° C. is 3500 Pa · s and the viscosity at 60 ° C. is 90 Pa · s, which causes a decrease in bonding strength due to dripping after coating. Further, in Comparative Example 1, the shear strength is also inferior.
また、比較例2は、反応性希釈剤としてのグリシジルエーテルを配合していないものである。
このような配合の比較例2においては、40℃における粘度が800Pa・sと高い粘度であり剪断強度も良好であるものの、反応性希釈剤としてのグリシジルエーテルが配合されていないことで、5℃における粘度が25000Pa・sで40℃粘度に対する5℃粘度の粘度比は31.3であり、また、60℃における粘度が350Pa・sで40℃粘度に対する60℃粘度の粘度比は0.44であり、温度変化に対する粘度変動が大きいものとなっている。
したがって、塗布時に加熱処理しても、十分に減粘することができず、その塗布が困難であったり、例え塗布を行うことができても、冬場のような低温下ではウエルドボンド工法において接合部位に塗布された接着剤組成物が十分に押し潰されず接合する構造部材同士を密着できないことでスポット溶接時に通電不良が生じ接合強度が低下する。
In Comparative Example 2, glycidyl ether as a reactive diluent is not blended.
In Comparative Example 2 having such a blend, although the viscosity at 40 ° C. is as high as 800 Pa · s and the shear strength is good, glycidyl ether as a reactive diluent is not blended, so that 5 ° C. The viscosity ratio of 5 ° C. to 40 ° C. viscosity is 31.3 at a viscosity of 25000 Pa · s, and the viscosity ratio of 60 ° C. viscosity to 40 ° C. viscosity at 350 ° C. is 0.44. Yes, the viscosity variation with temperature change is large.
Therefore, even if it is heat-treated at the time of application, it cannot be sufficiently reduced in viscosity, and even if it is difficult to apply or even if it can be applied, it is bonded in a weld bond method at low temperatures such as in winter. The adhesive composition applied to the site is not sufficiently crushed and the structural members to be joined cannot be brought into close contact with each other.
更に、比較例3は、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との配合割合を重量比で1:3としたものであり、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂100重量部に対してコアシェル型ゴム粒子の配合量が40重量部、反応性希釈剤としてのグリシジルエーテルの配合量が22重量部となっている。
このような配合の比較例3においては、40℃における粘度が700Pa・sと高い粘度であり、また、60℃における粘度が220Pa・sでホットアプライによる塗布作業性にも適し、剪断強度も良好であるものの、5℃における粘度が12000Pa・sで40℃粘度に対する50℃粘度の粘度比は17.1であり、低温側において温度変化に対する粘度変動が大きく、冬場のような低温下ではウエルドボンド工法において接合部位に塗布された接着剤組成物が十分に押し潰されず接合する構造部材同士を密着できないことでスポット溶接時に通電不良が生じ接合強度が低下する。
Further, in Comparative Example 3, the mixing ratio of the bisphenol A type epoxy resin as a general-purpose epoxy resin and the urethane-modified epoxy resin as a modified epoxy resin was 1: 3 by weight, and urethane as a modified epoxy resin was used. The blending amount of the core-shell type rubber particles is 40 parts by weight and the blending amount of glycidyl ether as the reactive diluent is 22 parts by weight with respect to 100 parts by weight of the modified epoxy resin.
In Comparative Example 3 having such a composition, the viscosity at 40 ° C. is as high as 700 Pa · s, and the viscosity at 60 ° C. is 220 Pa · s, which is also suitable for application workability by hot apply and has good shear strength. However, the viscosity ratio at 5 ° C. is 12000 Pa · s and the viscosity ratio of the 50 ° C. viscosity to the 40 ° C. viscosity is 17.1, and the viscosity variation with respect to the temperature change is large on the low temperature side. In the construction method, the adhesive composition applied to the joining site is not sufficiently crushed and the structural members to be joined cannot be brought into close contact with each other.
また、比較例4は、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と変性エポキシ樹脂としてのウレタン変性エポキシ樹脂との配合割合を重量比で3:1としたものであり、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂100重量部に対してコアシェル型ゴム粒子の配合量が120重量部、反応性希釈剤としてのグリシジルエーテルの配合量が50重量部となっている
このような配合の比較例4においては、高い剪断強度が得られるものの、40℃における粘度が400Pa・sと低く、接着剤組成物の塗布範囲を広くしたり塗布厚みを増やしたりした場合、洗浄処理時の流水圧に対して十分に抵抗できず、接着剤組成物の飛散、変位(位置ずれ)、流出等が多く生じて塗装不良や電着液の汚染等を招きやすい。また、5℃における粘度が4000Pa・s、60℃における粘度が95Pa・sの低粘度であることで、塗布後の垂れ等により接合強度の低下を招く。
In Comparative Example 4, the mixing ratio of the bisphenol A type epoxy resin as a general-purpose epoxy resin and the urethane-modified epoxy resin as a modified epoxy resin was 3: 1 by weight, and urethane as a modified epoxy resin was used. In 100 parts by weight of the modified epoxy resin, the amount of the core-shell type rubber particles is 120 parts by weight, and the amount of the glycidyl ether as the reactive diluent is 50 parts by weight. Although a high shear strength can be obtained, the viscosity at 40 ° C. is as low as 400 Pa · s, and when the application range of the adhesive composition is widened or the application thickness is increased, it is sufficient for the flowing water pressure during the cleaning process. It cannot resist, and the adhesive composition often scatters, displaces (displaces), flows out, etc., and easily causes poor coating or contamination of the electrodeposition liquid. Further, since the viscosity at 5 ° C. is 4000 Pa · s and the viscosity at 60 ° C. is 95 Pa · s, the bonding strength is reduced due to dripping after coating.
