JP2017132266A - Method for producing optical film - Google Patents
Method for producing optical film Download PDFInfo
- Publication number
- JP2017132266A JP2017132266A JP2017094545A JP2017094545A JP2017132266A JP 2017132266 A JP2017132266 A JP 2017132266A JP 2017094545 A JP2017094545 A JP 2017094545A JP 2017094545 A JP2017094545 A JP 2017094545A JP 2017132266 A JP2017132266 A JP 2017132266A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- film
- die
- defects
- streak
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
本発明はスジ状欠陥の低減された光学フィルムの製造方法に関する。 The present invention relates to a method for producing an optical film with reduced streak defects.
フィルムの製膜方法として、熱可塑性樹脂を押出機等により加熱溶融した後にTダイを用いてフィルム状に吐出し、冷却固化する溶融製膜方法が知られている。本方法は、樹脂組成物を有機溶剤に溶解させ該溶液をシート/フィルム状に支持体にキャストさせた後に乾燥させフィルムを製造する溶液製膜方法に比べ、生産性に優れるものの、Tダイから吐出したフィルムに流れ方向にスジ状の欠陥が生じる問題があった。また、フィルムを特に光学フィルム用途に使用する場合には、スジ状欠陥が光学的歪みとして検出されるため、より高い精度でスジ状欠陥を低減することが要求されている。 As a film forming method, a melt film forming method is known in which a thermoplastic resin is heated and melted by an extruder or the like, and then discharged into a film using a T-die and cooled and solidified. Although this method is superior in productivity to a solution casting method in which a resin composition is dissolved in an organic solvent and the solution is cast into a sheet / film form and then dried to produce a film, the T-die is used. There was a problem that streaky defects occurred in the flow direction in the discharged film. Moreover, when using a film especially for an optical film use, since a stripe defect is detected as an optical distortion, it is requested | required to reduce a stripe defect with higher precision.
これに対し、樹脂に熱安定剤を添加することで、スジ状欠陥の原因の一つである目やにの発生を抑制するといった原料樹脂処方により改善する方法などが試みられている。 On the other hand, by adding a heat stabilizer to the resin, an attempt has been made to improve the raw material resin formulation by suppressing the generation of eyes and eyes, which is one of the causes of streak defects.
また、溶融製膜方法および装置においても様々な試みが行われている。例えば、特許文献1ではTダイ吐出後のフィルムを成形ロールにより押圧することによりダイラインを平滑化すること、更に特許文献2ではTダイエッジ精度を規定することでリップエッジ起因のスジ状欠陥を抑制することが提案されている。 Various attempts have also been made in melt film-forming methods and apparatuses. For example, in Patent Document 1, a die line is smoothed by pressing a film after discharging a T die with a forming roll. Further, in Patent Document 2, streak-like defects caused by lip edges are suppressed by defining T die edge accuracy. It has been proposed.
上記の様に、スジ状欠陥を解消するためにいくつかの製造方法および装置が提案されているが、スジ状欠陥を完全に解消するには至っていない。 As described above, several manufacturing methods and apparatuses have been proposed in order to eliminate streak-like defects, but they have not completely eliminated streak-like defects.
特許文献1ではタッチロールによる挟圧や、冷却ロール接触時フィルム温度、延伸時フィルム温度の制御により縦スジを低減することが提案されているが、延伸工程等の後のフィルムを加熱する工程で熱戻りが生じ、再び縦スジが発生する為、例えば光学特性を発現するために延伸工程が必要な場合の多い光学フィルムの製造方法においては、根本的な解決にはなっていない。 In Patent Document 1, it has been proposed to reduce vertical stripes by controlling the pinching pressure by the touch roll, the film temperature at the time of contact with the cooling roll, and the film temperature at the time of stretching, but in the process of heating the film after the stretching process, etc. Since heat return occurs and vertical stripes are generated again, for example, in an optical film manufacturing method in which a stretching process is often necessary to develop optical characteristics, it is not a fundamental solution.
また、特許文献2におけるTダイエッジ部の凹部、凸部低減による対策は、リップエッジ部起因のスジ状欠陥については改善されるが、それでも解消されないスジ状欠陥が多数存在する(リップエッジ部に起因しないスジ状欠陥に対しては有効となりえない。)。 Moreover, although the countermeasure by the recessed part and convex part reduction of T-die edge part in patent document 2 is improved about the stripe-like defect resulting from a lip edge part, there are still many stripe-like defects which are not solved (because of a lip edge part) Not effective against streak-like defects.)
本発明は、このような従来の技術において解決されていないフィルム品質及び生産性の課題を鑑みてなされたものであり、光学フィルムの製造方法(溶融製膜方法)において特にスジ状欠陥発生を抑制することができ、高品位な光学フィルムを製造する方法を提供することを目的とする。 The present invention has been made in view of the problems of film quality and productivity that have not been solved by such conventional techniques, and particularly suppresses the occurrence of streak-like defects in the optical film manufacturing method (melt film forming method). An object of the present invention is to provide a method for producing a high-quality optical film.
