JP2017124414A - Fe-BASED ALLOY FOIL FOR BRAZING AND BRAZING FILLER METAL JOINING COMPONENT - Google Patents

Fe-BASED ALLOY FOIL FOR BRAZING AND BRAZING FILLER METAL JOINING COMPONENT Download PDF

Info

Publication number
JP2017124414A
JP2017124414A JP2016004416A JP2016004416A JP2017124414A JP 2017124414 A JP2017124414 A JP 2017124414A JP 2016004416 A JP2016004416 A JP 2016004416A JP 2016004416 A JP2016004416 A JP 2016004416A JP 2017124414 A JP2017124414 A JP 2017124414A
Authority
JP
Japan
Prior art keywords
brazing
alloy foil
mass
based alloy
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016004416A
Other languages
Japanese (ja)
Inventor
精心 上田
Seishin Ueda
精心 上田
西田 純一
Junichi Nishida
純一 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016004416A priority Critical patent/JP2017124414A/en
Publication of JP2017124414A publication Critical patent/JP2017124414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide Fe-based alloy foil for brazing and a brazing filler metal joining component therewith that is easy to manufacture by a conventional meltspining method and partial corrosion is not generated easily even if brazing filler metal joins metal containing Cr.SOLUTION: Fe-based alloy foil for brazing has an amorphous formation consisted of Fe, P of 8-15 mass% and inevitable impurities. Favorable P is 12-14 mass%. A brazing filler metal joining component has a brazing filler metal layer consisted of Fe, P of 8-15 mass% and inevitable impurities between a first metal and a second metal containing Cr because the Fe-based alloy foil for brazing is used. Favorable P is 12-14 mass%, and the brazing filler metal layer side of the first metal and the second metal can have diffusion areas of P.SELECTED DRAWING: None

Description

本発明は、ろう付け用Fe基合金箔およびろう接合部材に関し、詳しくは、例えばステンレス鋼などの金属材(母材)同士のろう付け(ろう接合)に好適なろう付け用Fe基合金箔と、それが溶融ろうに用いられ金属材同士が接合されたろう接合部材に関する。   The present invention relates to a brazing Fe-based alloy foil and a brazing joint member, and in particular, for example, a brazing Fe-based alloy foil suitable for brazing (brazing joining) between metal materials (base materials) such as stainless steel. The present invention relates to a brazing joint member in which it is used for melting brazing and metal materials are joined together.

従来、各種の金属材(母材)同士を冶金的に接合する技術の1つにろう付け法があり、例えば、Fe系合金材、Ni系合金材、オーステナイト系ステンレス鋼材、並びにフェライト系ステンレス鋼など、各種の金属材の接合(ろう接合)に適用されている。ろう付け法は、金属材(母材)よりも低融点のろう付け材(ろう材)を加熱して得られる溶融ろう材(溶融ろう)を介して金属材(母材)同士の接合を行う方法であり、金属材(母材)の形状や材質の制約が少なく、高強度かつ健全な接合構造(ろう接合部材)を容易に作製できる。   Conventionally, there is a brazing method as one of techniques for metallurgically joining various metal materials (base materials), for example, Fe-based alloy materials, Ni-based alloy materials, austenitic stainless steel materials, and ferritic stainless steels. It is applied to the joining of various metal materials (brazing joining). In the brazing method, metal materials (base materials) are joined to each other through a molten brazing material (melting brazing) obtained by heating a brazing material (brazing material) having a melting point lower than that of the metal material (base material). This is a method, and there are few restrictions on the shape and material of the metal material (base material), and a high-strength and sound joint structure (brazing joint member) can be easily produced.

例えば、特許文献1には、ステンレス鋼の熱交換器板のろう付けに使用するシート状(箔状)、粉末状、または粉末を含むペースト状のFe基ろう材であって、基となるFeに対して、Cr(9〜30wt%)およびNi(5〜25wt%)と、Si(0〜25wt%)、B(0〜6wt%)、P(0〜15wt%)、Mn(0〜8wt%)、C(0〜2wt%)、およびHf(0〜15wt%)のうちの少なくとも1種の元素を添加したFe基ろう材が記載されている。そして、上記のFe基ろう材を使用してステンレス鋼のろう付けを行うに際して、被接合材であるステンレス鋼を1000〜1150℃の温度で15〜45分間加熱することが記載されている。   For example, Patent Document 1 discloses a sheet-like (foil-like), powder-like, or paste-like Fe-based brazing material containing powder, which is used for brazing stainless steel heat exchanger plates. On the other hand, Cr (9-30 wt%) and Ni (5-25 wt%), Si (0-25 wt%), B (0-6 wt%), P (0-15 wt%), Mn (0-8 wt%) %), C (0 to 2 wt%), and Hf (0 to 15 wt%), an Fe-based brazing material added with at least one element is described. And when brazing stainless steel using said Fe base brazing material, it describes that the stainless steel which is a to-be-joined material is heated for 15 to 45 minutes at the temperature of 1000-1150 degreeC.