このように、汎用エポキシ樹脂と変性エポキシ樹脂の配合バランスを重量比で1:2〜2:1の範囲内に制御し、更に、変性エポキシ樹脂の配合量100重量部に対して、コアシェル型ゴム粒子を45重量部〜90重量部の範囲内で配合し、反応性希釈剤を18重量部〜40重量部の範囲内で配合した実施例1乃至実施例8においては、40℃における粘度が500Pa・s〜700Pa・sの高粘度となり高い粘度特性が得られることで、洗浄時の流水圧等に対する抵抗性(耐流水圧性)が極めて高くなり洗浄時の流水圧等によって未硬化状態の接着剤組成物が飛散等し難くなるから、接合部位への塗布範囲を広げたり塗布厚みを増やしたりすることが可能である。即ち、接合部位への塗布範囲を広げることで、また、塗布厚みを増やすことで接合端部から接着剤組成物が食み出したとしても、その接着剤組成物の余剰部が洗浄時の流水圧等によって飛散等し難いことで車体に付着して塗装不良や塗装前処理液(電着液等)の汚染や、後のシーラー工程での処理不良を招く恐れがない。また、このように高粘度であるから、接着部位から食み出した接着剤組成物の余剰部を未硬化状態でも除去作業が容易に可能となり、余剰部を除去することでも、接着剤組成物の飛散等によって車体に付着して塗装不良が生じたり、塗装前処理液等を汚染したり、後のシーラー工程での処理不良を生じたりするのを防止できる Thus, the blending balance of the general-purpose epoxy resin and the modified epoxy resin is controlled within the range of 1: 2 to 2: 1 by weight ratio, and further, the core-shell type rubber with respect to 100 parts by weight of the modified epoxy resin. In Examples 1 to 8, in which the particles were blended in the range of 45 to 90 parts by weight and the reactive diluent was blended in the range of 18 to 40 parts by weight, the viscosity at 40 ° C. was 500 Pa.・ Since it has a high viscosity of s to 700 Pa · s and high viscosity characteristics are obtained, the resistance to flowing water pressure during washing (flowing water pressure resistance) is extremely high, and the adhesive is uncured due to the flowing water pressure during washing, etc. Since the composition is less likely to scatter, it is possible to widen the application range to the bonding site or increase the application thickness. That is, even if the adhesive composition protrudes from the joint end by expanding the application range to the joining site or by increasing the application thickness, the surplus part of the adhesive composition is washed with running water during cleaning. Since it is difficult to scatter due to pressure or the like, there is no possibility of adhering to the vehicle body and causing a coating failure, contamination of a pre-painting treatment liquid (such as an electrodeposition liquid), or a processing failure in a later sealer process. In addition, since it has such a high viscosity, it is possible to easily remove the excess part of the adhesive composition protruding from the adhesion site even in an uncured state, and the adhesive composition can be removed by removing the excess part. Can prevent coating defects due to spraying, etc., resulting in poor coating, contamination of the pre-painting treatment liquid, etc., and subsequent processing failures in the sealer process.
そして、40℃における粘度が500Pa・s〜700Pa・sの高粘度で高い粘度特性を有しても、40℃の粘度に対する60℃の粘度比が0.28〜0.40の範囲内で60℃の粘度が140Pa・s〜280Pa・sの範囲内であるから、硬化を生じさせない温度での加熱によって十分に減粘が可能な粘度特性を有して塗布作業性も良く、例え塗布時の吐出量を変動させた場合でも、安定した塗布品質が得られる。更に、塗布後も垂れ難く形状保持性や被接着体への定着性が高い。
加えて、40℃の粘度に対する5℃の粘度比が9.3〜12.3の範囲内で5℃における粘度が5000〜8000Pa・sの範囲内であるから、ウエルドボンド工法において接合部位に塗布された接着剤組成物が十分に押し潰されて接合する構造部材同士が密着され、スポット溶接時に通電不良が生じることなく、良好なスポット溶接性を確保でき、接合部において高い接合強度が得られ、接合の信頼性が高いものとなる。また、スポット溶接時のスポットガン電極への接着剤組成物の付着も少なく、作業性も良くできる。
Even if the viscosity at 40 ° C. is 500 Pa · s to 700 Pa · s and the viscosity property is high, the viscosity ratio at 60 ° C. to the viscosity at 40 ° C. is within the range of 0.28 to 0.40. Since the viscosity at ° C is in the range of 140 Pa · s to 280 Pa · s, it has a viscosity characteristic that can be sufficiently reduced by heating at a temperature that does not cause curing, and the application workability is also good. Even when the discharge amount is varied, stable coating quality can be obtained. Furthermore, it is difficult to sag after coating, and has high shape retention and fixability to an adherend.
In addition, the viscosity ratio at 5 ° C to the viscosity at 40 ° C is within the range of 9.3 to 12.3, and the viscosity at 5 ° C is within the range of 5000 to 8000 Pa · s. The structural members to be joined are sufficiently crushed and bonded to each other, and good spot weldability can be secured without causing poor electrical conduction during spot welding, and high joint strength can be obtained at the joint. Therefore, the bonding reliability is high. In addition, the adhesion of the adhesive composition to the spot gun electrode during spot welding is small, and workability can be improved.
そして、本実施例の構造用接着剤組成物によれば、長期間保存しても経時的な粘度変動が少なくて所定の粘度を維持でき、貯蔵安定性が高い。これは、上述のように洗浄工程を有する電着塗装工程内の雰囲気温度(40℃付近)における粘度特性が極めて高いにも関わらず、温度変化に対する粘度変動が小さいためと推測される。また、ゴム粒子がコアシェル型でありエポキシ樹脂との反応性も低く、ゴム成分がエポキシ樹脂に溶解することによる粘度上昇が少ないこと、更に、接着剤組成物の調製時に加熱を必要とせず硬化反応の進行がないことも要因として考えられる。 And according to the structural adhesive composition of a present Example, even if it preserve | saves for a long period of time, a viscosity fluctuation with time is few, can maintain a predetermined viscosity, and its storage stability is high. This is presumed to be because the viscosity variation with respect to the temperature change is small in spite of the extremely high viscosity characteristics at the atmospheric temperature (around 40 ° C.) in the electrodeposition coating process having the cleaning process as described above. In addition, the rubber particles are core-shell type and have low reactivity with the epoxy resin, there is little increase in viscosity due to the rubber component being dissolved in the epoxy resin, and there is no need for heating when preparing the adhesive composition. The lack of progress is also considered as a factor.
また、本発明者らの実験研究において、このような配合の本実施例の構造用接着剤組成物によれば、硬化後の剪断強度のみならず剥離強度も高く、また、ゴム粒子がコアシェル型であることでゴム成分がエポキシ樹脂相に溶解残存しないことからも硬化物は高い弾性率を示す。したがって、水分量が多い環境下でも高い接着力が維持され、接着の信頼性が高い。 Further, in the experimental study of the present inventors, according to the structural adhesive composition of this example of such a formulation, not only the shear strength after curing but also the peel strength is high, and the rubber particles are core-shell type Therefore, the cured product shows a high elastic modulus because the rubber component does not remain dissolved in the epoxy resin phase. Therefore, high adhesive force is maintained even in an environment with a large amount of moisture, and the adhesion reliability is high.
更に、このような配合の本実施例の構造用接着剤組成物によれば、加熱硬化後のガラス転移温度が高く保持され、耐熱性も高く、高温(例えば、80℃)下でも剪断強度や剥離強度に優れ、高い接着力が得られた。よって、例えば、自動車のルーフレールや、各種ビラ―等の部位や、フード、ドア、トランクリッド等の蓋もの(開きもの)と呼ばれる部品のヘミング(かしめ構造)部等の自動車走行時に80℃程度の高温となる部位への適用にも有用である。なお、ガラス転移温度が高いのは、汎用エポキシ樹脂と変性エポキシ樹脂を使用したことや、ゴム粒子がコアシェル型であることでゴム成分が硬化後のエポキシ樹脂相に溶解せずガラス転移温度が低下しないことにも一因があると推測される。 Furthermore, according to the structural adhesive composition of this example having such a composition, the glass transition temperature after heat-curing is kept high, the heat resistance is high, and the shear strength and the like are increased even at a high temperature (for example, 80 ° C.). Excellent peel strength and high adhesive strength. Therefore, for example, when the vehicle travels, such as the roof rails of automobiles, parts such as various billers, and hemming parts of parts called lids (opening parts) such as hoods, doors, trunk lids, etc. It is also useful for application to high temperature sites. The glass transition temperature is high due to the use of general-purpose epoxy resin and modified epoxy resin, and because the rubber particles are core-shell type, the rubber component does not dissolve in the cured epoxy resin phase and the glass transition temperature decreases. It is speculated that there is also a reason for not doing it.
