JP2017127169A - Power storage system for storing surplus power - Google Patents

Power storage system for storing surplus power Download PDF

Info

Publication number
JP2017127169A
JP2017127169A JP2016014888A JP2016014888A JP2017127169A JP 2017127169 A JP2017127169 A JP 2017127169A JP 2016014888 A JP2016014888 A JP 2016014888A JP 2016014888 A JP2016014888 A JP 2016014888A JP 2017127169 A JP2017127169 A JP 2017127169A
Authority
JP
Japan
Prior art keywords
storage system
power storage
charging
battery
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016014888A
Other languages
Japanese (ja)
Inventor
亨 永浦
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGAURA CHIEKO
Original Assignee
NAGAURA CHIEKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGAURA CHIEKO filed Critical NAGAURA CHIEKO
Priority to JP2016014888A priority Critical patent/JP2017127169A/en
Publication of JP2017127169A publication Critical patent/JP2017127169A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of a conventional power storage system for solar power generation in which a storage battery hardly reaches 100% in SOC after the end of charge or DOD after the end of discharge and thus, an electrode active material not participating in an electrode reaction tends to arise because of its unfixed amount of power generation in solar power generation that the electrode active material not participating in the electrode reaction over a long time loses its activity, which leads to the worsening of the capacity of the storage battery.SOLUTION: A power storage system according to the present invention comprises n groups of assembled batteries, provided that the n groups are connected in parallel. In charge/discharge, a particular group of assembled batteries sequentially selected from the n groups of assembled batteries is charged/discharged preferentially to the other groups of assembled batteries to reach 100% in SOC or DOD. So, all the groups of assembled batteries are allowed to reach 100% in SOC or DOD once every n cycles. Therefore, an electrode active material not participating in an electrode reaction over a long time hardly arises in every storage battery.SELECTED DRAWING: Figure 1

Description

本発明は、余剰電力の貯蔵用蓄電システムに関するもので、特にソーラー発電の余剰電力貯蔵用蓄電システムに関するものである。  The present invention relates to a power storage system for storing surplus power, and more particularly to a power storage system for storing surplus power for solar power generation.

ソーラー発電(太陽光発電)は人類のための最終的なクリーンエネルギーと目されている。ソーラー発電にはオフグリッド(送電線を使用しない)で必要な電力を必要な場所で発電できるという大きな特長もある。各家庭で使用する電力がソーラー発電のオフグリッドシステムによって賄われることになれば、クリーンな地球環境を守る上ではその効果は絶大である。  Solar power generation (solar power generation) is regarded as the ultimate clean energy for humanity. Solar power generation also has the great advantage of being able to generate the necessary power off-grid (without using transmission lines) where it is needed. If the power used in each household is covered by a solar power off-grid system, the effect is tremendous in protecting a clean global environment.

ソーラー発電による発電は日照時間帯に限定されるため、各家庭で使用される電力をソーラー発電で完全供給するためには余剰電力の蓄電が不可欠である。ソーラー発電の余剰電力を大容量(10〜40kWh程度)の蓄電システム(蓄電装置)に蓄電しておけば、各家庭で必要とされる日照時間帯以外の電力はこれで賄うことが出来る。  Since power generation by solar power generation is limited to the sunshine hours, it is indispensable to store surplus power in order to completely supply power used in each home by solar power generation. If the surplus power of solar power generation is stored in a power storage system (power storage device) with a large capacity (about 10 to 40 kWh), power other than the sunshine hours required in each home can be covered by this.

蓄電池を利用する20〜50kWh程度の蓄電システムは電気自動車の駆動用電源としては既に活用されている。例えば、米国のある電気自動車に搭載されている蓄電システムは汎用の18650型リチウムイオン電池が6831個も使用され、99個が並列に接続され、更にその69個が直列に接続されて組電池として構成されている。なお、本明細書では単セル(単電池)が直列や並列に接続されて構成される集合蓄電池は組電池と呼ぶ。  A power storage system of about 20 to 50 kWh that uses a storage battery has already been used as a power source for driving an electric vehicle. For example, an energy storage system installed in an electric vehicle in the United States uses 6831 general-purpose 18650 type lithium-ion batteries, 99 are connected in parallel, and 69 are connected in series as an assembled battery. It is configured. In this specification, an assembled storage battery configured by connecting single cells (single cells) in series or in parallel is referred to as an assembled battery.

ソーラー発電用の蓄電システムも単セルの直列接続数(電圧)と並列接続数(電流容量)を調整した組電池で幅広い余剰電力に対応することができる。しかし、余剰電力の貯蔵用蓄電システムは、通常では目一杯まで充電されることも目一杯まで放電されることもない。この点で、余剰電力の貯蔵用蓄電システムはこれまでの蓄電池の用途と根本的に異なる。  An energy storage system for solar power generation can cope with a wide range of surplus power with an assembled battery in which the number of single cells connected in series (voltage) and the number of parallel connections (current capacity) are adjusted. However, the power storage system for storing surplus power is normally not fully charged or discharged. In this respect, the power storage system for storing surplus power is fundamentally different from conventional battery use.

これまでの蓄電池の用途では定格容量の目一杯まで充電して、充電された電気のすべてを放電するというのが基本である。例えば、電気自動車でもフォークリフトでも携帯電話でも、最長の走行距離や最長の作業時間や最長の通話時間を確保するために、それぞれに搭載される蓄電池は目一杯まで充電され、充電された電気のすべて基本的に利用される。  Until now, the basic use of storage batteries is to charge to the full capacity and discharge all the charged electricity. For example, to ensure the longest mileage, the longest working time and the longest call time for electric cars, forklifts and mobile phones, the batteries installed in each are fully charged, and all of the charged electricity Basically used.

しかし、ソーラー発電の余剰電力を貯蔵する蓄電システムでは余剰電力以上は充電されないし、必要とされる電力以上は放電されないため、日常的には目一杯まで充電されることも目一杯まで放電されることもない。そのため、余剰電力貯蔵用蓄電システムではこれを構成する蓄電池には充放電反応に関与しない電極活物質が生じやすい。この充放電反応に関与しない電極活物質はその活性や可逆性が次第に低下する。  However, in the power storage system that stores the surplus power of solar power generation, more than surplus power is not charged, and more than necessary power is not discharged, so it is charged to the fullest on a daily basis. There is nothing. Therefore, in the power storage system for storing surplus power, an electrode active material that does not participate in the charge / discharge reaction is likely to be generated in the storage battery constituting the power storage system. The activity and reversibility of the electrode active material that does not participate in the charge / discharge reaction gradually decrease.

蓄電池の寿命は電極活物質の活性や可逆性が如何に持続されるかにかっている。現在、使用されている主な蓄電池は鉛蓄電池とニッケルカドミウム電池とニッケル水素電池及びリチウムイオン電池の4種類であるが、これらはいずれも電極活物質の可逆的な電気化学的酸化還元反応を利用する蓄電装置であり、電極活物質の活性や可逆性が次第に低下して寿命に至る。  The life of a storage battery depends on how the activity and reversibility of the electrode active material is sustained. Currently, there are four main types of storage batteries: lead storage battery, nickel cadmium battery, nickel metal hydride battery and lithium ion battery, all of which utilize the reversible electrochemical redox reaction of the electrode active material. In this power storage device, the activity and reversibility of the electrode active material gradually decrease and reach the lifetime.

一般に、充電反応や放電反応に関与しない電極活物質はその活性や可逆性が低下するが、充放電反応に関与しない期間が短い場合には、再び電極反応に関与することによって低下した活性や可逆性は回復される。その回復は充電反応を通して回復される場合もあれば、放電反応を通して回復される場合もあり、活物質の種類によっても異なる。  In general, the activity and reversibility of an electrode active material that does not participate in the charge reaction or discharge reaction is reduced. However, if the period that is not involved in the charge / discharge reaction is short, the activity or reversibility that has decreased due to the participation in the electrode reaction again. Sex is restored. The recovery may be recovered through a charge reaction or may be recovered through a discharge reaction, and varies depending on the type of active material.

例えば、ニッケル水素電池やニッケルカドミウム電池では充電状態の正極活物質であるβ−NiOOHは長期間放置されると不活性なγ−NiOOHに変化して性能が大きく劣化する。つまり、ニッケル水素電池やニッケルカドミウム電池は十分に放電されないままで充放電を繰り返して使用していると本来放電できるはずの未活用の充電分が放電出来なくなるという、所謂、「メモリー効果」と言われる現象で性能が大きく劣化する。そのため、ニッケル水素電池やニッケルカドミウム電池の性能を維持するためには100%の放電状態まで頻繁に放電されることが必要である。  For example, in a nickel metal hydride battery or a nickel cadmium battery, β-NiOOH, which is a positive electrode active material in a charged state, changes to inactive γ-NiOOH and is greatly deteriorated in performance when left for a long period of time. In other words, nickel-metal hydride batteries and nickel-cadmium batteries are so-called “memory effects”, in that if they are repeatedly charged and discharged without being fully discharged, the unused charge that should have been discharged cannot be discharged. The performance is greatly deteriorated due to the phenomenon. Therefore, in order to maintain the performance of the nickel metal hydride battery or the nickel cadmium battery, it is necessary to be frequently discharged to a 100% discharge state.

また、鉛蓄電池では十分に充電されないままで充放電が繰り返されていると、本来充電できるはずの未活用の硫酸鉛が結晶拡大して充電出来なくなるという、所謂、「サルフェーション」と呼ばれる現象によって容量が劣化する。そのため、鉛蓄電池の性能を維持すためには100%に近い充電が頻繁になされる必要がある。  In addition, if lead-acid batteries are repeatedly charged and discharged without being fully charged, unutilized lead sulfate, which should have been able to be recharged, will not be able to be recharged due to crystal expansion, resulting in a so-called “sulfation” phenomenon. Deteriorates. Therefore, in order to maintain the performance of the lead storage battery, charging close to 100% needs to be frequently performed.

ニッケル極のメモリー効果や鉛電極のサルフェーションのように顕著ではなくとも、何れの電極活物質も電極反応(酸化還元反応)に関与しないとその活性は低下する。従って、何れの蓄電池でもその性能を維持すためには頻繁に100%に近い充電状態(SOC)や放電状態(DOD)に達することが重要である。また、電極活物質の活性維持には電極反応速度(充放電電流)も関係する。因みに、リチウム二次電池では充電電流が大きくなるほどサイクル寿命が短くなり、放電電流は小さくなるほどサイクル寿命が短くなることが報告されている(信学技報Vol.90、CPM90−101(1991)参照)。従って、蓄電池は一般的には6〜10時間率でゆっくり充電をして3〜5時間率で放電するというのが最も標準的な充放電サイクルのやり方である。  Even if it is not as remarkable as the memory effect of the nickel electrode or the sulfation of the lead electrode, the activity is reduced if any electrode active material does not participate in the electrode reaction (redox reaction). Therefore, in order to maintain the performance of any storage battery, it is important to reach a state of charge (SOC) or a state of discharge (DOD) close to 100% frequently. In addition, the electrode reaction rate (charge / discharge current) is also related to maintaining the activity of the electrode active material. Incidentally, it has been reported that in a lithium secondary battery, the cycle life becomes shorter as the charging current becomes larger, and the cycle life becomes shorter as the discharge current becomes smaller (see IEICE Technical Report Vol. 90, CPM 90-101 (1991)). ). Therefore, the most standard charge / discharge cycle method is that a storage battery is generally charged slowly at a rate of 6 to 10 hours and discharged at a rate of 3 to 5 hours.

なお、蓄電池の充電状態は一般にSOC(Stage Of Charge)で示され、通常、蓄電システム又は蓄電池が定格容量の100%まで充電された状態がSOC=100%である。また、蓄電池の放電状態は一般にDOD(Depth Of Discharge)で示され、通常、蓄電システム又は蓄電池が0%のSOCまで放電された状態がDOD=100%である。ここでは、定格容量とは蓄電システム又は蓄電池が標準的な充電方法によって充電され得る最大の充電容量(放電可能な容量)を意味する。  The state of charge of the storage battery is generally indicated by SOC (Stage Of Charge). Normally, the state where the storage system or the storage battery is charged to 100% of the rated capacity is SOC = 100%. Further, the discharge state of the storage battery is generally indicated by DOD (Depth Of Discharge), and normally, the state in which the storage system or storage battery is discharged to 0% SOC is DOD = 100%. Here, the rated capacity means the maximum charging capacity (capacity that can be discharged) that the power storage system or the storage battery can be charged by a standard charging method.

蓄電システムの蓄電コストはこれを構成する蓄電池のイニシャルコストと寿命によって変わってくる。イニシャルコストの高い蓄電池にはより長い寿命が必要であるが、いずれにしても蓄電池の寿命が短ければ蓄電コストは高くなってしまう。従って、ソーラー発電のオフグリッドシステムが実現できるか否かはこの用途における蓄電池の寿命次第である。  The power storage cost of the power storage system varies depending on the initial cost and life of the storage battery constituting the power storage system. A storage battery with a high initial cost requires a longer life, but in any case, if the life of the storage battery is short, the power storage cost will be high. Therefore, whether an off-grid system for solar power generation can be realized depends on the life of the storage battery in this application.

一方、ソーラー発電のオフグリッドシステムでは日照時間帯以外で必要とされる電力は蓄電システムに蓄えた余剰電力で賄われるので、余剰電力の蓄電量が不足すれば日照時間帯以外で必要とされる電力を賄うことが出来ない。従って、ソーラー発電のオフグリッドシステムでは余剰電力の蓄電量が日照時間帯以外で必要とされる電力を上回る設計が必要である。  On the other hand, in the off-grid system of solar power generation, the power required outside the sunshine hours is covered by the surplus power stored in the power storage system, so if the amount of surplus power stored is insufficient, it is required outside the sunshine hours I can't cover my power. Therefore, the off-grid system of solar power generation requires a design in which the amount of stored surplus power exceeds the power required outside the sunshine hours.

日照時間帯以外で必要とされる電力を上回る蓄電量の蓄電システムでは日常的には完全に放電されることがない。つまり、DODに余裕を残して充電放電が繰り返される。そのため、蓄電システムを構成する蓄電池には全く放電反応に関与しない電極活物質が生じ安いため蓄電池の寿命が短くなる。  In a power storage system having a power storage amount that exceeds the power required outside the daylight hours, it is not completely discharged on a daily basis. That is, charging and discharging are repeated leaving a margin in the DOD. Therefore, since the electrode active material which does not participate in the discharge reaction at all is produced in the storage battery constituting the power storage system and is cheap, the life of the storage battery is shortened.

また、余剰電力を蓄える蓄電システムでは、余剰電力に対して定格容量が不足すれば余剰電力の一部は貯蔵できなくなって余剰電力の貯蔵効率は低下する。貯蔵効率の低下は蓄電コストを上昇させる。従って、ソーラー発電のオフグリッドシステムでは蓄電システムは余剰電力に対して余裕ある定格容量で設計される必要がある。  In addition, in a power storage system that stores surplus power, if the rated capacity is insufficient with respect to surplus power, a part of surplus power cannot be stored and the storage efficiency of surplus power is reduced. A decrease in storage efficiency increases the power storage cost. Therefore, in the off-grid system of solar power generation, the power storage system needs to be designed with a rated capacity that can afford surplus power.

定格容量に余裕のある蓄電システムでは日常的には完全に充電されることがない。つまり、SOCに余裕を残して充電放電が繰り返される。そのため、蓄電システムを構成する蓄電池には全く充電反応に関与しない電極活物質が生じ安いため蓄電池の寿命が短くなる。  A power storage system with sufficient rated capacity is not fully charged on a daily basis. That is, charging and discharging are repeated leaving a margin in the SOC. For this reason, an electrode active material that does not participate in the charging reaction at all is produced in the storage battery constituting the storage system, and the life of the storage battery is shortened.

本発明は、以上の課題に鑑みてなされたものであり、その目的は、蓄電システムとしてはSOCやDODに余裕を残して充電放電が繰り返されても、該蓄電システムを構成する蓄電池は頻繁に100%のSOCやDODに到達することを可能ならしめることにある。  The present invention has been made in view of the above problems, and the purpose of the power storage system is that the storage battery constituting the power storage system is frequently used even when charging and discharging are repeated leaving a margin in the SOC and DOD. The goal is to make it possible to reach 100% SOC and DOD.

上記課題を解決するため、本発明に係る蓄電システムは、複数の組電池が組電池単位で並列に接続されて構成される蓄電システムであって、前記組電池の中から順繰りに選ばれる特定の組電池が他の組電池に優先して充電又は放電されることを特徴とする。  In order to solve the above-mentioned problem, an electricity storage system according to the present invention is an electricity storage system configured by connecting a plurality of assembled batteries in parallel in units of assembled batteries, and is a specific one selected in order from the assembled batteries. The assembled battery is charged or discharged with priority over other assembled batteries.

本発明に係る蓄電システムは、複数のn組の組電池の中から特定の組電池が順繰りに選定されて他の組電池に優先して充電または放電されるため、蓄電システムのSOCとしては余裕を残して(100%に到達せずに)充電が終了されても、優先して充電された特定の組電池は100%のSOCまで達することが出来る。  In the power storage system according to the present invention, a specific assembled battery is sequentially selected from a plurality of n assembled batteries and charged or discharged in preference to other assembled batteries. Even if charging is terminated (without reaching 100%), a specific assembled battery charged with priority can reach 100% SOC.

また、蓄電システムのDODとしては余裕を残して(100%に到達せずに)放電が終了されても、優先して放電された特定の組電池は100%のDODまで達することが出来る。  Further, even if the discharge is terminated with a margin (without reaching 100%) as the DOD of the power storage system, the specific assembled battery that has been preferentially discharged can reach 100% DOD.

その結果、本発明に係る蓄電システムではn組全ての組電池が順繰りに特定の組電池に選定されるので、蓄電システムとしてはSOCやDODに余裕を残して充放電が繰り返されても全ての組電池がnサイクルに1回の頻度で100%のSOCやDODに達することが出来る。そのため、本発明に係る蓄電システムは全ての組電池において充放電反応に長時間関与しないという電極活物質は激減し、ソーラー発電の蓄電システムとして使用されても蓄電池寿命が短くなることがない。  As a result, in the power storage system according to the present invention, all n sets of assembled batteries are sequentially selected as specific battery packs. Therefore, as a power storage system, even if charging and discharging are repeated leaving a margin in SOC and DOD, The assembled battery can reach 100% SOC and DOD at a frequency of once every n cycles. Therefore, the electrode active material that the power storage system according to the present invention does not participate in the charge / discharge reaction for a long time in all assembled batteries is drastically reduced, and the life of the storage battery is not shortened even when used as a power storage system for solar power generation.

上記した以外の課題やその解決手段と効果は、以下の実施の形態の説明により更に詳細に説明する。  Problems other than those described above and solutions and effects thereof will be described in more detail with reference to the following embodiments.

本発明に係る蓄電システムの構成を示す単線結線図である。  It is a single line connection figure which shows the structure of the electrical storage system which concerns on this invention. 本発明に係る蓄電システムの構成を示す単線結線図である。  It is a single line connection figure which shows the structure of the electrical storage system which concerns on this invention. 本発明に係る蓄電システムの放電終了時を示す模式図である。  It is a schematic diagram which shows the time of completion | finish of discharge of the electrical storage system which concerns on this invention. 本発明に係る蓄電システムの構成を示す単線結線図である。  It is a single line connection figure which shows the structure of the electrical storage system which concerns on this invention. 本発明に係る蓄電システムの充電終了時を示す模式図である。  It is a schematic diagram which shows the time of completion | finish of charge of the electrical storage system which concerns on this invention. 本発明に係る蓄電システムの充電終了時を示す模式図である。  It is a schematic diagram which shows the time of completion | finish of charge of the electrical storage system which concerns on this invention. 本発明に係る蓄電システムのSOCの余裕と組電池数nの関係を示すグラフである。  It is a graph which shows the relationship of the margin of SOC of the electrical storage system which concerns on this invention, and the number n of assembled batteries. 本発明に係る蓄電システムの構成を示す単線結線図である。  It is a single line connection figure which shows the structure of the electrical storage system which concerns on this invention.

以下、本発明の実施の形態を図面に基づき更に詳しく説明する。  Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.

図1、図2及び図4は本発明に係る蓄電システムの構成を示した単線結線図である。図1、図2及び図4に示すように、本発明に係る蓄電システム(20)はn組の組電池が組電池単位で並列に接続されて構成される。つまり、各組電池の入出力端子同士が並列に接続されて構成される。  1, FIG. 2 and FIG. 4 are single line connection diagrams showing the configuration of a power storage system according to the present invention. As shown in FIGS. 1, 2, and 4, the power storage system (20) according to the present invention includes n assembled batteries connected in parallel for each assembled battery. That is, the input / output terminals of each assembled battery are connected in parallel.

図1、図2及び図4に示す蓄電システム(20)は、組電池(1−1)〜(1−n)が制御装置(15)に設けられた組電池接続用の端子(8−1)〜(8−n)にそれぞれ接続されて構成されている。制御装置(15)にはソーラー発電の余剰電力等を入力するための充電入力端子(7)と貯蔵された電力を外部回路に出力するための出力端子(9)がそれぞれ設けられている。組電池(1−1)〜(1−n)はスイッチ(4)を介して充電入力端子(7)に、また、スイッチ(5)を介して出力端子(9)にそれぞれ並列に接続されている。  The battery system (20) shown in FIGS. 1, 2 and 4 includes a battery pack connection terminal (8-1) in which battery packs (1-1) to (1-n) are provided in the control device (15). ) To (8-n). The control device (15) is provided with a charging input terminal (7) for inputting surplus power of solar power generation and the like, and an output terminal (9) for outputting stored power to an external circuit. The assembled batteries (1-1) to (1-n) are connected in parallel to the charging input terminal (7) via the switch (4) and to the output terminal (9) via the switch (5). Yes.

図2示す蓄電システム(20)ではこれを構成する組電池が頻繁に100%のDODまで放電され得る機能を有し、図4示す蓄電システム(20)ではこれを構成する組電池が頻繁に100%のSOCまで充電され得る機能を有し、図1に示す蓄電システム(20)は図2示す蓄電システム(20)と図4示す蓄電システム(20)が合体された構成であり、これを構成する組電池が頻繁に100%のSOCまで充電され得る機能と、頻繁に100%のDODまで放電され得る機能の両方を有している。  In the power storage system (20) shown in FIG. 2, the assembled battery constituting the battery has a function capable of being frequently discharged to 100% DOD. In the power storage system (20) shown in FIG. 1 has a function of being able to be charged to SOC of FIG. 1, and the power storage system (20) shown in FIG. 1 is configured by combining the power storage system (20) shown in FIG. 2 and the power storage system (20) shown in FIG. The assembled battery frequently has a function capable of being charged to 100% SOC and a function capable of being frequently discharged to 100% DOD.

先ず、図2に基づき、特定の組電池が他の組電池に“優先して放電”される蓄電システム(20)について本発明の実施の形態を説明する。  First, based on FIG. 2, an embodiment of the present invention will be described for a power storage system (20) in which a specific assembled battery is “preferentially discharged” over other assembled batteries.

図2に示す蓄電システム(20)ではソーラー発電の余剰電力等、貯蔵対象となる電力(以下、これを主電力とも呼ぶ。)を充電入力端子(7b)に入力するので、組電池(1−1)〜(1−n)はスイッチ(4b)がON状態で充電され、OFF状態で充電停止となる。  In the power storage system (20) shown in FIG. 2, power to be stored (hereinafter, also referred to as main power) such as surplus power of solar power generation is input to the charging input terminal (7b). 1) to (1-n) are charged when the switch (4b) is in the ON state, and the charging is stopped in the OFF state.

充電が停止状態では、スイッチ(5)がON状態で基本的には組電池(1−1)〜(1−n)は出力端子(9)から外部回路に出力することが出来る。この時、スイッチ(2−1)〜(2−n)の中のスイッチ(2−m)だけを選択的にON状態とすれば、特定の組電池(1−m)が他の組電池に優先して放電される。  When the charging is stopped, the assembled batteries (1-1) to (1-n) can basically be output from the output terminal (9) to the external circuit while the switch (5) is in the ON state. At this time, if only the switch (2-m) among the switches (2-1) to (2-n) is selectively turned on, the specific assembled battery (1-m) is replaced with another assembled battery. It is discharged preferentially.

従って、図2に示す蓄電システム(20)では蓄電システムのDODが100%に至る前に放電終了となっても、特定の組電池(1−m)だけは優先的に放電されるのでDODが100%に達することが出来る。ここで、mは1からnまでの任意の整数であり、mが1からnまで充放電サイクルの度に順番に変更されれば、組電池(1−1)〜(1−n)はいずれも順繰りに特定の組電池に選定されてnサイクルに1回の頻度でDODが100%に達することが出来る。  Therefore, in the power storage system (20) shown in FIG. 2, even if the discharge ends before the DOD of the power storage system reaches 100%, only the specific assembled battery (1-m) is discharged preferentially, so Can reach 100%. Here, m is an arbitrary integer from 1 to n. If m is sequentially changed from 1 to n every charge / discharge cycle, the assembled batteries (1-1) to (1-n) are either Also, a specific assembled battery is selected in order, and the DOD can reach 100% once every n cycles.

例えば、図3には蓄電システム(20)のDODが70%に達した時点で放電終了となった場合の一例を示した。図3には図2の構成でn=4で構成される蓄電システム(20)を4組の組電池(1−1)〜(1−4)が並列に接続された模式図で示し、各組電池には棒グラフ(32)で各組電池のSOCを示し、点線(31)で蓄電システム(20)のSOCを示している。ただし、DOD=(100%−SOC)の関係にある。  For example, FIG. 3 shows an example in which the discharge ends when the DOD of the power storage system (20) reaches 70%. FIG. 3 is a schematic diagram in which four battery packs (1-1) to (1-4) are connected in parallel to each other, with the storage system (20) configured with n = 4 in the configuration of FIG. For the assembled battery, the bar graph (32) indicates the SOC of each assembled battery, and the dotted line (31) indicates the SOC of the power storage system (20). However, there is a relationship of DOD = (100% −SOC).

図3は、図2の構成において、たまたまスイッチ(2−1)が選択的にON状態にされて組電池(1−1)が特定の組電池に選定された場合を示している。図3では、特定の組電池(1−1)が他の組電池に優先して放電されて100%のDOD(SOC=0%)に達し、その後、引き続いてスイッチ(2−2)〜(2−4)が一緒にON状態にされて組電池(1−2)〜(1−4)が引き続き放電して、蓄電システム(20)のDODが70%(SOC=30%)に達した時点で放電が終了された場合を示している。  FIG. 3 shows a case where in the configuration of FIG. 2, the switch (2-1) is selectively turned ON and the assembled battery (1-1) is selected as a specific assembled battery. In FIG. 3, a specific assembled battery (1-1) is discharged in preference to other assembled batteries and reaches 100% DOD (SOC = 0%), and then switches (2-2) to ( 2-4) are turned ON together, and the assembled batteries (1-2) to (1-4) are continuously discharged, and the DOD of the power storage system (20) reaches 70% (SOC = 30%). The case where the discharge is terminated at the time is shown.

図3に示すように、蓄電システム(20)のDODが70%で放電終了しても特定の組電池(1−1)のDODは100%に達し、その分、他の組電池(1−2)〜(1−4)のDODが60%(SOC=40%)に止まっている。一方、組電池(1−1)〜(1−4)はいずれも順繰りに特定の組電池に選定されるので4サイクルに1回は図3に示す組電池(1−1)と同じように100%のDODに達することが出来る。  As shown in FIG. 3, even if the DOD of the power storage system (20) is 70% and the discharge is completed, the DOD of the specific assembled battery (1-1) reaches 100%. The DOD of 2) to (1-4) remains at 60% (SOC = 40%). On the other hand, since each of the assembled batteries (1-1) to (1-4) is sequentially selected as a specific assembled battery, it is the same as the assembled battery (1-1) shown in FIG. 100% DOD can be reached.

ソーラー発電の余剰電力は蓄電システムに充電することで、日照時間帯以外で必要とされる電力を賄うことが出来る。この場合、ソーラー発電による余剰電力は午前8時頃から午後4時頃までの8時間前後で発生すると考えられるので、蓄電システムは6〜8時間程度で充電されることになり、充電に際しては前述の蓄電池の標準的な充電率(6〜10時間率)に近い。ところが、放電に際しては蓄電システムに充電された余剰電力は蓄電池の標準的な放電率(3〜5時間率)で利用されることもあり得るが、日照時間帯以外の16〜18時間に継続的に利用されることもある。16〜18時間の放電は蓄電池の標準的な放電率(3〜5時間)に比べて相当に軽負荷の放電である。  The surplus power of solar power generation can be charged to the power storage system to cover the power required outside sunshine hours. In this case, surplus power from solar power generation is considered to occur in about 8 hours from about 8 am to about 4 pm, so the power storage system will be charged in about 6 to 8 hours. It is close to the standard charge rate (6 to 10 hour rate) of storage batteries. However, during the discharge, the surplus power charged in the power storage system may be used at the standard discharge rate (3-5 hours rate) of the storage battery, but it continues for 16-18 hours outside the sunshine hours. Sometimes used. The discharge for 16 to 18 hours is considerably lighter than the standard discharge rate (3 to 5 hours) of the storage battery.

しかし、ソーラー発電の余剰電力が図2に示す蓄電システム(20)に充電される場合には、放電に際してはスイッチ(2−m)を選択的にON状態として特定の組電池(1−m)が優先して放電されるので、充電された余剰電力が16〜18時間をかけて利用される場合でも特定の組電池(1−m)は16/n〜18/n時間で真っ先に放電されてDODが100%に達することになる。ここで、組電池数nが3≦n≦6に設定されていれば、特定の組電池(1−m)の放電は蓄電池の標準的な放電率(3〜5時間率)にほぼ合致する。  However, when the surplus power of the solar power generation is charged into the power storage system (20) shown in FIG. 2, the specific battery pack (1-m) is selectively turned on when discharging the switch (2-m). Is discharged preferentially, the specific assembled battery (1-m) is discharged first in 16 / n-18 / n hours even when the surplus power charged is used for 16-18 hours. DOD will reach 100%. Here, if the number n of assembled batteries is set to 3 ≦ n ≦ 6, the discharge of the specific assembled battery (1-m) substantially matches the standard discharge rate (3 to 5 hour rate) of the storage battery. .

つまり、図2に示す蓄電システム(20)がソーラー発電の蓄電システムとして使用される場合には、組電池数nが3≦n≦6で構成されれば蓄電池は3〜6サイクルに1回は必ず標準的な放電率で放電されることになり、電極活物質の殆どが標準的な速度で充放電反応に関与することになり、その活性が維持されて蓄電池の長寿命に繋がることになる。  That is, when the power storage system (20) shown in FIG. 2 is used as a power storage system for solar power generation, if the number n of assembled batteries is configured as 3 ≦ n ≦ 6, the storage battery is once every 3 to 6 cycles. It will always be discharged at a standard discharge rate, and most of the electrode active material will be involved in the charge / discharge reaction at a standard rate, and its activity will be maintained leading to a long life of the storage battery. .

以上、図2に基づき、特定の組電池(1−m)が他の組電池に“優先して放電”される実施の形態については説明したが、以下、図4に基づき、特定の組電池(1−m)が他の組電池に“優先して充電”される実施の形態について説明する。  The embodiment in which the specific assembled battery (1-m) is “preferentially discharged” over the other assembled batteries has been described based on FIG. 2, but the specific assembled battery will be hereinafter described based on FIG. 4. An embodiment in which (1-m) is preferentially charged to other assembled batteries will be described.

図4に示す蓄電システム(20)では、充電入力端子(7b)に加えて充電入力端子(7a)を設けることで、組電池(1−1)〜(1−n)にはそれぞれ二つの充電入力経路が確保されている。  In the power storage system (20) shown in FIG. 4, the battery packs (1-1) to (1-n) are each charged with two charges by providing the charge input terminal (7a) in addition to the charge input terminal (7b). An input path is secured.

つまり、組電池(1−1)〜(1−n)にはそれぞれスイッチ(3−1)〜(3−n)とスイッチ(4a)を介して充電用入力端子(7a)に接続される充電入力経路(以下、「優先充電入力経路」ともいう。)と、スイッチ(4b)を介して充電入力端子(7b)に接続される充電入力経路が確保されている。  In other words, the batteries (1-1) to (1-n) are connected to the charging input terminal (7a) via the switches (3-1) to (3-n) and the switch (4a), respectively. An input path (hereinafter also referred to as “priority charge input path”) and a charge input path connected to the charge input terminal (7b) via the switch (4b) are secured.

図4に示す蓄電システム(20)では充電入力端子(7a)と(7b)にはいずれも貯蔵する電力(主電力)が入力される。主電力からの入力電流Iは、充電入力端子(7a)からIaが入力され、充電入力端子(7b)からIbが入力され、I=Ia+Ibの関係にある。  In the power storage system (20) shown in FIG. 4, the stored power (main power) is input to the charging input terminals (7a) and (7b). The input current I from the main power has a relationship of I = Ia + Ib, where Ia is input from the charge input terminal (7a), Ib is input from the charge input terminal (7b).

そこで、スイッチ(4a)とスイッチ(3−m)をON状態にすれば、入力端子(7a)からの充電入力Iaは特定の組電池(1−m)だけに入力され、特定の組電池(1−m)の充電が開始される。ただし、mは1からnまでの任意の整数であり、mを1からnまで順繰りに変更すれば、組電池(1−1)〜(1−n)はいずれも順繰りに特定の組電池に選定される。同時に、スイッチ(4b)をON状態とすれば入力端子(7b)からの充電入力Ibが入力されてその他の組電池の充電が開始される。  Therefore, if the switch (4a) and the switch (3-m) are turned on, the charging input Ia from the input terminal (7a) is input only to the specific assembled battery (1-m), and the specific assembled battery ( 1-m) charging is started. However, m is an arbitrary integer from 1 to n, and if m is changed in order from 1 to n, each of the assembled batteries (1-1) to (1-n) becomes a specific assembled battery in order. Selected. At the same time, if the switch (4b) is turned on, the charging input Ib from the input terminal (7b) is input and charging of the other assembled batteries is started.

充電開始時における充電電流IaはIa≫I/nの関係を充たし、且つ予定する充電時間(例えば余剰電力が発生し続ける時間)で特定の組電池(1−m)のSOCが100%に達し得る電流値に設定される。この条件下では、特定の組電池組電池(1−m)は他の組電池より大きい充電電流で充電されるので充電電圧が他の組電池よりも高くなるため、充電入力Ibは組電池(1−m)には入力されない。  The charging current Ia at the start of charging satisfies the relationship of Ia >> I / n, and the SOC of the specific assembled battery (1-m) reaches 100% in the scheduled charging time (for example, the time during which surplus power continues to be generated). The current value to be obtained is set. Under this condition, the specific assembled battery assembled battery (1-m) is charged with a charging current larger than that of the other assembled batteries, so that the charging voltage is higher than that of the other assembled batteries. 1-m) is not input.

ソーラー発電のための蓄電システムでは予定する充電時間としては6〜8時間程度が見込まれるので、特定の組電池(1−m)のSOCが100%に達し得る電流値Iaとしては具体的には0.2CA程度に設定される。ただし、組電池(1−m)の定格容量は1CAhとする。また、組電池(1−m)が定電流放電においてSOCが100%から0%まで5時間で放電する放電電流値を0.2CAとする。因みに、市販の鉛蓄電池やニッケル水素電池やリチウムイオン電池ではいずれにおいても6〜8時間程度の定電流定電圧充電では0.2CA程度の電流設定は標準的である。  In the power storage system for solar power generation, the estimated charging time is expected to be about 6 to 8 hours. Specifically, the current value Ia at which the SOC of the specific assembled battery (1-m) can reach 100% is specifically described. It is set to about 0.2 CA. However, the rated capacity of the assembled battery (1-m) is 1 CAh. The discharge current value at which the assembled battery (1-m) discharges in 5 hours from 100% to 0% in the constant current discharge is 0.2 CA. Incidentally, in a commercially available lead storage battery, nickel metal hydride battery, or lithium ion battery, a current setting of about 0.2 CA is standard for constant current and constant voltage charging of about 6 to 8 hours.

図4に示す蓄電システム(20)に入力される充電電流Iがn組の組電池に均等に入力される場合には各組電池にはI/nが入力されるわけであるが、Ia≫I/nの関係を充たせば、充電入力Iaで充電される特定の組電池(1−m)は他の組電池より大きい充電電流で充電されるので他の組電池に優先して充電される。従って、予定の充電時間が経過して充電終了となれば、他の組電池のSOCは100%には達していなくても、優先して充電された特定の組電池(1−m)は100%のSOCに達する。他の組電池のSOCが100%に達していなければ蓄電システム(20)のSOCも100%には達しないわけである。  In the case where the charging current I input to the power storage system (20) shown in FIG. 4 is equally input to n sets of assembled batteries, I / n is input to each assembled battery. If the relationship of I / n is satisfied, the specific assembled battery (1-m) charged with the charging input Ia is charged with a charging current larger than that of the other assembled batteries, so that it is charged with priority over other assembled batteries. The Therefore, when the scheduled charging time elapses and charging ends, the specific assembled battery (1-m) charged with priority is 100 even if the SOC of the other assembled batteries has not reached 100%. % SOC is reached. If the SOC of the other assembled battery does not reach 100%, the SOC of the power storage system (20) does not reach 100%.

図5には蓄電システム(20)のSOCが85%及び35%に達して放電終了となった場合についてそれぞれその一例を示した。図5には図4の構成でn=4で構成される蓄電システム(20)を4組の組電池(1−1)〜(1−4)が並列に接続された模式図で示し、各組電池には棒グラフ(32)で各組電池のSOCを示し、点線(31)で蓄電システム(20)のSOCを示している。  FIG. 5 shows examples of cases where the SOC of the power storage system (20) reaches 85% and 35% and the discharge is terminated. FIG. 5 shows a schematic diagram in which four battery packs (1-1) to (1-4) are connected in parallel to each other, with the storage system (20) configured with n = 4 in the configuration of FIG. For the assembled battery, the bar graph (32) indicates the SOC of each assembled battery, and the dotted line (31) indicates the SOC of the power storage system (20).

図5Aは、蓄電システム(20)が85%のSOC(31)に達した時点で充電終了となった場合を示している。図5Aではたまたま組電池(1−3)が特定の組電池に選定された場合であるが、蓄電システム(20)は図4に基づいて構成されるので、予定の充電時間が経過して充電終了となれば、特定の組電池(1−3)は100%のSOCに達している。  FIG. 5A shows a case where charging ends when the power storage system (20) reaches 85% SOC (31). FIG. 5A shows a case where the assembled battery (1-3) happens to be selected as a specific assembled battery, but the power storage system (20) is configured based on FIG. When it is finished, the specific assembled battery (1-3) has reached 100% SOC.

図5Aでは蓄電システム(20)の定格容量は組電池の定格容量の4倍であり、蓄電システム(20)が85%のSOC(31)に達した場合には、蓄電システムのSOCの25%相当が特定の組電池(1−3)に充電され、残りの60%相当が他の組電池に充電されて、他の組電池のSOCは80%程度に止まっている。つまり、図4に基づく蓄電システムは充電終了時のSOCが85%程度で充放電が繰り返される場合においても、全ての組電池は順繰りに特定の組電池に選定されるので全ての組電池が図5Aの組電池(1−3)と同じようにnサイクルに1回の頻度で100%のSOCに達することが出来る。  In FIG. 5A, the rated capacity of the power storage system (20) is four times the rated capacity of the assembled battery, and when the power storage system (20) reaches 85% SOC (31), 25% of the SOC of the power storage system. The equivalent battery is charged to the specific assembled battery (1-3), the remaining 60% is charged to the other assembled battery, and the SOC of the other assembled battery remains at about 80%. That is, in the power storage system based on FIG. 4, even when charging / discharging is repeated when the SOC at the end of charging is about 85%, all the assembled batteries are selected as a specific assembled battery in order. As with the 5A battery pack (1-3), 100% SOC can be reached once every n cycles.

また、図5Bには、蓄電システム(20)が僅か35%のSOC(31)に達しただけで充電終了となった場合を示している。ソーラー発電用の蓄電システムにおいては天候次第では当然考えられる。図5Bでは、たまたま組電池(1−2)が特定の組電池に選定された場合であるが、蓄電システム(20)は同じく図4に基づく構成であり、特定の組電池(1−2)は予定の充電時間が経過して100%のSOCに達している。  Further, FIG. 5B shows a case where the charging ends when the power storage system (20) reaches only 35% SOC (31). Naturally, a storage system for solar power generation is conceivable depending on the weather. FIG. 5B shows a case where the assembled battery (1-2) happens to be selected as the specific assembled battery, but the power storage system (20) is similarly configured based on FIG. 4 and the specific assembled battery (1-2). Has reached 100% SOC after the scheduled charging time.

図5Bでも蓄電システム(20)の35%のSOCのうち25%相当が特定の組電池(1−2)に充電され、残りの10%相当が他の組電池に充電されている。従って、他の組電池のSOCは13.3%(4×10%÷3)程度に止まる。つまり、図4に基づく蓄電システムはSOCが僅か35%程度に達する程度で充放電が繰り返される場合においても、全ての組電池がnサイクルに1回の頻度で図5Bの組電池(1−2)と同じように100%のSOCに達することが出来る。  In FIG. 5B as well, 25% of the 35% SOC of the power storage system (20) is charged to the specific assembled battery (1-2), and the remaining 10% is charged to the other assembled battery. Therefore, the SOC of other assembled batteries is limited to about 13.3% (4 × 10% ÷ 3). That is, in the power storage system based on FIG. 4, even when charging / discharging is repeated to the extent that the SOC reaches only about 35%, all the assembled batteries are shown in FIG. ) Can reach 100% SOC.

図4に基づく蓄電システム(20)は、図5Aと図5Bの比較でも明らかなように、蓄電システムのSOCは全ての組電池のSOCの平均値で決定されるため、組電池数nが大きいほど蓄電システム(20)のSOCが低い状態でも特定組電池のSOCが100%に到達可能となる。その意味からは図4に基づく蓄電システムでは組電池数nが大きい方が好ましいことになる。  As can be seen from the comparison between FIG. 5A and FIG. 5B, the power storage system (20) based on FIG. 4 has a large number n of assembled batteries because the SOC of the power storage system is determined by the average value of the SOCs of all the assembled batteries. The SOC of the specific assembled battery can reach 100% even when the SOC of the power storage system (20) is low. From this point of view, it is preferable that the number n of assembled batteries is larger in the power storage system based on FIG.

一方、組電池数nが大きいほど特定組電池に選定される頻度は少なくなる。蓄電池の電極活物質は電極反応を通してその活性(可逆性)は回復され得るが、長期間電極反応に関与しなければ回復され難くなる。従って、蓄電池はより頻繁に100%のSOCに達することが好ましく、その意味からは図4に基づく蓄電システムは組電池数nが少ない方が好ましいことになる。  On the other hand, the greater the number n of assembled batteries, the less frequently the specific assembled battery is selected. The activity (reversibility) of the electrode active material of the storage battery can be recovered through the electrode reaction, but it is difficult to recover unless it is involved in the electrode reaction for a long time. Therefore, it is preferable that the storage battery reaches 100% SOC more frequently. From this point of view, it is preferable that the power storage system based on FIG.

そこで、以下、図4に基づく蓄電システムがソーラー発電の蓄電システムとして使用される場合の適切な組電池数nについて説明する。  Therefore, an appropriate number n of assembled batteries when the power storage system based on FIG. 4 is used as a power storage system for solar power generation will be described below.

蓄電池は充電末期には定電圧充電に移行せざるを得ないため一定の充電電流を充電終了まで継続して入力することが出来ない。そのため、余剰電力が過剰な状態で8時間程度の充電を行えば、蓄電システムや蓄電池は100%のSOCに到達可能である。しかし、全ての余剰電力を入力して8時間程度で充電する場合には蓄電システムや蓄電池は100%のSOCに到達することは出来ない。  Since the storage battery must move to constant voltage charging at the end of charging, a constant charging current cannot be continuously input until the charging is completed. Therefore, if charging is performed for about 8 hours in a state where surplus power is excessive, the power storage system and the storage battery can reach 100% SOC. However, when all surplus power is input and charging is performed in about 8 hours, the power storage system and the storage battery cannot reach 100% SOC.

ソーラー発電の余剰電力は天候次第では大きく異なるので、ソーラー発電の蓄電システムではSOCが低い状態で充電終了となる可能性は大いにあり得る。図4に基づく蓄電システム(20)は図5Bに示すようにSOCが低い状態で充電終了となってもこれを構成する蓄電池は100%のSOCに頻繁に到達し得るということが、ソーラー発電用の蓄電システムとしては極めて大きな利点となる。この利点を生かして、図4に示す蓄電システム(20)にソーラー発電の余剰電力を蓄電しようとする場合には、余剰電力が多い時にも全ての余剰電力が入力可能であり、余剰電力が少ない時でも特定の組電池が100%のSOCに到達し得ることが条件となる。  Since the surplus power of solar power generation varies greatly depending on the weather, there is a great possibility that charging will end when the SOC is low in a solar power storage system. As shown in FIG. 5B, the storage battery (20) based on FIG. 4 is capable of frequently reaching 100% SOC even when charging is terminated with a low SOC. This is an extremely great advantage as a power storage system. Taking advantage of this advantage, when storing the surplus power of solar power generation in the power storage system (20) shown in FIG. 4, all surplus power can be input even when the surplus power is large, and the surplus power is small. Even when a specific assembled battery can reach 100% SOC.

そこで、図4に示す蓄電システム(20)が余剰電力の全てを入力できる条件の下で到達可能な最大のSOCをSOCmaxとし、特定の組電池が100%のSOCに達し得るという条件の下で該蓄電システム(20)が到達可能な最小のSOCをSOCminとする時、

Figure 2017127169
力量の変化に対しては対応し易いことになる。Therefore, under the condition that the maximum SOC that can be reached under the condition that the power storage system (20) shown in FIG. 4 can input all of the surplus power is defined as SOCmax, and a specific assembled battery can reach 100% SOC. When the minimum SOC that the power storage system (20) can reach is SOCmin,
Figure 2017127169
It will be easy to respond to changes in competence.

蓄電システムがSOCmaxに達した時は特定組電池のSOCが100%に達し、更に他の組電池の充電電圧が上限電圧に達した時点である。つまり、他の組電池が上限の充電電圧に達した後では、他の組電池も定電圧充電に移行するため入力可能な余剰電力は減少し、既に蓄電システムのSOCはSOCmaxを超えている。  When the power storage system reaches SOCmax, the SOC of the specific battery pack reaches 100%, and the charging voltage of another battery pack reaches the upper limit voltage. That is, after the other assembled battery reaches the upper limit charging voltage, the other assembled battery also shifts to constant voltage charging, so that the surplus power that can be input decreases, and the SOC of the power storage system has already exceeded SOCmax.

ソーラー発電の蓄電システムでは予定する充電時間としては6〜8時間程度が見込まれるので、特定の組電池(1−m)のSOCが100%に達し得る電流値Iaとしては蓄電池の種類にかかわらずほぼ0.2CA程度に設定すればよい。  In the storage system of solar power generation, the estimated charging time is expected to be about 6 to 8 hours. Therefore, the current value Ia at which the SOC of a specific assembled battery (1-m) can reach 100% regardless of the type of the storage battery What is necessary is just to set to about 0.2CA.

そこで、図4に示す蓄電システム(20)を構成する組電池が0.2CAの定電流充電で充電電圧が上限電圧に達する時点のSOCをS%とすれば、蓄電システム(20)のSOCmaxは次の(1)式で近似することが出来る。ただし、蓄電システム(20)を構成する組電池の定格容量を1CAhとする。
SOCmax=(特定組電池のSOC+S×他の組電池の数)÷組電池総数n・・・・(1)
なお、0.2CAの定電流充電で充電電圧が上限電圧に達する時点のSOC(S%)は電池の種類や電池構造や温度環境などによって異なるが、一般的にはS=75〜90%程度にある。
Therefore, if the SOC when the battery pack constituting the power storage system (20) shown in FIG. 4 reaches the upper limit voltage with constant current charging of 0.2 CA is S%, the SOCmax of the power storage system (20) is It can be approximated by the following equation (1). However, the rated capacity of the assembled battery constituting the power storage system (20) is 1 CAh.
SOCmax = (SOC of specific assembled battery + S × number of other assembled batteries) ÷ total number of assembled batteries n (1)
Note that the SOC (S%) at the time when the charging voltage reaches the upper limit voltage with constant current charging of 0.2 CA varies depending on the type of battery, the battery structure, the temperature environment, etc., but generally, S = 75 to 90%. It is in.

一方、予定の充電時間が経過して特定の組電池(1−m)のSOCが100%に達するという条件の下で、図4に示す蓄電システム(20)が到達可能な最小のSOCは充電開始時におけるIaがIa=I、即ちIb=0となる場合である。つまり、充電開始時には貯貯蔵電力(余剰電力)を特定の組電池(1−m)に全て入力する場合である。  On the other hand, the minimum SOC that can be reached by the power storage system (20) shown in FIG. 4 is charged under the condition that the SOC of the specific assembled battery (1-m) reaches 100% after the scheduled charging time has elapsed. This is a case where Ia at the start is Ia = I, that is, Ib = 0. That is, it is a case where all the stored and stored power (surplus power) is input to the specific assembled battery (1-m) at the start of charging.

この場合でも組電池(1−m)が定電圧充電に移行すれば充電電流Iaが減少しながら充電が進行し、充電電流Iaが減少した分は他の組電池に入力される。従って、Ia=I、Ib=0で充電が開始されても、他の組電池が充電されることなしに特定の組電池(1−m)のSOCが100%に達することはできない。  Even in this case, if the assembled battery (1-m) shifts to constant voltage charging, charging proceeds while the charging current Ia decreases, and the amount of decrease in the charging current Ia is input to another assembled battery. Therefore, even if charging is started with Ia = I and Ib = 0, the SOC of the specific assembled battery (1-m) cannot reach 100% without charging other assembled batteries.

特定の組電池(1−m)の定電圧充電期間のIaを平均すれば大まかにはIa=I/3程度まで減少する。従って、特定の組電池(1−m)が定電圧充電で充電されている間には他の組電池は大まかにはIb=(I−I/3)=2Iaで充電されることになる。そこで、予定された充電時間が経過して特定の組電池(1−m)のSOCが100%に達するという条件の下では、図4に示す蓄電システム(20)が到達可能なSOCの最小値(SOCmin)は次の計算式(2)で求められる。  If Ia in the constant voltage charging period of the specific assembled battery (1-m) is averaged, it roughly decreases to about Ia = I / 3. Therefore, while the specific assembled battery (1-m) is charged with constant voltage charging, the other assembled batteries are roughly charged with Ib = (I−I / 3) = 2Ia. Therefore, under the condition that the SOC of the specific assembled battery (1-m) reaches 100% after the scheduled charging time has elapsed, the minimum SOC that can be reached by the power storage system (20) shown in FIG. (SOCmin) is obtained by the following calculation formula (2).

SOCmin=(特定組電池のSOC+(100−S)×2)÷組電池の数n・・・・(2)
なお、(2)式でもS(%)は蓄電システムを構成する組電池が0.2CAの定電流充電で充電電圧が上限電圧に達する時点のSOCである。ただし、蓄電システムを構成する組電池の定格容量を1CAhとする。
SOCmin = (SOC of specific battery pack + (100−S) × 2) ÷ number of battery packs n (2)
In the formula (2), S (%) is the SOC at the time when the battery pack constituting the power storage system reaches the upper limit voltage with constant current charging of 0.2 CA. However, the rated capacity of the assembled battery constituting the power storage system is 1 CAh.

Figure 2017127169
えられる。
Figure 2017127169
Figure 2017127169
available.
Figure 2017127169

Figure 2017127169
Sは蓄電池の種類や電池構造や温度環境などによって異なるが、既存の蓄電池ではS=75〜90%程度にある。従って、既存の蓄電池を使用して図4に示す蓄電システム(20)
Figure 2017127169
Figure 2017127169
S varies depending on the type of storage battery, battery structure, temperature environment, and the like, but in existing storage batteries, S is about 75 to 90%. Therefore, the power storage system (20) shown in FIG.
Figure 2017127169

(3)式をグラフ化したのが図6である。蓄電池はより頻繁に100%のSOCに達する方が好ましく、その意味からは組電池数nが少ない方が好ましいことになるが、頻繁に

Figure 2017127169
が小さければ、幅広い余剰電力の変化には対応できない。FIG. 6 is a graph of the expression (3). It is preferable that the storage battery reaches 100% SOC more frequently, and in that sense, it is preferable that the number n of assembled batteries is smaller.
Figure 2017127169
Is small, it cannot cope with a wide range of surplus power changes.

図6に示したように、例えばSが80%の蓄電池、つまり、0.2CAの定電流充電で充電電圧が上限電圧に達する時点のSOCがS%に到達する蓄電池を使用して図4に示す

Figure 2017127169
合、図4に示す蓄電システム(20)はソーラー発電の余剰電力量の+/−10%の変化にしか対応できない。これに対してn=3では+/−20%の、n=4では+/−25%のそれぞれ余剰電力量の変化に対して対応できることが分かる。As shown in FIG. 6, for example, a storage battery having S of 80%, that is, a storage battery in which the SOC when the charging voltage reaches the upper limit voltage by constant current charging of 0.2 CA reaches S% is used in FIG. 4. Show
Figure 2017127169
In this case, the power storage system (20) shown in FIG. 4 can only cope with a change of +/− 10% in the surplus power amount of solar power generation. On the other hand, it can be seen that it is possible to cope with changes in surplus power amount of +/− 20% when n = 3 and +/− 25% when n = 4.

Figure 2017127169
ないこともわかる。蓄電池がより頻繁に100%のSOCに達する方が好ましく、基本的には組電池数nが少ない方が好ましいわけであり、図4に示す蓄電システム(20)がソーラー発電の蓄電システムとして適用される場合には組電池数nは3≦n≦6が好ましいことになる。
Figure 2017127169
I understand that there is no. It is preferable that the storage battery reaches 100% SOC more frequently. Basically, it is preferable that the number n of assembled batteries is small, and the storage system (20) shown in FIG. 4 is applied as a storage system for solar power generation. In this case, the number n of assembled batteries is preferably 3 ≦ n ≦ 6.

以上、図2に基づき、特定の組電池(1−m)が“優先して放電”される実施の形態について、また、図4に基づき、特定の組電池(1−m)が“優先して充電”される実施の形態について説明したが、図1に示す蓄電システム(20)は図2示す蓄電システム(20)と図4示す蓄電システム(20)が合体された構成であり、その充電における実施の形態は図4に示す蓄電システム(20)と同じであり、放電における実施の形態は図2に示す蓄電システム(20)と同じである。従って、図1に示す蓄電システム(20)がソーラー発電の蓄電システムとして適用される場合では組電池数nは3≦n≦6が好ましいことになる。  As described above, the specific assembled battery (1-m) is “prioritizedly discharged” based on FIG. 2, and the specific assembled battery (1-m) is “prioritized” based on FIG. 1 is described, the power storage system (20) shown in FIG. 1 is configured by combining the power storage system (20) shown in FIG. 2 and the power storage system (20) shown in FIG. The embodiment in is the same as the power storage system (20) shown in FIG. 4, and the embodiment in the discharge is the same as the power storage system (20) shown in FIG. Therefore, when the power storage system (20) shown in FIG. 1 is applied as a solar power storage system, the number n of assembled batteries is preferably 3 ≦ n ≦ 6.

また、図1に示す蓄電システム(20)はスイッチ(3−1)〜(3−n)が全てOFF状態に維持されれば、図2示す蓄電システム(20)と同じ機能を有するものであり、スイッチ(2−1)〜(2−n)が常にON状態に維持されれば、図4に示す蓄電システム(20)と同じ機能を有することになる。  The power storage system (20) shown in FIG. 1 has the same function as the power storage system (20) shown in FIG. 2 as long as the switches (3-1) to (3-n) are all kept in the OFF state. If the switches (2-1) to (2-n) are always maintained in the ON state, they have the same function as the power storage system (20) shown in FIG.

また、図1に示す蓄電システム(20)では、通常、予定される充電時間が経過すればスイッチ(4a)と(4b)をOFF状態にして貯蔵電力(貯蔵対象の電力)による充電が終了される。充電終了後はスイッチ(2)とスイッチ(5)をON状態として各組電池は出力端子(9)から外部回路に出力することが出来る。この時、図1に示したスイッチ(2−1)〜(2−n)を個別にON状態にして各組電池は順番に個別に放電させることも出来る。  Further, in the power storage system (20) shown in FIG. 1, normally, when the scheduled charging time elapses, the switches (4a) and (4b) are turned off and the charging by the stored power (power to be stored) is terminated. The After completion of charging, the switches (2) and (5) are turned on, and each assembled battery can be output from the output terminal (9) to an external circuit. At this time, the switches (2-1) to (2-n) shown in FIG. 1 can be individually turned on to discharge each assembled battery individually.

各組電池を個別に放電させる場合には、優先して充電された特定の組電池(1−m)の放電の順番を最後にすれば、特定の組電池(1−m)には放電までの待機時間が出来る。そこでその待機時間を利用して特定の組電池(1−m)は補助電力によって更に追加充電することもできる。  When discharging each assembled battery individually, if the discharge order of the specific assembled battery (1-m) charged with priority is made last, the specific assembled battery (1-m) is discharged until the discharge. The waiting time can be. Therefore, the specific assembled battery (1-m) can be additionally charged with auxiliary power using the standby time.

図7には優先して充電された特定の組電池(1−m)が、主電力(貯蔵電力)による充電が停止した後に補助電力によって更に追加充電される仕組みを示している。図7は図1で構成される蓄電システムに補助電力用の充電器(13)を追加しただけである。図7では補助電力が特定の組電池(1−m)以外の組電池の放電出力を作動電源とする充電器(13)によって賄われる仕組みを示した。  FIG. 7 shows a mechanism in which a specific assembled battery (1-m) that has been preferentially charged is additionally charged by auxiliary power after charging by main power (storage power) is stopped. FIG. 7 shows only the addition of the auxiliary power charger (13) to the power storage system shown in FIG. FIG. 7 shows a mechanism in which auxiliary power is provided by a charger (13) that uses a discharge output of an assembled battery other than a specific assembled battery (1-m) as an operating power source.

図7に示す蓄電システム(20)では組電池の放電出力の一部を動作電源とする充電器(13)が「優先充電入力経路」に並列に接続されている。図7に示す蓄電システム(20)では、予定される充電時間が経過すればスイッチ(3−m)はON状態のままでスイッチ(4a)と(4b)をOFF状態にして主電力(貯蔵電力)による充電が終了される。  In the power storage system (20) shown in FIG. 7, a charger (13) using a part of the discharge output of the assembled battery as an operating power supply is connected in parallel to the “priority charge input path”. In the power storage system (20) shown in FIG. 7, when the scheduled charging time elapses, the switch (3-m) remains in the ON state and the switches (4a) and (4b) are in the OFF state to store the main power (storage power). ) Is terminated.

主電力(貯蔵電力)による充電が終了した後ではスイッチ(2−m)はOFF状態のままでその他のスイッチ(2)と補助電力供給用スイッチ(6)をON状態とすれば、特定の組電池(1−m)以外の組電池の放電出力が動作電源となって充電器(13)が作動し、充電器(13)の出力が「優先充電入力経路」を経由してスイッチ(3−m)がON状態であれば特定の組電池(1−m)に入力される。その結果、特定の組電池(1−m)は更に追加的に充電される。  After charging with the main power (stored power) is completed, the switch (2-m) remains in the OFF state, and the other switch (2) and the auxiliary power supply switch (6) are in the ON state. The discharge output of the assembled battery other than the battery (1-m) serves as an operating power source to operate the charger (13), and the output of the charger (13) is switched to the switch (3- If m) is in the ON state, it is input to the specific assembled battery (1-m). As a result, the specific assembled battery (1-m) is additionally charged.

特定組電池以外からの放電出力は充電器(13)の動作電源になると同時に、スイッチ(5)がON状態であれば、当然、出力端子(9)から外部回路に出力することが出来る。この場合、特定組電池は主電力による充電で既に高いSOCまで達しているので充電器(13)からの追加充電入力はかなり減衰している。そのため、組電池の放電出力が充電器(13)によって消費される分は僅かであり、組電池の放電出力の殆どは外部回路に出力することが出来る。  When the switch (5) is in the ON state, the discharge output from other than the specific assembled battery can be output to the external circuit from the output terminal (9) as long as the switch (5) is in the ON state. In this case, since the specific assembled battery has already reached a high SOC by charging with the main power, the additional charging input from the charger (13) is considerably attenuated. Therefore, the discharge output of the assembled battery is consumed by the charger (13), and most of the discharge output of the assembled battery can be output to an external circuit.

一方、主電力(貯蔵電力)による充電時間が短いなどの理由で特定組電池が100%のSOCに至る前に主電力による充電が終了したとしても、特定の組電池(1−m)は追加充電によって100%のSOCに達することが出来る。  On the other hand, even if charging with the main power ends before the specific assembled battery reaches 100% SOC because the charging time with the main power (storage power) is short, the specific assembled battery (1-m) is added. 100% SOC can be reached by charging.

以下実施例により本発明を更に詳しく説明する。  Hereinafter, the present invention will be described in more detail with reference to examples.

ソーラー発電の蓄電量が日照時間帯以外で必要とされる電力量を上回る設計の蓄電システムでは日常的にはDODに余裕を残して充電放電が繰り返される。従って該蓄電システムがニッケル水素電池やニッケルカドミウム電池で構成される場合にはニッケル水素電池やニッケルカドミウム電池には「メモリー効果」による性能劣化が現れる。小型の電気機器に使用されるニッケル水素電池であれば空放電することでメモリー効果を排除できるがソーラー発電の蓄電システムで空放電することは容易ではない。  In a power storage system designed so that the amount of power stored by solar power generation exceeds the amount of power required outside the sunshine hours, charging and discharging are repeated with a margin in the DOD on a daily basis. Therefore, when the power storage system is composed of a nickel metal hydride battery or a nickel cadmium battery, performance deterioration due to the “memory effect” appears in the nickel metal hydride battery or the nickel cadmium battery. If it is a nickel metal hydride battery used for a small electric device, it is possible to eliminate the memory effect by discharging the battery, but it is not easy to discharge the battery with a solar power storage system.

本実施例では、ニッケル水素電池で構成される蓄電システムを図2に示す構成で作製し、特定の組電池(1−m)の優先放電によって「メモリー効果」の排除を試みた。本実施例では、12Aの余剰電力が1日8時間連続して発生するという想定で、この余剰電力を蓄電システムに充電し、蓄電システムの放電はDODが90%程度で終了するという前提で蓄電システムを作製した。  In this example, an electricity storage system composed of nickel metal hydride batteries was produced with the structure shown in FIG. 2, and an attempt was made to eliminate the “memory effect” by preferential discharge of a specific assembled battery (1-m). In this embodiment, assuming that surplus power of 12A is generated continuously for 8 hours a day, this surplus power is charged into the power storage system, and the discharge of the power storage system is stored on the assumption that the DOD ends at about 90%. A system was created.

ソーラー発電用の蓄電システムでは定格容量に余裕を残して充電することで余剰電力を高い貯蔵効率で蓄えることが出来る。もし、余剰電力に対して蓄電システムの定格容量が不足すれば余剰電力の一部は貯蔵できなくなって余剰電力の貯蔵効率は低下する。そこで、本実施例の蓄電システムは少なくとも発生する余剰電力の全てを8時間継続して入力可能とすることを条件にして設計した。  In a power storage system for solar power generation, surplus power can be stored with high storage efficiency by charging with a margin in the rated capacity. If the rated capacity of the power storage system is insufficient with respect to the surplus power, a part of the surplus power cannot be stored and the storage efficiency of surplus power is reduced. Therefore, the power storage system of this example was designed on the condition that at least all of the generated surplus power can be input continuously for 8 hours.

蓄電システムを構成するためのニッケル水素電池は、市販の単3形のニッケル水素電池(公称電圧1.2V、公称容量1.3Ah)を用意した。用意したニッケル水素電池は24セルを並列に接続し、更にその10個を直列に接続して4組の組電池を作製した。  As a nickel metal hydride battery for constituting the power storage system, a commercially available AA nickel metal hydride battery (nominal voltage 1.2 V, nominal capacity 1.3 Ah) was prepared. The prepared nickel-metal hydride batteries were connected in 24 cells in parallel, and 10 of them were connected in series to produce four sets of assembled batteries.

作製した組電池はいずれも6Aの定電流で、上限電圧を14Vに設定して8時間の定電流充電を行い、その後、終止電圧10Vまで6Aの定電流放電を行ってそれぞれの放電容量を測定した。その結果、放電容量はいずれも約30Ahであったので該組電池の定格容量を30Ahと決定した。  Each of the assembled batteries was a constant current of 6A, the upper limit voltage was set to 14V, the constant current charge was performed for 8 hours, and then the 6A constant current discharge was performed up to the final voltage of 10V to measure each discharge capacity. did. As a result, the discharge capacity was about 30 Ah, so the rated capacity of the assembled battery was determined to be 30 Ah.

本実施例における蓄電システムは用意した組電池の4個(合計120Ah)を使用して図2に示す構成で、組電池(1−1)〜(1−4)を制御装置(15)の接続端子(8−1)〜(8−4)に接続してn=4で作製した。本実施例における蓄電システム(20)の定格容量は120Ahであり、予定する充電入力(96Ah)は定格容量の80%程度ということになる。  The power storage system in the present embodiment uses four prepared battery packs (total of 120 Ah) as shown in FIG. 2 and connects the battery packs (1-1) to (1-4) to the control device (15). It connected to terminal (8-1)-(8-4), and produced it by n = 4. The rated capacity of the power storage system (20) in this embodiment is 120 Ah, and the planned charge input (96 Ah) is about 80% of the rated capacity.

図2に示す制御装置(15)の充電入力端子(7b)には市販の定電圧定電流直流電源を接続し、この直流電源の出力電流Ibは12Aに設定し、上限電圧は14.5Vに設定して、スイッチ(4b)をON状態にして蓄電システム(20)の充電を開始した。  A commercially available constant voltage constant current DC power source is connected to the charging input terminal (7b) of the control device (15) shown in FIG. 2, the output current Ib of this DC power source is set to 12A, and the upper limit voltage is set to 14.5V. Then, the switch (4b) was turned on to start charging the power storage system (20).

本実施例では蓄電システム(20)の充電は12Aの充電電流を継続して入力し、8時間経過した時点で充電を終了した。その後、先ず、スイッチ(2−m)をON状態にして組電池(1−m)を特定の組電池に選定して6Aの定電流で放電電圧が終止電圧(10V)に達するまで放電を行った。その後はスイッチ(2−m)以外のスイッチ(2)を順番にON状態にして他の組電池についても6Aの定電流放電を継続して行った。本実施例では蓄電システムの定格容量の10%程度を残して放電を終了するということを前提としたので、最後の組電池の放電では放電電圧が12.6Vに達した時点で放電を終了するという方法で1日1サイクルの充放電を繰り返して行った。  In this example, the charging of the power storage system (20) was continuously input with a charging current of 12A, and the charging was terminated when 8 hours had elapsed. After that, first, the switch (2-m) is turned on to select the assembled battery (1-m) as a specific assembled battery, and discharging is performed at a constant current of 6A until the discharge voltage reaches the final voltage (10V). It was. Thereafter, the switches (2) other than the switch (2-m) were sequentially turned on, and the 6A constant current discharge was continued for the other assembled batteries. In this embodiment, since it is assumed that the discharge is terminated with leaving about 10% of the rated capacity of the power storage system, the discharge is terminated when the discharge voltage reaches 12.6 V in the last discharge of the assembled battery. In this way, charge / discharge of one cycle per day was repeated.

放電電圧が12.6Vで放電を停止した最後の組電池はSOCが約40%に止まるので、蓄電システムの定格容量に換算すれば10%程度を残して放電を終了したことになる。つまり、蓄電システムのDODが90%に達したところで放電を終了したことになる。ただし、本実施例ではmは1から4までの整数であり、充電を繰り返すたびにmを1から4まで順繰り変更して組電池(1−1)〜(1−4)を順繰りに特定の組電池に選定した。  The last assembled battery that stops discharging at a discharge voltage of 12.6 V has an SOC of only about 40%. Therefore, when converted to the rated capacity of the power storage system, the discharge ends with about 10% remaining. That is, the discharge is finished when the DOD of the power storage system reaches 90%. However, in this embodiment, m is an integer from 1 to 4, and each time charging is repeated, m is sequentially changed from 1 to 4, and the assembled batteries (1-1) to (1-4) are sequentially specified. Selected as an assembled battery.

各サイクルにおける各組電池の放電量はそれぞれの放電時間から計算され、各組電池の放電量の合計が蓄電システムの放電量である。最後の組電池を除く3組はいずれも約4.3時間で終止電圧(10V)に達したので放電量は26Ahであり、蓄電システムの放電量は92Ah(26×4−30×0.4)である。なお、蓄電システムの放電時間は15.3時間で蓄電池の標準的な放電時間に比べて相当長いが、各組電池はそれぞれ5時間率(蓄電池の標準的な放電率)で放電している。  The discharge amount of each assembled battery in each cycle is calculated from each discharge time, and the total discharge amount of each assembled battery is the discharge amount of the power storage system. Since all three sets except the last assembled battery reached the end voltage (10V) in about 4.3 hours, the discharge amount was 26 Ah, and the discharge amount of the power storage system was 92 Ah (26 × 4-30 × 0.4). ). The discharge time of the power storage system is 15.3 hours, which is considerably longer than the standard discharge time of the storage battery, but each assembled battery is discharged at a 5-hour rate (standard discharge rate of the storage battery).

結局、本実施例の充放電サイクルでは蓄電システムは12Aの充電電流で8時間充電することでSOCが(92/120+0.1)×100=86%に達した。一方、放電に際しては特定の組電池(1−m)が先ず0%のSOC(DOD=100%)まで放電され、続いて他の2組の組電池も順次0%のSOC(DOD=100%)まで放電され、最後の組電池が約40%のSOCに達した時点で放電が終了された。  Eventually, in the charge / discharge cycle of this example, the SOC reached (92/120 + 0.1) × 100 = 86% by charging the power storage system with a charging current of 12 A for 8 hours. On the other hand, when discharging, a specific assembled battery (1-m) is first discharged to 0% SOC (DOD = 100%), and then the other two assembled batteries are sequentially discharged to 0% SOC (DOD = 100%). ) Until the last assembled battery reached about 40% SOC.

ここで、特定の組電池(1−m)の放電に着目して見れば、該蓄電システムのDODが35%(SOC=65%)まで放電された段階で既に特定の組電池(1−m)は0%のSOC(DOD=100%)まで放電されている。しかも、特定の組電池は充放電の度に順繰りに変更されるので、本実施例における蓄電システムはSOCが86%と65%の間で充放電が繰り返されるとしても、全ての組電池が4サイクルに1回は0%のSOC(DOD=100%)にまで達することが明らかである。  Here, if attention is paid to the discharge of the specific assembled battery (1-m), the specific assembled battery (1-m) is already generated when the DOD of the power storage system is discharged to 35% (SOC = 65%). ) Is discharged to 0% SOC (DOD = 100%). In addition, since the specific assembled battery is changed in order every time it is charged and discharged, the battery system in this embodiment has all 4 assembled batteries even if the SOC is repeated between 86% and 65%. It is clear that once a cycle, 0% SOC (DOD = 100%) is reached.

従って、図2に示す蓄電システム(20)のように複数の組電池の中から順繰りに選ばれる特定の組電池が他の組電池に優先して放電される蓄電システムでは、ニッケル水素電池やニッケルカドミウム電池で構成される場合でも「メモリー効果」による性能劣化が避けられる。  Therefore, in a power storage system in which a specific assembled battery that is sequentially selected from a plurality of assembled batteries is discharged with priority over other assembled batteries as in the power storage system (20) shown in FIG. Even in the case of cadmium batteries, performance degradation due to the “memory effect” can be avoided.

なお、実施例1では、ニッケル水素電池を使用して図2に示す構成で蓄電システムを作製して、本発明の実施の形態について説明したが、実施例1は図2に示す構成の適用例の一つを示したものであり、ニッケル水素電池の使用に限定する趣旨ではない。  In the first embodiment, the nickel hydride battery is used to manufacture the power storage system with the configuration shown in FIG. 2 and the embodiment of the present invention is described. However, the first embodiment is an application example of the configuration shown in FIG. Is not intended to limit the use of nickel metal hydride batteries.

ソーラー発電の余剰電力量は天候によって異なるのでソーラー発電用の蓄電システムには余剰電力を毎日定格容量一杯まで充電するというわけにはいかない。従って、ソーラー発電用の蓄電システムが、特に鉛蓄電池で構成される場合には、鉛蓄電池には未充電の硫酸鉛が残ることになり、所謂、「サルフェーション」と言われる現象によって性能劣化する可能性が高い。  Since the amount of surplus power generated by solar power generation varies depending on the weather, it is impossible to charge the power storage system for solar power generation to the full rated capacity every day. Therefore, when the power storage system for solar power generation is composed of a lead storage battery, uncharged lead sulfate remains in the lead storage battery, and the performance may be deteriorated by a phenomenon called “sulfation”. High nature.

本実施例では、鉛蓄電池で構成される蓄電システムでも図4又は図1の構成に基づく場合には、特定の組電池(1−m)の優先充電によって鉛蓄電池には未充電の硫酸鉛が長期間放置されないことを確認した。ただし、図4の構成では各組電池の個別の容量測定が容易ではないため、あえて、図1の構成に基づいて作製した。しかし、図1の構成で作成されても、蓄電システム(20)の充放電サイクルがスイッチ(2)を全てON状態として行われれば、図4の構成で作製した場合と同じ結果が得られる。  In the present embodiment, even in a power storage system including a lead storage battery, when the lead storage battery is based on the configuration of FIG. 4 or FIG. It was confirmed that it was not left for a long time. However, since it is not easy to measure the individual capacity of each assembled battery in the configuration of FIG. 4, it was prepared based on the configuration of FIG. However, even if it is created with the configuration of FIG. 1, if the charge / discharge cycle of the power storage system (20) is performed with all the switches (2) in the ON state, the same result as that obtained with the configuration of FIG. 4 can be obtained.

本実施例は、ソーラー発電の余剰電力が最大33Aであるとの前提で、余剰電力が比較的多い日には最大値の82%(27A)が、少ない日には最大値の36%(12A)がそれぞれ1日8時間連続して発生するという想定で実施した。ソーラー発電の余剰電力に対して蓄電システムの定格容量が不足すれば余剰電力の一部は貯蔵できなくなって余剰電力の貯蔵効率は低下する。従って、本実施例における蓄電システムの設計は余剰電力の最大(33A)が8時間継続して蓄電システムに入力可能とすることを条件とした。  This example is based on the premise that the surplus power of solar power generation is a maximum of 33A, 82% (27A) of the maximum value on a day when the surplus power is relatively high, and 36% (12A) of the maximum value on a day with a small amount. ) Was assumed to occur continuously for 8 hours per day. If the rated capacity of the power storage system is insufficient with respect to the surplus power of solar power generation, a part of surplus power cannot be stored and the storage efficiency of surplus power is reduced. Therefore, the design of the power storage system in the present example is based on the condition that the maximum surplus power (33 A) can be continuously input to the power storage system for 8 hours.

蓄電システムを構成するための鉛蓄電池には市販の鉛蓄電池(公称電圧12V、公称容量60Ah、寸法388×116×175mm、質量約21kg)を用意した。用意した鉛蓄電池は何れも6個の単セルが直列に接続されて構成された組電池である。  A commercially available lead storage battery (nominal voltage 12 V, nominal capacity 60 Ah, dimensions 388 × 116 × 175 mm, mass about 21 kg) was prepared as a lead storage battery for constituting the power storage system. Each of the prepared lead storage batteries is an assembled battery in which six single cells are connected in series.

用意した組電池はいずれも12Aの定電流で、上限電圧を14.8Vに設定して8時間の充電を行い、その後、終止電圧10.5Vまで11Aの定電流放電を行ってそれぞれの放電容量を測定した。その結果、放電容量はいずれも約58Ahであったので該組電池の定格容量を58Ahと決定した。なお、本明細書では定格容量とは標準的な充電方法で充電される最大の充電容量(=放電可能な容量)と定義している。  Each of the prepared batteries has a constant current of 12A, the upper limit voltage is set to 14.8V and charging is performed for 8 hours, and then the constant current discharge of 11A is performed up to a final voltage of 10.5V to obtain each discharge capacity. Was measured. As a result, since the discharge capacity was about 58 Ah, the rated capacity of the assembled battery was determined to be 58 Ah. In the present specification, the rated capacity is defined as the maximum charge capacity (= capacity that can be discharged) charged by a standard charging method.

そこで、本実施例における蓄電システムは用意した組電池の5個(合計290Ah)を使用して図1(目的は図4の蓄電システムの実施)に示す構成で、組電池(1−1)〜(1−5)を制御装置(15)の接続端子(8−1)〜(8−5)に接続してn=5で作製した。本実施例における蓄電システム(20)の定格容量は290Ahであり、余剰電力の最大(33A×8h)は定格容量の91%程度ということになり、比較的多い日の余剰電力(27A×8)は定格容量の74%程度で、少ない日の充電入力(12A×8h)は定格容量の33%程度ということになる。  Therefore, the power storage system in this embodiment uses five prepared battery packs (total 290 Ah) and has the configuration shown in FIG. 1 (the purpose is the implementation of the power storage system of FIG. 4), and the assembled batteries (1-1) to (1-5) was connected to the connection terminals (8-1) to (8-5) of the control device (15) to produce n = 5. The rated capacity of the power storage system (20) in the present embodiment is 290 Ah, and the maximum surplus power (33 A × 8 h) is about 91% of the rated capacity, and the surplus power on a relatively large day (27 A × 8). Is about 74% of the rated capacity, and charging input (12A × 8h) on a small day is about 33% of the rated capacity.

充電入力としては市販の定電圧定電流直流電源Aと定電圧定電流直流電源Bを用意して、それぞれを制御装置(15)の充電入力端子(7a)及び(7b)に接続した。ここで、図1に示す蓄電システム(20)はスイッチ(2−1)〜(2−5)をON状態とし、その他のスイッチをOFF状態として、図4に示す蓄電システム(20)と機能上同じにした。  As the charging input, a commercially available constant voltage constant current DC power source A and constant voltage constant current DC power source B were prepared, and each was connected to the charging input terminals (7a) and (7b) of the control device (15). Here, in the power storage system (20) shown in FIG. 1, the switches (2-1) to (2-5) are turned on and the other switches are turned off to functionally function as the power storage system (20) shown in FIG. Made the same.

組電池(1−1)〜(1−5)は何れも11.6A(0.2CA)の定電流充電では充電電圧が上限電圧(14.8V)に到達した時点でSOCは約80%に到達し、その後定電圧充電(14.8V)を続行して合計8時間の充電によってSOCが100%に達することを確認した。そこで、充電入力端子(7a)に接続した直流電源Aは上限電圧を14.8Vに設定し、電流値Iaは11.6Aに設定した。本実施例における電流値Iaは、蓄電システム(20)への充電電力の大きさには関係なく11.6Aに設定される。  In each of the assembled batteries (1-1) to (1-5), when the charging voltage reaches the upper limit voltage (14.8V) in the constant current charging of 11.6A (0.2CA), the SOC becomes about 80%. Then, constant voltage charging (14.8V) was continued, and it was confirmed that the SOC reached 100% by charging for a total of 8 hours. Therefore, the DC power source A connected to the charging input terminal (7a) has the upper limit voltage set to 14.8V and the current value Ia set to 11.6A. The current value Ia in this embodiment is set to 11.6 A regardless of the magnitude of the charging power to the power storage system (20).

まず、蓄電システム(20)には余剰電力の最大(33A)が入力される場合を想定して実施した。この場合には蓄電システム(20)への充電入力Iは33Aとするので、充電入力端子(7b)に接続した直流電源Bは電流値IbをI=Ia+Ib=33Aの関係から21.4Aに設定し、直流電源Bの上限電圧は15Vに設定した。  First, it carried out on the assumption that the maximum of surplus electric power (33A) was inputted into the electrical storage system (20). In this case, since the charging input I to the power storage system (20) is 33A, the DC power source B connected to the charging input terminal (7b) sets the current value Ib to 21.4A from the relationship of I = Ia + Ib = 33A. The upper limit voltage of the DC power supply B was set to 15V.

蓄電システム(20)の充電は、スイッチ(4a)と(4b)をON状態にして開始される。充電開始時の充電電流Iaは11.6Aで、充電電流Ibは21.4Aであり、蓄電システム(20)には合計33Aが入力される。スイッチ(4a)と一緒にスイッチ(3−m)がON状態にされて組電池(1−m)が特定の組電池に選定され、入力端子(7a)からの充電入力11.6Aが組電池(1−m)だけに入力される。充電電流Ia(11.6A)はIa≫I/n=6.6Aの関係を充たすので組電池(1−m)は他の組電池に優先して充電される。  Charging of the power storage system (20) is started by turning on the switches (4a) and (4b). The charging current Ia at the start of charging is 11.6A, the charging current Ib is 21.4A, and a total of 33A is input to the power storage system (20). The switch (3-m) is turned on together with the switch (4a), the assembled battery (1-m) is selected as a specific assembled battery, and the charging input 11.6A from the input terminal (7a) is used as the assembled battery. Input only to (1-m). Since the charging current Ia (11.6 A) satisfies the relationship of Ia >> I / n = 6.6 A, the assembled battery (1-m) is charged with priority over other assembled batteries.

充電電流Ib(21.4A)は組電池(1−m)以外の4組の組電池に入力される。特定の組電池(1−m)が定電圧充電に移行した後では、組電池(1−m)の充電は充電入力Iaが減少しながら充電されるので、30分に一度、直流電源Bの電流設定値Ibを増加してIa+Ib=33+/−1.5Aの関係を維持するようにした。  The charging current Ib (21.4A) is input to four sets of assembled batteries other than the assembled battery (1-m). After the specific assembled battery (1-m) shifts to the constant voltage charging, the charging of the assembled battery (1-m) is performed while the charging input Ia is decreased. The current setting value Ib was increased to maintain the relationship of Ia + Ib = 33 +/− 1.5A.

充電開始から8時間が経過した時点でスイッチ(3−m)とスイッチ(4a)及びスイッチ(4b)をOFF状態にして蓄電システム(20)の充電を終了した。充電終了時にも直流電源Bの電圧は設定電圧(15V)には達しておらず、結局、充電開始から充電終了まで33Aの充電電流が8時間入力できた。  When 8 hours passed from the start of charging, the switch (3-m), the switch (4a), and the switch (4b) were turned off to finish charging the power storage system (20). At the end of charging, the voltage of the DC power supply B did not reach the set voltage (15 V), and eventually, a charging current of 33 A could be input for 8 hours from the start of charging to the end of charging.

充電終了後は20Aの定電流放電で組電池の放電電圧が終止電圧(10.5V)に達するまで放電した。充電終了後の放電はスイッチ(5)をON状態とすればスイッチ(2−1)〜(2−5)は予めON状態とされているため、組電池(1−1)〜(1−5)は並列に放電が開始され、図1に示す出力端子(9)より外部回路に出力することが出来る。  After the end of charging, the battery was discharged at a constant current of 20 A until the discharge voltage of the assembled battery reached a final voltage (10.5 V). Since the switches (2-1) to (2-5) are turned on in advance when the switch (5) is turned on, the assembled batteries (1-1) to (1-5) are discharged after completion of charging. ) Start discharging in parallel and can be output to an external circuit from the output terminal (9) shown in FIG.

以上のように蓄電システム(20)は33Aで8時間充電した後に20Aの定電流放電を行って充放電サイクルを繰り返した。充放電サイクルでは特定の組電池(1−m)はmを1〜5までサイクル毎に順繰りに変えて変更される。また、充放電サイクルの途中ではスイッチ(2−m)以外をOFF状態にして、特定の組電池(1−m)だけを10Aの定電流放電で終止電圧(10.5V)に達するまで放電して、mが無作為に選出された特定の組電池(1−m)についてその容量測定を行った。  As described above, the power storage system (20) was charged with 33A for 8 hours, and then subjected to constant current discharge of 20A to repeat the charge / discharge cycle. In the charge / discharge cycle, the specific assembled battery (1-m) is changed by changing m from 1 to 5 in order. In the middle of the charge / discharge cycle, the switches other than the switch (2-m) are turned off, and only the specific assembled battery (1-m) is discharged with a constant current discharge of 10A until the final voltage (10.5V) is reached. Then, the capacity of the specific assembled battery (1-m) in which m was randomly selected was measured.

本実施例の蓄電システム(20)は33Aの8時間充電と20Aの定電流放電の充放電サイクルでは何れのサイクルにおいても約12.1時間の放電で組電池は終止電圧(10.5V)に達した。従って、蓄電システム(20)の放電量は約242Ahであり、蓄電システム(20)は約84%のSOCまで充電されたことが確認された。一方、特定の組電池(1−m)の容量測定では350分の放電で終止電圧に達したので、特定の組電池(1−m)の放電量は約58.3Ahであり、特定の組電池(1−m)は約101%のSOCまで充電されたことが確認された。また、蓄電システム(20)には33Aの充電電流が充電開始から充電終了まで入力されたので蓄電効率は約92%である。  In the storage system (20) of the present embodiment, in the charging / discharging cycle of 33A for 8 hours and 20A constant current discharge, the assembled battery is brought to a final voltage (10.5V) after discharging for about 12.1 hours in any cycle. Reached. Therefore, the amount of discharge of the power storage system (20) was about 242 Ah, and it was confirmed that the power storage system (20) was charged to about 84% SOC. On the other hand, in the capacity measurement of the specific assembled battery (1-m), the discharge voltage of the specific assembled battery (1-m) reached about 58.3 Ah because the end voltage was reached after 350 minutes of discharge. It was confirmed that the battery (1-m) was charged to about 101% SOC. In addition, since a charging current of 33 A is input to the power storage system (20) from the start of charging to the end of charging, the power storage efficiency is about 92%.

続いて、蓄電システム(20)に余剰電力27Aが入力される場合を想定した充放電サイクルを実施した。この場合には蓄電システム(20)への充電入力Iが27Aであり、充電入力端子(7b)に接続した直流電源Bは、上限電圧は同じく15Vに設定するが、電流値IbはI=Ia+Ib=27Aの関係から15.4Aに設定して蓄電システム(20)の充電を開始した。  Then, the charging / discharging cycle supposing the case where the surplus electric power 27A is input into an electrical storage system (20) was implemented. In this case, the charging input I to the power storage system (20) is 27A, and the DC power source B connected to the charging input terminal (7b) sets the upper limit voltage to 15V, but the current value Ib is I = Ia + Ib = 15.4A from the relationship of 27A, charging of the power storage system (20) was started.

この場合にも、特定の組電池(1−m)が定電圧充電に移行した後では、組電池(1−m)の充電は充電入力Iaが減少しながら充電されるので、30分に一度、直流電源Bの電流設定値Ibを増加してIa+Ib=27+/−1.5Aの関係を維持するようにした。直流電源Bの電圧は充電終了時にも設定電圧(15V)には達しておらず、結局、充電開始から充電終了まで27Aの充電電流が8時間入力できた。  Also in this case, after the specific assembled battery (1-m) shifts to constant voltage charging, the charging of the assembled battery (1-m) is performed while the charging input Ia decreases, so once every 30 minutes. The current set value Ib of the DC power supply B is increased to maintain the relationship of Ia + Ib = 27 +/− 1.5A. The voltage of the DC power source B did not reach the set voltage (15 V) even when the charging was completed, and eventually, a charging current of 27 A could be input for 8 hours from the start of charging to the end of charging.

蓄電システム(20)は27Aで8時間充電した後には同じく20Aの定電流放電を行って充放電サイクルを繰り返した。ここでも特定の組電池(1−m)はmを1〜5までサイクル毎に順繰りに変えて変更される。また、ある充放電サイクルでは無作為にmを決定し、スイッチ(2−m)以外をOFF状態にして特定の組電池(1−m)だけを10Aの定電流放電で終止電圧(10.5V)に達するまで放電して特定の組電池(1−m)の容量測定を行った。  After the power storage system (20) was charged at 27A for 8 hours, 20A constant current discharge was performed and the charge / discharge cycle was repeated. Again, the specific assembled battery (1-m) is changed by changing m from 1 to 5 in order. In addition, in a certain charge / discharge cycle, m is randomly determined, and the switch (2-m) other than the switch (OFF) is turned off, and only a specific assembled battery (1-m) is discharged at a constant current of 10A to a final voltage (10.5V). The battery was discharged until it reached), and the capacity of the specific assembled battery (1-m) was measured.

蓄電システム(20)は27Aの8時間充電と20Aの定電流放電の充放電サイクルでは何れのサイクルにおいても約9.9時間の放電で組電池は終止電圧(10.5V)に達した。従って、蓄電システム(20)の放電量は約197Ahであり、蓄電システム(20)は約68%のSOCまで充電されたことが確認された。一方、特定の組電池(1−m)の容量測定ではここでも350分の放電で終止電圧に達し、特定の組電池(1−m)の放電量は約58.3Ahであり、特定の組電池(1−m)はここでも約101%のSOCまで充電されたことが確認された。また、蓄電システム(20)には27Aの充電電流が充電開始から充電終了まで入力されたので蓄電効率は約91%である。  In the power storage system (20), the assembled battery reached the end voltage (10.5 V) after discharging for about 9.9 hours in either cycle of charge / discharge cycles of 27A for 8 hours and 20A constant current discharge. Therefore, the discharge amount of the power storage system (20) was about 197 Ah, and it was confirmed that the power storage system (20) was charged to about 68% SOC. On the other hand, in the capacity measurement of the specific assembled battery (1-m), the final voltage is reached after 350 minutes of discharge, and the discharge amount of the specific assembled battery (1-m) is about 58.3 Ah. The battery (1-m) was again confirmed to be charged to about 101% SOC. In addition, since a charging current of 27 A is input to the power storage system (20) from the start of charging to the end of charging, the power storage efficiency is about 91%.

更に、蓄電システム(20)に余剰電力12Aが入力される場合を想定した充放電サイクルを実施した。この場合には蓄電システム(20)への充電入力Iが12Aであり、充電入力端子(7b)に接続した直流電源Bは、上限電圧は同じで、電流値IbはI=Ia+Ib=12Aの関係から0.4Aに設定して蓄電システム(20)の充電を開始した。  Furthermore, the charge / discharge cycle which assumed the case where surplus electric power 12A was input into an electrical storage system (20) was implemented. In this case, the charging input I to the power storage system (20) is 12A, the DC power source B connected to the charging input terminal (7b) has the same upper limit voltage, and the current value Ib has a relationship of I = Ia + Ib = 12A. The charging of the power storage system (20) was started at 0.4A.

この場合にも、特定の組電池(1−m)が定電圧充電に移行した後では、組電池(1−m)の充電は充電入力Iaが減少しながら充電されるので、30分に一度、直流電源Bの電流設定値Ibを増加してIa+Ib=12+/−1.5Aの関係を維持するようにした。直流電源Bの電圧は充電終了時にも設定電圧(15V)には達することなく、充電開始から充電終了まで12Aの充電電流が入力できた。  Also in this case, after the specific assembled battery (1-m) shifts to constant voltage charging, the charging of the assembled battery (1-m) is performed while the charging input Ia decreases, so once every 30 minutes. The current set value Ib of the DC power source B is increased to maintain the relationship of Ia + Ib = 12 +/− 1.5A. The voltage of the DC power source B did not reach the set voltage (15 V) even when charging was completed, and a charging current of 12 A could be input from the start of charging to the end of charging.

蓄電システム(20)は12Aで8時間充電した後に同じく20Aの定電流放電を行って充放電サイクルを繰り返した。ここでも特定の組電池(1−m)はmを1〜5までサイクル毎に順繰りに変えて変更される。また、ある充放電サイクルでは無作為にmを決定し、スイッチ(2−m)以外をOFF状態にして特定の組電池(1−m)だけを10Aの定電流放電で終止電圧(10.5V)に達するまで放電して特定の組電池(1−m)の容量測定を行った。  The power storage system (20) was charged with 12A for 8 hours, and then was subjected to a constant current discharge of 20A to repeat the charge / discharge cycle. Again, the specific assembled battery (1-m) is changed by changing m from 1 to 5 in order. In addition, in a certain charge / discharge cycle, m is randomly determined, and the switch (2-m) other than the switch (OFF) is turned off, and only a specific assembled battery (1-m) is discharged at a constant current of 10A to a final voltage (10.5V). The battery was discharged until it reached), and the capacity of the specific assembled battery (1-m) was measured.

蓄電システム(20)は12Aの8時間充電と20Aの定電流放電の充放電サイクルでは何れのサイクルにおいても約4.2時間の放電で組電池は終止電圧(10.5V)に達した。従って、蓄電システム(20)の放電量は約84Ahであり、蓄電システム(20)は約29%のSOCまで充電されたことが確認された。一方、特定の組電池(1−m)はここでも約101%のSOCまで充電されたことが確認された。また、蓄電システム(20)には12Aの充電電流が充電開始から充電終了まで入力されたので蓄電効率は約88%である。  In the storage system (20), the assembled battery reached the end voltage (10.5 V) after discharging for about 4.2 hours in any cycle of charging / discharging cycle of 12A for 8 hours and 20A constant current discharge. Therefore, the discharge amount of the power storage system (20) was about 84 Ah, and it was confirmed that the power storage system (20) was charged to about 29% SOC. On the other hand, it was confirmed that the specific assembled battery (1-m) was charged up to about 101% SOC. In addition, since a charging current of 12 A is input to the power storage system (20) from the start of charging to the end of charging, the power storage efficiency is about 88%.

以上のように、本実施例における蓄電システムでは充電電流が33Aから12Aまで変化すれば、充電終了時の蓄電システムのSOCは84%から29%まで変化した。しかし、本実施例における蓄電システムは図4又は図1の構成に基づくので、充電終了時の蓄電システムのSOCが84%でも29%でも特定の組電池(1−m)はいずれも約100%のSOCまで充電される。従って、蓄電システムが鉛蓄電池で構成される場合でも未活用の硫酸鉛が結晶拡大する前に頻繁に100%のSOCまで充電されるのでサルフェーションによる性能劣化が抑制される。  As described above, in the power storage system in this example, when the charging current changed from 33 A to 12 A, the SOC of the power storage system at the end of charging changed from 84% to 29%. However, since the power storage system in the present embodiment is based on the configuration of FIG. 4 or FIG. 1, the specific assembled battery (1-m) is about 100% regardless of whether the SOC of the power storage system at the end of charging is 84% or 29%. It is charged to SOC. Therefore, even when the power storage system is composed of a lead storage battery, the unused lead sulfate is frequently charged up to 100% before the crystal expands, so that performance degradation due to sulfation is suppressed.

なお、実施例2では、鉛蓄電池を使用して図1に示す構成で蓄電システムを作製して、本発明の実施の形態について説明したものであり、実施例2は図1又は図4に示す構成の適用例の一つを示したものであり、鉛蓄電池の使用に限定する趣旨ではない。  In the second embodiment, a lead storage battery is used to manufacture the power storage system with the configuration shown in FIG. 1, and the embodiment of the present invention is described. The second embodiment is shown in FIG. 1 or FIG. It shows one application example of the configuration and is not intended to limit the use of lead-acid batteries.

本実施例では、図1の構成に基づいてリチウムイオン電池で構成される蓄電システムを作製し、蓄電システムとしてはSOCやDODに余裕を残して充電放電が繰り返されても、リチウムイオン電池はSOCとDODがいずれも頻繁に100%に達することを確認した。  In this embodiment, a power storage system composed of lithium ion batteries is manufactured based on the configuration shown in FIG. 1, and even if charging and discharging are repeated while leaving a margin in the SOC and DOD as the power storage system, It was confirmed that both DOD and DOD frequently reached 100%.

本実施例では、11Aの余剰電力が8時間連続して発生するという前提で、且つ蓄電システムには発生する余剰電力の全てが入力可能であり、また蓄電システムの放電は90%程度のDODで放電終了となることを前提として蓄電システムを設計した。  In this embodiment, it is assumed that 11A of surplus power is generated continuously for 8 hours, and all the surplus power generated can be input to the power storage system, and the discharge of the power storage system is about 90% DOD. The power storage system was designed on the assumption that the discharge will be terminated.

蓄電システムを構成するためのリチウムイオン電池には市販の18650型のNCMタイプのリチウムイオン電池(公称電圧3.7V、公称容量2.2Ah)を用意した。18650型は直径が18mmで長さが65mmの筒型で、NCMタイプは正極にLiNi1/3Co1/3Mn1/3が使用されたリチウムイオン電池である。用意したリチウムイオン電池の336個は16セルを並列に接続し、更にその7個を直列に接続して3組の組電池を作製した。A commercially available 18650 type NCM type lithium ion battery (nominal voltage 3.7 V, nominal capacity 2.2 Ah) was prepared as a lithium ion battery for constituting the power storage system. The 18650 type is a cylindrical type having a diameter of 18 mm and a length of 65 mm, and the NCM type is a lithium ion battery using LiNi 1/3 Co 1/3 Mn 1/3 O 2 for the positive electrode. Of the 336 prepared lithium ion batteries, 16 cells were connected in parallel, and seven of them were connected in series to produce three sets of assembled batteries.

作製した組電池はいずれも7Aの定電流で、上限電圧を29.4Vに設定して8時間の定電流定電圧充電を行い、その後、終止電圧22Vまで7Aの定電流放電を行ってそれぞれの放電容量を測定した。その結果、放電容量はいずれも約36Ahであったので該組電池の定格容量を36Ahと決定した。  Each of the assembled batteries produced had a constant current of 7A, the upper limit voltage was set to 29.4V and constant current / constant voltage charging was performed for 8 hours, and then the constant current discharge of 7A was performed up to a final voltage of 22V. The discharge capacity was measured. As a result, since the discharge capacities were all about 36 Ah, the rated capacity of the assembled battery was determined to be 36 Ah.

本実施例における蓄電システムは用意した組電池の3個(合計108Ah)を使用して図1に示す構成で、組電池(1−1)〜(1−3)を制御装置(15)の接続端子(8−1)〜(8−3)に接続してn=3で作製した。本実施例における蓄電システム(20)の定格容量は108Ahであり、予定する充電入力(88Ah)は定格容量の81%程度であり、蓄電システムの放電が90%程度のDODで放電終了となっても予定する充電入力は全て入力可能である。  The power storage system in the present embodiment uses three prepared battery packs (total of 108 Ah) as shown in FIG. 1 and connects the battery packs (1-1) to (1-3) to the control device (15). It connected to terminal (8-1)-(8-3), and produced it by n = 3. The rated capacity of the power storage system (20) in the present embodiment is 108 Ah, the planned charge input (88 Ah) is about 81% of the rated capacity, and the discharge ends when the discharge of the power storage system is about 90%. All scheduled charging inputs can be entered.

充電入力としては実施例2と同じく市販の定電圧定電流直流電源Aと定電圧定電流直流電源Bを、それぞれを制御装置(15)の充電入力端子(7a)及び(7b)に接続した。組電池(1−1)〜(1−3)は、定格容量を決定した充電方法で充電すれば100%のSOCに達する。即ち、7Aの定電流で、上限電圧を29.4Vに設定して8時間の定電流定電圧充電を行えば100%のSOCに達する。そこで、直流電源Aは電流値Iaを7Aに設定し、上限電圧は29.4Vに設定した。  As the charging input, as in Example 2, a commercially available constant voltage constant current DC power source A and constant voltage constant current DC power source B were connected to the charging input terminals (7a) and (7b) of the control device (15), respectively. The assembled batteries (1-1) to (1-3) reach 100% SOC when charged by the charging method with the rated capacity determined. That is, if the upper limit voltage is set to 29.4 V at a constant current of 7 A and constant current constant voltage charging is performed for 8 hours, the SOC reaches 100%. Therefore, the DC power source A sets the current value Ia to 7 A and the upper limit voltage to 29.4V.

本実施例では、11Aの余剰電力が8時間連続して発生するという前提であり、蓄電システム(20)への充電入力Iは11Aとするので、充電入力端子(7b)に接続した直流電源Bは電流値IbをI=Ia+Ib=11Aの関係から4Aに設定し、上限電圧は29.6Vに設定した。  In the present embodiment, it is assumed that surplus power of 11A is generated continuously for 8 hours, and the charging input I to the power storage system (20) is 11A. Therefore, the DC power source B connected to the charging input terminal (7b) The current value Ib was set to 4A from the relationship of I = Ia + Ib = 11A, and the upper limit voltage was set to 29.6V.

蓄電システム(20)の充電はスイッチ(4a)と(4b)をON状態にして開始される。充電開始時では充電電流Iaは7Aであり、充電電流Ibは4Aであり、蓄電システム(20)への充電入力Iは11Aであった。スイッチ(4a)と一緒にスイッチ(3−m)がON状態にされて組電池(1−m)が特定の組電池に選定され、充電電流Ia(7A)は組電池(1−m)だけに入力される。一方、充電電流Ib(4A)は組電池(1−m)以外の2組の組電池に入力される。  Charging of the power storage system (20) is started with the switches (4a) and (4b) turned on. At the start of charging, the charging current Ia was 7A, the charging current Ib was 4A, and the charging input I to the power storage system (20) was 11A. The switch (3-m) is turned on together with the switch (4a), and the assembled battery (1-m) is selected as a specific assembled battery, and the charging current Ia (7A) is only the assembled battery (1-m). Is input. On the other hand, the charging current Ib (4A) is input to two sets of assembled batteries other than the assembled battery (1-m).

ここで、I/n=3.67Aであり、充電電流Ia(7A)はIa≫I/nの関係を充たすので組電池(1−m)は他の組電池に優先して充電される。本実施例では充電の度にmを変更して組電池(1−1)〜(1−3)を順繰りに特定の組電池に選定している。ただし、本実施例ではmは1から3までの任意の整数である。  Here, I / n = 3.67A, and the charging current Ia (7A) satisfies the relationship of Ia >> I / n. Therefore, the assembled battery (1-m) is charged with priority over other assembled batteries. In the present embodiment, m is changed every time the battery is charged, and the assembled batteries (1-1) to (1-3) are selected as specific assembled batteries in order. However, m is an arbitrary integer from 1 to 3 in this embodiment.

一方、NCMタイプのリチウムイオン電池もSOCが85%程度に達すると充電電圧が上限電圧に達するので、その後の充電はやはり定電圧充電に移行する。本実施例においても特定の組電池(1−m)が定電圧充電に移行した後では、組電池(1−m)の充電は充電の進行に伴って充電電流Iaが減少するので、30分に一度、直流電源Bの電流設定値Ibを増加してIa+Ib=11+/−0.5Aの関係を維持するようにした。  On the other hand, the NCM type lithium ion battery also reaches the upper limit voltage when the SOC reaches about 85%, so that the subsequent charging also shifts to constant voltage charging. Also in the present embodiment, after the specific assembled battery (1-m) shifts to constant voltage charging, charging of the assembled battery (1-m) decreases with the progress of charging, so the charging current Ia decreases. Once, the current set value Ib of the DC power source B is increased to maintain the relationship of Ia + Ib = 11 +/− 0.5A.

充電開始から8時間経過した時点でスイッチ(4a)と(4b)をOFF状態にして蓄電システム(20)の充電を終了した。直流電源Bの電圧は充電終了まで設定値の29.6Vに達することは無く、Ia+Ib=10+/−0.5Aの関係は充電開始から充電終了まで維持された。  At the time when 8 hours passed from the start of charging, the switches (4a) and (4b) were turned off to finish charging the power storage system (20). The voltage of the DC power supply B did not reach the set value of 29.6 V until the end of charging, and the relationship of Ia + Ib = 10 +/− 0.5 A was maintained from the start of charging to the end of charging.

充電終了後には蓄電システム(20)はスイッチ(2)とスイッチ(5)をON状態として、7Aの定電流放電で各組電池を順番に放電させた。ここでは、特定の組電池(1−m)を先ず100%のDOD(SOC=0%)まで放電させ、続いて他の1組の組電池を100%のDODまで放電させ、最後の組電池は放電電圧が25.9Vに達した時点で放電を終了した。放電電圧が25.9Vで放電を停止した最後の組電池はSOCが約30%に止まるので、蓄電システムの定格容量に換算すれば10%程度を残して、つまり、DODが90%の時点で放電を終了したことになる。  After completion of charging, the power storage system (20) turned on the switch (2) and the switch (5), and sequentially discharged each assembled battery with 7 A constant current discharge. Here, a specific assembled battery (1-m) is first discharged to 100% DOD (SOC = 0%), and then another set of assembled batteries is discharged to 100% DOD. Ended the discharge when the discharge voltage reached 25.9V. The last assembled battery that stops discharging at a discharge voltage of 25.9V has an SOC of only about 30%. Therefore, when converted to the rated capacity of the power storage system, about 10% remains, that is, when the DOD is 90%. The discharge has ended.

結局、本実施例では蓄電システム(20)はDODが90%に達したところで放電を終了して再び11Aで8時間充電するという方法で1日1サイクルの充放電を繰り返し行った。各サイクルでの各組電池の具体的な放電量は、特定の組電池が36Ahであり、他の一組の組電池が30Ahであり、残り1組の組電池の放電量は19Ahで未放電量は11Ahであった。  Eventually, in this example, the power storage system (20) was repeatedly charged and discharged for 1 cycle per day by a method in which the discharge was terminated when the DOD reached 90% and the battery was charged again at 11A for 8 hours. The specific discharge amount of each assembled battery in each cycle is 36 Ah for a specific assembled battery, 30 Ah for the other assembled battery, and 19 Ah for the remaining one assembled battery. The amount was 11 Ah.

本実施例における蓄電システム(20)では各組電池の定格容量は36Ahであり、蓄電システムの定格容量は108Ahである。従って、各サイクルの充電終了時における蓄電システムのSOCは(36Ah+30Ah+19Ah+11Ah)÷108Ahの計算から89%に達したことが分かるし、特定の組電池のSOCは36Ah÷36Ahの計算から100%に達したことが分かる。  In the power storage system (20) in the present embodiment, the rated capacity of each assembled battery is 36 Ah, and the rated capacity of the power storage system is 108 Ah. Therefore, it can be seen that the SOC of the power storage system at the end of charging in each cycle has reached 89% from the calculation of (36Ah + 30Ah + 19Ah + 11Ah) ÷ 108Ah, and the SOC of a specific assembled battery has reached 100% from the calculation of 36Ah ÷ 36Ah. I understand that.

以上のように、図1の構成に基づいてリチウムイオン電池で構成される蓄電システムは、充電に際しては予定する充電入力を充電開始から充電終了まで入力し続けても、蓄電システムとしては89%のSOCに止まり、組電池レベルでは3サイクルに1回は100%のSOCに達することが出来る。一方、放電に際しては蓄電システムとしては90%のDODに止まっても、組電池レベルでは3サイクルに2回は100%のDODに達することが出来る。  As described above, the power storage system configured by the lithium ion battery based on the configuration of FIG. 1 is 89% as a power storage system even if the planned charging input is continuously input from the start of charging to the end of charging. At the assembled battery level, the SOC can reach 100% once every three cycles. On the other hand, at the time of discharging, even if the power storage system stops at 90% DOD, the assembled battery level can reach 100% DOD twice in 3 cycles.

以上、本発明の実施の形態について説明したが、上記実施形態は本発明の適用例の一つを示したものであり、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。本発明の要旨を逸脱しない範囲において上記実施形態は種々変更可能である。  The embodiment of the present invention has been described above. However, the above embodiment shows one example of application of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. is not. The above-described embodiment can be variously modified without departing from the gist of the present invention.

1 組電池
2 放電用スイッチ
3 優先充電用スイッチ
4a 優先充電入力スイッチ
4b 充電入力スイッチ
5 放電出力スイッチ
6 補助電力供給用スイッチ
7a 充電入力端子
7b 充電入力端子
8 組電池接続端子
9 放電出力端子
13 充電器
15 制御装置
16 ダイオード
20 蓄電システム
31 蓄電システムのSOC
32 組電池のSOC
DESCRIPTION OF SYMBOLS 1 assembled battery 2 discharge switch 3 priority charge switch 4a priority charge input switch 4b charge input switch 5 discharge output switch 6 auxiliary power supply switch 7a charge input terminal 7b charge input terminal 8 assembled battery connection terminal 9 discharge output terminal 13 charge 15 Control device 16 Diode 20 Power storage system 31 SOC of power storage system
32 SOC of assembled battery

Claims (8)

複数の組電池が組電池単位で並列に接続されて構成される蓄電システムであって、前記組電池の中から順繰りに選ばれる特定の組電池が他の組電池に優先して放電されることを特徴とする蓄電システム。  A power storage system in which a plurality of assembled batteries are connected in parallel in units of assembled batteries, and a specific assembled battery selected sequentially from the assembled batteries is discharged with priority over other assembled batteries. A power storage system characterized by this. 複数の組電池が組電池単位で並列に接続されて構成される蓄電システムであって、前記組電池の中から順繰りに選ばれる特定の組電池が他の組電池に優先して充電されることを特徴とする蓄電システム。  A power storage system in which a plurality of assembled batteries are connected in parallel in units of assembled batteries, and a specific assembled battery selected sequentially from the assembled batteries is charged with priority over other assembled batteries. A power storage system characterized by this. 優先して充電された特定の組電池が主電力による充電が停止した後には更に補助電力によって追加的に充電されることを特徴とする請求項2記載の蓄電システム。  3. The power storage system according to claim 2, wherein the specific assembled battery charged with priority is additionally charged with auxiliary power after charging by main power is stopped. 請求項1記載の蓄電システムにおいて、複数の組電池はそれぞれが放電用スイッチを介して放電出力経路に接続され、該放電用スイッチの開閉の選択によって特定の組電池が選定され、他の組電池に優先して放電されることを特徴とする。  2. The power storage system according to claim 1, wherein each of the plurality of assembled batteries is connected to a discharge output path via a discharge switch, and a specific assembled battery is selected by selecting whether to open or close the discharge switch. It is characterized by being discharged in preference to the above. 請求項2記載の蓄電システムにおいて、複数の組電池はそれぞれに選択可能な複数の充電入力経路が設けられ、該充電入力経路の選択によって特定の組電池が選定されて、他の組電池に優先して充電されることを特徴とする。  The power storage system according to claim 2, wherein a plurality of charging input paths are provided for each of the plurality of assembled batteries, and a specific assembled battery is selected by selection of the charging input path, giving priority to other assembled batteries. And is charged. 複数の組電池はそれぞれが優先充電用のスイッチを介して優先充電用の充電入力経路に接続されていることを特徴とする請求項5記載の蓄電システム。  6. The power storage system according to claim 5, wherein each of the plurality of assembled batteries is connected to a charge input path for priority charge via a switch for priority charge. 前記蓄電システムがソーラー発電用の蓄電システムであり、該蓄電システムを構成する組電池の数nは3≦n≦6であることを特徴とする。  The power storage system is a power storage system for solar power generation, and the number n of assembled batteries constituting the power storage system is 3 ≦ n ≦ 6. 複数の組電池がその制御装置を備えて構成される蓄電システムにおいて、前記制御装置は前記組電池の中から順繰りに特定の組電池を選定して、これを他の組電池に優先して充電又は放電せしめることを特徴とする蓄電システムの制御装置。  In a power storage system in which a plurality of assembled batteries are provided with the control device, the control device sequentially selects a specific assembled battery from the assembled batteries, and charges this with priority over other assembled batteries. Or the control apparatus of the electrical storage system characterized by discharging.
JP2016014888A 2016-01-12 2016-01-12 Power storage system for storing surplus power Pending JP2017127169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016014888A JP2017127169A (en) 2016-01-12 2016-01-12 Power storage system for storing surplus power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016014888A JP2017127169A (en) 2016-01-12 2016-01-12 Power storage system for storing surplus power

Publications (1)

Publication Number Publication Date
JP2017127169A true JP2017127169A (en) 2017-07-20

Family

ID=59365361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016014888A Pending JP2017127169A (en) 2016-01-12 2016-01-12 Power storage system for storing surplus power

Country Status (1)

Country Link
JP (1) JP2017127169A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186776A1 (en) 2020-03-18 2021-09-23 日本碍子株式会社 Method for operating storage battery system
WO2024040462A1 (en) * 2022-08-24 2024-02-29 宁德时代新能源科技股份有限公司 Control method and control apparatus for energy storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186776A1 (en) 2020-03-18 2021-09-23 日本碍子株式会社 Method for operating storage battery system
WO2024040462A1 (en) * 2022-08-24 2024-02-29 宁德时代新能源科技股份有限公司 Control method and control apparatus for energy storage system

Similar Documents

Publication Publication Date Title
CN101803103B (en) Power storage system
JP6406533B2 (en) Battery system
EP3280024B1 (en) Battery pack management apparatus and method
JP2016192895A (en) Power supply device using secondary battery and battery mode conversion method for the same
US9531212B2 (en) Secondary battery system and charge and discharge method for the same
WO2013038764A1 (en) Secondary battery system, and method for operating secondary battery
CN101816082A (en) Power supply system
JP2009080939A (en) Power source system and control method of battery assembly
JP2009080938A (en) Power source system and control method of battery assembly
JP2010160955A (en) Method of charging battery pack
JP2017127169A (en) Power storage system for storing surplus power
CN104272497B (en) Vehicle with Li-ion batteries piles
JP4724726B2 (en) DC power supply system and charging method thereof
JP7300088B2 (en) storage system
JP4933465B2 (en) DC power supply system and charge control method thereof
JP5059674B2 (en) Power supply system and charging method
JPWO2018135668A1 (en) Lithium-ion battery pack
US9614255B2 (en) Acid/alkaline hybrid resonance battery device with damping function
JP5090584B1 (en) Power supply system and battery pack charging method
JP3649655B2 (en) Charging method for multiple parallel alkaline aqueous solution secondary batteries for backup
JP2002315224A (en) Fuel battery power source system and method for charging secondary cell in the fuel battery power source system
JP2017059512A (en) Power storage system
JP2017085863A (en) Power storage system for power storage
JP3594879B2 (en) Charging method of alkaline aqueous secondary battery for backup
EP3076475B1 (en) Acid/alkaline hybrid resonance battery device with damping function