また、例えば、特許文献2には、被接合材である板状熱交換器と同じ組成を母材とし、Si(6質量%未満)、B(0〜2質量%)、およびP(0〜15質量%)のうちの1種または複数の元素を添加した粉状または箔状のFe基ろう材であって、基となるFeに対して、Cr(0〜40質量%)の添加を必須とし、その他にMn(0〜16質量%)とNi(0〜25質量%)とN(0〜1質量%)およびMo(7質量%以下)とを添加し、さらにSi(6質量%未満)、B(0〜2質量%)、およびP(0〜15質量%)のうちの1種または複数の元素を添加したFe基ろう材が記載されている。そして、上記のFe基ろう材の完全に溶融する温度(液相線温度)が、Si、B、Pの個別または組合せの作用によって低下し、その液相線温度(完全溶融温度)が1230℃以下であるべきと記載されている。   Further, for example, in Patent Document 2, Si (less than 6% by mass), B (0 to 2% by mass), and P (0 to 0% by mass) have the same composition as that of the plate-shaped heat exchanger that is the material to be joined. 15% by mass) of a powdery or foil-like Fe-based brazing material to which one or more elements are added, and it is essential to add Cr (0 to 40% by mass) to the base Fe In addition, Mn (0 to 16% by mass), Ni (0 to 25% by mass), N (0 to 1% by mass) and Mo (7% by mass or less) are added, and Si (less than 6% by mass) is added. ), B (0 to 2 mass%), and P (0 to 15 mass%), Fe-based brazing material to which one or more elements are added is described. The temperature at which the Fe-based brazing material is completely melted (liquidus temperature) is lowered by the action of individual or combination of Si, B, and P, and the liquidus temperature (complete melting temperature) is 1230 ° C. It should be stated that:

特許文献1、2では、上記のFe基ろう材が、粉末状や棒状や箔状で提供できると記載されている。一般的に箔状のろう材は、ペーストにして塗布する粉末状のろう材に比べ、ペーストにしないので不純物や気泡の混入が少なく取扱いが簡便である他、溶融が速く流動性が良い、濡れ拡がり性が良く浸透性が高い、プレスや曲げや切断などの機械加工でプリフォームの形成が容易、コイル状に巻いて連続供給や自動供給が簡便に行える、ろう付けを行う熱処理炉内の汚染が少ない、粉末のろう材のように容易に飛散しないなど、多くの利点がある。また、箔状のFe基ろう材は、例えば圧延箔の他、ノズルで整流されたBを含む溶融金属材料が冷却ロールの表面上で急速に固化して直ちに箔となるメルトスピニング法による非晶質合金箔で提供されている。   Patent Documents 1 and 2 describe that the Fe-based brazing material can be provided in the form of powder, rod, or foil. In general, foil-type brazing materials are less pasteable than powder-type brazing materials that are applied as pastes, so they are easy to handle and contain less impurities and bubbles. Contamination in a heat treatment furnace that brazes, with high spreadability and high permeability, easy to form a preform by machining such as pressing, bending, cutting, etc. There are many advantages, such as being less scattered and not being easily scattered like powder brazing material. The foil-like Fe-based brazing material is, for example, an amorphous material obtained by a melt spinning method in which a molten metal material containing B rectified by a nozzle is rapidly solidified on the surface of a cooling roll in addition to a rolled foil. Is offered in quality alloy foil.

また、上記のメルトスピニング法では、実用上、非晶質組織の箔を形成することにより、脆化を抑制して箔の形態を保持する必要がある。そのため、特許文献1、2に記載されているように、アモルファス形成能をもつB(硼素)またはP(燐)と、そのアモルファス形成を助勢するSi(珪素)とを組合せることが一般的に行われている。例えば、特許文献1の実施例ではBに対して12質量%のSiが添加され、特許文献2の実施例ではBおよびPの合計に対して1.0質量%以上のSiが添加されている。   In the melt spinning method described above, it is practically necessary to form a foil having an amorphous structure to suppress embrittlement and maintain the shape of the foil. Therefore, as described in Patent Documents 1 and 2, it is generally combined with B (boron) or P (phosphorus) having an amorphous forming ability and Si (silicon) for assisting the amorphous formation. Has been done. For example, in the example of Patent Document 1, 12% by mass of Si is added to B, and in the example of Patent Document 2, 1.0% by mass or more of Si is added to the total of B and P. .

特表2008−542030号公報Special table 2008-542030 特表2004−529776号公報JP-T-2004-529776

上記のメルトスピニング法により、基となるFeおよび複数の元素を含む特許文献1、2に記載のFe基ろう材はいずれもFe基合金箔の形態で作製できると考えられる。しかし、複数の元素を含む溶融金属材料を用いると、整流用ノズルの閉塞や箔の脆化が発生しやすい傾向がある。   It is considered that the Fe-based brazing materials described in Patent Documents 1 and 2 containing Fe as a base and a plurality of elements can be produced in the form of an Fe-based alloy foil by the melt spinning method. However, when a molten metal material containing a plurality of elements is used, the rectifying nozzle tends to be blocked or the foil becomes brittle.

また、Crを含み、機械的強さや耐食性の向上や焼入れ性の改善が図られた金属材(母材)同士も、ろう付けの要求が多くある。これに対して、Bを含むFe基合金箔を用いてろう付けを行うと、溶融ろうに含まれるBが金属材(母材)の結晶粒界に沿うかもしくは結晶粒内に拡散しながら金属材(母材)に含まれるCrと結合してCr硼化物が生成され、金属材(母材)の内部にCr欠乏層が形成される。そのため、そのCr欠乏層に沿って腐食が進展しやすくなり、その局部的な腐食に起因した機械的強さの低下により、ろう接合部材が破損する可能性がある。   In addition, metal materials (base materials) that contain Cr and have improved mechanical strength, corrosion resistance, and hardenability are also in demand for brazing. On the other hand, when brazing is performed using an Fe-based alloy foil containing B, the metal contained in the molten brazing is along the crystal grain boundaries of the metal material (base material) or diffuses into the crystal grains. It combines with Cr contained in the material (base material) to produce a Cr boride, and a Cr-depleted layer is formed inside the metal material (base material). Therefore, corrosion tends to progress along the Cr-deficient layer, and the brazed joint member may be damaged due to a decrease in mechanical strength due to the local corrosion.

本発明の目的は、従来のメルトスピニング法によって作製しやすく、Crを含む金属材をろう接合しても局部的な腐食が容易に発生しない、ろう付け用Fe基合金箔およびそれを用いたろう接合部材を提供することである。   An object of the present invention is an Fe-based alloy foil for brazing and a brazing joint using the same, which can be easily produced by a conventional melt spinning method, and local corrosion does not easily occur even when a metallic material containing Cr is brazed. It is to provide a member.

本発明者は、上述した課題の解決策を検討する過程で、基となるFeに対して単一の元素を添加してろう付け用箔を構成することに考え至った。そして、アモルファス形成能をもつPを選定して単独添加を検討し、Pの含有量を適切な範囲に規定することで、上述した課題が解決できるとこを見出し、本発明に想到した。   In the course of studying a solution to the above-mentioned problem, the present inventor has come up with the idea of configuring a brazing foil by adding a single element to Fe as a base. Then, by selecting P having an amorphous forming ability, studying single addition, and defining the P content in an appropriate range, the inventors have found that the above-described problems can be solved, and have arrived at the present invention.

すなわち本発明のろう付け用Fe基合金箔は、Feと、8〜15質量%のPと、不可避的不純物とで構成された非晶質組織を有する。
また、前記Pが12〜14質量%であることが好ましい。
That is, the brazing Fe-based alloy foil of the present invention has an amorphous structure composed of Fe, 8 to 15% by mass of P, and inevitable impurities.
Moreover, it is preferable that said P is 12-14 mass%.

本発明のろう付け用Fe基合金箔を用いて、ろう接合部材を得ることができる。
すなわち本発明のろう接合部材は、Crを含む第1金属材と第2金属材の間に、Feと、8〜15質量%のPと、不可避的不純物とで構成されたろう材層を有する。
また、前記Pが12〜14質量%であってよい。
また、前記第1金属材および前記第2金属材の前記ろう材層側にPの拡散領域を有するものであってもよい。
A brazing joint member can be obtained using the Fe-based alloy foil for brazing of the present invention.
That is, the brazing joint member of the present invention has a brazing material layer composed of Fe, 8 to 15% by mass of P, and unavoidable impurities between the first metal material and the second metal material containing Cr.
The P may be 12 to 14% by mass.
Further, a P diffusion region may be provided on the brazing material layer side of the first metal material and the second metal material.

本発明のろう付け用Fe基合金箔は、上記のメルトスピニング法による箔の作製に際して、整流用ノズルの閉塞や箔の脆化が容易に発生しない。また、本発明のろう付け用Fe基合金箔を用いたCrを含むろう接合部材は、実用に際して、局部的な腐食が容易に発生しない。   The brazing Fe-based alloy foil of the present invention is not easily clogged with the rectifying nozzle or embrittled in the foil when the foil is produced by the melt spinning method. Further, in the brazing joint member containing Cr using the Fe-based alloy foil for brazing of the present invention, local corrosion does not easily occur in practical use.

本発明のろう接合部材の構成を説明するための説明用図である。It is explanatory drawing for demonstrating the structure of the brazing joining member of this invention. 本発明のろう接合部材の製造方法に使用するヒートパターン例を説明するための説明用図である。It is explanatory drawing for demonstrating the example of the heat pattern used for the manufacturing method of the brazing joining member of this invention. Bを含むろう材層を有するろう接合部材の断面組織の構成を説明するための説明用図である。It is explanatory drawing for demonstrating the structure of the cross-sectional structure | tissue of the brazing joining member which has the brazing filler metal layer containing B. 図3に示す断面組織において、ろう材層および金属材(母材)を含む一部領域の構成を説明するための説明用図である。FIG. 4 is an explanatory diagram for explaining a configuration of a partial region including a brazing filler metal layer and a metal material (base material) in the cross-sectional structure shown in FIG. 3.

本発明のろう付け用Fe基合金箔は、Feと、8〜15質量%のPと、不可避的不純物とで構成された非晶質組織を有する。   The brazing Fe-based alloy foil of the present invention has an amorphous structure composed of Fe, 8 to 15% by mass of P, and unavoidable impurities.

ろう材が本発明のような箔状であることは、上述したように、ペースト状のろう材に比べて不純物や気泡の混入が少ないためろう接合部の機械的強さが低下し難いこと、機械加工でプリフォームの形成が容易なこと、コイル状に巻いて連続供給や自動供給が簡便に行えることなど、ろう接合部材を作製するに際して利便性がある。また、箔状のろう材が本発明のようにFe基合金箔であると、Feよりも高価なNiやCoを基とする合金箔であるよりも安価に提供することができる。   That the brazing material is in the form of a foil as in the present invention, as described above, the mechanical strength of the brazed joint is difficult to decrease because there is less mixing of impurities and bubbles compared to the pasty brazing material, There are conveniences in producing a brazing joint member, such as easy formation of a preform by machining and simple continuous supply and automatic supply by winding in a coil shape. Moreover, when the foil-like brazing material is an Fe-based alloy foil as in the present invention, it can be provided at a lower cost than an alloy foil based on Ni or Co that is more expensive than Fe.

本発明のろう付け用Fe基合金箔は、Fe−P系合金であり、Pを8〜15質量%の範囲で含有する。Pは、上述したようにCr硼化物を生成してCr欠乏層を形成するBとは異なり、Crを含む金属材(母材)のろう接合に際してろう接合後の金属材の内部にCr欠乏層が形成され難い。したがって、Pを上記の範囲で含み実質的にBを含まない本発明のろう付け用Fe基合金箔は、Bを含む従来のろう付け用Fe基合金箔とは異なり、Cr欠乏層に起因する実質的に有害な局部腐食の発生リスクを回避することができる。   The brazing Fe-based alloy foil of the present invention is an Fe-P alloy and contains P in the range of 8 to 15% by mass. P is different from B in which Cr boride is formed to form a Cr-deficient layer as described above, and a Cr-deficient layer is formed inside the metal material after brazing at the time of brazing a metal material (base material) containing Cr. Is difficult to form. Therefore, unlike the conventional brazing Fe-based alloy foil containing B, the Fe-based alloy foil for brazing of the present invention containing P in the above range and substantially free of B is caused by the Cr-deficient layer unlike the conventional brazing Fe-based alloy foil containing B. The risk of the occurrence of substantially harmful local corrosion can be avoided.

また、Pは、Bほど顕著でないもののアモルファス形成能を有するため、その特質を上手く利用することができれば、上述したメルトスピニング法を適用してFe−P系の合金箔を作製することができる。したがって、本発明では、基となるFeに対するPの含有量を8〜15質量%の範囲に規定し、これにより好適な靱性をもち、非晶質組織を有するFe基合金箔の形成を容易にする。   Further, P is not as remarkable as B, but has an amorphous forming ability. Therefore, if the characteristics can be utilized well, an Fe-P alloy foil can be produced by applying the above-described melt spinning method. Therefore, in the present invention, the content of P with respect to the base Fe is specified in the range of 8 to 15% by mass, thereby making it easy to form an Fe-based alloy foil having suitable toughness and having an amorphous structure. To do.

また、Fe−P系合金のなかでもPが8〜15質量%の範囲であると融点(液相線温度)が概ね1200℃以下となるため、ろう付けを行う一般的な金属材(母材)の融点よりも低い概ね1250℃以下の温度でろう付けを行うことができる。なお、Pが10±0.3質量%の範囲であるとき、融点を概ね1050℃にでき、Pが9.5〜11.5質量%の範囲であるとき、融点を概ね1100℃以下にできる。これにより、好ましい融点に対し、好ましいP量を設定することもできる。また、融点を下げることにより、ろう付けを行う際の所要温度が低減されて省エネルギーに寄与することもできる。また、P量の増加に対する融点の上昇に比べ、P量の減少に対する融点の上昇の方が鋭敏であるため、Pが8質量%以上であることが特に重要である。   Further, among Fe-P based alloys, when P is in the range of 8 to 15% by mass, the melting point (liquidus temperature) is approximately 1200 ° C. or less, so a general metal material (base material) for brazing Brazing can be performed at a temperature of approximately 1250 ° C. or lower, which is lower than the melting point of). When P is in the range of 10 ± 0.3% by mass, the melting point can be approximately 1050 ° C., and when P is in the range of 9.5 to 11.5% by mass, the melting point can be approximately 1100 ° C. or less. . Thereby, preferable P amount can also be set with respect to preferable melting | fusing point. Also, by lowering the melting point, the required temperature for brazing can be reduced, which can contribute to energy saving. In addition, since the increase in the melting point with respect to the decrease in the P amount is more sensitive than the increase in the melting point with respect to the increase in the P amount, it is particularly important that P is 8% by mass or more.

また、Fe−P系合金は、概ね16質量%を越えるPを含むと、硬くて脆い性質をもつ金属間化合物であるFePやFePを生成するようになる。こうした金属間化合物を含むFe基合金箔をろう接合に用いると、ろう接合部の機械的特性(特に伸びや絞り)の低下リスクがある。したがって、本発明では、Pの上限を15質量%に規定し、これによりP量が常識的な範囲でばらついた場合でも上記の金属間化合物の生成が抑制され、上記のろう接合部の機械的特性の低下リスクを回避することができる。 Further, when the Fe-P alloy contains P exceeding about 16% by mass, Fe 3 P and Fe 2 P, which are hard and brittle intermetallic compounds, are generated. When an Fe-based alloy foil containing such an intermetallic compound is used for brazing, there is a risk that the mechanical properties (particularly elongation and squeezing) of the brazing joint will be reduced. Therefore, in the present invention, the upper limit of P is defined as 15% by mass, whereby the formation of the intermetallic compound is suppressed even when the amount of P varies within a common sense range, and the mechanical properties of the brazed joint are increased. The risk of characteristic degradation can be avoided.

また、Pの供給源は、工業的にはP量が15質量%以下であるリン化鉄であることが一般的であるため、かかるリン化鉄の汎用的な使用が望まれる。したがって、本発明では、上述したろう接合部の機械的特性の低下リスクを回避することに加え、かかるリン化鉄のP量が15質量%以下であることも考慮し、Pの上限を15質量%以下とした。   Moreover, since it is common that the supply source of P is iron phosphide whose amount of P is 15 mass% or less industrially, the versatile use of this iron phosphide is desired. Therefore, in the present invention, in addition to avoiding the risk of deterioration of the mechanical properties of the brazed joint described above, the upper limit of P is set to 15 mass% in consideration of the P content of the iron phosphide being 15 mass% or less. % Or less.

なお、本発明のろう付け用Fe基合金箔は機械加工でプリフォームの形成が容易な非晶質組織を有する箔状のろう材であるが、ろう付けに際して特にろう材のプリフォーム成形性を重視する場合は、Pが12〜14質量%であることが好ましい。   The Fe-based alloy foil for brazing of the present invention is a foil-like brazing material having an amorphous structure that can be easily formed by machining. When importance is attached, it is preferable that P is 12 to 14% by mass.

本発明のろう付け用Fe基合金箔は、単一の元素Pを選定して基となるFeに含有させているため、P以外の元素を含む場合は意図せず混入した不可避的不純物と考えられる。例えば、Pの一般的な供給源として好適なリン化鉄(FeP)は、純度が概ね99.5質量%であるため、これを原料に用いたFe基合金箔は概ね0.5質量%の不純物を含むリスクがある。かかる不可避的不純物となる元素、例えば、Si(珪素)、Mn(マンガン)、Mo(モリブデン)、Ti(チタン)、Nb(ニオビウム)、Cr(クロム)、Ni(ニッケル)、並びにB(硼素)などは、各々0.01質量%未満であることが好ましい。同様に、例えば、C(炭素)、S(硫黄)、N(窒素)、Al(アルミニウム)、並びにCu(銅)などは、各々0.005質量%未満であることが好ましい。   In the brazing Fe-based alloy foil of the present invention, since a single element P is selected and contained in the base Fe, when an element other than P is included, it is considered as an inevitable impurity mixed in unintentionally. It is done. For example, since iron phosphide (FeP) suitable as a general source of P has a purity of approximately 99.5% by mass, the Fe-based alloy foil using this as a raw material has approximately 0.5% by mass. There is a risk of containing impurities. Elements that are inevitable impurities such as Si (silicon), Mn (manganese), Mo (molybdenum), Ti (titanium), Nb (niobium), Cr (chromium), Ni (nickel), and B (boron) And the like are each preferably less than 0.01% by mass. Similarly, for example, C (carbon), S (sulfur), N (nitrogen), Al (aluminum), Cu (copper), and the like are each preferably less than 0.005% by mass.

本発明のろう付け用Fe基合金箔は、上記のメルトスピニング法(単ロール法などの液体急冷法を含む)によって作製できる。例えば、リン化鉄(FeP)を主とする合金溶湯を、Pが8〜15質量%の範囲にある目標値となるように成分調整して所定の温度に保持し、鋳造ノズルで整流しながら高速回転する銅合金製ロール(冷却ロール)の表面上に噴出させる。このとき、鋳造ノズルの先端部に備わるスリット状の開口部は、鋳造する合金箔の厚さと幅に対応する開口面積を有するように設定する。こうして鋳造ノズルの開口部から冷却ロールの表面上に噴出した合金溶湯は、冷却ロールの表面に接触した瞬間に急冷されて急速に固化され、非晶質な鋳造組織を有する箔状の凝固物を形成する。そして、その箔状の凝固物をエアブローなどによって冷却ロールの表面上から連続的に剥離することにより、本発明のFe基合金箔(長尺の剥離物)を作製することができる。   The brazing Fe-based alloy foil of the present invention can be produced by the melt spinning method (including a liquid quenching method such as a single roll method). For example, in an alloy melt mainly composed of iron phosphide (FeP), the components are adjusted so that P becomes a target value in the range of 8 to 15% by mass, maintained at a predetermined temperature, and rectified by a casting nozzle. It is ejected onto the surface of a copper alloy roll (cooling roll) that rotates at high speed. At this time, the slit-shaped opening provided at the tip of the casting nozzle is set to have an opening area corresponding to the thickness and width of the alloy foil to be cast. The molten alloy jetted onto the surface of the cooling roll from the opening of the casting nozzle in this manner is rapidly cooled and rapidly solidified as soon as it comes into contact with the surface of the cooling roll to form a foil-like solidified product having an amorphous cast structure. Form. And the Fe-based alloy foil of this invention (long exfoliation thing) can be produced by exfoliating the foil-like solidified substance from the surface of a cooling roll by air blow etc. continuously.

上述した製造方法により、基となるFeに対するP量を変えて、表1に示す化学成分を有するFe基合金箔が作製できる。なお、表1に示す比較例2は、実質的にPを含まず、Bのアモルファス形成能を利用したNi基合金箔である。また、表1では、箔の外観に関して、欠陥が認められない外観を有する長尺の箔である場合を「〇」で示し、合金箔の作製が困難な比較例1は「×」で示す。   The Fe-based alloy foil having the chemical components shown in Table 1 can be produced by changing the P amount relative to the base Fe by the manufacturing method described above. In addition, the comparative example 2 shown in Table 1 is Ni-based alloy foil which does not contain P substantially and utilizes the amorphous forming ability of B. In Table 1, the case of a long foil having an appearance in which no defects are recognized is indicated by “◯”, and Comparative Example 1 in which the production of the alloy foil is difficult is indicated by “x”.

本発明例1、2および比較例2の合金箔の組織は、例えば、Cuターゲットを設置したX線回折装置を使用し、30°から70°の範囲の回折角における試験片(合金箔)の表面からの回折X線の回折ピークの有無によって確認できる。例えば、結晶質を示すいずれの回折ピークも確認できない試験片(合金箔)は非晶質組織を有すると判定し、結晶質を示すいずれかの回折ピークが確認できる試験片(合金箔)は晶質組織を一部または全部に有すると判定することができる。   The structure of the alloy foils of Invention Examples 1 and 2 and Comparative Example 2 is, for example, an X-ray diffractometer equipped with a Cu target, and a test piece (alloy foil) at a diffraction angle in the range of 30 ° to 70 °. This can be confirmed by the presence or absence of diffraction peaks of diffracted X-rays from the surface. For example, a test piece (alloy foil) that cannot confirm any diffraction peak showing crystalline is determined to have an amorphous structure, and a test piece (alloy foil) that can check any diffraction peak showing crystalline is crystalline. It can be determined that some or all of the quality tissue is present.

また、本発明例1、2および比較例1、2の合金箔の靱性は、試験片(合金箔)を例えば180°に曲げる試験を行うことによって確認できる。例えば、弾力をもって曲がる試験片(合金箔)はプリフォーム成形に好適な靱性を有すると判定し、硬質感があるものの破断することなく曲がる試験片(合金箔)はプリフォーム成形が可能な程度の靱性を有すると判定し、破断もしくは曲げようとすると直に割れるような試験片(合金箔)はプリフォーム成形が困難なほど脆化していると判定することができる。   The toughness of the alloy foils of Invention Examples 1 and 2 and Comparative Examples 1 and 2 can be confirmed by performing a test in which a test piece (alloy foil) is bent, for example, at 180 °. For example, it is determined that a test piece (alloy foil) that bends with elasticity has toughness suitable for preform molding, and a test piece (alloy foil) that has a hard feeling but bends without breaking can be preformed. It can be determined that a test piece (alloy foil) that is determined to have toughness and breaks immediately when it is torn or bent is so brittle that it is difficult to form a preform.

また、ろう付け用合金箔の融点は、ろう付けの所要温度を決定する重要な情報である。箔状のろう材として使用可能な本発明例1、2および比較例2の合金箔の融点は、例えば、一般的な示差熱分析装置(DTA:DIFFERENTIAL THERMAL ANALYSIS)を使用し、試験片(合金箔)をArガス雰囲気中で加熱して溶融する過程で、試験片(合金箔)を入れた坩堝と標準試料を入れた別の坩堝との間に温度差が発生したときの温度(発生点)および終了したときの温度(終了点)を測定することによって確認できる。なお、本発明では、上記の温度差の発生点および終了点を昇温速度を毎分5℃、毎分10℃、毎分20℃の3段階に変えて各々測定し、昇温速度(横軸)と温度(縦軸)の関係をプロットしたとき、温度差の発生点および終了点に基づく近似直線の切片(昇温速度が零のときの温度)を固相線温度TSおよび液相線温度TLとし、その液相線温度TLを試験片(合金箔)の融点とする。   The melting point of the brazing alloy foil is important information for determining the required temperature for brazing. The melting points of the alloy foils of Examples 1 and 2 of the present invention and Comparative Example 2 that can be used as a brazing filler metal are, for example, a test piece (alloy) using a general differential thermal analyzer (DTA: DIFFERENTIAL THERMAL ANALYSIS). The temperature at which a temperature difference occurs between the crucible containing the test piece (alloy foil) and another crucible containing the standard sample during the process of heating and melting the foil in an Ar gas atmosphere (generation point) ) And the temperature at the end (end point) can be measured. In the present invention, the temperature difference generation point and end point are measured by changing the temperature rising rate into three stages of 5 ° C. per minute, 10 ° C. per minute, and 20 ° C. per minute, respectively. When plotting the relationship between the temperature (axis) and the temperature (vertical axis), the intercept of the approximate line (temperature when the rate of temperature rise is zero) based on the origin and end point of the temperature difference is the solidus temperature TS and the liquidus The liquidus temperature TL is defined as the melting point of the test piece (alloy foil).

表2は、上述した方法による本発明例1、2および比較例1、2の合金箔の評価例である。なお、表2では、箔の組織に関して、実質的に非晶質である場合を「〇」で示し、合金箔の作製が困難な比較例1は「×」で示す。また、箔の靱性に関して、プリフォーム成形に好適な箔である場合を「○」で、プリフォーム成形が可能な箔である場合を「△」で示し、合金箔の作製が困難な比較例1は「×」で示す。また、液相線温度TLと固相線音素TSに関して、合金箔の作製が困難な比較例1は「−」で示す。   Table 2 shows evaluation examples of the alloy foils of Invention Examples 1 and 2 and Comparative Examples 1 and 2 according to the above-described method. In Table 2, the case where the foil structure is substantially amorphous is indicated by “◯”, and Comparative Example 1 in which the production of the alloy foil is difficult is indicated by “X”. Further, regarding the toughness of the foil, “○” indicates that the foil is suitable for preform molding, and “△” indicates the foil that can be preform-molded. Is indicated by “x”. Moreover, regarding the liquidus temperature TL and the solidus phoneme TS, Comparative Example 1 in which it is difficult to produce an alloy foil is indicated by “−”.

上述した本発明のろう付け用Fe基合金箔(本発明例1など)を用いて、例えば耐食性に寄与するCrを含むステンレス鋼などの被接合材(母材)をろう接合し、例えば図1に示すような本発明のろう接合部材1を形成することができる。かかるろう接合部材1は、第1金属材2aと第2金属材2bの間に、Feと、8〜15質量%のPと、不可避的不純物とで構成されたろう材層3を有する。   Using the above-described brazing Fe-based alloy foil of the present invention (Example 1 of the present invention), for example, a material to be bonded (base material) such as stainless steel containing Cr contributing to corrosion resistance is brazed, for example, FIG. The brazing joint member 1 of the present invention as shown in FIG. The brazing joint member 1 includes a brazing material layer 3 composed of Fe, 8 to 15% by mass of P, and unavoidable impurities between the first metal material 2a and the second metal material 2b.

また、本発明のろう接合部材1は、本発明例1などのろう付け用Fe基合金箔を第1金属材2aと第2金属材2bの間に配置し、例えば図2に示すヒートパターンを用いて、昇温プロセス(Z1)において合金箔の融点(Tm)を超えて例えば毎分80℃の昇温速度で加熱して溶融ろうとし、保持プロセス(Z2)において融点(TL)よりも30〜50℃程度高い保持温度(Th)で適切に保持した後に、降温プロセス(Z3)において例えば毎分80℃の降温速度で冷却して溶融ろうを凝固させる方法により、ろう接合部材1を作製することができる。なお、上記のろう接合プロセスは、真空雰囲気中で行うことが好ましく、ろう接合部材1の表面への酸化スケールの形成を抑制することができる。   Moreover, the brazing joining member 1 of the present invention has a brazing Fe-based alloy foil such as Example 1 of the present invention disposed between the first metal material 2a and the second metal material 2b. For example, the heat pattern shown in FIG. In the temperature rising process (Z1), the melting point (Tm) of the alloy foil is exceeded and the alloy foil is heated and melted, for example, at a temperature rising rate of 80 ° C. per minute, and in the holding process (Z2), the melting point (TL) is 30 After appropriately holding at a holding temperature (Th) as high as ˜50 ° C., the brazing member 1 is produced by a method of solidifying the molten brazing by cooling at a cooling rate of, for example, 80 ° C. per minute in the temperature lowering process (Z3). be able to. In addition, it is preferable to perform said brazing joining process in a vacuum atmosphere, and formation of the oxide scale on the surface of the brazing joining member 1 can be suppressed.

また、本発明のろう接合部材1は、第1金属材2aおよび第2金属材2bのろう材層3側にPの拡散領域を有する。かかるPの拡散領域は、Pが被接合材(母材)のマトリックス中に拡散する形態であり、従来のBを含む例えば比較例2などの合金箔を用いた場合のろう接合部材におけるCr欠乏層を生成するようなBの拡散の形態とは明らかに異なる。   Moreover, the brazing joint member 1 of the present invention has a P diffusion region on the brazing material layer 3 side of the first metal material 2a and the second metal material 2b. The diffusion region of P is a form in which P diffuses into the matrix of the material to be joined (base material), and Cr depletion in the brazing joint member when using an alloy foil such as Comparative Example 2 containing conventional B is used. The form of B diffusion that produces a layer is clearly different.

上述した方法と同様にして、Bを含み実質的にPを含まないNi基合金箔(比較例2)を用いて図1に示す構成のろう接合部材を作製し、そのろう接合部材の被接合材(母材)のろう材層側の組織構造を調べることができる。図3は、Crを含む第1金属材2aおよび第2金属材2bの間に、Bを含む合金箔(比較例2)を用いて構成されたろう材層3を有するろう接合部材1(比較例2)の断面組織を模式化して示す図である。また、図4は、上記のろう接合部材の第1金属材2aとろう材層3を含む一部分の拡大断面組織を模式化して示す図である。   In the same manner as described above, a brazing joint member having the structure shown in FIG. 1 is produced using a Ni-based alloy foil (Comparative Example 2) containing B and substantially free of P, and the brazing joint member is joined. The structure of the brazing material layer side of the material (base material) can be examined. FIG. 3 shows a brazing joint member 1 (comparative example) having a brazing filler metal layer 3 composed of an alloy foil containing B (comparative example 2) between a first metal material 2a and a second metal material 2b containing Cr. It is a figure which shows typically the section organization of 2). FIG. 4 is a diagram schematically showing an enlarged cross-sectional structure of a part including the first metal material 2a and the brazing material layer 3 of the brazing joint member.

Bを含むろう付け用合金箔を用いてCrを含む金属材(第1金属材2a、第2金属材2b)をろう接合すると、その合金箔による溶融ろう中のBがCrを含む金属材の結晶2cの粒界に沿って拡散し、金属材中のCrと結合してCr硼化物2xを生成する。このCr硼化物2xの生成に際して、Crの拡散速度がBよりも遅いことに起因してCr濃度が低下し、Cr硼化物2xの周囲にCr濃度が特に低いCr欠乏層2yが生成される。耐食性を高める重要な元素であるCrが失われたCr欠乏層2yを有する金属材(第1金属材2a、第2金属材2b)は、その表面に存在するCr欠乏層2yが基点となって容易に局部腐食が発生する。   When a brazing alloy foil containing B is used to braze a metal material containing Cr (first metal material 2a, second metal material 2b), B in the molten brazing by the alloy foil is a metal material containing Cr. It diffuses along the grain boundary of the crystal 2c and combines with Cr in the metal material to produce a Cr boride 2x. When the Cr boride 2x is generated, the Cr concentration is lowered due to the slower diffusion rate of Cr than B, and a Cr-deficient layer 2y having a particularly low Cr concentration is generated around the Cr boride 2x. The metal material (the first metal material 2a and the second metal material 2b) having the Cr-deficient layer 2y from which Cr, which is an important element for enhancing the corrosion resistance, is lost, is based on the Cr-deficient layer 2y existing on the surface thereof. Local corrosion easily occurs.

上述したBに対し、本発明において採用したPは、金属材への拡散に際して一部がCrリン化物を生成するが、Bよりも拡散速度が遅いため、Crリン化物の周囲のCr濃度を低下させない。そのため、金属材(第1金属材2a、第2金属材2b)のろう材層3側にPの拡散領域を有しても、実質的に有害なCr欠乏層2yを有することがない。したがって、本発明のろう付け用Fe基合金箔を用いたろう接合部材1は、腐食環境下においてCrの不動態被膜が形成されるため、その作用効果によって局部腐食の発生を抑制することができる。   In contrast to B described above, P employed in the present invention partially produces Cr phosphide upon diffusion into the metal material, but because the diffusion rate is slower than B, the Cr concentration around Cr phosphide is reduced. I won't let you. Therefore, even if the metal material (the first metal material 2a and the second metal material 2b) has the P diffusion region on the brazing material layer 3 side, it does not have the substantially harmful Cr-deficient layer 2y. Therefore, in the brazing joint member 1 using the Fe-based alloy foil for brazing according to the present invention, since a passive film of Cr is formed in a corrosive environment, it is possible to suppress the occurrence of local corrosion due to its effect.

ろう接合部材1の機械的強さは、例えばJIS−Z3192(ろう付継手の引張及びせん断試験方法、2号B試験片)に準じて評価試験を行うことにより、引張強さ、0.2%耐力、伸び、並びに絞りなどを調べることができる。また、ろう接合部材1の耐食性は、例えばJIS−G0575(ステンレス鋼の硫酸・硫酸銅腐食試験方法、硫酸腐食液、突合せ試験片)やJIS−G0578(ステンレス鋼の塩化第2鉄腐食試験方法、塩酸腐食液、突合せ試験片)に準じて各種の腐食試験を行うことにより、硫酸性環境や塩酸性環境における局部腐食の有無や程度などを調べることができる。なお、腐食試験に際して鋭敏化熱処理を行うこともできる。また、試験片の腐食の深さは、例えば、表面の腐食生成物をナイロンブラシや超音波洗浄などを用いて水洗除去して乾燥させた試験片を準備し、その試験片の腐食部をレーザー顕微鏡で測定する方法により、調べることができる。   The mechanical strength of the brazing joint member 1 is, for example, 0.2% by tensile strength by conducting an evaluation test according to JIS-Z3192 (Tensile and shear test method for brazed joint, No. 2 B test piece). Yield strength, elongation, aperture, etc. can be examined. Moreover, the corrosion resistance of the brazing joint member 1 is, for example, JIS-G0575 (sulfuric acid / copper sulfate corrosion test method of stainless steel, sulfuric acid corrosion solution, butt test piece) or JIS-G0578 (stainless steel ferric chloride corrosion test method, By conducting various corrosion tests according to hydrochloric acid corrosive solution and butt test piece), it is possible to examine the presence and extent of local corrosion in a sulfuric acid environment or a hydrochloric acid environment. A sensitizing heat treatment can also be performed during the corrosion test. The depth of corrosion of the test piece is determined by, for example, preparing a test piece obtained by washing and removing the surface corrosion product with a nylon brush or ultrasonic cleaning and drying the test piece. This can be investigated by measuring with a microscope.

1.ろう接合部材、2a.第1金属材、2b.第2金属材、2c.結晶粒、2x.Cr硼化物、2y.Cr欠乏層、3.ろう材層、Tm.融点、Tr.室温、Th.保持温度、Z1.昇温プロセス、Z2.保持プロセス、Z3.降温プロセス 1. Brazing joint member, 2a. 1st metal material, 2b. Second metal material, 2c. Crystal grain, 2x. Cr boride, 2y. 2. Cr-deficient layer; Brazing filler metal layer, Tm. Melting point, Tr. Room temperature, Th. Holding temperature, Z1. Temperature raising process, Z2. Holding process, Z3. Temperature drop process

Claims (5)

Feと、8〜15質量%のPと、不可避的不純物とで構成された非晶質組織を有する、ろう付け用Fe基合金箔。   An Fe-based alloy foil for brazing having an amorphous structure composed of Fe, 8 to 15% by mass of P, and unavoidable impurities. 前記Pが12〜14質量%である、請求項1に記載のろう付け用Fe基合金箔。   The Fe-based alloy foil for brazing according to claim 1, wherein the P is 12 to 14% by mass. Crを含む第1金属材と第2金属材の間に、Feと、8〜15質量%のPと、不可避的不純物とで構成されたろう材層を有する、ろう接合部材。   A brazing joint member having a brazing filler metal layer composed of Fe, 8 to 15% by mass of P, and unavoidable impurities between a first metal material and a second metal material containing Cr. 前記Pが12〜14質量%である、請求項3に記載のろう接合部材。   The brazing joint member according to claim 3, wherein the P is 12 to 14% by mass. 前記第1金属材および前記第2金属材の前記ろう材層側にPの拡散領域を有する、請求項3または4に記載のろう接合部材。   The brazing joint member according to claim 3 or 4, wherein a P diffusion region is provided on the brazing material layer side of the first metal material and the second metal material.
JP2016004416A 2016-01-13 2016-01-13 Fe-BASED ALLOY FOIL FOR BRAZING AND BRAZING FILLER METAL JOINING COMPONENT Pending JP2017124414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004416A JP2017124414A (en) 2016-01-13 2016-01-13 Fe-BASED ALLOY FOIL FOR BRAZING AND BRAZING FILLER METAL JOINING COMPONENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004416A JP2017124414A (en) 2016-01-13 2016-01-13 Fe-BASED ALLOY FOIL FOR BRAZING AND BRAZING FILLER METAL JOINING COMPONENT

Publications (1)

Publication Number Publication Date
JP2017124414A true JP2017124414A (en) 2017-07-20

Family

ID=59363706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004416A Pending JP2017124414A (en) 2016-01-13 2016-01-13 Fe-BASED ALLOY FOIL FOR BRAZING AND BRAZING FILLER METAL JOINING COMPONENT

Country Status (1)

Country Link
JP (1) JP2017124414A (en)

Similar Documents

Publication Publication Date Title
JP5704835B2 (en) Aluminum alloy brazing sheet for heat exchanger
TWI306477B (en) Ferritic stainless steel sheet having excellent corrosion resistance and method of manufacturing the same
JP2010500178A5 (en)
CN103418930A (en) Ni-base alloy weld metal, strip electrode, and welding method
JP6439795B2 (en) Ni-based amorphous alloy ribbon for brazing and stainless steel joint using the same
WO2019070000A1 (en) Austenitic stainless steel weld metal and welded structure
JPWO2009128174A1 (en) Iron-based heat-resistant and corrosion-resistant brazing material
JP2008119744A (en) Alloy for liquid-phase diffusion bonding
JP6566928B2 (en) Stainless steel flux cored wire
JP2013194266A (en) Aluminum alloy brazing sheet for heat exchanger
KR20170103978A (en) Brazing alloy
JP6434381B2 (en) Stainless steel flux cored wire
JP2019063868A (en) Weld material for austenite stainless steel
JP2010248611A (en) Steel having excellent toughness in weld heat-affected zone
CN108779520A (en) Aluminum alloy brazing sheet
JP2015190013A (en) aluminum alloy brazing sheet for electric resistance welding
JP5340839B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP2011038163A (en) Aluminum-clad material for heat-exchanger
WO2019069998A1 (en) Austenitic stainless steel
JP4613791B2 (en) Stainless steel material containing B and method for producing the same
JP5520105B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP3860437B2 (en) Iron-based consumable welding materials and welded joints with excellent fatigue strength at welded joints
JP2017124414A (en) Fe-BASED ALLOY FOIL FOR BRAZING AND BRAZING FILLER METAL JOINING COMPONENT
JP6178483B1 (en) Aluminum alloy brazing sheet
JP2018131668A (en) HIGH-STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET EXCELLENT IN BENDING PROCESSABILITY AND METHOD FOR MANUFACTURING THE SAME