加えて、このような配合の本実施例の構造用接着剤組成物によれば、粘度が高いことで低い温度での硬化も可能となり、硬化させるときの温度が低くても接着力が低下することはなく、例えば、約150℃〜約220℃の温度で約20分〜約60分間という硬化可能な温度分布の範囲が広がる。
そして、本実施例においては、粘度が向上したことで、硬化させるときの加熱処理初期の接着剤の粘度低下に伴う流下も少なくできて、接着不良を少なくできた。特に、充填剤としてシリカが配合されていることで、加熱硬化中に粘度が低下することによるジシアンジアミドの沈降・不均一化が防止され、ジシアンジアミドの沈降・不均一化により生じる界面破壊も防止された。
In addition, according to the structural adhesive composition of this example having such a composition, curing at a low temperature is possible due to the high viscosity, and the adhesive strength is reduced even if the temperature when curing is low. In other words, for example, a temperature distribution range of about 20 minutes to about 60 minutes at a temperature of about 150 ° C. to about 220 ° C. is expanded.
And in the present Example, since the viscosity was improved, it was possible to reduce the flow down due to the decrease in the viscosity of the adhesive at the initial stage of the heat treatment when curing, and to reduce the adhesion failure. In particular, the incorporation of silica as a filler prevents dicyandiamide from precipitating and heterogeneous due to a decrease in viscosity during heat curing, and also prevents interfacial breakage caused by dicyandiamide precipitating and heterogeneous. .
また、本発明者らの実験研究によれば、このような配合の本実施例の構造用接着剤組成物においては、硬化後の体積抵抗率ρがIEC600093に基づく二重リング電極法による測定で1×1013Ωcmと絶縁性が高く、本実施例の構造用接着剤組成物を、例えば、鉄とアルミニウム等の異種金属部材同士の接合に使用した場合、ガルバニック腐食(異種金属接触腐食)の抑制効果があることが確認された。 Further, according to the experimental study by the present inventors, in the structural adhesive composition of this example having such a composition, the volume resistivity ρ after curing was measured by the double ring electrode method based on IEC600093. 1 × 10 13 Ωcm and high insulation properties, and when the structural adhesive composition of this example is used for joining different metal members such as iron and aluminum, for example, galvanic corrosion (dissimilar metal contact corrosion) It was confirmed that there is an inhibitory effect.
以上説明してきたように、本実施例の構造用接着剤組成物は、汎用エポキシ樹脂としてのビスフェノールA型エポキシ樹脂と、変性エポキシ樹脂としてのウレタン変性エポキシ樹脂やゴム変性エポキシ樹脂と、コアシェル型ゴム粒子と、反応性希釈剤としてのグリシジルエーテルと、硬化剤としてのジシアンジアミド及びアミン系の触媒と、チキソ剤としてのシリカと、充填剤として炭酸カルシウムを含有し、ビスフェノールA型エポキシ樹脂とウレタン変性エポキシ樹脂・ゴム変性エポキシ樹脂を配合重量比で1:2〜2:1の範囲内とし、ウレタン変性エポキシ樹脂・ゴム変性エポキシ樹脂の配合量100重量部に対して、コアシェル型ゴム粒子を45〜90重量部の範囲内、グリシジルエーテルを18〜40重量部の範囲内で配合したものである。なお、本実施例の構造用接着剤組成物においては、ビスフェノールA型エポキシ樹脂とウレタン変性エポキシ樹脂・ゴム変性エポキシ樹脂の合計100重量部に対して、コアシェル型ゴム粒子が25重量部〜35重量部の範囲内、反応性希釈剤が12.5重量部〜20重量部の範囲内となっている。 As described above, the structural adhesive composition of the present example includes a bisphenol A type epoxy resin as a general-purpose epoxy resin, a urethane-modified epoxy resin or a rubber-modified epoxy resin as a modified epoxy resin, and a core-shell type rubber. Containing particles, glycidyl ether as reactive diluent, dicyandiamide and amine catalyst as curing agent, silica as thixotropic agent, calcium carbonate as filler, bisphenol A type epoxy resin and urethane modified epoxy The resin / rubber modified epoxy resin is blended in a weight ratio of 1: 2 to 2: 1, and 45 to 90 core-shell type rubber particles are added to 100 parts by weight of the urethane modified epoxy resin / rubber modified epoxy resin. In the range of parts by weight, glycidyl ether was blended in the range of 18 to 40 parts by weight. Than is. In the structural adhesive composition of this example, the core-shell type rubber particles are 25 to 35 parts by weight with respect to 100 parts by weight in total of the bisphenol A type epoxy resin and the urethane-modified epoxy resin / rubber-modified epoxy resin. In the range of parts, the reactive diluent is in the range of 12.5 parts by weight to 20 parts by weight.
この本実施例の構造用接着剤組成物によれば、エポキシ樹脂として汎用エポキシ樹脂及び変性エポキシ樹脂を併用して、その配合バランスを所定の範囲内に制御し、また、コアシェル型ゴム粒子の配合量を所定量とし、更に、反応性希釈剤の配合量を所定量に規定してることで、洗浄工程を有する電着塗装工程内の雰囲気温度(40℃付近)での粘度特性が極めて高く、しかも、温度変化に対する粘度変動は小さく、ホットアプライによる塗布作業性を確保でき、また、低温下でもウエルドボンド工法による接合強度を確保でき、かつ、硬化後の接着性も良好である。即ち、接着剤組成物の加熱塗布時には適度な粘度特性を有して塗布作業性を低下させることもなく、また、低温下でもウエルドボンド工法において接合部位に塗布された接着剤組成物が十分に押し潰されて接合する構造部材同士が密着され、スポット溶接時に通電不良が生じることなく、接合強度を低下させることのない安定したスポット溶接性が得られ、そして、洗浄工程時の雰囲気温度条件下では高粘度特性を有して高い耐流水圧性が得られ、硬化後の硬化物の接着性も確保できる。 According to the structural adhesive composition of this example, a general-purpose epoxy resin and a modified epoxy resin are used in combination as an epoxy resin, the blending balance is controlled within a predetermined range, and the blending of core-shell type rubber particles is also performed. By setting the amount to be a predetermined amount and further defining the amount of the reactive diluent to be a predetermined amount, the viscosity characteristic at the atmospheric temperature (around 40 ° C.) in the electrodeposition coating process having a cleaning process is extremely high, Moreover, the viscosity variation with respect to the temperature change is small, the application workability by hot application can be ensured, the bonding strength by the weld bond method can be ensured even at a low temperature, and the adhesiveness after curing is also good. That is, when the adhesive composition is heated and applied, the adhesive composition has an appropriate viscosity characteristic and does not deteriorate the workability of the application, and the adhesive composition applied to the bonding site in the weld bond method even at a low temperature is sufficient. The structural members that are crushed and joined are brought into close contact with each other, there is no poor conduction during spot welding, stable spot weldability is obtained without reducing joint strength, and the ambient temperature conditions during the cleaning process Then, it has a high viscosity characteristic and high flowing water pressure resistance is obtained, and adhesion of a cured product after curing can be secured.
ここで、コアシェル型ゴム粒子の配合量が少ないと、実施例と比較例1の比較から、変性エポキシ樹脂の配合量100重量部に対してコアシェル型ゴム粒子の配合量が45重量部未満であると、洗浄処理を有する電着塗装工程内の雰囲気温度(40℃付近)において所望とする高い粘度特性、即ち、洗浄時の流水圧への抵抗性が向上されて接合部への塗布範囲を広げたり塗布厚みを増したりしてもその飛散や流出等が効果的に防止される程度に高い粘度特性が得られない。また、構造用接着剤組成物が硬化した硬化物において高い剪断強度が得られず、接着性が低下する。
一方で、コアシェル型ゴム粒子の配合量が多すぎると、本発明者らの実験研究によれば変性エポキシ樹脂の配合量100重量部に対してコアシェル型ゴム粒子の配合量が90重量部を超えると、相対的にその他の材料の配合量が小さくなることで、接着性が低下する。更に、材料の粘度上昇が大きくなって塗布時に所定温度で加熱しても十分に減粘させることができず、塗布作業性が低下したり、冬場のような低温環境下におけるウエルドボンド工法による接合強度も低下する。
Here, when the blending amount of the core-shell type rubber particles is small, the blending amount of the core-shell type rubber particles is less than 45 parts by weight with respect to 100 parts by weight of the modified epoxy resin based on the comparison between Example and Comparative Example 1. And the desired high viscosity characteristics at the atmospheric temperature (around 40 ° C) in the electrodeposition coating process with cleaning treatment, that is, the resistance to flowing water pressure during cleaning is improved, and the application range to the joint is expanded. Even if the coating thickness is increased, high viscosity characteristics cannot be obtained to such an extent that the scattering or outflow is effectively prevented. Moreover, in the hardened | cured material which the structural adhesive composition hardened | cured, high shear strength is not obtained and adhesiveness falls.
On the other hand, if the amount of the core-shell type rubber particles is too large, according to the experimental study by the present inventors, the amount of the core-shell type rubber particles exceeds 90 parts by weight with respect to 100 parts by weight of the modified epoxy resin. And the adhesiveness falls because the compounding quantity of other materials becomes relatively small. Furthermore, the increase in the viscosity of the material is so great that even if it is heated at a predetermined temperature during application, it cannot be sufficiently reduced in viscosity, so that the workability of the application is reduced or the weld bond method is used in a low temperature environment such as winter. The strength also decreases.
コアシェル型ゴム粒子の配合量が、高粘度樹脂であるウレタン変性エポキシ樹脂・ゴム変性エポキシ樹脂の配合量100重量部に対して、45重量部〜90重量部の範囲内であれば、洗浄処理を有する電着塗装工程内の雰囲気温度条件(40℃付近)において所望とする高い粘度特性が得られて耐流水圧性をより向上させることができ、かつ、ホットアプライによる接着剤組成物の塗布適度な粘度特性を有し、また、ウエルドボンド工法におけるスポット溶接に際して低温下でも接合部位に塗布された接着剤組成物が十分に押し潰される程度に適度な粘度特性を有して、接合する構造部材同士を密着できスポット溶接時に通電不良が生じることなく、良好な塗布作業性及び接合強度が得られ、更に、高い剪断強度を確保できる。 If the blending amount of the core-shell type rubber particles is within the range of 45 to 90 parts by weight with respect to 100 parts by weight of the urethane-modified epoxy resin / rubber-modified epoxy resin that is a high-viscosity resin, the cleaning treatment is performed. The desired high viscosity characteristics can be obtained under the atmospheric temperature conditions (around 40 ° C.) in the electrodeposition coating process, and the resistance to flowing water pressure can be further improved, and the adhesive composition can be applied by hot apply. Structural members to be joined that have viscosity characteristics and that have appropriate viscosity characteristics to such an extent that the adhesive composition applied to the bonding site is sufficiently crushed even at low temperatures during spot welding in the weld bond method. Good application workability and bonding strength can be obtained without causing poor electrical conduction during spot welding, and high shear strength can be ensured.
また、比較例2から、反応性希釈剤が配合されていないと、温度変化に対する材料の粘度変動が大きくなって、塗布時に所定温度で加熱しても十分に減粘させることができず、塗布作業性が低下する。更に、本発明者らが追及したところ、変性エポキシ樹脂の配合量100重量部に対して反応性希釈剤としてのグリシジルエーテルの配合量が18重量部未満であると、良好な塗布作業性の確保が困難である。また、ウエルドボンド工法におけるスポット溶接時において、冬場のような低温環境下では粘度が高いことで、接合部位に塗布された接着剤組成物が十分に押し潰されず接合する構造部材同士が密着されないため、通電不良となり接合強度が低下する。
一方で、反応性希釈剤の配合量が多すぎると、本発明者らの実験研究によれば、変性エポキシ樹脂の配合量100重量部に対して反応性希釈剤としてのグリシジルエーテルの配合量が40重量部を超えると、相対的にその他の材料の配合量が小さくなることで、洗浄処理を有する電着塗装工程内の雰囲気温度条件(40℃付近)において所望とする高粘度特性が得られなかったり、硬化後の接着性が低下したりする。
In addition, from Comparative Example 2, if a reactive diluent is not blended, the viscosity variation of the material with respect to the temperature change becomes large, and even when heated at a predetermined temperature during application, it cannot be sufficiently reduced in viscosity. Workability is reduced. Furthermore, as a result of investigation by the present inventors, when the blending amount of the glycidyl ether as the reactive diluent is less than 18 parts by weight with respect to the blending amount of the modified epoxy resin of 100 parts by weight, good coating workability is ensured. Is difficult. In addition, during spot welding in the weld bond method, the viscosity is high in a low temperature environment such as in winter, so that the adhesive composition applied to the joining site is not sufficiently crushed and the structural members to be joined are not in close contact with each other. As a result, the energization is poor and the bonding strength is reduced.
On the other hand, if the amount of the reactive diluent is too large, according to the experimental study by the present inventors, the amount of glycidyl ether as the reactive diluent is 100 parts by weight of the modified epoxy resin. If it exceeds 40 parts by weight, the desired high viscosity characteristics can be obtained under the atmospheric temperature conditions (around 40 ° C.) in the electrodeposition coating process having a cleaning process because the blending amount of other materials becomes relatively small. Or the adhesiveness after curing decreases.
反応性希釈剤の配合量が、ウレタン変性エポキシ樹脂・ゴム変性エポキシ樹脂の配合量100重量部に対して、18重量部〜40重量部の範囲内であれば、洗浄工程時の雰囲気温度(40℃付近)において所望とする高い粘度特性が得られ、かつ、ホットアプライによる接着剤組成物の塗布適度な粘度特性を有し、また、ウエルドボンド工法におけるスポット溶接に際して低温下でも接合部位に塗布された接着剤組成物が十分に押し潰される程度に適度な粘度特性を有して、接合する構造部材同士を密着できスポット溶接時に通電不良が生じることなく、良好な塗布作業性及び接合強度が得られ、更に、硬化後の接着性も確保できる。 If the compounding amount of the reactive diluent is in the range of 18 parts by weight to 40 parts by weight with respect to 100 parts by weight of the urethane-modified epoxy resin / rubber-modified epoxy resin, the ambient temperature during the washing step (40 The desired high viscosity characteristics can be obtained at around (° C.), and the adhesive composition can be applied by hot-applying. It is suitable for spot welding in the weld bond method even at low temperatures. The adhesive composition has adequate viscosity characteristics to such an extent that it can be sufficiently crushed, and the structural members to be joined can be brought into close contact with each other without causing poor electrical conduction during spot welding, resulting in good coating workability and bonding strength. Furthermore, the adhesiveness after curing can be secured.
更に、比較例3から、相対的にウレタン変性エポキシ樹脂・ゴム変性エポキシ樹脂の量が多くなってビスフェノールA型エポキシ樹脂の量が少なくなると、特に低温側において温度変化に対する粘度変動が大きくなり、冬場の低温環境下ではウエルドボンド工法のスポット溶接時において粘度が高く、接合部位に塗布された接着剤組成物が十分に押し潰されずに接合する構造部材同士が密着されないことで通電不良が生じやすく、良好な接合強度が得られなくなる。 Further, from Comparative Example 3, when the amount of urethane-modified epoxy resin / rubber-modified epoxy resin is relatively increased and the amount of bisphenol A type epoxy resin is decreased, the viscosity variation with respect to the temperature change is increased particularly on the low temperature side. In the low temperature environment, the weld bond method has a high viscosity during spot welding, and the adhesive composition applied to the joining site is not sufficiently crushed, and the structural members to be joined are not in close contact with each other. Good bonding strength cannot be obtained.
一方で、比較例4で示したように、ビスフェノールA型エポキシ樹脂とウレタン変性エポキシ樹脂・ゴム変性エポキシ樹脂の配合関係において、相対的にビスフェノールA型エポキシ樹脂の量が多くなってウレタン変性エポキシ樹脂・ゴム変性エポキシ樹脂の量が少なくなると、洗浄処理を有する電着塗装工程内の雰囲気温度条件(40℃付近)において所望とする高い粘度特性が得られない。
即ち、ビスフェノールA型エポキシ樹脂とウレタン変性エポキシ樹脂・ゴム変性エポキシ樹脂の配合重量比が1:2〜2:1を外れると、ウエルドボンド工法において良好な接合強度が得られなかったり、洗浄処理を有する電着塗装工程内の雰囲気温度条件(40℃付近)において所望とする高い粘度特性が得られなかったりする。
On the other hand, as shown in Comparative Example 4, the amount of the bisphenol A type epoxy resin is relatively increased in the blending relationship between the bisphenol A type epoxy resin and the urethane modified epoxy resin / rubber modified epoxy resin. When the amount of the rubber-modified epoxy resin is reduced, the desired high viscosity characteristic cannot be obtained under the atmospheric temperature condition (around 40 ° C.) in the electrodeposition coating process having a cleaning treatment.
That is, if the blending weight ratio of the bisphenol A type epoxy resin and the urethane-modified epoxy resin / rubber-modified epoxy resin deviates from 1: 2 to 2: 1, a good bonding strength cannot be obtained in the weld bond method, or a cleaning process is performed. The desired high viscosity characteristic may not be obtained under the atmospheric temperature conditions (around 40 ° C.) in the electrodeposition coating process.
汎用エポキシ樹脂と変性エポキシ樹脂の配合重量比が、1:1の等量を中間にした1:2〜2:1の範囲内(1:2、2:1を含む)であることで、洗浄処理を有する電着塗装工程内の雰囲気温度条件(40℃付近)において所望とする高い粘度特性が得られて耐流水圧性を確実に向上させることができ、かつ、温度変化に対しての粘度変動も小さく、ホットアプライによる接着剤の塗布時には塗布に適度な粘度特性を有し、また、ウエルドボンド工法のスポット溶接に際して低温下でも接合部位に塗布された接着剤組成物が十分に押し潰される程度に適度な粘度特性を有して、接合する構造部材同士を密着でき通電不良を生じさせることなく、良好な塗布作業性及び接合部の接着強度が得られる。 Washing is performed when the blending weight ratio of the general-purpose epoxy resin and the modified epoxy resin is within a range of 1: 2 to 2: 1 (including 1: 2 and 2: 1) with an equivalent of 1: 1 in between. The desired high viscosity characteristics can be obtained under the atmospheric temperature conditions (around 40 ° C.) in the electrodeposition coating process with treatment, and the resistance to flowing water pressure can be reliably improved, and the viscosity variation with temperature change It has a small viscosity characteristic when applied with hot-apply adhesive, and the adhesive composition applied to the joint area is sufficiently crushed even at low temperatures during spot welding in the weld bond method. Therefore, it is possible to adhere the structural members to be joined to each other and to obtain good application workability and bonding strength of the joint without causing poor electrical conduction.
本実施例の構造用接着剤組成物においては、高粘度特性を有する変性エポキシ樹脂を汎用エポキシ樹脂と併用し、その配合バランスがビスフェノールA型エポキシ樹脂:ウレタン変性エポキシ樹脂・ゴム変性エポキシ樹脂=1:2〜2:1の範囲内であり、更に、ウレタン変性エポキシ樹脂・ゴム変性エポキシ樹脂の合計100重量部に対して、コアシェル型ゴム粒子が45重量部〜90重量部の範囲内、反応性希釈剤が18重量部〜40重量部の範囲内であることで、40℃における粘度が500〜700Pa・sで高い粘度特性が得られるうえ、良好な接着性を確保でき、かつ、40℃の粘度に対する60℃の粘度比を0.28〜0.40とすることができて60℃の粘度が140〜280Pa・sで、加熱塗布時に塗布に適度な粘度特性を有する。更に、40℃の粘度に対する5℃の粘度比を9.3〜12.3とすることができて5℃の粘度が5000〜8000Pa・sで、冬場の低温下でもウエルドボンド工法において、接着剤組成物塗布後のスポット溶接に際して接合部位に塗布された接着剤組成物が十分に押し潰される程度に適度な粘度特性を有し、接合する構造部材同士を密着でき通電不良を生じさせることがない。 In the structural adhesive composition of this example, a modified epoxy resin having high viscosity characteristics is used in combination with a general-purpose epoxy resin, and the blending balance thereof is bisphenol A type epoxy resin: urethane modified epoxy resin / rubber modified epoxy resin = 1. : In the range of 2 to 2: 1, and further, the core-shell type rubber particles are in the range of 45 to 90 parts by weight with respect to the total of 100 parts by weight of the urethane-modified epoxy resin and rubber-modified epoxy resin. When the diluent is in the range of 18 parts by weight to 40 parts by weight, the viscosity at 40 ° C. is 500 to 700 Pa · s, high viscosity characteristics can be obtained, good adhesiveness can be secured, and 40 ° C. The viscosity ratio at 60 ° C. with respect to the viscosity can be 0.28 to 0.40, and the viscosity at 60 ° C. is 140 to 280 Pa · s. Having. Furthermore, the viscosity ratio of 5 ° C. to the viscosity of 40 ° C. can be set to 9.3 to 12.3, the viscosity at 5 ° C. is 5000 to 8000 Pa · s, and the adhesive is used in the weld bond method even at low temperatures in winter. Adhesive composition applied to the joint site during spot welding after application of the composition has an appropriate viscosity characteristic so that the structural members to be joined can be brought into close contact with each other without causing poor electrical conduction. .