上記課題を解決するため、鋭意検討を行った結果、ダイに樹脂が流入する以前(ダイの上流)における溶融流動樹脂が有するスジがスジ状欠陥発生原因のひとつとなっていることに気づき、このスジ状欠陥が発生している箇所が各部材を接続する接合部であることをつきとめ、この発生を抑制すればスジ状欠陥を更に低減できると考え、本発明に至ったものである。特にフィルムを光学用途に使用する際に問題となる微細なスジ状欠陥への対策が可能となる。 As a result of diligent investigations to solve the above problems, we noticed that the streaks of the melt-flowing resin before the resin flows into the die (upstream of the die) is one of the causes of streak-like defects. The present inventors have found out that a portion where a streak-like defect has occurred is a joint that connects each member, and that the occurrence of the streak-like defect can be further reduced by suppressing this occurrence, leading to the present invention. In particular, it is possible to take measures against fine streak defects that are problematic when the film is used for optical applications.
即ち、本発明は、溶融手段により可塑化した樹脂をダイからフィルム状に吐出する光学フィルムの製造方法であって、溶融手段の下流側先端からダイに至る樹脂流路上の接合部を、接合部断面における流路に接するエッジ部のRが40μm以下、更に接合される両部材の接合部断面における流路の最大ずれが50μm以下とすることを特徴とする溶融製膜による光学フィルムの製造方法を提供した。 That is, the present invention relates to a method of manufacturing an optical film in which a resin plasticized by a melting means is discharged from a die into a film shape, and the joining portion on the resin flow path from the downstream end of the melting means to the die is a joining portion. A method for producing an optical film by melt film formation, characterized in that R of an edge portion in contact with the flow path in the cross section is 40 μm or less, and further, the maximum deviation of the flow path in the cross section of the joint portion of both members to be joined is 50 μm or less. Provided.
また、接合される両部材がオスメス構造、もしくはキーにより位置を固定する構造を有し、該オスメス構造もしくはキーの嵌合部分の公差が50μm以下であることを特徴とする前記光学フィルムの製造方法を提供した。 Further, both members to be joined have a male-female structure or a structure in which the position is fixed by a key, and the tolerance of the fitting part of the male-female structure or the key is 50 μm or less. Provided.
本発明によれば、ダイに樹脂が流入する以前に溶融樹脂が有していたスジ状欠陥を抑制し、スジ状欠陥を低減し高品位な光学フィルムを提供することが可能となる。特に光学フィルムにおいて問題となる微細なスジ状欠陥への対策が可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to suppress the stripe defect which the molten resin had before resin flowed into die | dye, to reduce a stripe defect, and to provide a high quality optical film. In particular, it is possible to take measures against fine streak defects that are problematic in optical films.
本発明は、溶融手段により可塑化した樹脂をダイからフィルム状に吐出する光学フィルムの製造方法であって、溶融手段の下流側先端からダイに至る樹脂流路上の接合部を、接合部断面における流路に接するエッジ部のRが40μm以下、更に接合される両部材の接合部断面における流路の最大ずれが50μm以下とすることを特徴とする溶融製膜による光学フィルムの製造方法に関するものである。 The present invention relates to a method for producing an optical film in which a resin plasticized by a melting means is discharged from a die into a film shape. The present invention relates to a method for producing an optical film by melt film formation, characterized in that R of the edge portion in contact with the flow path is 40 μm or less, and further, the maximum deviation of the flow path in the section of the joint portion of both members to be joined is 50 μm or less is there.
ここで樹脂(熱可塑性樹脂)の溶融手段として、各種方法を使用することができるが、一般に行われる様に押出機を使用し、樹脂に対して加熱と混練を行って溶融することが、既存の設備を利用でき好ましい。 Here, various methods can be used as a means for melting the resin (thermoplastic resin). However, as is generally done, an extruder is used and the resin is heated and kneaded to be melted. These facilities are preferable.
本発明では、押出機として、単軸押出機、同方向噛合型2軸押出機、同方向非噛合型2軸押出機、異方向噛合型2軸押出機、異方向非噛合型2軸押出機、多軸押出機等の各種押出機を用いることができる。その中でも、単軸押出機が押出機内における樹脂滞留部が少ないため押出中における樹脂の熱劣化を防ぐことが可能になること、また設備費が安価であることから好ましい。また、樹脂中の残存揮発分、押出機における加熱発生物を除去するためにベント機構を有する押出機を使用することが好ましい。 In the present invention, as an extruder, a single-screw extruder, a co-directional meshing twin-screw extruder, a co-directional non-meshing twin-screw extruder, a different-direction meshing twin-screw extruder, a different-direction non-meshing twin-screw extruder Various extruders such as a multi-screw extruder can be used. Among them, the single-screw extruder is preferable because the resin staying portion in the extruder is small, so that it is possible to prevent thermal deterioration of the resin during extrusion and the equipment cost is low. Moreover, it is preferable to use an extruder having a vent mechanism in order to remove residual volatile components in the resin and heating products in the extruder.
押出機に投入する熱可塑性樹脂等の原料の形態としては固体状態の樹脂、好ましくは3mm角のペレット形状を用いることが好ましい。例えば、このペレット形状の樹脂は押出機の原料供給口に取り付けられたホッパーを介して押出機内に供給される。このホッパーは乾燥機構を持つことが好ましく、樹脂中の水分を取り除いた状態で押出機内に供給できるようにし、必要乾燥時間、樹脂消費時間を鑑みてホッパー容量を設計することが好ましい。 As a form of the raw material such as a thermoplastic resin to be fed into the extruder, it is preferable to use a solid state resin, preferably a 3 mm square pellet shape. For example, the pellet-shaped resin is supplied into the extruder through a hopper attached to the raw material supply port of the extruder. This hopper preferably has a drying mechanism, and it is preferable that the hopper capacity be designed in consideration of the necessary drying time and resin consumption time so that it can be supplied into the extruder with moisture in the resin removed.
単軸押出機などで使用するスクリュとしては、ベント付き押出機用の圧縮比2〜3程度の一般的なフルフライト構成のものを用いることができるが、未溶融物が残存しないように特殊な混練機構を持たせてもよい。 As a screw used in a single screw extruder or the like, a general full-flight configuration with a compression ratio of about 2-3 for an extruder with a vent can be used, but a special so as not to leave unmelted material. A kneading mechanism may be provided.
本発明において溶融手段として押出機を使用する際の押出条件は、使用する熱可塑性樹脂に応じて調整する必要があるが、例えばポリカーボネート樹脂を使用する場合には、押出機出口における樹脂温度が220〜320℃となるように各シリンダー部の温度を設定することが好ましく、さらに好ましくは240〜290℃であることが好ましい。樹脂温度が220℃未満であると、溶融粘度が非常に大きくなり押出機のトルクオーバーやフィルム成形が困難となることがあり、320℃以上では樹脂熱劣化が生じ、フィルムに欠陥となって現れてしまう可能性がある。 In the present invention, the extrusion conditions when using an extruder as the melting means must be adjusted according to the thermoplastic resin used. For example, when a polycarbonate resin is used, the resin temperature at the outlet of the extruder is 220. It is preferable to set the temperature of each cylinder part so that it may become -320 degreeC, More preferably, it is preferable that it is 240-290 degreeC. If the resin temperature is less than 220 ° C, the melt viscosity becomes very large and it may become difficult to torque the extruder or form the film. There is a possibility that.
押出機などの溶融手段により得られた溶融樹脂は、次いでギアポンプを用いてダイに供給することが好ましい。ギアポンプを用いることで押出機における吐出量変動を吸収し、供給の定量性が著しく向上し、経時的なフィルム厚みの安定性向上に効果がある。 The molten resin obtained by melting means such as an extruder is then preferably supplied to the die using a gear pump. By using a gear pump, the discharge amount fluctuation in the extruder is absorbed, the quantitativeness of the supply is remarkably improved, and the stability of the film thickness with time is improved.
この様に溶融手段とダイの間にギアポンプを配置する場合は、ギアポンプの下流側先端からダイに至る樹脂流路上の接合部を、接合部断面における流路に接するエッジ部のRが40μm以下、更に接合される両部材の接合部断面における流路の最大ずれが50μm以下とすることが好ましい。この場合、溶融手段の下流側先端からギアポンプの下流側先端に至る樹脂流路上の接合部も上記接合部の特徴を有していることが好ましいが、ギアポンプの上流で生じたスジ状欠陥がギアポンプ通過時に消失することが期待できる為、必ずしも必要ではない(但し、ギアポンプの上流であっても樹脂滞留による樹脂由来異物、欠陥、着色などが生じる可能性があることから、特に溶融手段の下流側先端からギアポンプの下流側先端の接合部も上記接合部の特徴を有した接合部とすることが好ましい。)。 Thus, when the gear pump is disposed between the melting means and the die, the joint portion on the resin flow path extending from the downstream end of the gear pump to the die has an R of the edge portion in contact with the flow path in the joint cross section of 40 μm or less, Furthermore, it is preferable that the maximum deviation of the flow path in the cross section of the joint portion between both members to be joined is 50 μm or less. In this case, it is preferable that the joint on the resin flow path from the downstream end of the melting means to the downstream end of the gear pump also has the characteristics of the above-mentioned joint, but the streak defect generated upstream of the gear pump is Since it can be expected to disappear when passing through, it is not always necessary (however, since it may cause resin-derived foreign matter, defects, coloring, etc. due to resin stagnation even upstream of the gear pump, it is particularly downstream of the melting means. It is preferable that the joint from the tip to the downstream tip of the gear pump is also a joint having the characteristics of the joint.
ギアポンプより定量的に供給された溶融樹脂、或いは溶融手段から直接供給された溶融樹脂は、例えば管状の流路を通りダイに供給され、ダイからフィルム状に吐出される。このギアポンプからダイまでの樹脂流路中、或いはギアポンプなどを介さない場合は溶融手段からダイまでの樹脂流路中に異物除去装置を設けることが好ましい。これにより、原料樹脂中に含まれていた異物や、押出機やギアポンプで発生した異物をトラップし、フィルム中の異物欠陥を低減することが可能となる。異物除去装置としては、リーフディスク型フィルターが濾過精度および濾過面積、耐圧、異物によるフィルター目詰りまでの時間の関係から好ましい。フィルター濾過精度は光学用途の場合1〜20μm、好ましくは3〜10μmのものを選択することが好ましい。 The molten resin quantitatively supplied from the gear pump or directly supplied from the melting means is supplied to the die through, for example, a tubular flow path, and is discharged from the die into a film. It is preferable to provide a foreign substance removing device in the resin flow path from the gear pump to the die or in the resin flow path from the melting means to the die when no gear pump or the like is used. Thereby, the foreign material contained in the raw material resin or the foreign material generated by the extruder or the gear pump can be trapped, and the foreign material defect in the film can be reduced. As the foreign matter removing device, a leaf disk type filter is preferable in terms of filtration accuracy, filtration area, pressure resistance, and time until filter clogging with foreign matter. In the case of optical use, the filter filtration accuracy is preferably 1 to 20 μm, preferably 3 to 10 μm.
この様に溶融手段とダイの間に異物除去装置を配置する場合は、異物除去装置の下流側先端からダイに至る樹脂流路上の接合部を、接合部断面における流路に接するエッジ部のRが40μm以下、更に接合される両部材の接合部断面における流路の最大ずれが50μm以下とすることが好ましい。この場合、溶融手段の下流側先端から異物除去装置の下流側先端に至る樹脂流路上の接合部も上記接合部の特徴を有していることが好ましいが、異物除去装置の上流で生じたスジ状欠陥が異物除去装置内の濾材等を通る時に消失することが期待できる為、必ずしも必要ではない(但し、異物除去装置の上流であっても樹脂滞留による樹脂由来異物、欠陥、着色などが生じる可能性があることから、特に溶融手段の下流側先端から異物除去装置の下流側先端の接合部も上記接合部の特徴を有した接合部とすることが好ましい。)。 When the foreign substance removing device is arranged between the melting means and the die in this way, the joint portion on the resin flow path from the downstream end of the foreign matter removing apparatus to the die is connected to the edge portion R which is in contact with the flow path in the joint section. Is preferably 40 μm or less, and further, the maximum deviation of the flow path in the cross section of the joint portion of both members to be joined is preferably 50 μm or less. In this case, it is preferable that the joint portion on the resin flow path from the downstream end of the melting means to the downstream end of the foreign substance removing device also has the characteristics of the above joint portion. This is not always necessary because it can be expected to disappear when passing through the filter medium etc. in the foreign substance removal device (however, even if it is upstream of the foreign substance removal device, resin-derived foreign matter, defects, coloring, etc. occur due to resin retention. Since there is a possibility, it is preferable that the joint part from the downstream end of the melting means to the downstream end of the foreign substance removing device is also a joint part having the characteristics of the joint part.
この様に本発明では、各部材の樹脂流路を接合する接合部の形態を規定している。接合される部材として、溶融手段(押出機など)、ギアポンプ、異物除去装置(フィルターなど)、ダイ、配管等が挙げられる。接合部は各部材の流路を樹脂の漏れがないようにつなぐということのみが一般的に考慮されるが、特定用途のフィルムの製造においては、その細かな形態が問題となることがある。特に光学フィルム用途に使用する場合には、他の用途では問題とならなかった微細なスジ状欠陥が問題となり、この様な微細なスジ状欠陥への対応が重要となっている。これに対し、接合部の形状を本願で規定された範囲を満たすように設計、管理することで、流動樹脂へのスジ状欠陥の発生を抑制し、細かなものも含めスジ状欠陥の低減された光学フィルムを提供することが可能となる。 Thus, in this invention, the form of the junction part which joins the resin flow path of each member is prescribed | regulated. Examples of members to be joined include melting means (such as an extruder), gear pump, foreign matter removing device (such as a filter), die, and piping. In general, only the fact that the joining portion connects the flow paths of the respective members so that there is no leakage of the resin is considered, but in the production of a film for a specific application, its fine form may be a problem. In particular, when used in optical film applications, fine streak defects that have not been a problem in other applications become a problem, and it is important to deal with such fine streak defects. On the other hand, by designing and managing the shape of the joint so as to satisfy the range specified in the present application, the occurrence of streak defects in the flow resin is suppressed and the streak defects including fine ones are reduced. An optical film can be provided.
具体的には、接合部断面における流路に接するエッジ部のRが40μm以下であり、さらに接合される両部材の接合部断面における流路の最大ずれが50μm以下とする。 Specifically, R of the edge portion in contact with the flow path in the joint section is 40 μm or less, and the maximum deviation of the flow paths in the joint section of both members to be joined is 50 μm or less.
エッジ部のRについては、エッジ部のRが40μmを超えると接合面で流路が凹んだ形となり該部を流動樹脂が通過する時にスジ状結果が生じるために好ましくない。それだけではなく、該部において樹脂滞留が生じるために樹脂由来異物/欠陥がフィルムに生じるため、特に溶融製膜法において好ましくない。このエッジ部のRは40μm以下、より好ましくは30μm以下、さらに好ましくは15μm以下である。 Regarding the R of the edge portion, if the R of the edge portion exceeds 40 μm, the flow path is recessed at the joint surface, and a streak-like result is produced when the fluid resin passes through the portion. Not only that, but resin stagnation occurs in the part, and thus resin-derived foreign matter / defects are generated in the film. R of this edge part is 40 micrometers or less, More preferably, it is 30 micrometers or less, More preferably, it is 15 micrometers or less.
更に、フィルム上の欠陥を防ぐ為に、接合部エッジ上には、傷や凹みによる幅50μm以上、かつ深さ50μm以上の段差がないことが好ましい。この段差は、より好ましくは幅20μm以上、深さ20μm以上の大きさのものがないことであり、更に好ましくは10μm以上、深さ10μm以上の大きさのものがないことである。 Furthermore, in order to prevent defects on the film, it is preferable that there are no steps having a width of 50 μm or more and a depth of 50 μm or more due to scratches or dents on the joint edge. More preferably, the step has a width of 20 μm or more and a depth of 20 μm or more, and more preferably has a size of 10 μm or more and a depth of 10 μm or more.
一方、接合部単独が上記の規定された範囲にあっても、接合部をずらして接続してしまうと、接合される流路同士にずれが生じ、スジ状欠陥を生じるため好ましくない。従って、接合される両部材の接合部断面における流路の最大ずれを50μm以下とする必要がある。この接合部のずれを抑制するために、接合される両部材がオスメス構造、もしくはキーにより位置を固定する構造(例えば、キーを接合部が位置するフランジの合わせ面に設置するなど)を有していることが好ましい。このうち、接続の際に密着する面が少なくなりずれが生じにくくなるために、接合される両部材がオスメス構造を有することが好ましい。このオスメス構造については、メス同士の両部材の間に両端オスとなる短いリングを設置することでも可能である。該オスメス部分の嵌合部分の公差は50μm以下であることが好ましい。嵌合部分の公差が50μmを超えるとオスメスの嵌め合いで段差が生じるため好ましくない。また、キーにより位置を固定する構造の嵌合部分も、同様に公差が50μm以下であることが好ましい。 On the other hand, even if the joint portion alone is in the specified range, if the joint portion is shifted and connected, the flow paths to be joined are displaced from each other, resulting in a streak-like defect. Therefore, it is necessary to make the maximum deviation of the flow paths in the joint cross section of both members to be joined to be 50 μm or less. In order to suppress this displacement of the joint portion, both members to be joined have a male-female structure or a structure in which the position is fixed by a key (for example, the key is installed on the mating surface of the flange where the joint portion is located). It is preferable. Among these, it is preferable that both the members to be joined have a male-female structure, since the surfaces that are brought into close contact with each other during connection are less likely to be displaced. About this male-female structure, it is also possible to install a short ring that is male at both ends between both members of the female. The tolerance of the fitting part of the male / female part is preferably 50 μm or less. If the tolerance of the fitting portion exceeds 50 μm, a step is generated due to the fitting of the male and female, which is not preferable. In addition, it is preferable that the fitting portion having a structure in which the position is fixed by the key also has a tolerance of 50 μm or less.
本発明で使用するダイとしては、各種構造のものを使用することができるが、Tダイが好ましく、例えば一般的なコートハンガーダイを用いることができる。幅方向厚み調整機構としてボルト等の押し込みによりリップの幅方向任意部分の隙間を調節できるものが好ましい。 As the die used in the present invention, those having various structures can be used, but a T die is preferable, and for example, a general coat hanger die can be used. As the width direction thickness adjusting mechanism, a mechanism capable of adjusting a gap in an arbitrary portion in the width direction of the lip by pushing a bolt or the like is preferable.
尚、本発明の様に特定の接合部を使用する場合でも、ダイリップの傷に起因するスジ状欠陥が別途残存する可能性がある。その為、リップエッジ精度をエッジ輝線幅1〜30μmの範囲で加工することが更に好ましい。ダイリップ部はハードクロムメッキやセラミック溶射をすることが輝線幅精度を上げることができ、好ましい。 Even when a specific joint is used as in the present invention, streaky defects caused by die scratches may remain separately. Therefore, it is more preferable to process the lip edge accuracy within the range of the edge bright line width of 1 to 30 μm. The die lip portion is preferably subjected to hard chrome plating or ceramic spraying because the bright line width accuracy can be improved.
一方、ダイからフィルム状に吐出された樹脂は各種方法で冷却することが可能であるが、例えば、温調されたロール(以下、第1ロール)へキャスティングし、引き取りながらさらに温調された他のロール(以下、第2ロール)へ接せさせて冷却固化することができる。また、この時に、更に別途設けた温調されたロール(以下、挟み込みロール)と、前記第1ロールでフィルムを挟み込み成形することもできる。この場合、フィルムのロール着地位置が安定し厚み品質が向上すると共に、押圧によりフィルムが平滑化しスジ状欠陥の凹凸が薄くなる。また、着地位置安定化のため、別途静電印加やエアーナイフ等を用いることもできる。 On the other hand, the resin discharged in the form of a film from the die can be cooled by various methods. For example, the resin is cast on a temperature-controlled roll (hereinafter referred to as a first roll), and the temperature is further adjusted while being taken. Can be brought into contact with a roll (hereinafter referred to as a second roll) and cooled and solidified. Further, at this time, the film can be sandwiched and formed by a temperature-controlled roll (hereinafter, sandwiching roll) provided separately and the first roll. In this case, the roll landing position of the film is stabilized and the quality of the thickness is improved, and the film is smoothed by pressing, and the unevenness of the streak defect becomes thin. Moreover, electrostatic application, an air knife, etc. can also be used separately for landing position stabilization.
冷却温度は、通常ガラス転移温度を基準に設定すればよく、フィルムが最初に接する第1ロールは熱可塑性樹脂のガラス転移温度±30℃、第2ロールはガラス転移温度±30℃とすることが好ましい。 The cooling temperature is usually set based on the glass transition temperature. The first roll with which the film first comes into contact is the glass transition temperature ± 30 ° C. of the thermoplastic resin, and the second roll is glass transition temperature ± 30 ° C. preferable.
また、フィルムの引き取りは各種方法で行うことが可能であるが、例えば第2ロール以降に設置されたニップロールにより引き取り、その後に巻き取りコアに巻きつけられ、フィルム原反として取得することができる。この時、フィルム両端部はネックインの影響で厚みが厚くなってしまうため、カッター等でトリミングしてもよい。 The film can be taken out by various methods. For example, the film can be taken up by a nip roll installed after the second roll, wound around a take-up core, and obtained as a film original. At this time, since both ends of the film become thick due to the influence of neck-in, the film may be trimmed with a cutter or the like.
この様にして得られたフィルム原反は、そのまま使用しても良いし、延伸機により延伸され、位相差フィルムなどの光学フィルムとして取得することができる。 The film raw film thus obtained may be used as it is, or may be stretched by a stretching machine and obtained as an optical film such as a retardation film.
一方、本発明では熱可塑性樹脂として、各種樹脂を使用することができるが、例えばノルボルネン系樹脂、ポリカーボネート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリメタクリル酸メチルなどを重合、共重合、或いは変性して得られるアクリル系樹脂(主鎖に環構造を有するアクリル系樹脂を含む)、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂等が挙げられる。この中でも、特に透明性や加工性に優れているポリカーボネート系樹脂、アクリル系樹脂(特に耐熱性の必要となる用途にも使用可能な主鎖に環構造を有するアクリル系樹脂)を用いるのが好ましい。 On the other hand, various resins can be used as the thermoplastic resin in the present invention. For example, norbornene resin, polycarbonate resin, polysulfone resin, polyethersulfone resin, polymethyl methacrylate, and the like are polymerized and copolymerized. Or acrylic resins obtained by modification (including acrylic resins having a ring structure in the main chain), polyarylate resins, polystyrene resins, polyvinyl chloride resins, and the like. Among these, it is preferable to use a polycarbonate resin and an acrylic resin (especially an acrylic resin having a ring structure in the main chain that can also be used for applications requiring heat resistance), which are particularly excellent in transparency and workability. .
また、特に光記録媒体の光透過層として用いる場合は、その基板との寸法変化率の違いによる反りや歪みなどを防ぐために、光透過層とそれを貼り合わせる基板とは同一の材料であるのが好ましく、そのため、光記録媒体の基板材料として広く使用されているポリカーボネートが好ましい。中でも特に量産されていて安価である、主たる構成成分が2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)から成る繰返し単位で構成される芳香族ポリカーボネートが好ましい。ここでいう主たる構成成分とは、ポリカーボネートの原料であるジヒドロキシ化合物のうち、50モル%以上を占める化合物からなる繰返し成分を指す。そのため、2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)を単独で使用しても、また、50モル%を越えない範囲で他のジヒドロキシ化合物を加えて共重合あるいは混合したものを用いることができる。共重合あるいは混合して用いるジヒドロキシ化合物としては特に限定されないが、例としては、1,1−ビス(4−ヒドロキシ2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシ−3−t−ブチルフェニル)プロパン、2,2−ビス(4−ヒドロキシー3−t−ブチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−ブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)エチルベンゼン、などのビス(ヒドロキシアリール)アルカン類、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンなどのビス(ヒドロキシルアリール)シクロヘキサン類、9,9−ビス(4−ヒドロキシフェニル)フルオレンなどのフルオレン類、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルフェニルエーテルなどのジヒドロキシアリールエーテル類、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシ−3,3’−ジメチルフェニルスルフィドなどのジヒドロキシアリールスルフィド類、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルフェニルスルホキシドなどのジヒドロキシアリールスルホキシド類、および上記化合物から誘導された化合物が挙げられる。これらのジヒドロキシ化合物はビスフェノールAから成る繰返し単位の主成分に対し、透明性を損なわれない範囲で1種類、或いは2種類以上組み合わせて用いることもできる。ただし、ビスフェノールAは安価で入手しやすい原料なので、ビスフェノールA成分を多く用いるほど、安価な光学フィルムを工業的に供給しやすくなる為好ましく、ビスフェノールAの繰返し単位は80モル%以上が好ましく、より好ましくは90%以上、特には100モル%(すなわち単独)が好ましい。 In particular, when used as a light-transmitting layer of an optical recording medium, the light-transmitting layer and the substrate on which the light-transmitting layer is bonded are made of the same material in order to prevent warping or distortion due to the difference in dimensional change rate from the substrate. Therefore, polycarbonate which is widely used as a substrate material for optical recording media is preferable. Among them, an aromatic polycarbonate composed of a repeating unit composed mainly of 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) is particularly preferred because it is mass-produced and inexpensive. The main component here refers to a repeating component composed of a compound occupying 50 mol% or more of the dihydroxy compound which is a raw material of polycarbonate. Therefore, even if 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) is used alone, other dihydroxy compounds are added or copolymerized or mixed within a range not exceeding 50 mol%. Can be used. Although it does not specifically limit as a dihydroxy compound used by copolymerizing or mixing, As an example, 1, 1-bis (4-hydroxy 2, 2-bis (4-hydroxy-3-methylphenyl) propane, 1, 1-, Bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, Bis (hydroxyaryl) alkanes such as 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 1,1-bis (4-hydroxyphenyl) ethylbenzene, 1,1-bis (4- Bis such as hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane Hydroxylaryl) cyclohexanes, fluorenes such as 9,9-bis (4-hydroxyphenyl) fluorene, dihydroxyaryls such as 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxy-3,3′-dimethylphenyl ether Ethers, 4,4'-dihydroxydiphenyl sulfide, dihydroxyaryl sulfides such as 4,4'-dihydroxy-3,3'-dimethylphenyl sulfide, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy- And dihydroxyaryl sulfoxides such as 3,3′-dimethylphenyl sulfoxide, and compounds derived from the above compounds, which are suitable for the main component of the repeating unit consisting of bisphenol A. However, bisphenol A can be used in combination as long as it does not impair transparency, but since bisphenol A is a cheap and readily available raw material, the more bisphenol A component is used, the cheaper the optical film The repeating unit of bisphenol A is preferably 80 mol% or more, more preferably 90% or more, and particularly preferably 100 mol% (that is, alone).
本発明を実施例に基づき、更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例および比較例で測定した各物性の測定方法は次の通りである。 The present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In addition, the measuring method of each physical property measured in the following examples and comparative examples is as follows.
(1)エッジ部検査
エッジ部をデジタルマイクロスコープで接合部の断面に対し45°の角度から倍率150倍で観察し、輝線幅を求め、下記式によりエッジ部のRを算出した。
(エッジ部のR) = (輝線幅) / √2
(1) Edge part inspection The edge part was observed at a magnification of 150 times from an angle of 45 ° with respect to the cross section of the joint part with a digital microscope, the bright line width was obtained, and R of the edge part was calculated by the following formula.
(R of edge portion) = (bright line width) / √2
(2)スジ状欠陥
得られた延伸フィルムを点光源にてスクリーンに投影し、投影像の流れ方向に影状に見えるスジをスジ状欠陥とし、その本数を確認した。尚、スジ状欠陥の本数が5本以下を合格と判断した。
(2) Streaky defects The obtained stretched film was projected onto a screen with a point light source, and streaks appearing as shadows in the flow direction of the projected image were defined as streak defects, and the number of the strips was confirmed. In addition, it was judged that the number of streak defects was 5 or less.
(3)異物/欠陥
得られた延伸フィルムに対し目視で欠点を検出し、検出箇所をデジタルマイクロスコープで500倍まで拡大し観察し焼け異物などの核が見られず、かつ二枚の偏光板の間にフィルムを配置させ観察するクロスニコル状態でも色味の変化がないものを異物/欠陥のない合格品とした。
(3) Foreign matter / defect The defect is visually detected on the obtained stretched film, the detected part is magnified up to 500 times with a digital microscope, the core such as burnt foreign matter is not seen, and between the two polarizing plates In the crossed Nicol state in which the film was placed on and observed, a product having no change in color was regarded as an acceptable product without foreign matter / defects.
(実施例1)
熱可塑性樹脂としてポリカーボネート(三菱ガス化学製ユーピロンH―4000,ガラス転移温度148℃)を用い、乾燥ホッパーにて100℃で4時間乾燥させφ40mm押出機に供給した。押出機で樹脂温度280℃となるよう加熱溶融し、ギアポンプを介し、4インチ5μmカットのリーフディスクフィルター、Tダイへと溶融樹脂を押し出した。この時、各部材の間には両端に接合部を有する配管を配置させることで、押出機からダイまで各部材が接続されている。また、これら全ての接合部は嵌合部分の公差が30μmのオスメス構造を有し(流路の最大ずれは30μm以下)、それぞれのエッジのRは20μmとした。Tダイは400mm幅のものを用い、140℃に温調したキャストロール、135℃に温調した冷却ロールにて冷却固化させ、引き取りロールにて9m/分で引き取り、巻き取りコアにてフィルム厚み70μmのフィルムの原反を得た。
Example 1
Polycarbonate (Iupilon H-4000 manufactured by Mitsubishi Gas Chemical Co., Ltd., glass transition temperature 148 ° C.) was used as the thermoplastic resin, dried at 100 ° C. for 4 hours with a drying hopper, and supplied to a φ40 mm extruder. The resin was heated and melted so as to have a resin temperature of 280 ° C. with an extruder, and the molten resin was extruded through a gear pump to a leaf disk filter and a T die of 4 inches and 5 μm cut. At this time, each member is connected from the extruder to the die by arranging piping having joints at both ends between the members. All of these joints have a male-female structure with a fitting part tolerance of 30 μm (the maximum deviation of the flow path is 30 μm or less), and the R of each edge is 20 μm. T-die is 400mm wide, cooled and solidified with a cast roll adjusted to 140 ° C and a cooling roll adjusted to 135 ° C, taken up at 9m / min with a take-up roll, and film thickness at the take-up core A film original of 70 μm was obtained.
得られたポリカーボネートフィルムを延伸機により、縦方向に延伸し、最終的なポリカーボネート延伸フィルムを得た。 The obtained polycarbonate film was stretched in the machine direction by a stretching machine to obtain a final stretched polycarbonate film.
得られたポリカーボネート延伸フィルムはスジ状欠陥、樹脂由来異物/欠陥が観察されず、良好な状態であった。 The obtained stretched polycarbonate film was in a good state with no streak-like defects and resin-derived foreign matter / defects observed.
(実施例2)
全ての接合部に、嵌合部分の公差が30μmのオスメス構造を有し(流路の最大ずれは30μm以下)、接合部断面における流路に接するエッジ部のRが40μmである以外は実施例1と同様の方法で実施した。
(Example 2)
Example except that all joints have a male-female structure with a fitting part tolerance of 30 μm (maximum deviation of the flow path is 30 μm or less), and R of the edge part contacting the flow path in the joint cross section is 40 μm 1 was carried out in the same manner.
得られたポリカーボネート延伸フィルムでは非常に薄いもののスジ状欠陥が幅10cm辺り3本観察された。樹脂由来異物/欠陥は見られなかった。 In the obtained stretched polycarbonate film, very thin but three streak defects were observed per 10 cm width. Resin-derived foreign matter / defects were not seen.
(実施例3)
フィルターより上流側の接合部一箇所、具体的にはギアポンプとその上流の配管の接合部のエッジRが150μmであること以外は実施例1と同様に実施した(即ち、上記接合部1箇所を除く、他の全ての接合部は実施例1と同じ。)。得られたポリカーボネート延伸フィルムでは非常に薄いもののスジ状欠陥が幅10cm辺り1本観察された。また、樹脂由来異物/欠陥が5個/m2観察された。
(Example 3)
It was carried out in the same manner as in Example 1 except that the joint R on the upstream side of the filter, specifically, the edge R of the joint between the gear pump and the upstream pipe was 150 μm (that is, the above-mentioned one joint is located). All other joints are the same as in Example 1.) In the obtained polycarbonate stretched film, one very thin streak defect was observed per 10 cm width. Moreover, 5 resin / m 2 of resin-derived foreign matters / defects were observed.
(比較例1)
接合部の全てのエッジRが150μmであること以外は実施例1と同様に実施した。得られたポリカーボネート延伸フィルムでは非常に薄いスジ状欠陥が幅10cm辺り10本観察された。また、樹脂由来異物/欠陥が10個/m2観察された。
(Comparative Example 1)
The same operation as in Example 1 was performed except that all the edges R of the joint portion were 150 μm. In the obtained stretched polycarbonate film, 10 very thin streak defects were observed per 10 cm width. Further, 10 resin / m 2 of resin-derived foreign matters / defects were observed.
(比較例2)
全ての接合部のエッジRが50μmである以外は実施例1と同様の方法で実施した。得られたポリカーボネート延伸フィルムでは非常に薄いもののスジ状欠陥が幅10cm辺り7本観察された。樹脂由来異物/欠陥は見られなかった。
(Comparative Example 2)
The same method as in Example 1 was performed except that the edge R of all the joints was 50 μm. Although the obtained polycarbonate stretched film was very thin, seven streak defects were observed per width of 10 cm. Resin-derived foreign matter / defects were not seen.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017094545A JP6339270B2 (en) | 2017-05-11 | 2017-05-11 | Manufacturing method of optical film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017094545A JP6339270B2 (en) | 2017-05-11 | 2017-05-11 | Manufacturing method of optical film |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016085403A Division JP6144797B2 (en) | 2016-04-21 | 2016-04-21 | Manufacturing method of optical film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017132266A true JP2017132266A (en) | 2017-08-03 |
JP6339270B2 JP6339270B2 (en) | 2018-06-06 |
Family
ID=59501983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017094545A Active JP6339270B2 (en) | 2017-05-11 | 2017-05-11 | Manufacturing method of optical film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6339270B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08336883A (en) * | 1995-06-09 | 1996-12-24 | Mitsui Toatsu Chem Inc | Extrusion molding method for film |
JP2002331564A (en) * | 2001-05-11 | 2002-11-19 | Kanegafuchi Chem Ind Co Ltd | Method for manufacturing film |
JP2005173072A (en) * | 2003-12-10 | 2005-06-30 | Nippon Zeon Co Ltd | Optical film and method for manufacturing the same |
-
2017
- 2017-05-11 JP JP2017094545A patent/JP6339270B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08336883A (en) * | 1995-06-09 | 1996-12-24 | Mitsui Toatsu Chem Inc | Extrusion molding method for film |
JP2002331564A (en) * | 2001-05-11 | 2002-11-19 | Kanegafuchi Chem Ind Co Ltd | Method for manufacturing film |
JP2005173072A (en) * | 2003-12-10 | 2005-06-30 | Nippon Zeon Co Ltd | Optical film and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP6339270B2 (en) | 2018-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4390264B2 (en) | Multilayer film manufacturing apparatus and manufacturing method thereof | |
CN101370638B (en) | Thermoplastic resin film and method for producing same | |
JP2008044336A (en) | Touch roll, manufacturing device for optical film, and manufacturing method for optical film | |
KR20110005790A (en) | Process for producing optical film and optical film | |
TW201736084A (en) | Method of producing thermoplastic resin film and cyclic olefin resin firm | |
JP6339270B2 (en) | Manufacturing method of optical film | |
JP6144797B2 (en) | Manufacturing method of optical film | |
JP5926668B2 (en) | Manufacturing method of optical film | |
JP4386305B2 (en) | Manufacturing method of high quality plastic sheet | |
JP2009234243A (en) | Casting device, solution film forming equipment and casting method | |
JP6128818B2 (en) | Manufacturing method of optical film | |
JP2006224462A (en) | T-die and manufacturing method of thermoplastic resin film using it | |
JP2013136182A (en) | Method of manufacturing optical film | |
JP6299747B2 (en) | Die and method for producing multilayer film | |
JP2010076279A (en) | Manufacturing method of optical film, optical film, polarizing plate and liquid crystal display | |
JP2009202518A (en) | Leaf disc filter assembly and manufacturing process of thermoplastic resin sheet | |
JP4116653B2 (en) | Feed block type resin solution merging device and feed block type casting die | |
JP6357838B2 (en) | Multilayer film manufacturing method and retardation film manufacturing method | |
JP2016155391A (en) | Method for producing thermoplastic resin film | |
JP5673526B2 (en) | Manufacturing method of optical film | |
JP6128819B2 (en) | Manufacturing method of optical film | |
JP5923424B2 (en) | Method for producing thermoplastic resin film | |
JP5347327B2 (en) | Manufacturing method of optical film | |
JP2008023745A (en) | Casting roll, apparatus for producing optical film, and method for producing optical film | |
JP5029145B2 (en) | Manufacturing method of optical film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170612 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170612 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180417 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180509 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6339270 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |