JP2017128799A - Rolled material for high strength spring - Google Patents

Rolled material for high strength spring Download PDF

Info

Publication number
JP2017128799A
JP2017128799A JP2016239059A JP2016239059A JP2017128799A JP 2017128799 A JP2017128799 A JP 2017128799A JP 2016239059 A JP2016239059 A JP 2016239059A JP 2016239059 A JP2016239059 A JP 2016239059A JP 2017128799 A JP2017128799 A JP 2017128799A
Authority
JP
Japan
Prior art keywords
rolled material
less
strength
amount
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016239059A
Other languages
Japanese (ja)
Inventor
敦彦 竹田
Atsuhiko Takeda
敦彦 竹田
智一 増田
Tomokazu Masuda
智一 増田
尚志 安居
Hisashi Yasui
尚志 安居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to PCT/JP2017/001267 priority Critical patent/WO2017122828A1/en
Publication of JP2017128799A publication Critical patent/JP2017128799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolled material for high strength spring capable of manufacturing a wire for high strength spring having high strength and excellent in corrosion resistance and ambient air durability with good wire drawing property without need for additional processes in mass production.SOLUTION: The rolled material for high strength spring contains C, Si, Mn, P, S, Al, Cu, Ni, Cr and Ti satisfying regulation ranges and balance iron with inevitable impurities, has ideal critical diameter DCI represented by the regulation formula (1) of 120 or less and decarbonization index CA represented by the regulation formula (2) of 70 or less.SELECTED DRAWING: None

Description

本発明は、高強度ばね用圧延材に関する。特には、高強度でありながら腐食耐久性と大気耐久性に優れる高強度ばね用ワイヤを、伸線加工性良く、かつ追加工程等を必要とせずに量産製造することのできる高強度ばね用圧延材に関する。   The present invention relates to a rolled material for high-strength springs. In particular, high strength spring rolling that enables high-strength spring wire with high strength but excellent corrosion resistance and atmospheric durability to be mass-produced with good drawability and without the need for additional processes. Regarding materials.

自動車等に用いられるコイルばね、例えばエンジンやサスペンション等に使用される弁ばね、懸架ばねなどは、排ガスの低減や燃費向上のために軽量化が求められており、高強度化が要求されている。高強度ばねの素材として高強度ワイヤを製造する工程では、圧延材に対し、線径の寸法精度向上、塑性加工による組織均一化を目的として伸線加工が施され、その後、調質、すなわち焼入れ焼戻しが施される。上記高強度ワイヤの製造では、組織のより十分な均一化を図るべく、伸線の加工率を増加させることがある。よって、伸線加工に供する圧延材には良好な伸線加工性が必要となる。伸線加工性が悪い場合は、伸線時に断線が生じ、工業生産品として用いることができない。   Coil springs used in automobiles, for example, valve springs and suspension springs used in engines and suspensions, are required to be light in weight to reduce exhaust gas and improve fuel efficiency, and require high strength. . In the process of manufacturing a high-strength wire as a material for a high-strength spring, the rolled material is subjected to wire drawing for the purpose of improving the dimensional accuracy of the wire diameter and homogenizing the structure by plastic working, and then tempering, that is, quenching. Tempering is performed. In the production of the high-strength wire, the drawing rate may be increased in order to achieve a more uniform structure. Therefore, good drawing workability is required for the rolled material used for drawing. When wire drawing workability is poor, wire breakage occurs during wire drawing and it cannot be used as an industrial product.

また、高強度化されたばねは、靭延性に乏しいため水素脆性が生じやすく、腐食環境下での疲労特性、すなわち腐食耐久性が低下する。そのため、ばねの製造に用いられるワイヤには腐食耐久性に優れていることも要求される。更に前記ばねには、大気雰囲気下での疲労特性、すなわち大気耐久性に優れていることも求められる。前記腐食耐久性と大気耐久性に優れたばねを実現するには、該ばねの素材であるワイヤにもこれらの特性が備わっていることが必要である。   In addition, since the strength-enhanced spring is poor in toughness, hydrogen embrittlement is likely to occur, and fatigue characteristics under a corrosive environment, that is, corrosion durability is reduced. Therefore, the wire used for manufacturing the spring is also required to have excellent corrosion durability. Further, the spring is also required to have excellent fatigue characteristics under atmospheric atmosphere, that is, air durability. In order to realize a spring excellent in corrosion durability and atmospheric durability, it is necessary that the wire which is the material of the spring has these characteristics.

高強度ばね用圧延材の伸線加工性や、該圧延材を用いて得られる高強度ばね用ワイヤの腐食耐久性等を高める方法として、化学成分組成を制御することや圧延材等の組織を制御することなどが知られている。   As a method of enhancing the wire drawing workability of the rolled material for high-strength springs and the corrosion durability of the wire for high-strength springs obtained using the rolled material, the chemical composition is controlled and the structure of the rolled material is adjusted. It is known to control.

例えば特許文献1は、伸線性に優れた高強度ばね用鋼線材に関するものであり、圧延材の化学成分とともに、圧延材の組織を微細かつ均一なパーライト主体組織とし、更には、パーライトノジュール粒度番号の平均値およびその標準偏差を適正な値に制御することによって、伸線性を向上させている。しかしながら、提案されている鋼材はいずれも、焼入性指数DI値が極めて高いため、軟化焼鈍などの工程を追加する必要があると考えられる。コストアップとなる上記工程の追加を行わずに製造するには、更なる検討が必要であると考えられる。   For example, Patent Document 1 relates to a steel wire for a high-strength spring excellent in wire drawability, and the rolled material has a fine and uniform pearlite structure as well as the chemical composition of the rolled material. The wire drawing property is improved by controlling the average value and the standard deviation thereof to appropriate values. However, since all the proposed steel materials have extremely high hardenability index DI values, it is considered necessary to add a process such as soft annealing. In order to manufacture without adding the above-mentioned process that increases the cost, it is considered that further study is necessary.

特許文献2は、耐水素疲労破壊特性に優れた高強度ばね用鋼に関するものであり、化学成分と共に、ワイヤ組織をマルテンサイトとフェライトの層状組織とすることで特性を改善している。しかしながら、このマルテンサイトとフェライトの層状組織といった2相組織を得るには、製造工程において加熱温度を厳密に制御する必要があり、工業的安定性が十分であるとは言い難いため、量産製造するには更なる検討が必要と思われる。   Patent Document 2 relates to a high-strength spring steel having excellent resistance to hydrogen fatigue fracture, and the characteristics are improved by making the wire structure into a layered structure of martensite and ferrite together with chemical components. However, in order to obtain a two-phase structure such as a layered structure of martensite and ferrite, it is necessary to strictly control the heating temperature in the manufacturing process, and it is difficult to say that industrial stability is sufficient. It seems that further study is necessary.

特開2012−072492号公報JP 2012-072492 A 特開2003−105485号公報JP 2003-105485 A

本発明は上記のような事情に鑑みてなされたものであり、その目的は、高強度でありながら腐食耐久性と大気耐久性に優れる高強度ばね用ワイヤを、伸線加工性良く、かつ追加工程等を必要とせずに量産製造することのできる高強度ばね用圧延材を提供することにある。   The present invention has been made in view of the circumstances as described above, and an object of the present invention is to add a high-strength spring wire that has high strength but excellent corrosion durability and atmospheric durability with good wire drawing workability. An object of the present invention is to provide a rolled material for high-strength springs that can be mass-produced and manufactured without requiring a process or the like.

上記課題を解決し得た本発明の高強度ばね用圧延材は、質量%で、
C:0.55〜0.63%、
Si:1.90〜2.30%、
Mn:0.15〜0.55%、
P:0%超、0.015%以下、
S:0%超、0.015%以下、
Al:0.001〜0.1%、
Cu:0.15〜0.45%、
Ni:0.35〜0.75%、
Cr:0.36〜0.65%、および
Ti:0.04〜0.11%
を満たし、残部が鉄および不可避不純物であり、かつ下記式(1)で表される理想臨界直径DCIが120以下であると共に、下記式(2)で表される脱炭指数CAが70以下であるところに特徴を有する。
DCI=25.4×(0.171+0.001×[C]+0.265×[C]2
×(3.3333×[Mn]+1)×(1+0.7×[Si])
×(1+0.363×[Ni])×(1+2.16×[Cr])
×(1+0.365×[Cu])×(1+1.73×[V])×(1+3×[Mo])
…(1)
CA=98×[Si]−171×[Mn]−40×[Cr]−142×[Ni]−60×[Cu]…(2)
上記式(1)および式(2)中、[元素名]は各元素の質量%での鋼中含有量を意味する。
The rolled material for high-strength springs of the present invention that has solved the above problems is in mass%,
C: 0.55-0.63%,
Si: 1.90-2.30%,
Mn: 0.15 to 0.55%,
P: more than 0%, 0.015% or less,
S: more than 0%, 0.015% or less,
Al: 0.001 to 0.1%,
Cu: 0.15-0.45%,
Ni: 0.35 to 0.75%,
Cr: 0.36-0.65%, and Ti: 0.04-0.11%
And the balance is iron and inevitable impurities, the ideal critical diameter DCI represented by the following formula (1) is 120 or less, and the decarburization index CA represented by the following formula (2) is 70 or less. It has features in some places.
DCI = 25.4 × (0.171 + 0.001 × [C] + 0.265 × [C] 2 )
× (3.3333 × [Mn] +1) × (1 + 0.7 × [Si])
× (1 + 0.363 × [Ni]) × (1 + 2.16 × [Cr])
× (1 + 0.365 × [Cu]) × (1 + 1.73 × [V]) × (1 + 3 × [Mo])
... (1)
CA = 98 × [Si] −171 × [Mn] −40 × [Cr] −142 × [Ni] −60 × [Cu] (2)
In said formula (1) and formula (2), [element name] means content in steel in the mass% of each element.

前記高強度ばね用圧延材は、圧延材の圧延方向に垂直な断面において、圧延材の最表面から半径方向に深さ20μmまでの領域のC濃度が母相のC濃度の50%以上であり、全組織に占めるマルテンサイトとベイナイトの合計が5面積%以下であり、かつ圧延材の最表面から半径方向に深さ0.5mmまでの領域を観察したときに、深さ20μm以上かつ幅500μm以上のフェライト単相が存在せず、更に引張強度が1170MPa以下を満たすことが好ましい。   In the rolled material for high-strength springs, in the cross section perpendicular to the rolling direction of the rolled material, the C concentration in the region from the outermost surface of the rolled material to a depth of 20 μm is 50% or more of the C concentration of the parent phase. The total of martensite and bainite in the entire structure is 5% by area or less, and when a region from the outermost surface of the rolled material to a depth of 0.5 mm in the radial direction is observed, the depth is 20 μm or more and the width is 500 μm. It is preferable that the above ferrite single phase does not exist and the tensile strength satisfies 1170 MPa or less.

前記高強度ばね用圧延材の理想臨界直径DCIは70以上であることが好ましい。   The ideal critical diameter DCI of the rolled material for high-strength springs is preferably 70 or more.

前記高強度ばね用圧延材は、更に、下記(a)と(b)のうちの1以上を含んでいてもよい。
(a)質量%で、B:0%超、0.01%以下、
(b)質量%で、V:0%超、0.3%以下、Nb:0%超、0.3%以下、およびMo:0%超、0.5%以下よりなる群から選択される少なくとも1種
The high-strength spring rolled material may further include one or more of the following (a) and (b).
(A) By mass%, B: more than 0%, 0.01% or less,
(B) selected from the group consisting of V: more than 0%, 0.3% or less, Nb: more than 0%, 0.3% or less, and Mo: more than 0%, 0.5% or less. At least one

前記高強度ばね用圧延材は、圧延材の中心を含む圧延方向に水平な断面において、圧延材の最表面から半径方向に向かって2.0mmの位置におけるCr偏析度が下記式(3)を満足することが好ましい。
Cr偏析度≦0.1%…(3)
ここで、Cr偏析度は、EPMAを用いた線分析で測定した、圧延方向のCr含有量の分布の+2σの値である。
In the rolled material for high-strength spring, the degree of Cr segregation at the position of 2.0 mm in the radial direction from the outermost surface of the rolled material in the horizontal section in the rolling direction including the center of the rolled material is expressed by the following formula (3). It is preferable to satisfy.
Cr segregation degree ≦ 0.1% (3)
Here, the Cr segregation degree is a value of + 2σ of the distribution of Cr content in the rolling direction, measured by line analysis using EPMA.

前記高強度ばね用圧延材は、圧延材の中心を含む圧延方向に水平な断面において、圧延材の最表面からの半径方向長さ:2mm×圧延方向長さ:0.10mmで規定される四辺形領域における、半径方向の大きさが8μm以上のTiNの個数が10個以下であることが好ましい。   The rolled material for high-strength spring has four sides defined by a radial length from the outermost surface of the rolled material: 2 mm × a length in the rolling direction: 0.10 mm in a cross section horizontal to the rolling direction including the center of the rolled material. The number of TiN having a radial size of 8 μm or more in the shape region is preferably 10 or less.

本発明の圧延材は、成分組成を最適化しているため、引張強度が例えば1950MPa以上と高強度であっても腐食耐久性と大気耐久性に優れるワイヤを、伸線加工性良く、かつ前述の特許文献1の様な軟化焼鈍等の追加工程や特許文献2の様な加熱温度の厳密な制御を必要とせずに、一般的な製造ラインにおいて量産製造することができる。   Since the rolled material of the present invention has an optimized component composition, a wire excellent in corrosion durability and atmospheric durability even when the tensile strength is as high as 1950 MPa or higher, for example, with excellent wire drawing workability and the aforementioned Mass production can be performed on a general production line without requiring additional steps such as soft annealing as in Patent Document 1 and strict control of heating temperature as in Patent Document 2.

本発明者らは、引張強度が例えば1950MPa以上と高強度でありながら腐食耐久性と大気耐久性に優れる高強度ばね用ワイヤを、伸線加工性良く、かつ追加工程等を設けることなく量産製造することのできる高強度ばね用圧延材を得るべく鋭意研究を重ねた。その結果、鋼材の化学成分組成を製造可能な範囲内で最適化すれば、特に優れた伸線加工性を確保できると共に、優れた腐食耐久性と大気耐久性を有するワイヤが得られることを見出した。以下、上記各特性を確保するための具体的方法について説明する。   The inventors of the present invention have manufactured a high-strength spring wire that is excellent in corrosion durability and atmospheric durability while having a high tensile strength of, for example, 1950 MPa or more, with good wire drawing workability, and without any additional steps. In order to obtain a high-strength rolled material for springs that can be made, research was conducted intensively. As a result, it was found that if the chemical composition of the steel material is optimized within a manufacturable range, it is possible to secure a particularly excellent wire drawing workability and to obtain a wire having excellent corrosion durability and atmospheric durability. It was. Hereinafter, a specific method for ensuring the above characteristics will be described.

まず優れた伸線加工性を得るべく検討を行った。伸線加工性は、圧延材素材の延性に強く影響を受け、この延性は、硬化部であるベイナイトとマルテンサイトの有無、および、圧延材の引張強度で評価できる。以下では、上記ベイナイトとマルテンサイトを併せて「過冷組織」という。本発明者らが検討したところ、上記延性を高める、即ち、伸線加工性を高めるには、後述の通り圧延材の成分組成を制御することによって、圧延材の引張強度を抑え、かつ圧延材の全組織中の過冷組織を十分に抑制することが有効であることを見出した。   First, studies were made to obtain excellent wire drawing workability. The drawing workability is strongly influenced by the ductility of the rolled material, and this ductility can be evaluated by the presence or absence of bainite and martensite, which are hardened parts, and the tensile strength of the rolled material. Hereinafter, the bainite and martensite are collectively referred to as “supercooled structure”. As a result of studies by the present inventors, in order to increase the ductility, that is, to improve the wire drawing workability, the tensile strength of the rolled material is suppressed and the rolled material is controlled by controlling the component composition of the rolled material as described later. It has been found that it is effective to sufficiently suppress the supercooled tissue in all the tissues.

上記圧延材の引張強度は、1170MPa以下に抑えることが好ましい。より高い伸線加工性を確保するには、1100MPa以下に抑えることがより好ましい。尚、優れた伸線加工性確保の観点からは、上記引張強度は低い方が好ましいが、引張強度が極度に低い場合、球状化や粗大化された炭化物が存在しやすい。該炭化物が存在すると、その後のオーステナイト化で炭化物が十分に溶け込まず、焼入れ硬度不足となる恐れがあるため好ましくない。よって、上記引張強度は900MPa以上であることが好ましい。また全組織中の過冷組織は5面積%以下であることが好ましい。より高い伸線加工性を確保する観点からは、2面積%以下であることが好ましく、最も好ましくは過冷組織なし、即ち0面積%である。   The tensile strength of the rolled material is preferably suppressed to 1170 MPa or less. In order to ensure higher wire drawing workability, it is more preferable to suppress to 1100 MPa or less. From the viewpoint of securing excellent wire drawing workability, the tensile strength is preferably low. However, when the tensile strength is extremely low, spheroidized or coarse carbides are likely to exist. The presence of the carbide is not preferable because the carbide is not sufficiently dissolved in the subsequent austenitization and the quenching hardness may be insufficient. Therefore, the tensile strength is preferably 900 MPa or more. Moreover, it is preferable that the supercooled structure | tissue in all the structures is 5 area% or less. From the viewpoint of ensuring higher wire drawing workability, it is preferably 2 area% or less, and most preferably no supercooled structure, that is, 0 area%.

次に大気耐久性について述べる。ばねの大気疲労破壊の原因として、鋼材成分などと共に、表層の脱炭が挙げられる。表層に脱炭が存在する場合、その部位が硬度低下箇所となり、破壊起点として作用し、実使用上で問題となる早期折損が生じる。そのため、表層の脱炭の有無で大気耐久性を判断できる。本発明者らは、大気耐久性を高めるには、後述の通り圧延材の成分組成を制御することにより、表層の脱炭を抑制、具体的には、粗大なフェライト脱炭の生成を抑制すると共に表層C濃度を確保することが有効であることを見出した。   Next, atmospheric durability will be described. As a cause of the atmospheric fatigue failure of the spring, decarburization of the surface layer can be mentioned together with the steel material components and the like. When decarburization exists in the surface layer, the site becomes a hardness-decreasing site, which acts as a starting point for fracture, and causes early breakage that becomes a problem in actual use. Therefore, atmospheric durability can be judged by the presence or absence of surface decarburization. In order to improve atmospheric durability, the present inventors suppress the decarburization of the surface layer by controlling the component composition of the rolled material as described later, specifically, suppress the generation of coarse ferrite decarburization. In addition, it was found effective to ensure the surface layer C concentration.

本発明では、上記粗大なフェライト脱炭として、後述する実施例に記載の通り深さ20μm以上かつ幅500μm以上のフェライト単相が、一定領域内に存在しないようにする。微小なフェライト脱炭であれば、熱処理でCなどが拡散して該フェライト脱炭が消失するが、上記サイズのフェライト脱炭は、上記熱処理でも消失せずに残存し、大気耐久性に悪影響を及ぼすと考えられるからである。   In the present invention, as the coarse ferrite decarburization, a ferrite single phase having a depth of 20 μm or more and a width of 500 μm or more is not present in a certain region as described in Examples described later. In the case of minute ferrite decarburization, C and the like diffuse by heat treatment and the ferrite decarburization disappears, but the ferrite decarburization of the above size remains without disappearing even in the heat treatment, and adversely affects atmospheric durability. It is because it is thought that it affects.

また本発明では、上記粗大なフェライト脱炭の生成を抑制すると共に、圧延材の最表面から半径方向に深さ20μmまでの領域のC濃度が母相のC濃度の50%以上を満たすようにする。これにより、圧延材およびワイヤの表層部の硬さを確保でき、その結果、優れた大気耐久性を確保することができる。この「圧延材の最表面から半径方向に深さ20μmまでの領域のC濃度」は、後記する実施例の「表層C濃度の測定」に記載の方法で求められる。以下、上記「圧延材の最表面から半径方向に深さ20μmまでの領域のC濃度」を「表層C濃度」ということがある。該表層C濃度は、好ましくは母相のC濃度の60%以上、より好ましくは母相のC濃度の70%以上である。   Moreover, in this invention, while suppressing the production | generation of the said coarse ferrite decarburization, C density | concentration of the area | region from the outermost surface of a rolling material to the depth of 20 micrometers fills 50% or more of C density | concentration of a parent phase. To do. Thereby, the hardness of the surface layer part of a rolling material and a wire can be ensured, As a result, the outstanding atmospheric durability can be ensured. This “C concentration in the region from the outermost surface of the rolled material to a depth of 20 μm in the radial direction” can be obtained by the method described in “Measurement of surface C concentration” in Examples described later. Hereinafter, the “C concentration in the region from the outermost surface of the rolled material to a depth of 20 μm in the radial direction” may be referred to as “surface layer C concentration”. The surface layer C concentration is preferably 60% or more of the C concentration of the parent phase, more preferably 70% or more of the C concentration of the parent phase.

更に、腐食耐久性について述べる。この腐食耐久性は、腐食疲労特性ともいわれる。腐食疲労破壊は、腐食により発生した水素が鋼中に侵入し、その水素による鋼材脆化が生じることによって起こる。よって、腐食耐久性を高めるには、後述の通り圧延材の成分組成を制御することにより、鋼材の耐食性と耐水素脆性を高めることが必要である。   Furthermore, corrosion durability will be described. This corrosion durability is also called corrosion fatigue characteristics. Corrosion fatigue failure occurs when hydrogen generated by corrosion penetrates into steel and the steel material becomes embrittled by the hydrogen. Therefore, in order to increase the corrosion durability, it is necessary to increase the corrosion resistance and hydrogen embrittlement resistance of the steel material by controlling the composition of the rolled material as described later.

高強度ばね用圧延材を一般的な圧延ラインで量産製造する上では、上記伸線加工性に悪影響を及ぼす過冷組織の発生と、上記大気耐久性に悪影響を及ぼすフェライト脱炭の発生が大きな問題となる。本発明では、量産製造で特に上記過冷組織やフェライト脱炭を抑制して、良好な伸線加工性、大気耐久性および腐食耐久性を確保すると共に、良好な腐食耐久性をも確保すべく、ばねやワイヤの素材である圧延材の成分組成を下記の通り制御する。   When mass-producing high-strength spring rolled materials on a general rolling line, the occurrence of supercooled structures that adversely affect the wire drawing workability and the occurrence of ferrite decarburization that adversely affect the atmospheric durability are significant. It becomes a problem. In the present invention, particularly in mass production, the supercooled structure and ferrite decarburization are suppressed to ensure good wire drawing workability, atmospheric durability and corrosion durability, and also to ensure good corrosion durability. The component composition of the rolled material, which is the material of the spring or wire, is controlled as follows.

(C:0.55〜0.63%)
Cは、ばね用ワイヤの強度確保に必要であり、また水素トラップサイトとなる微細炭化物の生成にも必要な元素である。こうした観点から、C量を0.55%以上と定めた。C量の好ましい下限は0.57%以上であり、より好ましくは0.58%以上である。しかし、C量が過剰になると、ワイヤ製造時の焼入れ焼戻し後に、粗大な残留オーステナイトや未固溶の炭化物が生成しやすくなり、耐水素脆性が却って低下する場合がある。またCは、圧延材の強度を高めて、伸線加工性の低下、断線などを生じさせる。こうした観点から、C量を0.63%以下と定めた。C量の好ましい上限は0.62%以下であり、より好ましくは0.61%以下である。
(C: 0.55-0.63%)
C is an element necessary for securing the strength of the spring wire, and also necessary for producing fine carbides that serve as hydrogen trap sites. From this point of view, the C content is set to 0.55% or more. The minimum with the preferable amount of C is 0.57% or more, More preferably, it is 0.58% or more. However, when the amount of C becomes excessive, coarse retained austenite and undissolved carbides are likely to be generated after quenching and tempering at the time of manufacturing the wire, and the hydrogen embrittlement resistance may decrease instead. Further, C increases the strength of the rolled material and causes a decrease in wire drawing workability, breakage, and the like. From such a viewpoint, the C content is set to 0.63% or less. The upper limit with preferable C amount is 0.62% or less, More preferably, it is 0.61% or less.

(Si:1.90〜2.30%)
Siは、強度の確保に必要な元素であり、また炭化物を微細にして水素トラップサイトを十分に確保し、腐食耐久性を高める効果がある。これらの効果を有効に発揮させるため、Si量を1.90%以上と定めた。Si量の好ましい下限は1.95%以上であり、より好ましくは2.10%以上である。一方、Siは脱炭を促進させる元素でもあるため、Si量が過剰であると鋼材表面の脱炭層形成が促進され、優れた大気耐久性を確保できない。また、脱炭層削除のためのピーリング工程が必要となり、製造コストの増加を招く。更に、未固溶炭化物も多くなり、腐食耐久性が低下する。こうした観点から、Si量を2.30%以下と定めた。Si量の好ましい上限は2.25%以下であり、より好ましくは2.20%以下である。
(Si: 1.90-2.30%)
Si is an element necessary for ensuring the strength, and has the effect of increasing the corrosion durability by making the carbide fine and ensuring sufficient hydrogen trap sites. In order to exhibit these effects effectively, the Si content is set to 1.90% or more. The minimum with the preferable amount of Si is 1.95% or more, More preferably, it is 2.10% or more. On the other hand, since Si is also an element that promotes decarburization, if the amount of Si is excessive, formation of a decarburized layer on the surface of the steel material is promoted, and excellent atmospheric durability cannot be ensured. In addition, a peeling process for removing the decarburized layer is required, resulting in an increase in manufacturing cost. Further, the amount of undissolved carbides increases, and the corrosion durability decreases. From such a viewpoint, the amount of Si was determined to be 2.30% or less. The upper limit with the preferable amount of Si is 2.25% or less, More preferably, it is 2.20% or less.

(Mn:0.15〜0.55%)
Mnは、脱酸元素として利用されると共に、鋼中の有害元素であるSと反応してMnSを形成し、Sの無害化に有益な元素である。また、Mnは強度向上に寄与する元素でもある。これらの効果を有効に発揮させるため、Mn量を0.15%以上と定めた。Mn量の好ましい下限は0.20%以上であり、より好ましくは0.25%以上である。しかし、Mn量が過剰になると焼入れ性が増大し、また、靭性が低下して鋼材が脆化しやすくなる。こうした観点から、Mn量を0.55%以下と定めた。Mn量の好ましい上限は0.50%以下、より好ましくは0.45%以下である。
(Mn: 0.15 to 0.55%)
Mn is used as a deoxidizing element and reacts with S, which is a harmful element in steel, to form MnS, which is an element useful for detoxification of S. Mn is also an element contributing to strength improvement. In order to exhibit these effects effectively, the amount of Mn was determined to be 0.15% or more. The minimum with the preferable amount of Mn is 0.20% or more, More preferably, it is 0.25% or more. However, when the amount of Mn becomes excessive, the hardenability increases, and the toughness decreases, and the steel material is easily embrittled. From such a viewpoint, the amount of Mn was determined to be 0.55% or less. The upper limit with the preferable amount of Mn is 0.50% or less, More preferably, it is 0.45% or less.

(P:0%超、0.015%以下)
Pは、圧延材、すなわち線材の、コイリング性などの延性を劣化させる有害元素である。また、Pは粒界に偏析しやすく、粒界脆化を招き、水素により粒界が破壊しやすくなり、耐水素脆性に悪影響を及ぼす。こうした観点からPはできるだけ少ない方がよく、本発明では0.015%以下と定めた。P量の好ましい上限は0.010%以下であり、より好ましくは0.008%以下である。P量は、上記の通り少なければ少ない程好ましいが、通常、最低でも0.001%程度含まれうる。
(P: more than 0%, 0.015% or less)
P is a harmful element that deteriorates the ductility such as coiling property of the rolled material, that is, the wire. Further, P is easily segregated at the grain boundary and causes embrittlement at the grain boundary, and the grain boundary is easily broken by hydrogen, which adversely affects the resistance to hydrogen embrittlement. From such a viewpoint, it is better that P is as small as possible. In the present invention, P is set to 0.015% or less. The upper limit with the preferable amount of P is 0.010% or less, More preferably, it is 0.008% or less. As described above, the smaller the amount of P, the better. However, it can usually be contained at least about 0.001%.

(S:0%超、0.015%以下)
Sは、上記したPと同様に、圧延材のコイリング性などの延性を劣化させる有害元素である。また、Sは粒界に偏析しやすく、粒界脆化を招き、水素により粒界が破壊しやすくなり、耐水素脆性に悪影響を及ぼす。こうした観点からSはできるだけ少ない方が望ましく、本発明では0.015%以下と定めた。S量の好ましい上限は0.010%以下であり、より好ましくは0.008%以下である。S量は少なければ少ない程好ましいが、通常、最低でも0.001%程度含まれうる。
(S: more than 0%, 0.015% or less)
S, like P described above, is a harmful element that degrades ductility such as coiling properties of the rolled material. In addition, S is easily segregated at the grain boundary and causes embrittlement of the grain boundary, and the grain boundary is easily broken by hydrogen, which adversely affects the resistance to hydrogen embrittlement. From this point of view, it is desirable that S is as small as possible. In the present invention, it is determined to be 0.015% or less. The upper limit with the preferable amount of S is 0.010% or less, More preferably, it is 0.008% or less. The smaller the amount of S, the better. However, it can usually be contained at least about 0.001%.

(Al:0.001〜0.1%)
Alは、主に脱酸元素として添加される。また、Nと反応してAlNを形成して固溶Nを無害化すると共に組織の微細化にも寄与する。これらの効果を十分に発揮させるため、Al量を0.001%以上と定めた。Al量の好ましい下限は0.002%以上であり、より好ましくは0.005%以上である。しかしながら、AlはSiと同様に脱炭を促進させる元素でもあるため、Siを多く含有するばね用鋼ではAl量を抑える必要があり、本発明ではAl量を0.1%以下と定めた。Al量の好ましい上限は0.07%以下であり、より好ましくは0.030%以下、更に好ましくは0.020%以下である。
(Al: 0.001 to 0.1%)
Al is mainly added as a deoxidizing element. Moreover, it reacts with N to form AlN to render the solid solution N harmless and contribute to the refinement of the structure. In order to fully exhibit these effects, the Al content is determined to be 0.001% or more. The minimum with preferable Al amount is 0.002% or more, More preferably, it is 0.005% or more. However, since Al is an element that promotes decarburization in the same way as Si, it is necessary to suppress the amount of Al in spring steel containing a large amount of Si. In the present invention, the amount of Al is set to 0.1% or less. The upper limit with preferable Al amount is 0.07% or less, More preferably, it is 0.030% or less, More preferably, it is 0.020% or less.

(Cu:0.15〜0.45%)
Cuは、表層脱炭の抑制や耐食性の向上に有効な元素である。そこで本発明では、Cu量を0.15%以上と定めた。Cu量は、好ましくは0.20%以上、より好ましくは0.25%以上である。しかしながら、Cuが過剰に含まれると、熱間加工時に割れが発生したり、コストが増加する。そこでCu量を0.45%以下と定めた。Cu量は、好ましくは0.43%以下、より好ましくは0.40%以下である。
(Cu: 0.15-0.45%)
Cu is an element effective for suppressing surface layer decarburization and improving corrosion resistance. Therefore, in the present invention, the amount of Cu is set to 0.15% or more. The amount of Cu is preferably 0.20% or more, more preferably 0.25% or more. However, if Cu is excessively contained, cracks occur during hot working or the cost increases. Therefore, the amount of Cu is set to 0.45% or less. The amount of Cu is preferably 0.43% or less, more preferably 0.40% or less.

(Ni:0.35〜0.75%)
Niは、Cuと同様に表層脱炭の抑制や耐食性の向上に有効な元素である。そこで本発明では、Ni量を0.35%以上と定めた。Ni量は、好ましくは0.40%以上、より好ましくは0.45%以上である。しかしながら、Niが過剰に含まれるとコストが増加する。従ってNi量を0.75%以下と定めた。Ni量は、好ましくは0.70%以下、より好ましくは0.65%以下である。
(Ni: 0.35-0.75%)
Ni is an element effective for suppressing surface decarburization and improving corrosion resistance, similarly to Cu. Therefore, in the present invention, the amount of Ni is determined to be 0.35% or more. The amount of Ni is preferably 0.40% or more, more preferably 0.45% or more. However, if Ni is excessively contained, the cost increases. Therefore, the Ni content is set to 0.75% or less. The amount of Ni is preferably 0.70% or less, more preferably 0.65% or less.

(Cr:0.36〜0.65%)
Crは、次に示す通り、懸架ばね用鋼の成分設計において重要な元素である。即ち、例えば高温で圧延中に、表層のCが脱炭する現象が生じるが、Crが鋼中に含まれていると、高温酸化で緻密なスケールが鋼材表面に生成し、Cの拡散を抑制する。その結果、表層脱炭を抑制し表層C濃度の低下を抑制でき、優れた大気耐久性を確保することができる。またCrは、耐食性をより高める効果を有し、更には、焼戻し軟化抵抗を示してワイヤの強度をより高める効果も有する。これらの効果を発揮させるには、Crを0.36%以上含有させる必要がある。Cr量は、好ましくは0.38%以上、より好ましくは0.40%以上である。一方、Crが過剰に含まれると、圧延材の強度が高まり、伸線加工が困難になる。また局部的に腐食の進行が生じるといった問題も起こり得る。そこで、Cr量は0.65%以下とする。Cr量は、好ましくは0.60%以下、より好ましくは0.55%以下である。
(Cr: 0.36-0.65%)
As shown below, Cr is an important element in the component design of suspension spring steel. That is, for example, a phenomenon in which C on the surface layer is decarburized during rolling at a high temperature occurs, but if Cr is contained in the steel, a dense scale is formed on the surface of the steel material due to high-temperature oxidation and suppresses the diffusion of C. To do. As a result, surface decarburization can be suppressed and a decrease in the surface layer C concentration can be suppressed, and excellent atmospheric durability can be ensured. Further, Cr has an effect of further improving the corrosion resistance, and further has an effect of increasing the strength of the wire by showing a temper softening resistance. In order to exert these effects, it is necessary to contain 0.36% or more of Cr. The amount of Cr is preferably 0.38% or more, more preferably 0.40% or more. On the other hand, when Cr is excessively contained, the strength of the rolled material is increased and wire drawing is difficult. There may also be a problem that corrosion progresses locally. Therefore, the Cr amount is set to 0.65% or less. The amount of Cr is preferably 0.60% or less, more preferably 0.55% or less.

(Ti:0.04〜0.11%)
Tiは、Sと反応して硫化物を形成し、Sの無害化を図るのに有用な元素である。また、Tiは炭窒化物を形成して組織を微細化する効果も有する。更にTiCは水素の無害効果を有し、耐水素脆性、腐食後回転曲げ特性を向上させる。そこで本発明では、Ti量を0.04%以上と定めた。Ti量は、好ましくは0.05%以上、より好ましくは0.06%以上である。一方、Ti量が過剰になると、粗大なTi硫化物が形成されて延性が劣化することがある。よってTi量は0.11%以下とした。Ti量は、好ましくは0.10%以下である。
(Ti: 0.04 to 0.11%)
Ti reacts with S to form a sulfide, and is an element useful for detoxifying S. Ti also has the effect of forming a carbonitride to refine the structure. Furthermore, TiC has the harmless effect of hydrogen and improves hydrogen embrittlement resistance and rotational bending properties after corrosion. Therefore, in the present invention, the amount of Ti is set to 0.04% or more. The amount of Ti is preferably 0.05% or more, more preferably 0.06% or more. On the other hand, when the amount of Ti is excessive, coarse Ti sulfide is formed and ductility may deteriorate. Therefore, the Ti amount is set to 0.11% or less. The amount of Ti is preferably 0.10% or less.

本発明の鋼材の成分は上記の通りであり、残部は鉄および不可避不純物である。上記元素に加えて更に、下記の元素を適量含有させることにより、焼入れ性等を更に高めることができる。以下、これらの元素について詳述する。   The components of the steel material of the present invention are as described above, and the balance is iron and inevitable impurities. In addition to the above elements, the hardenability and the like can be further improved by adding an appropriate amount of the following elements. Hereinafter, these elements will be described in detail.

(B:0%超、0.01%以下)
Bは、焼入れ性向上元素であり、また旧オーステナイト結晶粒界を強化する効果があり、破壊の抑制に寄与する元素である。このような効果を有効に発揮させるため、B量は0.0005%以上が好ましく、より好ましくは0.0010%以上である。しかしながら、B量が過剰になっても上記効果が飽和するため、B量は0.01%以下が好ましく、より好ましくは0.0050%以下、さらに好ましくは0.0030%以下である。
(B: more than 0%, 0.01% or less)
B is an element that improves hardenability, has an effect of strengthening the prior austenite grain boundaries, and contributes to suppression of fracture. In order to effectively exhibit such effects, the B content is preferably 0.0005% or more, more preferably 0.0010% or more. However, since the above effect is saturated even if the amount of B becomes excessive, the amount of B is preferably 0.01% or less, more preferably 0.0050% or less, and still more preferably 0.0030% or less.

(V:0%超、0.3%以下、Nb:0%超、0.3%以下、およびMo:0%超、0.5%以下よりなる群から選択される少なくとも1種)
V、Nb、MoはいずれもCやNと析出物を形成し、組織微細化に寄与する元素である。これらの元素は、単独で用いてもよいし2種以上を併用してもよい。以下、各元素について説明する。
(V: at least one selected from the group consisting of more than 0%, 0.3% or less, Nb: more than 0%, 0.3% or less, and Mo: more than 0%, 0.5% or less)
V, Nb, and Mo are all elements that form precipitates with C and N and contribute to refinement of the structure. These elements may be used alone or in combination of two or more. Hereinafter, each element will be described.

(V:0%超、0.3%以下)
Vは、強度向上や結晶粒微細化に寄与する元素である。このような効果を有効に発揮させるため、V量は0.1%以上が好ましく、より好ましくは0.15%以上であり、更に好ましくは0.20%以上である。しかしながら、V量が過剰になるとコストが増加する。そこで、V量は0.3%以下が好ましく、より好ましくは0.25%以下である。
(V: over 0%, 0.3% or less)
V is an element that contributes to strength improvement and crystal grain refinement. In order to effectively exhibit such effects, the V amount is preferably 0.1% or more, more preferably 0.15% or more, and further preferably 0.20% or more. However, when the amount of V becomes excessive, the cost increases. Therefore, the V amount is preferably 0.3% or less, more preferably 0.25% or less.

(Nb:0%超、0.2%以下)
Nbは、CやNと炭窒化物を形成し、主に組織微細化に寄与する元素である。この観点からは、Nbを好ましくは0.005%以上含有してもよく、より好ましくは0.010%以上である。しかしながらNb量が過剰になると、粗大炭窒化物が形成されて鋼材の延性が劣化する。またコストの増加にもつながる。これらの観点からNb量は、0.3%以下とすることが好ましく、より好ましくは0.2%以下、更に好ましくは0.10%以下、特にコスト低減の観点から0.07%以下とすることが更に好ましい。
(Nb: more than 0%, 0.2% or less)
Nb is an element that forms carbonitrides with C and N and contributes mainly to refinement of the structure. From this viewpoint, Nb may be contained preferably in an amount of 0.005% or more, and more preferably 0.010% or more. However, when the amount of Nb becomes excessive, coarse carbonitrides are formed and the ductility of the steel material deteriorates. It also leads to increased costs. From these viewpoints, the Nb content is preferably 0.3% or less, more preferably 0.2% or less, still more preferably 0.10% or less, and particularly 0.07% or less from the viewpoint of cost reduction. More preferably.

(Mo:0%超、0.5%以下)
MoもNbと同様に、CやNと炭窒化物を形成し、組織微細化に寄与する元素である。また焼戻し後の強度確保にも有効な元素である。このような効果を有効に発揮させるには、Mo量を0.10%以上とすることが好ましい。しかしながら、Mo量が過剰になると、粗大炭窒化物が形成されて鋼材のコイリング性などの延性が劣化する。よって、Mo量は0.5%以下であることが好ましく、より好ましくは0.3%以下である。
(Mo: over 0%, 0.5% or less)
Mo, like Nb, is an element that forms carbonitrides with C and N and contributes to refinement of the structure. It is also an effective element for securing strength after tempering. In order to effectively exhibit such an effect, the Mo amount is preferably set to 0.10% or more. However, when the amount of Mo becomes excessive, coarse carbonitrides are formed, and ductility such as coilability of the steel material deteriorates. Therefore, the Mo amount is preferably 0.5% or less, and more preferably 0.3% or less.

更に本発明の圧延材は、下記式(1)で表される理想臨界直径DCIと下記式(2)で表される脱炭指数CAが下記範囲を満たす。   Further, in the rolled material of the present invention, the ideal critical diameter DCI represented by the following formula (1) and the decarburization index CA represented by the following formula (2) satisfy the following ranges.

下記式(1)で表される理想臨界直径DCIが120以下
DCI=25.4×(0.171+0.001×[C]+0.265×[C]2
×(3.3333×[Mn]+1)×(1+0.7×[Si])
×(1+0.363×[Ni])×(1+2.16×[Cr])
×(1+0.365×[Cu])×(1+1.73×[V])×(1+3×[Mo])
…(1)
上記式(1)中、[元素名]は各元素の質量%での鋼中含有量を意味する。
The ideal critical diameter DCI represented by the following formula (1) is 120 or less DCI = 25.4 × (0.171 + 0.001 × [C] + 0.265 × [C] 2 )
× (3.3333 × [Mn] +1) × (1 + 0.7 × [Si])
× (1 + 0.363 × [Ni]) × (1 + 2.16 × [Cr])
× (1 + 0.365 × [Cu]) × (1 + 1.73 × [V]) × (1 + 3 × [Mo])
... (1)
In said formula (1), [element name] means content in steel in the mass% of each element.

上記式(1)で表される理想臨界直径DCIが高すぎると、焼入れ性が高くなり、通常の圧延において過冷組織が発生しやすく、上述の通りワイヤ製造時の伸線加工性が低下する。そこで本発明では、上記DCIの上限を120とした。該DCIは、好ましくは115以下、より好ましくは110以下である。一方、上記DCIが低い場合、焼入れ性が低くなり、ワイヤ製造時の熱処理として焼入れを行ったときに、内部までマルテンサイト組織とならない場合がある。よって、上記DCIの下限は70以上とすることが好ましい。上記DCIは、より好ましくは75以上、更に好ましくは80以上である。   If the ideal critical diameter DCI represented by the above formula (1) is too high, the hardenability becomes high, and a supercooled structure is likely to be generated in normal rolling, and the wire drawing workability at the time of wire production is lowered as described above. . Therefore, in the present invention, the upper limit of the DCI is 120. The DCI is preferably 115 or less, more preferably 110 or less. On the other hand, when the DCI is low, the hardenability is low, and when the hardening is performed as the heat treatment at the time of manufacturing the wire, the martensite structure may not be formed to the inside. Therefore, the lower limit of the DCI is preferably 70 or more. The DCI is more preferably 75 or more, and still more preferably 80 or more.

下記式(2)で表される脱炭指数CAが70以下
CA=98×[Si]−171×[Mn]−40×[Cr]−142×[Ni]−60×[Cu]…(2)
上記式(2)中、[元素名]は各元素の質量%での鋼中含有量を意味する。
Decarburization index CA represented by the following formula (2) is 70 or less CA = 98 × [Si] −171 × [Mn] −40 × [Cr] −142 × [Ni] −60 × [Cu] (2) )
In said formula (2), [element name] means content in the steel in the mass% of each element.

上述した圧延材の表層のフェライト脱炭は、圧延前の鋼片に生じたフェライト脱炭が原因となる。前記鋼片に粗大なフェライト脱炭が存在すると、その部分のC濃度が極度に低下し、A3点を上昇させる。そのため、圧延などで高温に加熱してもA3点を超えてオーステナイト単層域に入ることができず、A3点以下の2相域にとどまる。その結果、フェライト脱炭が消失せず、このフェライト脱炭が圧延材まで持ち越される。 The above-described ferrite decarburization of the surface layer of the rolled material is caused by the ferrite decarburization generated in the steel piece before rolling. If coarse ferritic decarburization is present in the steel slab, the C concentration in that portion is extremely lowered and the A 3 point is raised. Therefore, it is impossible to enter the austenite single-layer region beyond the three points A be heated to a high temperature rolling and the like, it remains in the two-phase zone below 3 points A. As a result, ferrite decarburization does not disappear, and this ferrite decarburization is carried over to the rolled material.

上記2相域とオーステナイト域の境界温度は成分の影響を受ける。よって、上記粗大なフェライト脱炭を消失させるには、A3点が低めとなるように成分を制御するのがよい。この観点から、上記式(2)を導き出した。本発明では、上記CAが70以下を満足すれば、一般的な圧延工程の加熱でオーステナイト単相とすることができ、フェライト脱炭を消失させることができる。上記CAは、好ましくは65以下、より好ましくは50以下である。 The boundary temperature between the two-phase region and the austenite region is affected by the components. Therefore, in order to eliminate the coarse ferrite decarburization, it is preferable to control the components so that A 3 point is low. From this viewpoint, the above formula (2) was derived. In the present invention, if the CA satisfies 70 or less, the austenite single phase can be obtained by heating in a general rolling process, and ferrite decarburization can be eliminated. The CA is preferably 65 or less, more preferably 50 or less.

好ましい実施形態において、本発明の圧延材は、圧延材の中心を含む圧延方向に水平な断面において、圧延材の最表面から半径方向に向かって2.0mmの位置におけるCr偏析度(本明細書において、単に“Cr偏析度”と称することがある)が下記式(3)を満足する。
Cr偏析度≦0.1%…(3)
ここで、Cr偏析度は、EPMAを用いた線分析で測定した圧延方向のCr含有量の分布の+2σの値である。
In a preferred embodiment, the rolled material of the present invention has a Cr segregation degree at a position 2.0 mm from the outermost surface of the rolled material in the radial direction in a cross section horizontal to the rolling direction including the center of the rolled material (this specification). (Sometimes referred to as “Cr segregation degree”) satisfies the following formula (3).
Cr segregation degree ≦ 0.1% (3)
Here, the Cr segregation degree is a value of + 2σ of the distribution of Cr content in the rolling direction measured by line analysis using EPMA.

Cr偏析度を0.1%以下に制御することで、Cr濃度のばらつきを十分に小さくすることができ(すなわち、Crが濃化したCr濃化部の形成を抑制することができ)、このようなCr偏析度が小さい圧延材を用いて製造したばねは、優れた衝撃特性を有することができる。圧延材におけるCr偏析度が大きすぎる、すなわち圧延材内にCr濃化部が多く形成されていると、Cr濃化部は、Crが濃化していないCr非濃化部に比べて、焼戻し処理による軟化および靱延性の回復が生じにくく焼戻し脆性が生じやすいため、衝撃特性を低下させるおそれがある。そのため、本発明の圧延材は、Cr偏析度が0.1%以下であることが好ましい。   By controlling the Cr segregation degree to 0.1% or less, variation in Cr concentration can be made sufficiently small (that is, formation of Cr-enriched portion where Cr is enriched can be suppressed), and this A spring manufactured using a rolled material having a small Cr segregation degree can have excellent impact characteristics. When the degree of segregation of Cr in the rolled material is too large, that is, when many Cr concentrated portions are formed in the rolled material, the Cr concentrated portion is tempered compared to the Cr non-concentrated portion where Cr is not concentrated. Since softening and tough ductility recovery due to heat resistance are difficult to occur, temper brittleness is likely to occur, so that impact characteristics may be deteriorated. Therefore, the rolled material of the present invention preferably has a Cr segregation degree of 0.1% or less.

本明細書で規定する、圧延材のCr偏析度は、以下のようにして測定することができる。
圧延材の中心を含む圧延方向に水平な断面(本明細書において、縦断面ともいう)で埋め込み研磨を行い、当該縦断面において、圧延材の最表面から半径方向に向かって2.0mmの位置から、圧延方向に向かってEPMAによる線分析を行い、Cr量を測定する。EPMAのビーム径を1μmとし、線分析を行う長さを250μmとし、全250点におけるCr量を母集団としてその標準偏差(σ)を計算により算出し、標準偏差を2倍した値(すなわち2.0σ)を、当該圧延材のCr偏析度とすることができる。
The Cr segregation degree of the rolled material specified in this specification can be measured as follows.
Embedded polishing is performed in a cross section (also referred to as a longitudinal section in the present specification) horizontal in the rolling direction including the center of the rolled material, and a position of 2.0 mm in the radial direction from the outermost surface of the rolled material in the longitudinal section. Then, line analysis by EPMA is performed in the rolling direction, and the Cr amount is measured. The EPMA beam diameter is 1 μm, the length of the line analysis is 250 μm, and the standard deviation (σ) is calculated by calculating the Cr amount at all 250 points as a population, and the standard deviation is doubled (ie, 2 0.0σ) can be the Cr segregation degree of the rolled material.

また別の好ましい実施形態において、本発明の圧延材は、圧延材の中心を含む圧延方向に水平な断面において、圧延材の最表面からの半径方向長さ:2mm×圧延方向長さ:0.10mmで規定される四辺形領域における、半径方向の大きさが8μm以上であるTiNの個数が10個以下である。半径方向の大きさが8μm以上であるTiNの個数をこのような範囲に制限することで、衝撃が加わった際の亀裂進展を抑制することができ、衝撃特性をより向上することができる。   In another preferred embodiment, the rolled material of the present invention has a radial length from the outermost surface of the rolled material: 2 mm × length in the rolling direction: 0. 0 mm in a section horizontal to the rolling direction including the center of the rolled material. In the quadrangular region defined by 10 mm, the number of TiNs having a radial size of 8 μm or more is 10 or less. By limiting the number of TiN having a radial size of 8 μm or more to such a range, it is possible to suppress the crack propagation when an impact is applied, and to further improve the impact characteristics.

半径方向の大きさが8μm以上であるTiNが過剰に存在すると、亀裂の進展が助長され、衝撃特性が低下するおそれがある。また、TiNは、靱延性に乏しいCr濃化部と同一箇所に発生する傾向があり、Cr濃化部に、半径方向の大きさが8μm以上のTiNが多く存在することで、衝撃特性がさらに低下するおそれがある。そのため、本発明の圧延材は、圧延材の中心を含む圧延方向に水平な断面において、圧延材の最表面からの半径方向長さ:2mm×圧延方向長さ:0.10mmで規定される四辺形領域における、半径方向の大きさが8μm以上であるTiNの個数が10個以下であることが好ましい。   If TiN having a radial size of 8 μm or more exists excessively, the progress of cracks is promoted and the impact characteristics may be deteriorated. In addition, TiN tends to occur in the same location as the Cr-concentrated portion having poor toughness, and the presence of a large amount of TiN having a radial size of 8 μm or more in the Cr-concentrated portion further improves impact characteristics. May decrease. Therefore, the rolled material of the present invention has four sides defined by a radial length from the outermost surface of the rolled material: 2 mm × a length in the rolling direction: 0.10 mm in a horizontal section in the rolling direction including the center of the rolled material. The number of TiN having a radial size of 8 μm or more in the shape region is preferably 10 or less.

本明細書で規定するTiNの個数は、以下のようにして測定することができる。
圧延材を10mm程度の長さに切断してから樹脂に埋め込み、表面研磨を行い、圧延材の中心を含む圧延方向に水平な断面を、光学顕微鏡(例えば倍率200倍)を用いて観察する。観察断面において、圧延材の最表面からの半径方向長さ:2mm×圧延方向長さ:0.10mmで規定される四辺形領域(0.20mm)を1つの観察領域として、このような観察領域を10個選択する。そして、各観察領域における半径方向の大きさが8μm以上であるTiNの個数をJIS G 0555に準じて測定し、10個の観察領域での平均値を、対象とする圧延材の、半径方向の大きさが8μm以上であるTiNの個数とする。
The number of TiNs defined in this specification can be measured as follows.
The rolled material is cut to a length of about 10 mm, embedded in a resin, subjected to surface polishing, and a horizontal section in the rolling direction including the center of the rolled material is observed using an optical microscope (for example, 200 times magnification). In the observation cross section, such observation is made with a quadrilateral region (0.20 mm 2 ) defined by a radial length from the outermost surface of the rolled material: 2 mm × a rolling direction length: 0.10 mm as one observation region. Select 10 areas. And the number of TiN whose radial direction size is 8 μm or more in each observation region is measured according to JIS G 0555, and the average value in 10 observation regions is measured in the radial direction of the target rolled material. The number of TiNs whose size is 8 μm or more.

(製造方法)
本発明の圧延材は、上述の通り成分組成を規定したものであって、その製造方法については特に限定されず、一般的な方法で製造することができる。即ち、一般的な方法で鋼材を溶製、鋳造して鋼材を得た後、例えば1000〜1300℃で均質化処理、分塊圧延し、次いで例えば1000〜1300℃で加熱した後、熱間圧延を行って、例えば直径9〜25mmの圧延材を得ることができる。
(Production method)
The rolled material of the present invention has a defined component composition as described above, and the production method is not particularly limited, and can be produced by a general method. That is, after a steel material is melted and cast by a general method to obtain a steel material, for example, homogenization treatment at 1000 to 1300 ° C., partial rolling, and then heating at 1000 to 1300 ° C., for example, followed by hot rolling For example, a rolled material having a diameter of 9 to 25 mm can be obtained.

好ましい実施形態では、本発明の圧延材は、上述した基本製造方法において、連続鋳造後の鋼材を1100〜1300℃で1〜5時間加熱して均質化処理を行い、熱間圧延の最終圧延スタンドの出側温度(最終圧延温度)を920℃以上とし、熱間圧延後700℃までを2℃/s以上の平均冷却速度で冷却することが好ましい。このような製造方法であれば、圧延材の最表面から半径方向に向かって2.0mmの位置におけるCr偏析度が0.1%以下である圧延材を得ることができる。   In a preferred embodiment, the rolled material of the present invention is a final rolling stand for hot rolling in the above-described basic manufacturing method, in which the steel material after continuous casting is heated at 1100 to 1300 ° C. for 1 to 5 hours for homogenization. It is preferable that the outlet side temperature (final rolling temperature) is 920 ° C. or higher, and the temperature after hot rolling up to 700 ° C. is cooled at an average cooling rate of 2 ° C./s or higher. With such a manufacturing method, a rolled material having a Cr segregation degree of 0.1% or less at a position of 2.0 mm in the radial direction from the outermost surface of the rolled material can be obtained.

最終圧延温度を920℃以上の高温にすることでCrの拡散が促進され、Cr偏析度を低減することができる。また、熱間圧延後700℃までの平均冷却速度が小さすぎると、オーステナイト相から生成するフェライトの体積率が増大し、パーライト組織中のセメンタイトへのCrの過度の濃化が生じ、Cr偏析度が大きくなる。熱間圧延後700℃までの平均冷却速度を2℃/s以上にすることで、フェライトの過度の生成を抑制し、Cr偏析度を低減することができる。   By setting the final rolling temperature to a high temperature of 920 ° C. or higher, the diffusion of Cr is promoted, and the degree of Cr segregation can be reduced. On the other hand, if the average cooling rate up to 700 ° C. after hot rolling is too small, the volume fraction of ferrite produced from the austenite phase increases, excessive concentration of Cr to cementite in the pearlite structure occurs, and the degree of Cr segregation Becomes larger. By setting the average cooling rate up to 700 ° C. after hot rolling to 2 ° C./s or more, excessive generation of ferrite can be suppressed and the degree of Cr segregation can be reduced.

さらに好ましい実施形態では、本発明の圧延材は、上述した基本製造方法において、連続鋳造後の鋼材の表面温度を500〜800℃の範囲に冷却し、その後鋼材を1100〜1300℃で1〜5時間加熱して均質化処理を行い、熱間圧延の最終圧延スタンドの出側温度(最終圧延温度)を920℃以上とし、熱間圧延後700℃までを2℃/s以上の平均冷却速度で冷却することが好ましい。このような製造方法であれば、Cr偏析度が0.1%以下であり、かつ圧延材の最表面からの半径方向長さ:2mm×圧延方向長さ:0.10mmで規定される四辺形領域における、半径方向の大きさが8μm以上であるTiNの個数が10個以下である圧延材を得ることができる。   In a more preferred embodiment, the rolled material of the present invention is obtained by cooling the surface temperature of the steel material after continuous casting to a range of 500 to 800 ° C. in the basic manufacturing method described above, and thereafter the steel material is 1 to 5 at 1100 to 1300 ° C. Homogenization treatment is performed by heating for a period of time, the exit temperature (final rolling temperature) of the final rolling stand of hot rolling is set to 920 ° C. or higher, and after hot rolling up to 700 ° C. at an average cooling rate of 2 ° C./s or higher. It is preferable to cool. With such a manufacturing method, the degree of segregation of Cr is 0.1% or less, and the length in the radial direction from the outermost surface of the rolled material is 2 mm × the length in the rolling direction: 0.10 mm. It is possible to obtain a rolled material in which the number of TiN having a radial size of 8 μm or more in the region is 10 or less.

連続鋳造後の鋼材の表面温度を500〜800℃の範囲に冷却することで、TiN生成の原因となるNを、AlNとして析出することができ、そのためTiNの粗大化を抑制することができる。また、連続鋳造後の鋼材の表面温度を500〜800℃の範囲に冷却することで、鋼中にTiNの微細な核を多数生成することができ、その後の均質化熱処理において、TiNを微細に保持することができ、かつCr偏析度を低減することができる。   By cooling the surface temperature of the steel material after continuous casting to a range of 500 to 800 ° C., N that causes generation of TiN can be precipitated as AlN, so that TiN coarsening can be suppressed. In addition, by cooling the surface temperature of the steel material after continuous casting to a range of 500 to 800 ° C., a large number of fine TiN nuclei can be generated in the steel. It can be held and the degree of Cr segregation can be reduced.

連続鋳造後の鋼材の表面温度を500℃未満まで冷却すると、鋼材の深部の冷却が進むので、分塊圧延前の加熱で鋼材表面に割れが発生する恐れがある。そのため、均質化熱処理温度までの加熱速度を小さくする必要があり、結果としてTiNの粗大化が進み、衝撃特性が悪化する。
一方、連続鋳造後に冷却した鋼材の表面温度が800℃を超える場合、AlNの生成が不十分になり、また微細なTiNの生成も不十分になるため、分塊圧延後に粗大なTiNが生じ、衝撃特性が悪化することがある。
When the surface temperature of the steel material after continuous casting is cooled to less than 500 ° C., cooling of the deep portion of the steel material proceeds, so that there is a possibility that cracking may occur on the surface of the steel material due to heating before partial rolling. For this reason, it is necessary to reduce the heating rate up to the homogenization heat treatment temperature. As a result, the coarsening of TiN proceeds and the impact characteristics deteriorate.
On the other hand, when the surface temperature of the steel material cooled after continuous casting exceeds 800 ° C., generation of AlN is insufficient, and generation of fine TiN is also insufficient, so that coarse TiN is generated after the block rolling, Impact characteristics may deteriorate.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be implemented with modifications within a range that can meet the purpose described above and below. They are all included in the technical scope of the present invention.

(実施例1)
表1および表2に示す化学成分組成を満たす鋼材を転炉で溶製し、連続鋳造後、1100〜1300℃で均質化処理を行った。均質化処理後、分塊圧延を行い、次いで1100〜1280℃で加熱した後、熱間圧延を行って、直径14.3mmの線材、すなわち圧延材を得た。表1および表2において、空欄は添加していないことを意味する。
Example 1
Steel materials satisfying the chemical composition shown in Tables 1 and 2 were melted in a converter and homogenized at 1100 to 1300 ° C. after continuous casting. After homogenization, it was subjected to block rolling, then heated at 1100 to 1280 ° C. and then hot rolled to obtain a wire rod having a diameter of 14.3 mm, that is, a rolled material. In Tables 1 and 2, a blank means that no addition is made.

上記圧延材について、以下の要領で、組織の同定を行うと共に、引張強度TS、粗大なフェライト脱炭、及び表層C濃度を測定した。更に、上記圧延材に対し、下記の条件で伸線加工して伸線加工性を評価した。   About the said rolling material, while identifying the structure | tissue in the following ways, tensile strength TS, coarse ferrite decarburization, and surface layer C density | concentration were measured. Further, the rolled material was drawn under the following conditions to evaluate the drawability.

組織の同定
圧延材の圧延方向に垂直な断面をバフ研磨し、腐食液によりエッチングした後、光学顕微鏡により倍率100倍で上記断面全体のミクロ組織を観察し、フェライト、パーライト、過冷組織であるベイナイト及びマルテンサイトの同定を実施した。そして、上記過冷組織の面積割合が5%以下のものを過冷組織がないとして「OK」、該面積割合が5%超のものを過冷組織があるとして「NG」と評価した。
Identification of the structure After buffing the cross-section perpendicular to the rolling direction of the rolled material, etching with a corrosive solution, the microstructure of the entire cross-section is observed with an optical microscope at a magnification of 100 times, and it is a ferrite, pearlite, or supercooled structure Identification of bainite and martensite was performed. Then, the case where the area ratio of the supercooled tissue was 5% or less was evaluated as “OK”, assuming that there was no supercooled structure, and the area ratio exceeding 5% was evaluated as “NG”, assuming that there was a supercooled structure.

引張強度(TS)の測定
圧延材を、チャック間距離200mmかつ各端部のチャック部長さが約50mmとなるように切断して得られた試験片を得た。この試験片を用い、引張速度5mm/minでJIS Z 2241(2011)に従って引張試験を行い、引張強度TSを測定した。そして、上記TSが1170MPa以下の場合を合格と評価した。
Measurement of Tensile Strength (TS) A test piece obtained by cutting a rolled material so that the distance between chucks was 200 mm and the length of each chuck portion was about 50 mm was obtained. Using this test piece, a tensile test was performed according to JIS Z 2241 (2011) at a tensile speed of 5 mm / min, and the tensile strength TS was measured. And the case where said TS was 1170 Mpa or less was evaluated as a pass.

粗大なフェライト脱炭の測定
圧延材の圧延方向に垂直な断面において、圧延材の最表面から半径方向に深さ0.5mmまでの領域(これを表層部という)を、光学顕微鏡にて倍率:400倍で全周囲確認し、フェライト単相域のサイズとして深さと幅を測定した。前記「深さ」とは、最表面から中心方向、即ち半径方向の距離をいい、前記「幅」とは円周方向の距離をいう。尚、表3において、No.12とNo.18の「F脱炭」の欄は、幅が500μmを超え、かつ深さがそれぞれ20μm、30μmの粗大なフェライト単相が存在したことを意味する。
Measurement of coarse ferrite decarburization In a cross section perpendicular to the rolling direction of the rolled material, a region from the outermost surface of the rolled material to a depth of 0.5 mm in the radial direction (this is called the surface layer portion) is magnified with an optical microscope: The entire periphery was confirmed at 400 times, and the depth and width were measured as the size of the ferrite single phase region. The “depth” refers to the distance from the outermost surface in the center direction, that is, the radial direction, and the “width” refers to the distance in the circumferential direction. In Table 3, no. 12 and no. The column of “F decarburization” 18 means that a coarse ferrite single phase having a width exceeding 500 μm and a depth of 20 μm and 30 μm, respectively, was present.

表層C濃度の測定
圧延材の圧延方向に垂直な断面において、圧延材の最表面から半径方向に深さ20μmまでを等間隔に1μmずつ、合計20箇所のC量をEPMA(Electron Probe MicroAnalyser、電子線マイクロアナライザー)ライン分析で測定した。EPMA測定装置として、日本電子製X線マイクロアナライザー「JXA−8800 RL」を使用した。そして合計20箇所のC量の平均値を求めた。この測定を、前記断面において4方向、即ち、0度、90度、180度および270度のそれぞれの位置で行い、この4方向のC量の平均値を表層C濃度とした。
Measurement of surface layer C concentration In a cross section perpendicular to the rolling direction of the rolled material, the amount of C in 20 locations in total is set to 1 μm at regular intervals from the outermost surface of the rolled material to a depth of 20 μm, and the total amount of C is 20 Wire microanalyzer) measured by line analysis. As an EPMA measuring apparatus, an X-ray microanalyzer “JXA-8800 RL” manufactured by JEOL Ltd. was used. And the average value of C amount of 20 places in total was calculated | required. This measurement was performed in four directions in the cross section, that is, at respective positions of 0 degrees, 90 degrees, 180 degrees, and 270 degrees, and the average value of the C amount in these four directions was defined as the surface layer C concentration.

そして、上記粗大なフェライト脱炭の測定において、全周囲確認したときに前記深さが20μm以上でかつ前記幅が500μm以上のフェライト単相が存在せず、かつ、上記表層C濃度が、表3に示す「母相のC量の50%」の値以上である場合を、ワイヤの大気耐久性に優れていると評価した。一方、上記の少なくともいずれかを満たさない場合を大気耐久性に劣ると評価した。   In the measurement of the coarse ferrite decarburization, when the entire circumference is confirmed, the ferrite single phase having the depth of 20 μm or more and the width of 500 μm or more does not exist, and the surface layer C concentration is as shown in Table 3. It was evaluated that the wire was excellent in atmospheric durability when the value was “50% of the C amount of the parent phase” or more. On the other hand, the case where at least one of the above was not satisfied was evaluated as being poor in atmospheric durability.

伸線加工性の評価
前記圧延材を直径12.5mmまで伸線、すなわち冷間引き抜き加工して、伸線加工での断線有無を評価した。そして断線なしの場合を「OK」、断線ありの場合を「NG」と評価した。断線した例については、下記の焼入れ焼戻し処理と腐食耐久性の評価を行わなかった。
Evaluation of wire drawing workability The rolled material was drawn to a diameter of 12.5 mm, that is, cold drawn, and the presence or absence of disconnection in the wire drawing work was evaluated. The case without disconnection was evaluated as “OK”, and the case with disconnection was evaluated as “NG”. About the example which disconnected, the following hardening tempering process and corrosion durability evaluation were not performed.

上記伸線加工して得られた伸線材に対し、下記の条件で焼入れ焼戻しを行い、下記表1のNo.10を除き引張強度(TS)が2000MPaのワイヤを得た。上記No.10では、ワイヤの引張強度が1920MPaであり、1950MPaを下回りワイヤ強度を確保できなかったため、腐食耐久性については評価しなかった。この焼入れ焼戻し後のワイヤを用いて、腐食耐久性を評価した。尚、前記ワイヤの引張強度は、ワイヤを、チャック間距離200mmかつ各端部のチャック部長さが約50mmとなるように切断して得られた試験片を用い、引張速度5mm/minでJIS Z2241(2011)に従い引張試験を行って求めた。   The wire drawing material obtained by the above wire drawing was quenched and tempered under the following conditions. Except for 10, a wire having a tensile strength (TS) of 2000 MPa was obtained. No. above. In No. 10, the tensile strength of the wire was 1920 MPa, which was below 1950 MPa, and the wire strength could not be secured, so the corrosion durability was not evaluated. Corrosion durability was evaluated using the wire after quenching and tempering. The tensile strength of the wire is JIS Z2241 at a tensile speed of 5 mm / min using a test piece obtained by cutting the wire so that the distance between chucks is 200 mm and the length of each chuck is about 50 mm. It was determined by conducting a tensile test according to (2011).

(焼入れ焼戻し条件)
・高周波加熱
・加熱速度:150℃/秒
・焼入れ:930℃で20秒、水冷却
・焼戻し:420〜520℃、20秒、水冷却
(Quenching and tempering conditions)
・ High-frequency heating ・ Heating rate: 150 ° C./second ・ Quenching: 930 ° C. for 20 seconds, water cooling / tempering: 420 to 520 ° C., 20 seconds, water cooling

腐食耐久性の評価
試験片として、焼入れ焼戻したワイヤを切削し、JIS Z 2274(1978)の1号試験片を作製した。この試験片の平行部を800番のエメリー紙で研磨した。表面にショットピーニングは施さずに試験を実施した。まず、上記研磨して得られた試験片に対し、以下の条件で腐食処理を実施し、その後、下記の回転曲げ疲労試験に示す通り、小野式回転曲げ疲労試験を行って腐食耐久性を評価した。
Evaluation of corrosion durability As a test piece, a quenched and tempered wire was cut to prepare a No. 1 test piece of JIS Z 2274 (1978). The parallel part of the test piece was polished with # 800 emery paper. The test was conducted without shot peening on the surface. First, the test piece obtained by the above polishing was subjected to corrosion treatment under the following conditions, and then, as shown in the following rotating bending fatigue test, an Ono rotating bending fatigue test was performed to evaluate the corrosion durability. did.

腐食処理
35℃の5%NaCl水溶液を用いて、塩水噴霧を8時間行った後、乾燥させ、35℃で相対湿度が60%の湿潤環境にて16時間保持する工程を1サイクルとし、合計8サイクルを繰り返し行い、試験片に対して腐食処理を実施した。
Corrosion treatment Using 5% NaCl aqueous solution at 35 ° C, spraying with salt water for 8 hours, then drying and holding for 16 hours in a humid environment at 35 ° C and a relative humidity of 60% is one cycle. The cycle was repeated and the specimen was subjected to corrosion treatment.

回転曲げ疲労試験
上記腐食処理後の試験片に対して回転曲げ試験を実施し、腐食耐久性を評価した。下記表3のNo.毎に10本の試験片を用い、負荷応力500MPaに設定して小野式回転曲げ疲労試験を実施し、各試験片が折損するまでの疲労寿命を測定した。そして、試験片10本の疲労寿命の平均値を求め、この疲労寿命の平均値が30万回以上の場合を腐食耐久性に優れると評価した。
Rotating bending fatigue test A rotating bending test was performed on the test piece after the corrosion treatment, and corrosion durability was evaluated. No. in Table 3 below. Ten test pieces were used for each, an ono type rotating bending fatigue test was performed with the load stress set to 500 MPa, and the fatigue life until each test piece was broken was measured. And the average value of the fatigue life of 10 test pieces was calculated | required, and it evaluated that the case where this average value of fatigue life was 300,000 times or more was excellent in corrosion durability.

これらの結果を表3に示す。   These results are shown in Table 3.

Figure 2017128799
Figure 2017128799

Figure 2017128799
Figure 2017128799

Figure 2017128799
Figure 2017128799

表1〜3から次のことがわかる。即ち、No.1〜5、17および19〜33の圧延材は、成分組成、DCIおよびCAの全てが規定範囲を満たしているので、所望の組織が得られ、表層の脱炭が抑制され表層C濃度を確保できた。その結果、該圧延材を用いて得られるワイヤの大気耐久性を確保できた。また伸線加工性を確保でき、更に優れた腐食耐久性も得られた。また本発明によれば、前述の特許文献1や2の様な軟化焼鈍などの追加工程や加熱温度の厳密な制御を必要とせず、量産製造する上で生産性に優れている。   The following can be understood from Tables 1 to 3. That is, no. The rolled materials 1-5, 17 and 19-33 all satisfy the specified ranges of the component composition, DCI and CA, so that a desired structure is obtained and surface carbon decarburization is suppressed to ensure surface C concentration. did it. As a result, the air durability of the wire obtained using the rolled material could be secured. Moreover, the wire drawing workability could be secured and further excellent corrosion durability was obtained. In addition, according to the present invention, additional processes such as softening annealing as described in Patent Documents 1 and 2 described above and strict control of the heating temperature are not required, and the productivity is excellent in mass production.

これに対して、上記以外の例では、成分組成、DCIおよびCAのうちの少なくともいずれかが規定範囲を満たしておらず、上述した大気耐久性、伸線加工性、腐食耐久性のうちの少なくとも1つが劣った。詳細は以下の通りである。   On the other hand, in examples other than the above, at least one of the component composition, DCI, and CA does not satisfy the specified range, and at least one of the above-described atmospheric durability, wire drawing workability, and corrosion durability. One was inferior. Details are as follows.

No.6はC量が過剰であるため、圧延材の強度が高くなり、伸線加工性に劣った。No.7はC量が不足しているため、水素トラップサイトとなる析出物を確保できず、腐食耐久性に劣った。   No. In No. 6, since the amount of C was excessive, the strength of the rolled material was high and the wire drawing workability was poor. No. No. 7 was insufficient in corrosion resistance because the amount of C was insufficient, so that precipitates serving as hydrogen trap sites could not be secured.

No.8はSi量が過剰であるため、フェライト脱炭が進んで表層C濃度を確保できず、大気耐久性が得られなかった。No.9はSi量が不足しているため、優れた腐食耐久性を確保できなかった。その理由として、析出物を微細化できず水素トラップサイトを十分に確保できなかったことが考えられる。   No. In No. 8, since the amount of Si was excessive, ferrite decarburization proceeded and the surface layer C concentration could not be ensured, and atmospheric durability could not be obtained. No. No. 9 could not secure excellent corrosion durability because the amount of Si was insufficient. The reason may be that precipitates could not be refined and hydrogen trap sites could not be secured sufficiently.

No.10は、Mn量が不足したためワイヤ強度不足となった。   No. No. 10 had insufficient wire strength due to insufficient amount of Mn.

No.11は、Cu量が不足しているため、表層脱炭を抑制できず大気耐久性を確保できなかった。また腐食耐久性も劣った。No.12は、Ni量が不足してCAが規定範囲を上回り、その結果、表層脱炭を抑制できず大気耐久性に劣った。また腐食耐久性にも劣った。   No. No. 11 was insufficient in the amount of Cu, and therefore could not suppress surface layer decarburization and could not secure atmospheric durability. Moreover, corrosion durability was also inferior. No. In No. 12, the amount of Ni was insufficient and the CA exceeded the specified range, and as a result, surface decarburization could not be suppressed and the atmospheric durability was poor. Moreover, it was inferior to corrosion durability.

No.13は、Cr量が過剰でありDCIが規定範囲を上回ったため、過冷組織が生じ圧延材の引張強度が高くなった。その結果、伸線加工時に断線が生じた。No.14は、Cr量が不足したため、表層脱炭を抑制できず表層C濃度が低くなり、大気耐久性に劣った。   No. In No. 13, since the Cr amount was excessive and the DCI exceeded the specified range, a supercooled structure was generated, and the tensile strength of the rolled material was increased. As a result, disconnection occurred during wire drawing. No. No. 14 was insufficient in atmospheric durability because the amount of Cr was insufficient, so that surface decarburization could not be suppressed and the surface C concentration was low.

No.15は、Ti量が不足しているため、腐食耐久性に劣った。その理由として、水素トラップサイトとなる析出物を十分に確保できなかったことが考えられる。   No. No. 15 was inferior in corrosion durability because the amount of Ti was insufficient. The reason may be that precipitates that become hydrogen trap sites could not be sufficiently secured.

No.16は、各元素の含有量は規定範囲内にあるが、DCIが規定範囲を上回ったため、過冷組織が生じ圧延材の引張強度が高くなった。その結果、伸線加工時に断線が生じた。   No. In No. 16, the content of each element was within the specified range, but since DCI exceeded the specified range, a supercooled structure was generated and the tensile strength of the rolled material was increased. As a result, disconnection occurred during wire drawing.

No.18は、各元素の含有量は規定範囲内にあるが、CAが規定範囲を上回ったため、表層脱炭を抑制できず大気耐久性に劣った。   No. In No. 18, the content of each element was within the specified range, but since CA exceeded the specified range, surface decarburization could not be suppressed and the atmospheric durability was poor.

No.34〜36は、Cr量が不足した例である。これらの例では、表層C濃度を確保できず大気耐久性に劣った。   No. 34 to 36 are examples in which the Cr amount is insufficient. In these examples, the surface layer C concentration could not be secured and the atmospheric durability was poor.

(実施例2)
表1および表2に示すNo.1〜5およびNo.26〜29の化学成分組成を満たす圧延材を、表4に示すように、製造条件を変えて各3つずつ準備した。具体的には、表1および表2に示すNo.1〜5およびNo.26〜29の化学成分組成を満たす鋼材を転炉で溶製し、連続鋳造後、得られた鋼材を表4に示す鋳造後冷却温度まで冷却し、その後表4に示す分塊圧延前加熱温度・時間で均質化処理を行い、その後分塊圧延を行い、次いで1100〜1280℃に加熱した後、最終圧延スタンドの出側温度が表4に示す最終圧延温度となるように熱間圧延を行い、直径14.3mmの線材、すなわち圧延材を得た。
なお、表4に示すNo.1−A、1−Bおよび1−Cは、それぞれ、上述した表1および表2に記載されるNo.1と同じ化学成分組成を満たし、異なる製造条件により準備された圧延材である。表4に示す他の圧延材についても同様である。
(Example 2)
No. shown in Table 1 and Table 2. 1-5 and no. As shown in Table 4, the rolling material which satisfy | fills the chemical component composition of 26-29 prepared 3 each by changing manufacturing conditions. Specifically, Nos. 1 and 2 shown in Tables 1 and 2 are used. 1-5 and no. Steel materials satisfying the chemical composition of 26 to 29 are melted in a converter, and after continuous casting, the obtained steel materials are cooled to the cooling temperature after casting shown in Table 4, and then the heating temperature before the block rolling shown in Table 4 -Homogenization treatment is performed in time, and after that, rolling is performed, then, after heating to 1100-1280 ° C, hot rolling is performed so that the exit temperature of the final rolling stand becomes the final rolling temperature shown in Table 4 A wire having a diameter of 14.3 mm, that is, a rolled material was obtained.
In addition, No. shown in Table 4 1-A, 1-B and 1-C are Nos. Described in Table 1 and Table 2 described above, respectively. 1 is a rolled material satisfying the same chemical composition as 1 and prepared under different production conditions. The same applies to other rolled materials shown in Table 4.

表4に示すように、No.1−A〜5−Aおよび26−A〜29−Aは、本発明の実施形態にかかる基本的な製造条件により製造したものである。No.1−B〜5−Bおよび26−B〜29−Bは、上述した好ましい製造条件で製造した圧延材であり、Cr偏析度を低減する条件(すなわち、分塊圧延前加熱温度を1100〜1300℃として1〜5時間加熱し、最終圧延温度を920℃以上とし、熱間圧延後700℃までを2℃/s以上の平均冷却速度で冷却)を満たすように製造したものである。No.1−C〜5−Cおよび26−C〜29−Cは、上述したさらに好ましい製造条件で製造したものであり、Cr偏析度を低減する条件およびTiNを微細化する条件(すなわち、鋳造後冷却温度を500〜800℃とし、分塊圧延前加熱温度を1100〜1300℃として1〜5時間加熱し、最終圧延温度を920℃以上とし、熱間圧延後700℃までを2℃/s以上の平均冷却速度で冷却)を満たすように製造したものである。   As shown in Table 4, no. 1-A to 5-A and 26-A to 29-A are manufactured under basic manufacturing conditions according to the embodiment of the present invention. No. 1-B to 5-B and 26-B to 29-B are rolled materials manufactured under the preferable manufacturing conditions described above, and conditions for reducing the degree of Cr segregation (that is, the heating temperature before block rolling is 1100 to 1300). It is manufactured so that the final rolling temperature is set to 920 ° C. or higher and cooled to 700 ° C. after hot rolling at an average cooling rate of 2 ° C./s or higher. No. 1-C to 5-C and 26-C to 29-C are manufactured under the more preferable manufacturing conditions described above. Conditions for reducing the degree of Cr segregation and conditions for refining TiN (that is, cooling after casting) The temperature is set to 500 to 800 ° C., the heating temperature before split rolling is set to 1100 to 1300 ° C. and heated for 1 to 5 hours, the final rolling temperature is set to 920 ° C. or higher, and the hot rolling up to 700 ° C. is 2 ° C./s or higher. (Cooled at an average cooling rate).

Figure 2017128799
Figure 2017128799

上記圧延材について、以下の要領で、Cr偏析度、圧延材の最表面からの半径方向長さ:2mm×圧延方向長さ:0.10mmで規定される四辺形領域における半径方向の大きさが8μm以上のTiNの個数(表5において「8μm以上のTiN個数」と表示)、およびシャルピー吸収エネルギー(表5において「衝撃値vE−50」と表示)を求めた。 About the said rolling material, the magnitude | size of the radial direction in the quadrilateral area | region prescribed | regulated by Cr segregation degree, radial direction length from the outermost surface of a rolling material: 2 mm x rolling direction length: 0.10 mm in the following ways. The number of TiN of 8 μm or more (indicated as “TiN number of 8 μm or more” in Table 5) and Charpy absorbed energy (indicated as “impact value vE- 50 ” in Table 5) were determined.

(Cr偏析度)
圧延材の中心を含む圧延方向に水平な断面(縦断面)で埋め込み研磨を行い、当該縦断面において、圧延材の最表面から半径方向に向かって2.0mmの位置から、圧延方向に向かってEPMAによる線分析を行い、Cr量を測定した。より詳細には、EPMAのビーム径を1μmとし、線分析を行う長さを250μmとし、全250点におけるCr量を母集団としてその標準偏差(σ)を計算により算出し、標準偏差を2倍した値(すなわち2.0σ)を、当該圧延材のCr偏析度とした。
測定結果を表5に示す。
(Cr segregation degree)
Embedded polishing is performed with a horizontal section (longitudinal section) in the rolling direction including the center of the rolled material, and in the longitudinal section, from the position of 2.0 mm in the radial direction from the outermost surface of the rolled material, toward the rolling direction. Line analysis by EPMA was performed, and the Cr amount was measured. More specifically, the EPMA beam diameter is 1 μm, the length of the line analysis is 250 μm, and the standard deviation (σ) is calculated by calculation using the Cr amount at all 250 points as a population, and the standard deviation is doubled. The obtained value (that is, 2.0σ) was used as the degree of Cr segregation of the rolled material.
Table 5 shows the measurement results.

(圧延材の最表面からの半径方向長さ:2mm×圧延方向長さ:0.10mmで規定される四辺形領域における、半径方向の大きさが8μm以上であるTiNの個数)
圧延材を10mm程度の長さに切断してから樹脂に埋め込み、表面研磨を行い、圧延材の中心を含む圧延方向に水平な断面を、光学顕微鏡を用いて倍率200倍で観察した。より詳細には、観察断面において、圧延材の最表面からの半径方向長さ:2mm×圧延方向長さ:0.10mmで規定される四辺形領域(0.20mm)を1つの観察領域として、このような観察領域を10個選択した。そして、各観察領域における半径方向の大きさが8μm以上であるTiNの個数をJIS G 0555に準じて測定し、10個の観察領域での平均値を、測定対象である圧延材の、半径方向の大きさが8μm以上であるTiNの個数とした。測定結果を表5に示す。
(The radial length from the outermost surface of the rolled material: 2 mm × the rolling direction length: the number of TiN having a radial size of 8 μm or more in a quadrilateral region defined by 0.10 mm)
The rolled material was cut into a length of about 10 mm, embedded in a resin, surface-polished, and a cross section horizontal to the rolling direction including the center of the rolled material was observed with an optical microscope at a magnification of 200 times. More specifically, in the observation cross section, a quadrilateral region (0.20 mm 2 ) defined by a radial length from the outermost surface of the rolled material: 2 mm × a rolling direction length: 0.10 mm is used as one observation region. Ten such observation regions were selected. And the number of TiN whose radial direction size in each observation region is 8 μm or more is measured according to JIS G 0555, and the average value in 10 observation regions is measured in the radial direction of the rolling material to be measured. The number of TiN was 8 μm or more. Table 5 shows the measurement results.

(シャルピー吸収エネルギー)
各圧延材から、5mmUノッチ付衝撃試験片を採取し、JIS Z 2242に従って、−50℃でのシャルピー吸収エネルギー(vE−50)を求めた。試験は圧延材につき2本ずつ行い、平均値を各圧延材のシャルピー吸収エネルギーとした。測定結果を表5に示す。
(Charpy absorbed energy)
An impact test piece with a 5 mmU notch was collected from each rolled material, and Charpy absorbed energy (vE- 50 ) at -50 ° C was determined according to JIS Z 2242. Two tests were performed for each rolled material, and the average value was defined as the Charpy absorbed energy of each rolled material. Table 5 shows the measurement results.

Figure 2017128799
Figure 2017128799

表4および表5に示すように、Cr偏析度低減条件を満たして製造された圧延材No.1−B〜5−BおよびNo.26−B〜29−Bは、いずれもCr偏析度0.1%以下であり、vE−50が70J/cm以上であり、優れた衝撃特性を示した。
またCr偏析度低減条件およびTiN微細化条件を満たして製造された圧延材No.1−C〜5−CおよびNo.26−C〜29−Cは、いずれも、Cr偏析度0.1%以下、かつ圧延材の最表面からの半径方向長さ:2mm×圧延方向長さ:0.10mmで規定される四辺形領域における、半径方向の大きさが8μm以上であるTiNの個数が10個以下であり、vE−50が85J/cm以上であり、より優れた衝撃特性を示した。
As shown in Table 4 and Table 5, the rolling material No. manufactured by satisfying the Cr segregation degree reduction condition. 1-B to 5-B and No.1. Each of 26-B to 29-B had a Cr segregation degree of 0.1% or less, a vE- 50 of 70 J / cm 2 or more, and exhibited excellent impact characteristics.
In addition, rolled material No. 1 manufactured to satisfy the conditions for reducing the degree of segregation of Cr and the conditions for refining TiN. 1-C-5-C and no. Each of 26-C to 29-C is a quadrilateral defined by Cr segregation degree of 0.1% or less and a radial length from the outermost surface of the rolled material: 2 mm × length in the rolling direction: 0.10 mm. In the region, the number of TiN having a radial size of 8 μm or more was 10 or less, and vE- 50 was 85 J / cm 2 or more, which showed more excellent impact characteristics.

Claims (7)

質量%で、
C:0.55〜0.63%、
Si:1.90〜2.30%、
Mn:0.15〜0.55%、
P:0%超、0.015%以下、
S:0%超、0.015%以下、
Al:0.001〜0.1%、
Cu:0.15〜0.45%、
Ni:0.35〜0.75%、
Cr:0.36〜0.65%、および
Ti:0.04〜0.11%
を満たし、残部が鉄および不可避不純物であり、かつ下記式(1)で表される理想臨界直径DCIが120以下であると共に、下記式(2)で表される脱炭指数CAが70以下であることを特徴とする高強度ばね用圧延材。
DCI=25.4×(0.171+0.001×[C]+0.265×[C]2
×(3.3333×[Mn]+1)×(1+0.7×[Si])
×(1+0.363×[Ni])×(1+2.16×[Cr])
×(1+0.365×[Cu])×(1+1.73×[V])×(1+3×[Mo])…(1)
CA=98×[Si]−171×[Mn]−40×[Cr]−142×[Ni]−60×[Cu]…(2)
上記式(1)および式(2)中、[元素名]は各元素の質量%での鋼中含有量を意味する。
% By mass
C: 0.55-0.63%,
Si: 1.90-2.30%,
Mn: 0.15 to 0.55%,
P: more than 0%, 0.015% or less,
S: more than 0%, 0.015% or less,
Al: 0.001 to 0.1%,
Cu: 0.15-0.45%,
Ni: 0.35 to 0.75%,
Cr: 0.36-0.65%, and Ti: 0.04-0.11%
And the balance is iron and inevitable impurities, the ideal critical diameter DCI represented by the following formula (1) is 120 or less, and the decarburization index CA represented by the following formula (2) is 70 or less. A high-strength rolled material for springs, characterized in that it exists.
DCI = 25.4 × (0.171 + 0.001 × [C] + 0.265 × [C] 2 )
× (3.3333 × [Mn] +1) × (1 + 0.7 × [Si])
× (1 + 0.363 × [Ni]) × (1 + 2.16 × [Cr])
× (1 + 0.365 × [Cu]) × (1 + 1.73 × [V]) × (1 + 3 × [Mo]) (1)
CA = 98 × [Si] −171 × [Mn] −40 × [Cr] −142 × [Ni] −60 × [Cu] (2)
In said formula (1) and formula (2), [element name] means content in steel in the mass% of each element.
圧延材の圧延方向に垂直な断面において、圧延材の最表面から半径方向に深さ20μmまでの領域のC濃度が母相のC濃度の50%以上であり、全組織に占めるマルテンサイトとベイナイトの合計が5面積%以下であり、かつ圧延材の最表面から半径方向に深さ0.5mmまでの領域を観察したときに、深さ20μm以上かつ幅500μm以上のフェライト単相が存在せず、更に引張強度が1170MPa以下である請求項1に記載の高強度ばね用圧延材。   In the cross section perpendicular to the rolling direction of the rolled material, the C concentration in the region from the outermost surface of the rolled material to the depth of 20 μm in the radial direction is 50% or more of the C concentration of the parent phase, and martensite and bainite in the entire structure When a region from the outermost surface of the rolled material to a depth of 0.5 mm in the radial direction is observed, there is no ferrite single phase having a depth of 20 μm or more and a width of 500 μm or more. The rolled material for high-strength springs according to claim 1, further having a tensile strength of 1170 MPa or less. 前記理想臨界直径DCIは70以上である請求項1または2に記載の高強度ばね用圧延材。   The rolled material for high-strength springs according to claim 1 or 2, wherein the ideal critical diameter DCI is 70 or more. 更に質量%で、B:0%超、0.01%以下を含有する請求項1〜3のいずれかに記載の高強度ばね用圧延材。   The rolled material for high-strength springs according to any one of claims 1 to 3, further comprising, in mass%, B: more than 0% and 0.01% or less. 更に質量%で、V:0%超、0.3%以下、Nb:0%超、0.3%以下、およびMo:0%超、0.5%以下よりなる群から選択される少なくとも1種を含有する請求項1〜4のいずれかに記載の高強度ばね用圧延材。   Furthermore, at least 1 selected from the group consisting of V: more than 0%, not more than 0.3%, Nb: more than 0%, not more than 0.3%, and Mo: more than 0%, not more than 0.5% by mass%. The rolled material for high-strength springs according to any one of claims 1 to 4, comprising seeds. 圧延材の中心を含む圧延方向に水平な断面において、圧延材の最表面から半径方向に向かって2.0mmの位置におけるCr偏析度が下記式(3)を満足することを特徴とする、請求項1〜5のいずれかに記載の高強度ばね用圧延材。
Cr偏析度≦0.1%…(3)
ここで、Cr偏析度は、EPMAを用いた、線分析で測定した圧延方向のCr含有量の分布の+2σの値である。
In a horizontal cross section in the rolling direction including the center of the rolled material, the Cr segregation degree at a position of 2.0 mm in the radial direction from the outermost surface of the rolled material satisfies the following formula (3): Item 6. The rolled material for high-strength springs according to any one of Items 1 to 5.
Cr segregation degree ≦ 0.1% (3)
Here, the degree of Cr segregation is a value of + 2σ of the distribution of Cr content in the rolling direction measured by line analysis using EPMA.
圧延材の中心を含む圧延方向に水平な断面において、圧延材の最表面からの半径方向長さ:2mm×圧延方向長さ:0.10mmで規定される四辺形領域における、半径方向の大きさが8μm以上のTiNの個数が10個以下である、請求項6に記載の高強度ばね用圧延材。   In a cross section horizontal to the rolling direction including the center of the rolled material, the radial size in the quadrilateral region defined by the radial length from the outermost surface of the rolled material: 2 mm × the length in the rolling direction: 0.10 mm The rolled material for high-strength springs according to claim 6, wherein the number of TiN having a thickness of 8 μm or more is 10 or less.
JP2016239059A 2016-01-15 2016-12-09 Rolled material for high strength spring Pending JP2017128799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001267 WO2017122828A1 (en) 2016-01-15 2017-01-16 Rolled material for high-strength spring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016006156 2016-01-15
JP2016006156 2016-01-15

Publications (1)

Publication Number Publication Date
JP2017128799A true JP2017128799A (en) 2017-07-27

Family

ID=59395540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016239059A Pending JP2017128799A (en) 2016-01-15 2016-12-09 Rolled material for high strength spring

Country Status (1)

Country Link
JP (1) JP2017128799A (en)

Similar Documents

Publication Publication Date Title
JP4423254B2 (en) High strength spring steel wire with excellent coiling and hydrogen embrittlement resistance
JP6452454B2 (en) Rolled material for high strength spring and wire for high strength spring
CA2948297C (en) Railway vehicle wheel and method for manufacturing railway vehicle wheel
JP5364859B1 (en) High-strength spring steel wire with excellent coiling and hydrogen embrittlement resistance and method for producing the same
JP6354268B2 (en) High-strength hot-rolled steel sheet having a maximum tensile strength of 980 MPa or more excellent in punching hole expandability and low-temperature toughness, and a method for producing the same
WO2013183648A1 (en) Steel wire rod or bar steel
JP2010007143A (en) Steel for machine structure having excellent fatigue limit ratio and machinability
KR102507715B1 (en) High-strength steel sheet and manufacturing method thereof
JP6212473B2 (en) Rolled material for high-strength spring and high-strength spring wire using the same
JP7152832B2 (en) machine parts
KR101908818B1 (en) High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
JP2011149089A (en) High-strength spring steel
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP7133705B2 (en) Wire rod for spring, steel wire with improved toughness and corrosion fatigue characteristics, and method for producing the same
EP3279357A1 (en) Heat-treated steel wire having excellent fatigue-resistance characteristics
JP5489497B2 (en) Method for producing boron steel sheet with excellent hardenability
JP2008174810A (en) Inner ring and outer ring of bearing, having excellent rolling fatigue characteristic, and bearing
WO2017122827A1 (en) Wire for high-strength spring, and method for producing same
JP5601861B2 (en) Manufacturing method of boron steel rolled annealed steel sheet
JP6645637B1 (en) High strength steel sheet and method for producing the same
JP2006265703A (en) Steel for case hardening having excellent crystal grain coarsening resistance and cold workability and method for producing the same
JP2017128799A (en) Rolled material for high strength spring
WO2017122828A1 (en) Rolled material for high-strength spring
JP6551225B2 (en) Induction hardening gear
JP5896673B2 (en) Manufacturing method of hot-rolled steel sheet for sheared parts and steel sheet for sheared parts