そして、このように、40℃における粘度が500〜700Pa・sの高い粘度特性が得られることで、耐流水圧性が極めて高くなり洗浄時の流水圧等によって未硬化状態の接着剤組成物が飛散、変位(位置ずれ)、流出、脱落等し難くなるから、塗布範囲を広げて接合部位の全面塗布が可能となったり、また、適用範囲を広げることが可能であり、車両におけるあらゆる被水部位に適用可能となる。更に、接着剤組成物の被接着部位への塗布後であって焼付処理(加熱硬化処理)前に、洗浄処理のみならず、折り曲げ、切断、酸処理等の加工が施される場合でも、その際に未硬化状態にある接着剤組成物の飛散等が生じ難く、接着剤組成物の流出等による塗装前処理液の汚染や作業環境の悪化等が防止される。 Thus, by obtaining a high viscosity characteristic with a viscosity at 40 ° C. of 500 to 700 Pa · s, the resistance to flowing water becomes extremely high, and the uncured adhesive composition is scattered by the flowing water pressure at the time of washing, etc. Since it is difficult to displace (displacement), outflow, dropout, etc., it is possible to widen the application range and apply the entire joint area, or to expand the application range. It becomes applicable to. Furthermore, even after the application of the adhesive composition to the adherend site and before the baking process (heat curing process), not only the cleaning process but also the processes such as bending, cutting, and acid treatment are performed. At this time, it is difficult for the adhesive composition in an uncured state to scatter, and contamination of the pre-coating treatment liquid due to outflow of the adhesive composition, deterioration of the working environment, and the like are prevented.
また、40℃における粘度が500〜700Pa・sの高い粘度特性としても、60℃の粘度が140〜280Pa・sの範囲内で40℃の粘度に対する60℃の粘度比が0.28〜0.40の範囲内であるから、硬化を生じさせない温度条件(例えば、50〜60℃)での加熱を行った際でも粘度が高くなり過ぎずに、加熱によって十分に減粘され塗布に適した粘度特性を有し、塗布作業性も良く、また、塗布後も垂れ難く形状保持性や被接着体への定着性も高い。
更に、40℃における粘度が500〜700Pa・sの高い粘度特性としても、5℃の粘度が5000〜8000Pa・sの範囲内で40℃の粘度に対する5℃の粘度比が9.3〜12.3の範囲内であるから、低温下でもウエルドボンド工法における接着剤組成物塗布後のスポット溶接時において、粘度が高くなり過ぎず、接合部位に塗布された接着剤組成物が十分に押し潰されて接合する構造部材同士が密着されることで通電不良を生じさせることがなく、また、適度な定着性で、良好な接合強度が得られる。
加えて、洗浄工程時の雰囲気温度条件(40℃付近)における粘度を高くしても、硬化後の剪断接着強度に影響を及すことがなく十分な剪断接着強度を保つことができる。
なお、上記粘度(Pa・s)や粘度比の数値は、上述の粘度評価にもあるように本発明者らの実験研究によって好適とされたものであり、必ずしも厳格であることを要求されず、数値を若干変更してもその実施を否定するものではない。
Moreover, as a viscosity characteristic with a viscosity at 40 ° C. of 500 to 700 Pa · s, the viscosity ratio at 60 ° C. with respect to the viscosity at 40 ° C. within the range of 140 to 280 Pa · s at 60 ° C. is 0.28 to 0.8. Since it is within the range of 40, the viscosity does not become too high even when heating is performed at a temperature condition (for example, 50 to 60 ° C.) that does not cause curing, and the viscosity is sufficiently reduced by heating and is suitable for coating. It has the characteristics, the coating workability is good, it is difficult to sag after coating, and the shape retention and fixing property to the adherend are high.
Further, as a high viscosity characteristic having a viscosity at 40 ° C. of 500 to 700 Pa · s, the viscosity ratio at 5 ° C. with respect to the viscosity at 40 ° C. is within the range of 9.3 to 12. 3 is within the range, the viscosity does not become too high at the time of spot welding after applying the adhesive composition in the weld bond method even at low temperatures, and the adhesive composition applied to the joint site is sufficiently crushed. In this way, the structural members to be joined are brought into close contact with each other, so that a poor electrical conduction is not caused, and good joining strength is obtained with an appropriate fixing property.
In addition, even if the viscosity is increased under the ambient temperature condition (around 40 ° C.) during the cleaning step, sufficient shear bond strength can be maintained without affecting the shear bond strength after curing.
Note that the numerical values of the viscosity (Pa · s) and the viscosity ratio have been made suitable by the experimental study by the inventors as described above in the viscosity evaluation, and are not necessarily required to be strict. Even if the numerical values are changed slightly, the implementation is not denied.
更に、本実施例の構造用接着剤組成物においては、ビスフェノールA型エポキシ樹脂とウレタン変性エポキシ樹脂・ゴム変性エポキシ樹脂の粘度がそれぞれ5000(mPa・s/25℃)〜200000(mPa・s/25℃)の範囲内であることで、また、それらは常温で液状のものであるから、取扱いが容易で、調製時に加熱処理を必要とすることなく、調製が容易であった。
更に、汎用エポキシ樹脂がビフェノールA型エポキシ樹脂であり、変性エポキシ樹脂がウレタン変性エポキシ樹脂及び/またはゴム変性エポキシ樹脂であることで、低コストで、高い剪断強度や剥離強度が得られて高い接着性を有する。
Further, in the structural adhesive composition of this example, the viscosity of the bisphenol A type epoxy resin and the urethane-modified epoxy resin / rubber-modified epoxy resin is 5000 (mPa · s / 25 ° C.) to 200000 (mPa · s /), respectively. 25.degree. C.) and because they are liquid at room temperature, they are easy to handle and easy to prepare without the need for heat treatment during preparation.
Furthermore, the general-purpose epoxy resin is a biphenol A type epoxy resin, and the modified epoxy resin is a urethane-modified epoxy resin and / or a rubber-modified epoxy resin, so that high shear strength and peel strength can be obtained at low cost and high adhesion. Have sex.
こうして、本発明の構造用接着剤組成物によれば、洗浄工程を有する電着塗装工程内の雰囲気温度条件(40℃付近)における粘度特性が極めて高いにも関わらず、温度変化に対する粘度変動が小さくて、硬化を生じさせない温度での加熱によって十分に減粘が可能な粘度特性を有し、また、低温下でもウエルドボンド工法における接着剤組成物塗布後のスポット溶接に際して適度な粘度特性を有し、接合部位に塗布された接着剤組成物が十分に押し潰されて接合する構造部材同士が密着されることで通電不良を生じさせることがなく、良好な塗布作業性及び接合強度が得られ、更に、接着性も確保できる。
即ち、接着性を低下させることなく、かつ、ウエルドボンド工法による低温下での接合強度の低下やホットアプライによる塗布作業性の低下を招くことなく、洗浄工程を有する電着塗装工程内の雰囲気温度における粘度を向上させることができる。
Thus, according to the structural adhesive composition of the present invention, although the viscosity characteristics under the atmospheric temperature condition (around 40 ° C.) in the electrodeposition coating process having the cleaning process are extremely high, the viscosity fluctuation with respect to the temperature change It has a small viscosity characteristic that can be sufficiently reduced by heating at a temperature that does not cause curing, and has an appropriate viscosity characteristic for spot welding after applying the adhesive composition in the weld bond method even at low temperatures. In addition, the adhesive composition applied to the joining portion is sufficiently crushed and the structural members to be joined are brought into close contact with each other, so that poor conduction is not caused and good coating workability and joining strength are obtained. Furthermore, adhesion can be secured.
That is, the atmospheric temperature in the electrodeposition coating process having a cleaning process without lowering the adhesiveness and without lowering the bonding strength at low temperatures by the weld bond method or lowering the coating workability by hot apply. The viscosity in can be improved.
よって、本発明の構造用接着剤組成物は、自動車や車両(新幹線、電車)、土木、建築、エレクトロニクス、航空機、宇宙産業分野等の構造部材(例えば、金属材料、プラスチック等の有機・高分子材料、コンクリート等の無機材料等からなる)に対する接着剤としての他、医療用、一般事務用、電子材料用の接着剤(例えば、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等)としても利用可能で広い分野に適用可能である。また、接着剤としての用途に限らず、エポキシ樹脂組成物として一般用途向けの物品、例えば、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤(例えば、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSI用等のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TAB用等といったポッティング封止、フリップチップ用等のアンダーフィル、QFP、BGA、CSP等のICパッケージ類実装時の封止)等に適用することも可能である。 Therefore, the structural adhesive composition of the present invention is a structural member for automobiles, vehicles (bullet trains, trains), civil engineering, architecture, electronics, aircraft, space industry, etc. (for example, organic materials / polymers such as metal materials and plastics). In addition to adhesives for materials, inorganic materials such as concrete), adhesives for medical, general office, and electronic materials (for example, interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, It can also be used as a semiconductor adhesive such as underfill, BGA reinforcing underfill, anisotropic conductive film (ACF), anisotropic conductive paste (ACP), etc. Applicable. In addition, not only as an adhesive, but as an epoxy resin composition for general use, such as paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (printed boards, wire coatings) Etc.), sealant (for example, potting for capacitors, transistors, diodes, light emitting diodes, ICs, LSIs, etc., dipping, transfer mold sealing, ICs, LSIs for COB, COF, TAB, etc.) It is also possible to apply to underfill for flip-flops, etc., sealing when mounting IC packages such as QFP, BGA, and CSP).
本発明を実施する場合には、構造用接着剤組成物のその他の部分の組成、成分、配合量、調整方法等については、上記実施の形態に限定されるものではない。更に、本発明の実施の形態及び実施例で挙げている数値は、その全てが臨界値を示すものではなく、ある数値は実施に好適な好適値を示すものであるから、上記数値を若干変更してもその実施を否定するものではない。 When practicing the present invention, the composition, components, blending amount, adjustment method, and the like of other parts of the structural adhesive composition are not limited to the above-described embodiments. Furthermore, the numerical values given in the embodiments and examples of the present invention are not all critical values, and certain numerical values indicate preferred values suitable for implementation, so the numerical values are slightly changed. However, it does not deny the implementation.
Claims (5)
前記エポキシ樹脂として、汎用エポキシ樹脂と変性エポキシ樹脂を配合重量比1:2〜2:1の範囲内で併用し、
前記変性エポキシ樹脂の配合量100重量部に対して、前記コアシェル型ゴム粒子を45〜90重量部の範囲内、前記反応性希釈剤を18〜40重量部の範囲内で配合したことを特徴とする構造用接着剤組成物。 A structural adhesive composition containing at least an epoxy resin, core-shell type rubber particles, a reactive diluent, and a curing agent,
As the epoxy resin, a general-purpose epoxy resin and a modified epoxy resin are used in combination within a weight ratio of 1: 2 to 2: 1,
The core-shell type rubber particles are blended in the range of 45 to 90 parts by weight and the reactive diluent is blended in the range of 18 to 40 parts by weight with respect to 100 parts by weight of the modified epoxy resin. Structural adhesive composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016016069A JP6632401B2 (en) | 2016-01-29 | 2016-01-29 | Structural adhesive composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016016069A JP6632401B2 (en) | 2016-01-29 | 2016-01-29 | Structural adhesive composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017132953A true JP2017132953A (en) | 2017-08-03 |
JP6632401B2 JP6632401B2 (en) | 2020-01-22 |
Family
ID=59504699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016016069A Active JP6632401B2 (en) | 2016-01-29 | 2016-01-29 | Structural adhesive composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6632401B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019188202A1 (en) | 2018-03-28 | 2019-10-03 | 積水化学工業株式会社 | Epoxy adhesive composition |
KR20190122302A (en) * | 2018-04-20 | 2019-10-30 | 주식회사 제일화성 | Structural epoxy adhesives |
WO2019208569A1 (en) | 2018-04-27 | 2019-10-31 | 株式会社カネカ | Adhesion method employing polymer microparticle-containing curable resin composition having excellent workability, and laminate obtained using said adhesion method |
JP2019194316A (en) * | 2018-04-27 | 2019-11-07 | 株式会社カネカ | Adhesion method using polymer fine particle-containing curable resin composition excellent in workability, and laminate obtained using the adhesion method |
KR20200081099A (en) * | 2018-12-27 | 2020-07-07 | 주식회사 케이씨씨 | Epoxy Resin Composition for Underfilling Semiconductor Device |
WO2020218552A1 (en) * | 2019-04-26 | 2020-10-29 | 株式会社カネカ | Structure production method |
CN112534017A (en) * | 2018-07-25 | 2021-03-19 | 株式会社Lg化学 | Adhesive composition |
WO2024122630A1 (en) * | 2022-12-09 | 2024-06-13 | 株式会社カネカ | One-component thermosetting resin composition and utilization thereof |
US12054648B2 (en) | 2018-07-25 | 2024-08-06 | Lg Chem, Ltd. | Adhesive composition |
US12098306B2 (en) | 2018-07-25 | 2024-09-24 | Lg Chem, Ltd. | Adhesive composition |
US12116506B2 (en) | 2018-07-25 | 2024-10-15 | Lg Chem, Ltd. | Adhesive composition |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2023120511A1 (en) | 2021-12-20 | 2023-06-29 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010059388A (en) * | 2008-08-08 | 2010-03-18 | Yokohama Rubber Co Ltd:The | Epoxy resin composition and structural adhesive |
JP2010077305A (en) * | 2008-09-26 | 2010-04-08 | Yokohama Rubber Co Ltd:The | Epoxy resin composition |
JP2013253131A (en) * | 2012-06-05 | 2013-12-19 | Aisin Chemical Co Ltd | Structural adhesive composition |
JP2015078280A (en) * | 2013-10-16 | 2015-04-23 | 株式会社カネカ | Curable resin composition containing polymer fine particles |
WO2015064561A1 (en) * | 2013-10-29 | 2015-05-07 | 株式会社カネカ | Curable resin composition containing polymer fine particles and having improved storage stability |
-
2016
- 2016-01-29 JP JP2016016069A patent/JP6632401B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010059388A (en) * | 2008-08-08 | 2010-03-18 | Yokohama Rubber Co Ltd:The | Epoxy resin composition and structural adhesive |
JP2010077305A (en) * | 2008-09-26 | 2010-04-08 | Yokohama Rubber Co Ltd:The | Epoxy resin composition |
JP2013253131A (en) * | 2012-06-05 | 2013-12-19 | Aisin Chemical Co Ltd | Structural adhesive composition |
JP2015078280A (en) * | 2013-10-16 | 2015-04-23 | 株式会社カネカ | Curable resin composition containing polymer fine particles |
WO2015064561A1 (en) * | 2013-10-29 | 2015-05-07 | 株式会社カネカ | Curable resin composition containing polymer fine particles and having improved storage stability |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11932785B2 (en) | 2018-03-28 | 2024-03-19 | Sekisui Chemical Co., Ltd. | Epoxy adhesive composition |
WO2019188202A1 (en) | 2018-03-28 | 2019-10-03 | 積水化学工業株式会社 | Epoxy adhesive composition |
KR20190122302A (en) * | 2018-04-20 | 2019-10-30 | 주식회사 제일화성 | Structural epoxy adhesives |
KR102095540B1 (en) | 2018-04-20 | 2020-04-01 | 주식회사 제일화성 | Structural epoxy adhesives |
US11384267B2 (en) | 2018-04-27 | 2022-07-12 | Kaneka Corporation | Adhesion method employing polymer microparticle-containing curable resin composition having excellent workability, and laminate obtained using said adhesion method |
WO2019208569A1 (en) | 2018-04-27 | 2019-10-31 | 株式会社カネカ | Adhesion method employing polymer microparticle-containing curable resin composition having excellent workability, and laminate obtained using said adhesion method |
JP2019194316A (en) * | 2018-04-27 | 2019-11-07 | 株式会社カネカ | Adhesion method using polymer fine particle-containing curable resin composition excellent in workability, and laminate obtained using the adhesion method |
US11781047B2 (en) | 2018-04-27 | 2023-10-10 | Kaneka Corporation | Adhesion method employing polymer microparticle-containing curable resin composition having excellent workability, and laminate obtained using said adhesion method |
JP7277241B2 (en) | 2018-04-27 | 2023-05-18 | 株式会社カネカ | Adhesion method using polymer fine particle-containing curable resin composition excellent in workability, and laminate obtained by using the adhesion method |
JPWO2019208569A1 (en) * | 2018-04-27 | 2021-05-27 | 株式会社カネカ | An adhesive method using a polymer fine particle-containing curable resin composition having excellent workability, and a laminate obtained by using the adhesive method. |
JP7271514B2 (en) | 2018-04-27 | 2023-05-11 | 株式会社カネカ | Adhesion method using polymer fine particle-containing curable resin composition excellent in workability, and laminate obtained by using the adhesion method |
CN112534017B (en) * | 2018-07-25 | 2023-06-30 | 株式会社Lg化学 | Adhesive composition |
JP7238092B2 (en) | 2018-07-25 | 2023-03-13 | エルジー・ケム・リミテッド | adhesive composition |
JP2021531385A (en) * | 2018-07-25 | 2021-11-18 | エルジー・ケム・リミテッド | Adhesive composition |
CN112534017A (en) * | 2018-07-25 | 2021-03-19 | 株式会社Lg化学 | Adhesive composition |
US12054648B2 (en) | 2018-07-25 | 2024-08-06 | Lg Chem, Ltd. | Adhesive composition |
US12098306B2 (en) | 2018-07-25 | 2024-09-24 | Lg Chem, Ltd. | Adhesive composition |
US12116506B2 (en) | 2018-07-25 | 2024-10-15 | Lg Chem, Ltd. | Adhesive composition |
KR102157633B1 (en) * | 2018-12-27 | 2020-09-18 | 주식회사 케이씨씨 | Epoxy Resin Composition for Underfilling Semiconductor Device |
KR20200081099A (en) * | 2018-12-27 | 2020-07-07 | 주식회사 케이씨씨 | Epoxy Resin Composition for Underfilling Semiconductor Device |
WO2020218552A1 (en) * | 2019-04-26 | 2020-10-29 | 株式会社カネカ | Structure production method |
WO2024122630A1 (en) * | 2022-12-09 | 2024-06-13 | 株式会社カネカ | One-component thermosetting resin composition and utilization thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6632401B2 (en) | 2020-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6632401B2 (en) | Structural adhesive composition | |
JP6061837B2 (en) | Structural adhesive composition | |
KR101467602B1 (en) | Heat-resistant structural epoxy resins | |
SK8632001A3 (en) | Shock-resistant epoxide resin compositions | |
US9346983B2 (en) | Flame retardant structural epoxy resin adhesives and process for bonding metal members | |
JP2002526618A (en) | Impact resistant epoxy resin composition | |
JP2005255822A (en) | Rubber-reinforced epoxy resin product | |
JP6612498B2 (en) | Epoxy adhesive, automobile member and method for producing the same | |
WO2015064561A1 (en) | Curable resin composition containing polymer fine particles and having improved storage stability | |
US10435600B2 (en) | Epoxy resin compositions for pre-gel ovens | |
JP5981773B2 (en) | Structural adhesive composition | |
CN109476972B (en) | Structural adhesive composition having good thread breakage properties and capable of being applied intermittently | |
WO2022186316A1 (en) | Curable resin composition and adhesive | |
JP2014185256A (en) | Epoxy resin composition | |
JP2850698B2 (en) | Epoxy resin structural adhesive composition | |
JP6722477B2 (en) | Curable resin composition containing fine polymer particles having improved peel adhesion and impact peel resistance | |
WO2023054479A1 (en) | Curable resin composition and use therefor | |
JPH07157740A (en) | Adhesive resin composition | |
JP3615470B2 (en) | Damping adhesive rubber composition | |
JP2023181717A (en) | Structural adhesive composition | |
JP5526750B2 (en) | Epoxy resin composition | |
JPH05156226A (en) | Structural adhesive composition | |
WO2023189150A1 (en) | Method for producing automobile structural body and curable composition | |
JP2016056259A (en) | Epoxy resin-based adhesive composition | |
WO2024042413A1 (en) | Applying structural adhesive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190528 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6632401 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |