JP2017127816A - Processing method of residue containing rare earth - Google Patents

Processing method of residue containing rare earth Download PDF

Info

Publication number
JP2017127816A
JP2017127816A JP2016008936A JP2016008936A JP2017127816A JP 2017127816 A JP2017127816 A JP 2017127816A JP 2016008936 A JP2016008936 A JP 2016008936A JP 2016008936 A JP2016008936 A JP 2016008936A JP 2017127816 A JP2017127816 A JP 2017127816A
Authority
JP
Japan
Prior art keywords
rare earth
residue
heating
treating
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016008936A
Other languages
Japanese (ja)
Other versions
JP6654758B2 (en
Inventor
真 小早川
Makoto Kobayakawa
真 小早川
隆吉 岡村
Ryukichi Okamura
隆吉 岡村
考 生田
Takashi Ikuta
考 生田
御手洗 義夫
Yoshio Mitarai
義夫 御手洗
友博 森澤
Tomohiro Morisawa
友博 森澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Toa Corp
Original Assignee
Taiheiyo Cement Corp
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Toa Corp filed Critical Taiheiyo Cement Corp
Priority to JP2016008936A priority Critical patent/JP6654758B2/en
Publication of JP2017127816A publication Critical patent/JP2017127816A/en
Application granted granted Critical
Publication of JP6654758B2 publication Critical patent/JP6654758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Sludge (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method of a residue capable of reducing the volume of an acid residue generated after treating mud containing a rare earth by acid, and processing it at a low cost.SOLUTION: A processing method of a residue containing a rare earth includes a component adjustment step in which a component adjustment material comprising one or more kinds selected from a group consisting of a cement, a lime, a material containing calcium carbonate and a blast furnace slag fine powder are added to an acid residue generated after treating mud containing the rare earth by acid, and mixed therewith, to thereby obtain a mixture, and a heating step in which the obtained mixture is heated at 1,200-1,300°C and melted, then cooled, to thereby obtain an earthwork material.SELECTED DRAWING: None

Description

本発明は、太平洋の深海の海底に分布する、レアアースを高含有率で含む泥を典型例とするレアアースを含有する泥を、酸で処理した後に発生する酸性の残渣の処理方法に関する。   The present invention relates to a method for treating an acidic residue generated after treating a mud containing rare earth, typically a mud containing a rare earth with a high content, distributed on the deep sea floor of the Pacific Ocean with an acid.

レアアースは、ネオジム・鉄・ボロン磁石、LED電球、燃料電池等に用いられる原料として、最先端技術産業に不可欠な元素であり、近年、その需要も急増している。一方、レアアースの寡占的産出国であった中国が、輸出奨励政策から規制強化政策へと方針を変更するなどの事情下において、レアアースの供給不足や価格高騰が懸念されており、レアアースの新たな供給源の確保が課題となっている。
このような状況下において、太平洋の広範囲に分布しているレアアースを高含有率で含む深海の泥が、レアアースの新たな供給源として注目されている。
レアアースを高含有率で含む泥(例えば、太平洋の深海の泥)は、その資源量が膨大であること、希酸中に1〜3時間浸漬するという簡易な方法で抽出することができること、トリウムやウラン等の放射性元素をほとんど含まないこと、等の数々の利点を有している。
Rare earth is an indispensable element in the state-of-the-art technology industry as a raw material used for neodymium / iron / boron magnets, LED bulbs, fuel cells, and the like, and its demand is rapidly increasing in recent years. On the other hand, China, which was an oligopolistic producer of rare earths, is worried about a shortage of rare earth supplies and rising prices under circumstances such as changing its policy from an export incentive policy to a more restrictive policy. Securing supply sources is an issue.
Under such circumstances, deep-sea mud containing a high content of rare earth distributed over a wide area in the Pacific Ocean has attracted attention as a new source of rare earth.
Mud containing a high content of rare earths (for example, deep sea mud in the Pacific Ocean) has an enormous amount of resources and can be extracted by a simple method of immersing in dilute acid for 1 to 3 hours, thorium It has many advantages such as almost no radioactive elements such as uranium and uranium.

レアアースを含有する泥の乾燥質量中のレアアースの質量の割合は、レアアースの含有率が高いことで知られる太平洋の深海底であっても、0.3質量%以下にすぎない。このため、レアアースを含有する泥から、希酸を用いてレアアースを抽出する際に、多量の酸性の残渣(泥)が発生するという問題がある。
該酸性の残渣を、有用な物の原料として用いる技術として、特許文献1には、レアアースを含有する泥を酸で処理した後に発生する酸性の残渣を含む焼成物製造用原料を加熱してなることを特徴とする焼成物が記載されている。
また、該酸性の残渣を、簡易に処理することができる方法として、特許文献2には、レアアースを含有する泥を酸で処理した後に発生する酸性の残渣と、アルカリ性固化材を混合して、固化体を得ることを特徴とするレアアースを含有する残渣の固化処理方法が記載されている。
The ratio of the mass of the rare earth in the dry mass of the mud containing the rare earth is only 0.3% by mass or less even in the deep sea bottom of the Pacific Ocean, which is known to have a high content of the rare earth. For this reason, there is a problem that a large amount of acidic residue (mud) is generated when rare earth is extracted from mud containing rare earth using dilute acid.
As a technique for using the acidic residue as a raw material for a useful product, Patent Document 1 includes heating a raw material for producing a baked product containing an acidic residue generated after treating a mud containing rare earth with an acid. The baked product characterized by this is described.
In addition, as a method for easily treating the acidic residue, Patent Document 2 includes mixing an acidic residue generated after treating mud containing rare earth with an acid and an alkaline solidifying material, A method for solidifying a residue containing a rare earth characterized by obtaining a solidified body is described.

特開2015−123385号公報JP2015-123385A 特開2015−120124号公報JP-A-2015-120124

通常、残渣は埋め立て資材等として利用されている。しかし、多量に発生した残渣を、埋め立て資材として使用するには、埋め立て地の容量から限界がある。そこで、残渣の体積を小さく(減容)することが求められている。
残渣の減容方法として、例えば、加熱乾燥等による脱水が挙げられる。しかし、脱水では減容化率が小さいという問題がある。また、脱水後の残渣を永続的に乾燥状態に保つことは難しく、乾燥後の残渣は雨水等を容易に吸収し、粘土状になってしまうという問題がある。
他の方法として、残渣を高温(例えば、1,500℃)で加熱して熔融する方法が挙げられる。しかし、該方法には多くのエネルギーが必要であり、燃料や設備等のコストが高くなるという問題がある。
本発明の目的は、レアアースを含有する泥を酸で処理した後に発生する酸性の残渣の体積を小さくすることができ、かつ、低コストで処理することができる残渣の処理方法を提供することである。
Normally, the residue is used as landfill material. However, in order to use a large amount of generated residue as a landfill material, there is a limit due to the capacity of the landfill. Therefore, it is required to reduce the volume of the residue (volume reduction).
Examples of the method for reducing the volume of the residue include dehydration by heating and drying. However, dehydration has a problem that the volume reduction rate is small. Moreover, it is difficult to keep the residue after dehydration permanently dry, and there is a problem that the residue after drying easily absorbs rainwater and the like and becomes clayy.
As another method, there is a method in which the residue is heated and melted at a high temperature (for example, 1,500 ° C.). However, this method requires a lot of energy, and there is a problem that the cost of fuel, equipment, etc. becomes high.
An object of the present invention is to provide a residue treatment method that can reduce the volume of an acidic residue generated after treating rare earth-containing mud with an acid and that can be treated at low cost. is there.

本発明者は、上記課題を解決するために鋭意検討した結果、レアアースを含有する泥を酸で処理した後に発生する酸性の残渣に、特定の成分調整材を添加して混合し、混合物を得る成分調整工程、および、混合物を1,200〜1,300℃で加熱して熔融した後、冷却して、土工資材を得る加熱工程、を含む処理方法によれば、上記目的を達成できることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[4]を提供するものである。
[1] レアアースを含有する泥を酸で処理した後に発生する酸性の残渣に、セメント、石灰、炭酸カルシウム含有物質、および高炉スラグ微粉末からなる群より選ばれる1種以上からなる成分調整材を添加して混合し、混合物を得る成分調整工程、および、上記混合物を1,200〜1,300℃で加熱して熔融した後、冷却して、土工資材を得る加熱工程、を含むレアアースを含有する残渣の処理方法。
[2] 上記残渣1mに対する上記成分調整材の量が、50〜250kgである前記[1]に記載のレアアースを含有する残渣の処理方法。
[3] 上記加熱工程において、加熱前に比べて、上記混合物の体積が70%以上減少するまで、加熱を行う前記[1]又は[2]に記載のレアアースを含有する残渣の処理方法。
[4] 上記熔融が、太陽炉を用いて行われる前記[1]〜[3]のいずれかに記載のレアアースを含有する残渣の処理方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventor adds a specific component adjusting material to an acidic residue generated after treating mud containing rare earth with an acid, and obtains a mixture. It has been found that the above object can be achieved by a component adjustment step and a heating method in which the mixture is heated and melted at 1,200 to 1,300 ° C. and then cooled to obtain an earthwork material. The present invention has been completed.
That is, the present invention provides the following [1] to [4].
[1] A component adjusting material composed of one or more selected from the group consisting of cement, lime, calcium carbonate-containing material, and blast furnace slag fine powder is added to the acidic residue generated after treating mud containing rare earth with acid. Contains a rare earth including a component adjustment step of adding and mixing to obtain a mixture, and a heating step of heating and melting the mixture at 1,200 to 1,300 ° C. to obtain an earthwork material after cooling. To treat the residue.
[2] The method for treating a residue containing a rare earth according to [1], wherein the amount of the component adjusting material with respect to the residue 1 m 3 is 50 to 250 kg.
[3] The method for treating a residue containing a rare earth according to [1] or [2], wherein heating is performed in the heating step until the volume of the mixture is reduced by 70% or more compared to before heating.
[4] The method for treating a residue containing a rare earth according to any one of [1] to [3], wherein the melting is performed using a solar furnace.

本発明によれば、レアアースを含有する泥を酸で処理した後に発生する酸性の残渣の体積を小さくすることができる。
また、低い加熱温度(1,200〜1,300℃)で処理を行うことができるため、燃料等のコストを低減することができ、また、加熱手段として、例えば、太陽炉を用いることも可能である。
According to the present invention, it is possible to reduce the volume of the acidic residue generated after the mud containing rare earth is treated with an acid.
Further, since the treatment can be performed at a low heating temperature (1,200 to 1,300 ° C.), the cost of fuel and the like can be reduced, and for example, a solar furnace can be used as a heating means. It is.

本発明のレアアースを含有する残渣の処理方法は、レアアースを含有する泥を酸で処理した後に発生する酸性の残渣に、セメント、石灰、炭酸カルシウム含有物質、および高炉スラグ微粉末からなる群より選ばれる1種以上からなる成分調整材を添加して混合し、混合物を得る成分調整工程、および、上記混合物を1,200〜1,300℃で加熱して熔融した後、冷却して、土工資材を得る加熱工程を含むものである。以下、詳細に説明する。   The method for treating a residue containing rare earth according to the present invention is selected from the group consisting of cement, lime, calcium carbonate-containing material, and blast furnace slag fine powder as an acidic residue generated after treating mud containing rare earth with acid. A component adjustment step of adding and mixing one or more component adjusting materials to obtain a mixture, and heating and melting the mixture at 1,200 to 1,300 ° C., cooling, and earthing material A heating step for obtaining Details will be described below.

[成分調整工程]
本工程は、レアアースを含有する泥を酸で処理した後に発生する酸性の残渣に、セメント、石灰、炭酸カルシウム含有物質、および高炉スラグ微粉末からなる群より選ばれる1種以上からなる成分調整材を添加して混合し、混合物を得る工程である。
本発明における処理の対象である酸性の残渣は、レアアースを含有する泥を酸(例えば、希塩酸)で処理して、レアアースを液中に抽出した後に発生する残渣である。
レアアースとは、周期律表の第3族のランタノイド(La(ランタン)〜Lu(ルテチウム)の計15種の元素)に、同じく第3族のSc(スカンジウム)とY(イットリウム)を加えた計17種の元素をいう。
レアアースを含有する泥の一例として、深海底(例えば、海の深さとして、3,500〜6,000mの領域)に層状(例えば、海底から、深さが数10m程度までの地盤)に分布する、レアアースの含有率が大きい泥が挙げられる。
本発明において、レアアースを含有する泥(乾燥状態のもの)の中のレアアースの含有率(質量基準)は、資源であるレアアースを採掘する際の経済性の観点から、好ましくは1,000ppm以上、より好ましくは2,000ppm以上である。
[Ingredient adjustment step]
In this step, a component adjusting material comprising at least one selected from the group consisting of cement, lime, calcium carbonate-containing material, and fine powder of blast furnace slag is used as an acidic residue generated after treating rare earth-containing mud with acid. Is added and mixed to obtain a mixture.
The acidic residue which is the object of the treatment in the present invention is a residue generated after treating rare earth-containing mud with an acid (for example, dilute hydrochloric acid) and extracting the rare earth into the liquid.
Rare earth is a total of 15 lanthanoids in the periodic table (a total of 15 elements from La (lanthanum) to Lu (lutetium)) plus Sc (scandium) and Y (yttrium). Refers to 17 elements.
As an example of mud containing rare earth, it is distributed in layers on the deep sea floor (for example, the area of 3,500 to 6,000 m as the depth of the sea) (for example, the ground from the sea floor to a depth of about several tens of meters). And mud with a high rare earth content.
In the present invention, the rare earth content (based on mass) in the mud containing rare earth (in a dry state) is preferably 1,000 ppm or more from the viewpoint of economy when mining the rare earth as a resource. More preferably, it is 2,000 ppm or more.

酸性の残渣の含水比(酸性の残渣の固形分100質量%に対する水分の割合)は、特に限定されないが、加熱手段の負荷を軽減する観点から、好ましくは300質量%以下、より好ましくは250質量%以下である。
酸性の残渣の含水比が大きい場合等、本工程の前に酸性の残渣の含水比を低減させる工程を設けてもよい。含水比を低減させるには、泥をタンク等の容器に貯留して、泥の固形分を沈澱させ、その上澄みを回収する沈澱方式や、スクリューデカンター等の装置を用いる遠心分離方式や、フィルタープレス等の装置を用いる加圧脱水方式等の方法で脱水すればよい。
中でも、低コストで簡易に脱水することができる点で、沈澱方式及び遠心分離方式が好ましく、沈澱方式が、より好ましい。
なお、脱水の程度は、沈澱方式、遠心分離方式、加圧脱水方式の順に大きくなる。
The water content ratio of the acidic residue (the ratio of moisture to the solid content of 100% by mass of the acidic residue) is not particularly limited, but is preferably 300% by mass or less, more preferably 250% by mass from the viewpoint of reducing the load on the heating means. % Or less.
When the water content ratio of the acidic residue is large, a step of reducing the water content ratio of the acidic residue may be provided before this step. In order to reduce the water content, the mud is stored in a container such as a tank, the solid content of the mud is settled, and the supernatant is recovered, the centrifugal separation method using a device such as a screw decanter, or a filter press Dehydration may be performed by a method such as a pressure dehydration method using an apparatus such as the above.
Among these, the precipitation method and the centrifugal separation method are preferable, and the precipitation method is more preferable because it can be easily dehydrated at low cost.
The degree of dehydration increases in the order of the precipitation method, the centrifugal separation method, and the pressure dehydration method.

本工程において用いられるセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントや、高炉スラグセメント、フライアッシュセメント等の混合セメントや、エコセメント等を使用することができる。中でも、コストや汎用性の観点から普通ポルトランドセメントが好ましい。
石灰としては、生石灰、消石灰等が挙げられる。
炭酸カルシウム含有物質としては、石灰石、珊瑚、貝殻等が挙げられる。
高炉スラグ微粉末としては、高炉で銑鉄を製造する際に副生する溶融状態のスラグを、水で急冷・破砕して得られる水砕スラグの粉砕物や、徐冷・破砕して得られる徐冷スラグの粉砕物等が挙げられる。
本工程において、セメント等を成分調整材として添加することで、残渣の熔融温度を低下することができる。
The cement used in this process includes various Portland cements such as ordinary Portland cement, early-strength Portland cement, medium-heated Portland cement, low-heat Portland cement, mixed cements such as blast furnace slag cement and fly ash cement, and eco-cement. Can be used. Of these, ordinary Portland cement is preferred from the viewpoint of cost and versatility.
Examples of lime include quick lime and slaked lime.
Examples of the calcium carbonate-containing substance include limestone, coral, and shells.
As blast furnace slag fine powder, molten slag produced as a by-product when producing pig iron in the blast furnace is pulverized granulated slag obtained by quenching and crushing with water, or gradually obtained by slow cooling and crushing. Examples include pulverized cold slag.
In this step, the melting temperature of the residue can be lowered by adding cement or the like as a component adjusting material.

酸性の残渣1mに対する成分調整材の量は、好ましくは50〜250kg、より好ましくは70〜230kg、さらに好ましくは80〜200kg、特に好ましくは100〜150kgである。該量が50kg以上であれば、残渣の体積の減少量がより大きくなる。該量が250kg以下であれば、成分調整材を過剰に添加することによるコストの増大を防ぐことができる。 The amount of the component adjusting material with respect to the acidic residue 1 m 3 is preferably 50 to 250 kg, more preferably 70 to 230 kg, still more preferably 80 to 200 kg, and particularly preferably 100 to 150 kg. If the amount is 50 kg or more, the amount of decrease in the volume of the residue becomes larger. When the amount is 250 kg or less, it is possible to prevent an increase in cost due to excessive addition of the component adjusting material.

[加熱工程]
本工程は、成分調整工程で得られた混合物を1,200〜1,300℃で加熱して熔融した後、冷却して、土工資材を得る工程である。
加熱手段としては、特に限定されるものではなく、連続式の手段とバッチ式の手段のいずれも用いることができる。
連続式の加熱手段としては、例えば、ロータリーキルン、太陽炉等が挙げられる。
バッチ式の加熱手段としては、例えば、焼却炉(ガス等を燃料として用いるもの)、電気炉、マイクロ波加熱装置、太陽炉等が挙げられる。
中でも、処理の効率を高める観点からは、ロータリーキルンが好ましく、エネルギーコスト低減の観点からは、太陽炉が好ましい。
ここで、太陽炉とは、レンズや反射鏡等を用いて太陽光を集光することで高温を作り出すことができる装置である。
[Heating process]
In this step, the mixture obtained in the component adjustment step is heated and melted at 1,200 to 1,300 ° C. and then cooled to obtain an earthwork material.
The heating means is not particularly limited, and either continuous means or batch means can be used.
Examples of the continuous heating means include a rotary kiln and a solar furnace.
Examples of the batch type heating means include an incinerator (using gas or the like as fuel), an electric furnace, a microwave heating device, a solar furnace, and the like.
Among these, a rotary kiln is preferable from the viewpoint of increasing the processing efficiency, and a solar furnace is preferable from the viewpoint of reducing energy costs.
Here, the solar furnace is an apparatus that can create a high temperature by collecting sunlight using a lens, a reflecting mirror, or the like.

加熱温度は、1,200〜1,300℃、好ましくは1,220〜1,280℃である。該温度が1,200℃未満の場合、熔融が不十分となり、残渣の体積の減少量が小さくなる。該温度が1,300℃を超える場合、加熱に必要なエネルギーが増大し、コストが増加する。
本工程において、混合物の体積が70%以上、好ましくは75%以上減少するまで、加熱を行うことが好ましい。該体積が70%以上減少するまで加熱を行うことで、酸性の残渣の減容の目的が十分に達せられ、残渣の運搬等の負担を軽減したり、埋め立て地での処分可能な残渣の量を増大させることができる。
The heating temperature is 1,200 to 1,300 ° C., preferably 1,220 to 1,280 ° C. When the temperature is less than 1,200 ° C., the melting becomes insufficient and the amount of decrease in the volume of the residue becomes small. When the temperature exceeds 1,300 ° C., the energy required for heating increases and the cost increases.
In this step, heating is preferably performed until the volume of the mixture is reduced by 70% or more, preferably 75% or more. By heating until the volume is reduced by 70% or more, the purpose of reducing the volume of acidic residues can be fully achieved, reducing the burden of transporting the residues and the amount of residues that can be disposed of in landfills Can be increased.

通常、酸性の残渣を加熱、熔融するためには、1,500℃程度で加熱する必要がある。しかし、本発明によれば、1,200〜1,300℃というより低い温度で、酸性の残渣を熔融することができるため、加熱に必要なエネルギーを節減することができる。
また、加熱温度が低いことから、太陽炉を用いても十分な加熱、熔融を行うことができるため化石エネルギーを使用しなくてもよい。また、加熱手段の設備において、より安価な耐熱容器を使用することができ、コストをより低減することができる。例えば、太陽炉を用いて熔融を行う場合、坩堝として一般的な耐火レンガからなるものを使用することができる。
冷却方法は、特に限定されるものではなく、自然冷却でも強制冷却でもよい。
冷却後に得られた土工資材は、埋め立て資材、人工骨材、徐冷スラグ、急冷水砕スラグ、レンガの原料、漁礁等として利用することができる。
Usually, in order to heat and melt an acidic residue, it is necessary to heat at about 1,500 ° C. However, according to the present invention, since an acidic residue can be melted at a lower temperature of 1,200 to 1,300 ° C., energy required for heating can be reduced.
Further, since the heating temperature is low, sufficient heating and melting can be performed even if a solar furnace is used, so that fossil energy does not have to be used. Moreover, a cheaper heat-resistant container can be used in the equipment of the heating means, and the cost can be further reduced. For example, when melting using a solar furnace, what consists of a common firebrick as a crucible can be used.
The cooling method is not particularly limited, and may be natural cooling or forced cooling.
Earthwork materials obtained after cooling can be used as landfill materials, artificial aggregates, slow-cooled slags, quenched granulated slags, brick materials, fishing reefs, and the like.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
使用した試料は、レアアースを含有する泥を、酸で処理し、レアアースを回収した後に得た酸性の残渣(泥)である。該残渣の化学組成を表1に示す。なお、残渣の含水比は204質量%であった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
The sample used is an acidic residue (mud) obtained after treating the rare earth-containing mud with an acid and collecting the rare earth. The chemical composition of the residue is shown in Table 1. The water content of the residue was 204% by mass.

Figure 2017127816
Figure 2017127816

[実施例1]
残渣74ミリリットルに、成分調整材として普通ポルトランドセメント(太平洋セメント社製)を表2に示す量で添加して混合した。混合は、残渣と成分調整材をポリ袋に入れて、手で十分に揉むことで行った。次いで、得られた混合物を、電気炉を用いて加熱した。加熱は、温度が1,250℃となるまでは、上昇温度が5℃/分となるように行い、1,250℃に達した後、該温度を20分間維持することで行った。該加熱によって、残渣は完全に熔融した。
加熱後、下降温度が20℃/分となるようにして、常温(約25℃)になるまで冷却を行った。
冷却した熔融後の混合物の含水比、及び、体積(残渣の体積を100体積%とした場合の体積%)を測定した。
[Example 1]
In 74 ml of the residue, ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) was added and mixed as an ingredient adjusting material in the amount shown in Table 2. Mixing was carried out by placing the residue and the component adjusting material in a plastic bag and thoroughly squeezing it by hand. The resulting mixture was then heated using an electric furnace. The heating was performed until the temperature reached 1,250 ° C. so that the rising temperature was 5 ° C./min, and after reaching 1,250 ° C., the temperature was maintained for 20 minutes. The residue was completely melted by the heating.
After heating, cooling was performed until the temperature dropped to 20 ° C./min until normal temperature (about 25 ° C.) was reached.
The water content ratio and volume (volume% when the volume of the residue was 100% by volume) of the cooled melted mixture were measured.

[実施例2]
成分調整材の添加量を表2に示す量にした以外は、実施例1と同様にして、加熱等を行った。冷却した熔融後の混合物の含水比、及び、体積を測定した。
なお、実施例1と同様に加熱によって、残渣は完全に熔融した。
[Example 2]
Heating or the like was performed in the same manner as in Example 1 except that the addition amount of the component adjusting material was changed to the amount shown in Table 2. The water content ratio and volume of the cooled and melted mixture were measured.
The residue was completely melted by heating as in Example 1.

[比較例1]
加熱を行わない残渣の含水比を表2に示す。また、加熱を行わない残渣の体積を100体積%とした。
[比較例2]
残渣を、乾燥機を用いて、105℃の条件下で24時間静置する乾燥脱水を行った。乾燥脱水後の含水比、及び、体積を測定した。
[比較例3]
成分調整材を使用しない以外は、実施例1と同様にして、加熱等を行った。冷却した熔融後の混合物の含水比、及び、体積を測定した。
なお、加熱によって残渣は熔融したが、得られた熔融物は、実施例1〜2で得られた熔融物と比較して、粘性が高いものであり、また、残渣が熔融物になる際の体積の減少率は、小さかった。
結果を表2に示す。
[Comparative Example 1]
Table 2 shows the water content of the residue without heating. Moreover, the volume of the residue which does not heat was 100 volume%.
[Comparative Example 2]
The residue was dried and dehydrated using a dryer and allowed to stand at 105 ° C. for 24 hours. The moisture content and volume after dry dehydration were measured.
[Comparative Example 3]
Heating etc. were performed like Example 1 except not using a component adjustment material. The water content ratio and volume of the cooled and melted mixture were measured.
In addition, although the residue was melted by heating, the obtained melt has a higher viscosity than the melt obtained in Examples 1 and 2, and the residue becomes a melt. The volume reduction rate was small.
The results are shown in Table 2.

Figure 2017127816
Figure 2017127816

表2から、本発明の残渣の処理方法(実施例1〜2)によれば、酸性の残渣の体積を、処理前(100体積%)の19体積%にまで減少させうることがわかる。
一方、酸性の残渣を乾燥脱水した場合(比較例2)や、成分調整材を添加せずに1,250℃で加熱した場合(比較例3)には、酸性の残渣の体積の減少量は、実施例1〜2と比べて小さいことがわかる。
Table 2 shows that according to the residue processing method of the present invention (Examples 1 and 2), the volume of the acidic residue can be reduced to 19% by volume before the treatment (100% by volume).
On the other hand, when the acidic residue is dried and dehydrated (Comparative Example 2), or when heated at 1,250 ° C. without adding a component adjusting material (Comparative Example 3), the decrease in the volume of the acidic residue is It turns out that it is small compared with Examples 1-2.

Claims (4)

レアアースを含有する泥を酸で処理した後に発生する酸性の残渣に、セメント、石灰、炭酸カルシウム含有物質、および高炉スラグ微粉末からなる群より選ばれる1種以上からなる成分調整材を添加して混合し、混合物を得る成分調整工程、および、
上記混合物を1,200〜1,300℃で加熱して熔融した後、冷却して、土工資材を得る加熱工程、
を含むレアアースを含有する残渣の処理方法。
To the acidic residue generated after the rare earth-containing mud is treated with acid, a component adjusting material consisting of one or more selected from the group consisting of cement, lime, calcium carbonate-containing material, and blast furnace slag fine powder is added. A component adjustment step of mixing and obtaining a mixture; and
After heating and melting the above mixture at 1,200 to 1,300 ° C., cooling to obtain an earthwork material,
A method for treating a residue containing rare earth, including
上記残渣1mに対する上記成分調整材の量が、50〜250kgである請求項1に記載のレアアースを含有する残渣の処理方法。 The method for treating a residue containing a rare earth according to claim 1, wherein the amount of the component adjusting material with respect to the residue 1 m 3 is 50 to 250 kg. 上記加熱工程において、加熱前に比べて、上記混合物の体積が70%以上減少するまで、加熱を行う請求項1又は2に記載のレアアースを含有する残渣の処理方法。   The processing method of the residue containing the rare earth of Claim 1 or 2 which heats in the said heating process until the volume of the said mixture reduces 70% or more compared with before heating. 上記熔融が、太陽炉を用いて行われる請求項1〜3のいずれか1項に記載のレアアースを含有する残渣の処理方法。   The method for treating a residue containing a rare earth according to any one of claims 1 to 3, wherein the melting is performed using a solar furnace.
JP2016008936A 2016-01-20 2016-01-20 Method for treating residue containing rare earth Active JP6654758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016008936A JP6654758B2 (en) 2016-01-20 2016-01-20 Method for treating residue containing rare earth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016008936A JP6654758B2 (en) 2016-01-20 2016-01-20 Method for treating residue containing rare earth

Publications (2)

Publication Number Publication Date
JP2017127816A true JP2017127816A (en) 2017-07-27
JP6654758B2 JP6654758B2 (en) 2020-02-26

Family

ID=59394161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016008936A Active JP6654758B2 (en) 2016-01-20 2016-01-20 Method for treating residue containing rare earth

Country Status (1)

Country Link
JP (1) JP6654758B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136520A (en) * 2016-02-01 2017-08-10 太平洋セメント株式会社 Earthwork material and manufacturing method therefor
JP2017164705A (en) * 2016-03-17 2017-09-21 太平洋セメント株式会社 Granular earthwork material and method for producing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114629A (en) * 1974-02-21 1975-09-08
JPS5320649A (en) * 1976-08-10 1978-02-25 Daido Steel Co Ltd Method of treating sludge containing metal
JP2006043678A (en) * 2004-08-06 2006-02-16 Kangen Yoyu Gijutsu Kenkyusho:Kk Leachate sludge treating system for reclaimed land and leachate sludge treating method for reclaimed land
JP2007261880A (en) * 2006-03-29 2007-10-11 Taiheiyo Cement Corp Sintered matter production method
CN101767979A (en) * 2009-01-05 2010-07-07 盐城工学院 Rare earth residue sludge sintering agent
US20140283652A1 (en) * 2011-12-09 2014-09-25 Nippon Light Metal Company, Ltd. Rare earth element recovery method
JP2015120124A (en) * 2013-12-24 2015-07-02 太平洋セメント株式会社 Method for solidifying rare earth-containing residue
JP2015123385A (en) * 2013-12-25 2015-07-06 太平洋セメント株式会社 Fired product, and production method thereof
JP2015131262A (en) * 2014-01-10 2015-07-23 太平洋セメント株式会社 Method for treating rare earth-containing mud
JP2017077551A (en) * 2015-10-22 2017-04-27 太平洋セメント株式会社 Manufacturing method of earthwork material
JP2017080642A (en) * 2015-10-22 2017-05-18 太平洋セメント株式会社 Earthwork material and manufacturing method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114629A (en) * 1974-02-21 1975-09-08
JPS5320649A (en) * 1976-08-10 1978-02-25 Daido Steel Co Ltd Method of treating sludge containing metal
JP2006043678A (en) * 2004-08-06 2006-02-16 Kangen Yoyu Gijutsu Kenkyusho:Kk Leachate sludge treating system for reclaimed land and leachate sludge treating method for reclaimed land
JP2007261880A (en) * 2006-03-29 2007-10-11 Taiheiyo Cement Corp Sintered matter production method
CN101767979A (en) * 2009-01-05 2010-07-07 盐城工学院 Rare earth residue sludge sintering agent
US20140283652A1 (en) * 2011-12-09 2014-09-25 Nippon Light Metal Company, Ltd. Rare earth element recovery method
JP2015120124A (en) * 2013-12-24 2015-07-02 太平洋セメント株式会社 Method for solidifying rare earth-containing residue
JP2015123385A (en) * 2013-12-25 2015-07-06 太平洋セメント株式会社 Fired product, and production method thereof
JP2015131262A (en) * 2014-01-10 2015-07-23 太平洋セメント株式会社 Method for treating rare earth-containing mud
JP2017077551A (en) * 2015-10-22 2017-04-27 太平洋セメント株式会社 Manufacturing method of earthwork material
JP2017080642A (en) * 2015-10-22 2017-05-18 太平洋セメント株式会社 Earthwork material and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136520A (en) * 2016-02-01 2017-08-10 太平洋セメント株式会社 Earthwork material and manufacturing method therefor
JP2017164705A (en) * 2016-03-17 2017-09-21 太平洋セメント株式会社 Granular earthwork material and method for producing the same

Also Published As

Publication number Publication date
JP6654758B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP7038708B2 (en) Lightweight and high-strength ceramic particles and their manufacturing method
JP6268583B2 (en) Method for producing fired product
CN103397128B (en) Method used for extracting iron from red mud by drastic reduction and method used for preparing gel material from secondary tailings
CN102978659B (en) A kind of Deep method of comprehensive utilization of electrolytic cell overhaul slag
CN105924220B (en) Chemical engineering sludge incineration residue adds the technique that compound stabilizer prepares filler
JP6493719B2 (en) Method for treating mud containing rare earth
CN105801161B (en) A kind of preparation method of ion type rareearth tailing porous ceramic grain
JP6303223B2 (en) Method for solidifying residue containing rare earth
JP6659303B2 (en) Manufacturing method of earthwork material
CN104073632A (en) Blast furnace oxidized pellet adopting steel rolling oil sludge as adhesive and preparing method thereof
JP6654758B2 (en) Method for treating residue containing rare earth
CN103265171B (en) Arsenious waste curing method as well as generated solid arsenic crystal product and application thereof
CN107216124A (en) One kind utilizes sewage sludge sintering heat insulation building block and its method
CN107129270A (en) A kind of method for mixing cinder and firing ceramsite by using sludge
CN102653403B (en) Process method for preparing calcium carbide by recycling calcium carbide slag
JP6633885B2 (en) Manufacturing method of earthwork material
JP5319254B2 (en) Method for firing sludge granulated product and method of using the same
JP2008126185A (en) Calcined object and its manufacturing method
CN105174764A (en) Preparation method of manganese slag activate micro powder for concrete admixture
CN104692678A (en) Composite desulphurization material for iron-mine waste residues and preparation method thereof
Yamaguchi et al. Cold sintering of the Mg–C–O–H system
JP6633927B2 (en) Earthmoving material and method of manufacturing the same
CN114014569A (en) Production process for separating and recycling metal smelting furnace slag
CN109704384B (en) Preparation method of anhydrous calcium chloride
Huifen et al. Utilization of red mud for the preparation of lightweight aggregates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191225

R150 Certificate of patent or registration of utility model

Ref document number: 6654758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250