JP2017124026A - Capsule-type endoscope and drive system of capsule-type endoscope - Google Patents

Capsule-type endoscope and drive system of capsule-type endoscope Download PDF

Info

Publication number
JP2017124026A
JP2017124026A JP2016004937A JP2016004937A JP2017124026A JP 2017124026 A JP2017124026 A JP 2017124026A JP 2016004937 A JP2016004937 A JP 2016004937A JP 2016004937 A JP2016004937 A JP 2016004937A JP 2017124026 A JP2017124026 A JP 2017124026A
Authority
JP
Japan
Prior art keywords
magnet
receiving coil
power
coil
capsule endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016004937A
Other languages
Japanese (ja)
Other versions
JP6701590B2 (en
Inventor
勉 水野
Tsutomu Mizuno
勉 水野
穎剛 卜
Yinggang Bu
穎剛 卜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2016004937A priority Critical patent/JP6701590B2/en
Publication of JP2017124026A publication Critical patent/JP2017124026A/en
Application granted granted Critical
Publication of JP6701590B2 publication Critical patent/JP6701590B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a capsule-type endoscope including both of a power receiving coil and a magnet for induction operation and capable of appropriately performing power supply and induction.SOLUTION: A capsule-type endoscope 20 according to the present invention includes a power receiving coil 21 for non-contact power supply, and a magnet 22. The power receiving coil 21 of the capsule-type endoscope 20 is so provided that coils are wound around an external surface of a core composed of a magnetic substance, in triaxial directions orthogonally crossing with one another. The power receiving coil 21 and the magnet 22 are spaced from each other, and a circuit board is installed in a clearance formed between the power receiving coil 21 and the magnet 22. The capsule-type endoscope 20 is so configured that a power feed coil 12 supplies the power receiving 21 with the electric power by magnetic resonance coupling system, and is inducedly operated by magnetic force applied to the magnet 22 by an induction coil 14.SELECTED DRAWING: Figure 2

Description

本発明は、カプセル型内視鏡及びこのカプセル型内視鏡を用いたカプセル型内視鏡の駆動システムに関する。   The present invention relates to a capsule endoscope and a drive system for a capsule endoscope using the capsule endoscope.

近年、人体の内視鏡検査用として、内服して用いるカプセル型内視鏡が実用化されている。カプセル型内視鏡は、両端が封止された円筒型のカプセル内に、消化器官等を撮影する撮影機構、撮影した映像情報を外部に送る通信機構を内蔵したものであり、これらの機構を駆動する電源として電池を内蔵したものが使用されている。   2. Description of the Related Art In recent years, capsule endoscopes used for internal use have been put to practical use for endoscopy of the human body. Capsule endoscopes have a built-in imaging mechanism that captures digestive organs, etc., and a communication mechanism that sends the captured video information to the outside in a cylindrical capsule that is sealed at both ends. A battery with a built-in battery is used as a driving power source.

しかしながら、カプセル型内視鏡に自走機構や、組織を採取するといった機能を付加したり、長時間駆動したりするには、内蔵した電池で電力をまかなうことが難しいという問題があり、非接触給電方法を利用してカプセル型内視鏡に給電する方法が検討されている(特許文献1、2)。
本発明者は、非接触給電方法により給電する方法として、人体の外部に給電コイル、カプセル型内視鏡の内部に受電コイルをそれぞれ配し、磁界共振結合方式によって給電する方法を提案した(非特許文献1、2)。また、被検者の一方側(背面側等)に給電コイルを配して給電することにより、検査等の医療操作が容易にできるようにする非接触給電システムを提案した(特許文献3)。
However, in order to add a self-propelled mechanism or a tissue sampling function to the capsule endoscope or to drive it for a long time, there is a problem that it is difficult to supply power with the built-in battery, and contactless A method of supplying power to a capsule endoscope using a power supply method has been studied (Patent Documents 1 and 2).
The present inventor has proposed a method of supplying power by a magnetic resonance coupling method by arranging a power supply coil outside a human body and a power receiving coil inside a capsule endoscope as a method of supplying power by a non-contact power supply method (non-contact power supply method). Patent Documents 1 and 2). In addition, a non-contact power supply system has been proposed in which a power supply coil is arranged on one side (back side or the like) of a subject so as to facilitate medical operations such as examination (Patent Document 3).

また、カプセル型内視鏡を体内の所望の位置に誘導して内臓の状態を検査できるようにするため、カプセル内に磁石(永久磁石)を内蔵し、磁力を利用して外部からカプセル型内視鏡を誘導する方法が提案されている(特許文献4)。   In addition, a magnet (permanent magnet) is built in the capsule to guide the capsule endoscope to a desired position in the body so that the internal organs can be inspected. A method for guiding an endoscope has been proposed (Patent Document 4).

特開2010−110533号公報JP 2010-110533 A 特開2009−125097号公報JP 2009-125097 A 特開2015−112169号公報JP, 2015-112169, A 特表2008−503310号公報JP 2008-503310 A

水野勉,後藤徳仁,谷内慎太郎,上田拓人,大友隆平,西山昌宏,武藤龍:「三軸受信コイルを用いた体内ロボット用非接触給電」,電気学会リニアドライブ研究会資料,LD-12-074, pp.49-54(2012)Tsutomu Mizuno, Tokujin Goto, Shintaro Taniuchi, Takuto Ueda, Ryuhei Otomo, Masahiro Nishiyama, Ryu Muto: “Non-contact power supply for body robots using three-axis receiver coil”, IEEJ Linear Drive Study Group, LD-12- 074, pp.49-54 (2012) 水野勉,後藤徳仁,谷内慎太郎,上田拓人,大友隆平:「磁性めっき線を用いた磁界共振結合形体内ロボット用非接触給電システムの効率向上の検討」,電磁力関連のダイナミクスシンポジウム講演論文集,Vol. 24, pp. 411-416(2012)Tsutomu Mizuno, Tokujin Goto, Shintaro Taniuchi, Takuto Ueda, Ryuhei Otomo: "Examination of efficiency improvement of contactless power feeding system for magnetic resonance coupled internal robot using magnetic plating wire", Proceedings of electromagnetic force related dynamics symposium , Vol. 24, pp. 411-416 (2012)

ところで、カプセル型内視鏡に給電用の受電コイルと誘導動作用(自走用)の磁石を内蔵させると、内蔵した磁石と受電コイルが備えるコア(磁性体)による磁界の作用が非接触給電やカプセル型内視鏡の誘導動作に悪影響を及ぼす可能性がある。
本発明は、受電コイルと誘導用の磁石の双方を内蔵したカプセル型内視鏡に対して確実に非接触給電と誘導動作が行えるようにすることができるカプセル型内視鏡と、このカプセル型内視鏡を用いる駆動システムを提供することを目的とする。
By the way, when the power receiving coil for feeding and the magnet for guiding operation (self-running) are built in the capsule endoscope, the action of the magnetic field by the built-in magnet and the core (magnetic material) of the power receiving coil is contactless feeding. And the guidance operation of the capsule endoscope may be adversely affected.
The present invention relates to a capsule endoscope that can reliably perform non-contact power feeding and guiding operation with respect to a capsule endoscope including both a power receiving coil and a guide magnet, and the capsule type An object is to provide a drive system using an endoscope.

本発明に係るカプセル型内視鏡は、非接触給電用の受電コイルと磁石とを内蔵したカプセル型内視鏡であって、前記受電コイルは、磁性体からなるコアの外面に、相互に直交する3軸方向にそれぞれコイルが巻回して設けられ、前記受電コイルと前記磁石とが相互に離間して設けられていることを特徴とする。
前記受電コイルと前記磁石とが離間する空隙内に、給電用あるいは撮像等の制御用の回路基板を設置することで、受電コイルと磁石との間の空隙を有効に活用することができる。
A capsule endoscope according to the present invention is a capsule endoscope including a power receiving coil for non-contact power feeding and a magnet, and the power receiving coil is orthogonal to the outer surface of a core made of a magnetic material. Coil is wound around each of the three axial directions, and the power receiving coil and the magnet are spaced apart from each other.
By installing a circuit board for power supply or control for imaging or the like in the gap where the power receiving coil and the magnet are separated from each other, the gap between the power receiving coil and the magnet can be effectively utilized.

また、本発明に係るカプセル型内視鏡は、非接触給電用の受電コイルと磁石を内蔵したカプセル型内視鏡であって、前記受電コイルは、磁性体からなるコアの外面に、相互に直交する3軸方向にそれぞれコイルが巻回して設けられ、前記磁石は、外面に金属被膜を備えないことを特徴とする。
このカプセル型内視鏡の場合も、前記受電コイルと前記磁石とが相互に離間して設けられ、前記受電コイルと前記磁石とが離間する空隙内に、給電用あるいは撮像用等の回路基板を配置することで、受電コイルと磁石との間の空隙を有効に活用することができる。
The capsule endoscope according to the present invention is a capsule endoscope including a power receiving coil for non-contact power feeding and a magnet, and the power receiving coil is mutually connected to an outer surface of a core made of a magnetic material. A coil is wound around each of three orthogonal directions, and the magnet does not have a metal coating on its outer surface.
Also in the case of this capsule endoscope, the power receiving coil and the magnet are provided apart from each other, and a circuit board for power supply or imaging is provided in a gap where the power receiving coil and the magnet are separated from each other. By disposing, the gap between the power receiving coil and the magnet can be effectively utilized.

なお、前記受電コイルとして、前記コアが円板状に形成され、前記受電コアに巻回される3個のコイルのうち、2個のコイルは、コアの平面内を通過し、コアの平面内で十字形に交差する配置に巻回され、他の1個のコイルは、コアの円周外面に巻回されていることにより、カプセル型内視鏡がさまざまな姿勢になっても確実に受電コイルに給電することができる。   Note that, as the power receiving coil, the core is formed in a disc shape, and two coils out of three coils wound around the power receiving core pass through the plane of the core and are within the plane of the core. As the other coil is wound around the outer circumference of the core, it can receive power reliably even when the capsule endoscope is in various postures. The coil can be powered.

また、本発明に係るカプセル型内視鏡の駆動システムは、非接触給電用の受電コイルと磁石とを内蔵したカプセル型内視鏡の駆動システムであって、前記受電コイルに給電する給電機構として、磁界共振結合方式により前記受電コイルに給電する給電コイルを備え、前記カプセル型内視鏡の誘導機構として、前記磁石に磁力を作用させてカプセル型内視鏡を誘導移動させる磁界発生手段を備え、前記カプセル型内視鏡の前記受電コイルは、磁性体からなるコアの外面に、相互に直交する3軸方向にそれぞれコイルが巻回して設けられ、前記受電コイルと前記磁石とが相互に離間して設けられていることを特徴とする。
また、本発明に係るカプセル型内視鏡の駆動システムは、非接触給電用の受電コイルと磁石とを内蔵したカプセル型内視鏡の駆動システムであって、前記受電コイルに給電する給電機構として、磁界共振結合方式により前記受電コイルに給電する給電コイルを備え、前記カプセル型内視鏡の誘導機構として、前記磁石に磁力を作用させてカプセル型内視鏡を誘導移動させる磁界発生手段を備え、前記カプセル型内視鏡の前記受電コイルは、磁性体からなるコアの外面に、相互に直交する3軸方向にそれぞれコイルが巻回して設けられ、前記磁石は、外面に金属被膜を備えないことを特徴とする。
なお、カプセル型内視鏡の誘導機構に用いる磁界発生手段は、永久磁石による磁界を利用して誘導する方法、コイルに電流を印加することで生じる磁界を利用して誘導する方法が利用できる。
The capsule endoscope driving system according to the present invention is a capsule endoscope driving system including a power receiving coil and a magnet for non-contact power feeding, as a power feeding mechanism for feeding power to the power receiving coil. A magnetic-field resonance coupling method for supplying power to the power-receiving coil, and a magnetic-field generating means for guiding and moving the capsule endoscope by applying a magnetic force to the magnet as a guide mechanism for the capsule endoscope The power receiving coil of the capsule endoscope is provided on the outer surface of a core made of a magnetic material by winding the coils in three orthogonal directions, and the power receiving coil and the magnet are separated from each other. It is characterized by being provided.
The capsule endoscope driving system according to the present invention is a capsule endoscope driving system including a power receiving coil and a magnet for non-contact power feeding, as a power feeding mechanism for feeding power to the power receiving coil. A magnetic-field resonance coupling method for supplying power to the power-receiving coil, and a magnetic-field generating means for guiding and moving the capsule endoscope by applying a magnetic force to the magnet as a guide mechanism for the capsule endoscope The receiving coil of the capsule endoscope is provided on the outer surface of a core made of a magnetic material by winding the coils in three axial directions orthogonal to each other, and the magnet does not have a metal coating on the outer surface. It is characterized by that.
The magnetic field generating means used for the guidance mechanism of the capsule endoscope can be a method of guiding using a magnetic field by a permanent magnet or a method of guiding using a magnetic field generated by applying a current to a coil.

本発明に係るカプセル型内視鏡及びカプセル型内視鏡の駆動システムによれば、外部からの遠隔操作により、被検者の体内にあるカプセル型内視鏡に確実に給電することができ、カプセル型内視鏡を確実に誘導することができる。   According to the capsule endoscope and the drive system of the capsule endoscope according to the present invention, it is possible to reliably supply power to the capsule endoscope in the body of the subject by remote operation from the outside. The capsule endoscope can be reliably guided.

本発明に係るカプセル型内視鏡の駆動システムの構成を示す説明図である。It is explanatory drawing which shows the structure of the drive system of the capsule endoscope which concerns on this invention. カプセル型内視鏡の内部構成と、カプセル型内視鏡と給電コイル及び誘導用コイルとの間の作用を示す説明図である。It is explanatory drawing which shows the effect | action between the internal structure of a capsule type | mold endoscope, and a capsule type | mold endoscope, a feeding coil, and a guidance coil. 受電コイルの構成を示す説明図である。It is explanatory drawing which shows the structure of a receiving coil. 磁性めっき線の断面図である。It is sectional drawing of a magnetic plating wire. カプセル内における受電コイルと磁石の配置を示す説明図である。It is explanatory drawing which shows arrangement | positioning of the receiving coil and a magnet in a capsule. 非接触給電の際に受電コイルと磁石とに生じる作用を示す説明図である。It is explanatory drawing which shows the effect | action which arises in a receiving coil and a magnet in the case of non-contact electric power feeding. コイルA、B、CのQ値の周波数特性の測定結果を示すグラフである。It is a graph which shows the measurement result of the frequency characteristic of Q value of coils A, B, and C. コイルA、B、Cの抵抗値の周波数特性の測定結果を示すグラフである。It is a graph which shows the measurement result of the frequency characteristic of the resistance value of coils A, B, and C. コイルA、B、Cのインダクタンスの周波数特性の測定結果を示すグラフである。It is a graph which shows the measurement result of the frequency characteristic of the inductance of coils A, B, and C. 給電特性の実験に使用した装置のブロック図である。It is a block diagram of the apparatus used for the experiment of electric power feeding characteristic. 給電周波数を671kHzとしたときの受電コイルの受電電力の測定結果を示すグラフである。It is a graph which shows the measurement result of the receiving power of a receiving coil when a feeding frequency is set to 671 kHz. ニッケル被膜を除去した磁石を使用し、給電周波数を調整して測定した受電コイルの受電電力の測定結果を示すグラフである。It is a graph which shows the measurement result of the receiving power of the receiving coil measured using the magnet which removed the nickel film and adjusting the feeding frequency. 誘導用コイルを利用してカプセル型内視鏡を誘導させる際の推進力を測定する実験に用いた測定装置のブロック図である。It is a block diagram of the measuring apparatus used for the experiment which measures the driving force at the time of guiding a capsule endoscope using a guidance coil. コイルに直流電流を印加したときのコイルの中心線上における磁束密度を測定した結果を示すグラフである。It is a graph which shows the result of having measured the magnetic flux density on the centerline of a coil when a direct current is applied to a coil. 実験に使用したサンプルのカプセル内部の構成を示す正面図と各部の径寸法を示す側断面図である。It is the front view which shows the structure inside the capsule of the sample used for experiment, and a sectional side view which shows the radial dimension of each part. 厚さlPM=2mmの磁石を使用し、コイルに流す電流を変えて測定した推進力を示すグラフである。It is a graph which shows the driving force measured by using the magnet of thickness lPM = 2mm and changing the electric current sent through a coil. 厚さlPM=3mmの磁石を使用し、コイルに流す電流を変えて測定した推進力を示すグラフである。It is a graph which shows the driving force measured by using the magnet of thickness lPM = 3mm and changing the electric current sent through a coil. 厚さlPM=4mmの磁石を使用し、コイルに流す電流を変えて測定した推進力を示すグラフである。It is a graph which shows the driving force measured by using the magnet of thickness lPM = 4mm and changing the electric current sent through a coil. 厚さlPM=5mmの磁石を使用し、コイルに流す電流を変えて測定した推進力を示すグラフである。It is a graph which shows the driving force measured by using the magnet of thickness lPM = 5mm and changing the electric current sent through a coil.

(カプセル型内視鏡の駆動システム)
図1は本発明に係るカプセル型内視鏡の駆動システムの全体構成を示す。カプセル型内視鏡の駆動システムは、被検者に内服されたカプセル型内視鏡に対して、非接触給電により給電する給電機構と、磁界を利用してカプセル型内視鏡を遠隔的に誘導させる誘導機構とを備える。
(Capsule endoscope drive system)
FIG. 1 shows the overall configuration of a capsule endoscope drive system according to the present invention. The capsule endoscope drive system includes a power feeding mechanism that feeds power to a capsule endoscope taken by a subject by non-contact power feeding, and a capsule endoscope remotely using a magnetic field. A guiding mechanism for guiding.

図1に示すカプセル型内視鏡の駆動システムにおける給電機構は、被検者の胴部を包囲する形態に支持フレーム10を配置し、支持フレーム10に設置した給電コイル12と、カプセル型内視鏡20に内蔵した受電コイル21との間において磁界共振結合を利用して給電する。磁界共振結合では、給電コイル12に所定の給電周波数の交流電源を接続し、給電コイル12と受電コイル21とを共振させることにより給電コイル12から受電コイル21に給電する。
外部からの磁界をカプセル型内視鏡に作用させてカプセル型内視鏡20を誘導動作する誘導機構は、支持フレーム10に設置した誘導用コイル14により、カプセル型内視鏡20に内蔵した磁石22に磁界を作用させて行う。
The power feeding mechanism in the capsule endoscope drive system shown in FIG. 1 includes a support frame 10 arranged so as to surround a torso of a subject, a power feeding coil 12 installed on the support frame 10, and a capsule type endoscope. Power is supplied to the power receiving coil 21 built in the mirror 20 by using magnetic resonance coupling. In the magnetic field resonance coupling, an AC power supply having a predetermined feeding frequency is connected to the feeding coil 12, and the feeding coil 12 and the receiving coil 21 are resonated to feed power from the feeding coil 12 to the receiving coil 21.
A guidance mechanism for guiding the capsule endoscope 20 by applying an external magnetic field to the capsule endoscope is a magnet built in the capsule endoscope 20 by a guiding coil 14 installed on the support frame 10. This is performed by applying a magnetic field to 22.

図1に示すように、給電コイル12と誘導用コイル14は支持フレーム10の各面に設置する。給電コイル12と誘導用コイル14は、コイル16のように、支持フレーム10の側面を一周する形態に設けることもできる。
これらの給電コイル12と誘導用コイル14は、それぞれ給電と誘導を行う専用のコイルとして設置することもできるし、給電用と誘導用に適宜切り替えて使用することもできる。給電コイル12と誘導用コイル14を給電用と誘導用に共通に使用することができれば、給電作用、誘導作用の際に適宜位置のコイルを選択して所要の作用を行うことができ、カプセル型内視鏡20の給電、誘導動作をきめ細かく調整することができる利点がある。
As shown in FIG. 1, the power supply coil 12 and the induction coil 14 are installed on each surface of the support frame 10. The power supply coil 12 and the induction coil 14 can also be provided in a form that goes around the side surface of the support frame 10 like the coil 16.
The feeding coil 12 and the induction coil 14 can be installed as dedicated coils for feeding and induction, respectively, or can be used by appropriately switching between feeding and induction. If the power supply coil 12 and the induction coil 14 can be used in common for power supply and induction, a coil at an appropriate position can be selected at the time of the power supply operation and the induction operation, and the required operation can be performed. There is an advantage that the feeding and guiding operations of the endoscope 20 can be finely adjusted.

給電コイル12と誘導用コイル14の駆動を制御する制御部としては、給電あるいは誘導動作を制御するコントローラ30と、コントローラ30の出力信号に基づいて駆動用の信号を出力する処理部31と、処理部31の出力信号を増幅して駆動電流とする増幅器32を備える。給電コイル12と誘導用コイル14は増幅器32に接続され、コントローラ30の操作にしたがって適宜通電され、給電あるいは誘導動作をなす。   As a control unit that controls driving of the power feeding coil 12 and the induction coil 14, a controller 30 that controls power feeding or induction operation, a processing unit 31 that outputs a driving signal based on an output signal of the controller 30, and processing An amplifier 32 is provided that amplifies the output signal of the unit 31 to generate a drive current. The power feeding coil 12 and the induction coil 14 are connected to an amplifier 32 and are energized as appropriate according to the operation of the controller 30 to perform power feeding or induction operation.

なお、図1に示すカプセル型内視鏡の駆動システムでは、被検者を包囲する形態に給電コイル12と誘導用コイル14を配置しているが、給電コイル12と誘導用コイル14は、たとえば、被検者の両側面部分に配置したり、被検者の一方の面(たとえば背面)のみに設けて給電するといったことも可能である。
また、カプセル型内視鏡の誘導機構として、図1では、誘導用コイル14を使用しているが、誘導用コイル14によらずに永久磁石の磁界を利用してカプセル型内視鏡を誘導することも可能である。カプセル型内視鏡に作用させる磁界源として誘導用コイル14を用いる場合も永久磁石を用いる場合も、内服されたカプセル型内視鏡の体内における位置を検知しながら、カプセル型内視鏡に磁界を作用させ、カプセル型内視鏡の姿勢を制御したり、カプセル型内視鏡の移動動作を誘導する操作を行う。
In the capsule endoscope driving system shown in FIG. 1, the feeding coil 12 and the guiding coil 14 are arranged in a form surrounding the subject, but the feeding coil 12 and the guiding coil 14 are, for example, It is also possible to arrange on both sides of the subject or to provide power only on one side (for example, the back side) of the subject.
Further, in FIG. 1, the guiding coil 14 is used as the capsule endoscope guiding mechanism, but the capsule endoscope is guided using the magnetic field of a permanent magnet without using the guiding coil 14. It is also possible to do. Whether the induction coil 14 or a permanent magnet is used as a magnetic field source to be applied to the capsule endoscope, a magnetic field is applied to the capsule endoscope while detecting the position of the capsule capsule endoscope in the body. Is operated to control the posture of the capsule endoscope or to guide the moving operation of the capsule endoscope.

図2は、カプセル型内視鏡20の内部構成と、カプセル型内視鏡20と給電コイル12及び誘導用コイル14との間の作用を示す図である。
カプセル型内視鏡20は、両端が封止された円筒状のカプセル(容器)の内部に、前述した受電コイル20と磁石22とが内蔵され、撮影機構としてカメラ23、画像の送信用の通信機構(受送信用の回路)24が内蔵されている。カプセルの透視窓を備える前部側にカメラ23が配置され、カメラ23の背面側に通信機構24の回路基板が配置され、通信機構24の背面側に、受電コイル21、給電用の回路基板、自走用の磁石22が配置される。図2において、コントローラ35は給電あるいは誘導動作の制御と、カメラ23等の撮影機構の制御をなす。
FIG. 2 is a diagram illustrating an internal configuration of the capsule endoscope 20 and an operation between the capsule endoscope 20 and the feeding coil 12 and the guiding coil 14.
The capsule endoscope 20 includes the above-described power receiving coil 20 and magnet 22 in a cylindrical capsule (container) sealed at both ends, and includes a camera 23 as a photographing mechanism and communication for image transmission. A mechanism (transmission / reception circuit) 24 is incorporated. The camera 23 is arranged on the front side including the capsule see-through window, the circuit board of the communication mechanism 24 is arranged on the back side of the camera 23, the power receiving coil 21, the power supply circuit board, A self-propelled magnet 22 is arranged. In FIG. 2, the controller 35 controls the feeding or guiding operation and the photographing mechanism such as the camera 23.

図3はカプセル型内視鏡20に内蔵する受電コイル21の構成を示す。受電コイル21は、円板状に形成したコア(フェライトコア)21aに3個のコイルA,B、Cを相互に軸線方向が直交する向き(3軸方向)に巻回したものである。コイルAとコイルBは、コア21aの平面内で十字形に交差する形態、いわばコア21aを厚さ方向に巻回するように配置し、コイルCについては、コア21aの円周外面を巻回するように配置する。コア21aを使用するのは、コイルに効率的に磁界を作用させ、効率的に給電作用がなされるようにするためである。本明細書において、とくに断らない場合は受電コイル21はコイルとコアとを含めた意味として使用する。   FIG. 3 shows a configuration of the power receiving coil 21 built in the capsule endoscope 20. The power receiving coil 21 is obtained by winding three coils A, B, and C around a disc-shaped core (ferrite core) 21a in a direction in which the axial directions are orthogonal to each other (triaxial direction). The coil A and the coil B are arranged so as to cross in a cross shape in the plane of the core 21a, that is, so as to wind the core 21a in the thickness direction, and for the coil C, the circumferential outer surface of the core 21a is wound. Arrange to do. The reason why the core 21a is used is to efficiently apply a magnetic field to the coil and to efficiently supply power. In this specification, unless otherwise specified, the power receiving coil 21 is used to include a coil and a core.

カプセル型内視鏡に給電する場合は、被検者の安全を確保するため、使用する磁界の強度をICNIRPのガイドラインにしたがって周波数3kHzから10MHzの範囲では80A/m以下とする必要があり、カプセル型内視鏡に搭載されているカメラの駆動や通信機能を確保するため供給電力として30mW程度以上が必要である。
このため、非接触給電の実験においては、30mW,3V以上の出力を得るようにするため、それぞれのコイルに接続する負荷抵抗を300Ωとし、各コイルの出力電力を、倍電圧回路を用いて昇圧し、平滑コンデンサにより整流する構成とした。
コイルA,B,Cに接続する共振用のコンデンサCA、CB、CCのキャパシタンスはコイルA、B、Cのインダクタンスと電力伝送周波数により設定し、整流用コンデンサCのキャパシタンスは1μFとした。コンデンサCA、CB、CC、Cとダイオードには、小型化、薄型化を図るため表面実装用の素子を使用した。
When power is supplied to a capsule endoscope, the strength of the magnetic field used must be 80 A / m or less in the frequency range of 3 kHz to 10 MHz in accordance with ICNIRP guidelines to ensure the safety of the subject. In order to ensure the drive and communication functions of the camera mounted on the mold endoscope, a power supply of about 30 mW or more is required.
For this reason, in the non-contact power supply experiment, in order to obtain an output of 30 mW and 3 V or more, the load resistance connected to each coil is set to 300Ω, and the output power of each coil is boosted using a voltage doubler circuit. And it was set as the structure rectified with a smoothing capacitor.
The capacitances of the resonance capacitors C A , C B , and C C connected to the coils A, B, and C are set by the inductances of the coils A, B, and C and the power transmission frequency, and the capacitance of the rectifying capacitor C is 1 μF. . For the capacitors C A , C B , C C , C and the diode, surface mount elements were used in order to reduce the size and thickness.

コイルA、B、Cの巻線には磁性めっき線(MPW)を使用した。図4に磁性めっき線の構成を示す。磁性めっき線は、銅からなる導線の外周面を磁性である鉄薄膜により被覆し、さらにその外周面をニッケル薄膜により被覆し、最外表面をポリエチレンの絶縁被膜により被覆したものである。導線の径が90μm、鉄薄膜の厚さが1μm、絶縁被膜の層まで含めた巻線径は110μmである。コイルA、B、Cの巻線に磁性めっき線を使用することにより、磁界を利用する給電作用を効率的に行うことができる。   Magnetic winding wires (MPW) were used for the windings of coils A, B, and C. FIG. 4 shows the configuration of the magnetic plating wire. The magnetic plated wire is obtained by coating the outer peripheral surface of a conductive wire made of copper with a magnetic iron thin film, further coating the outer peripheral surface with a nickel thin film, and coating the outermost surface with a polyethylene insulating coating. The diameter of the conducting wire is 90 μm, the thickness of the iron thin film is 1 μm, and the winding diameter including the insulating coating layer is 110 μm. By using magnetic plating wires for the windings of the coils A, B, and C, it is possible to efficiently perform a power feeding action using a magnetic field.

前述したように、カプセル型内視鏡20には受電コイル21と誘導動作(自走用)の磁石22が内蔵され、受電コイル21と磁石22は、カプセル(容器)の内周径に合わせて挿入して収容できるように、ともに円板状に形成されている。
図5は、カプセル内に装着した状態の受電コイル21と磁石22の配置を示す。図5(a)は受電コイル21と磁石22とを端面を相互に当接させて配置した状態、図5(b)は受電コイル21と磁石22の端面を若干離間させて(ギャップG)配置した状態を示す。なお、磁石22は厚さ方向に着磁されている。
実際のカプセル型内視鏡では、給電用の回路を搭載する必要がある。受電コイル21と磁石22との間にギャップを設けることにより、この空隙内に給電用の基板を搭載することができる。
As described above, the capsule endoscope 20 includes the power receiving coil 21 and the magnet 22 for guiding operation (self-running), and the power receiving coil 21 and the magnet 22 are adapted to the inner peripheral diameter of the capsule (container). Both are formed in a disc shape so that they can be inserted and accommodated.
FIG. 5 shows the arrangement of the power receiving coil 21 and the magnet 22 in a state of being mounted in the capsule. 5A shows a state in which the power receiving coil 21 and the magnet 22 are arranged with their end surfaces in contact with each other, and FIG. 5B shows a state in which the end surfaces of the power receiving coil 21 and the magnet 22 are slightly separated (gap G). Shows the state. The magnet 22 is magnetized in the thickness direction.
In an actual capsule endoscope, it is necessary to mount a power feeding circuit. By providing a gap between the power receiving coil 21 and the magnet 22, a power feeding substrate can be mounted in the gap.

図6は、非接触給電を行った際に受電コイル21と磁石22とに生じる作用を示す。
カプセル型内視鏡に受電コイル21と磁石22とを内蔵させると、磁石22による磁界が受電コイル21に作用し、また、ネオジウム磁石等の磁石では磁石の表面にニッケルめっきなどの保護めっきが施されていることから、磁石の表面部分(被膜部分)で渦電流が生じ、受電コイル21の共振周波数が変化する。
本実施形態の給電機構では、磁界共振結合方式、すなわち給電コイル12と受電コイル21とを共振させて給電する。したがって、受電コイル21の共振周波数が変動すると、給電効率が減退するという問題が生じる。また、受電コイル21はコア21aを備えていることから給電機構が磁界による誘導動作にも影響する。
FIG. 6 shows the action that occurs in the power receiving coil 21 and the magnet 22 when non-contact power feeding is performed.
When the receiving coil 21 and the magnet 22 are built in the capsule endoscope, the magnetic field generated by the magnet 22 acts on the receiving coil 21, and the magnet surface such as a neodymium magnet is subjected to protective plating such as nickel plating. Therefore, an eddy current is generated in the surface portion (coating portion) of the magnet, and the resonance frequency of the power receiving coil 21 changes.
In the power supply mechanism of this embodiment, power is supplied by resonating the magnetic field resonance coupling method, that is, the power supply coil 12 and the power reception coil 21. Therefore, when the resonance frequency of the power receiving coil 21 fluctuates, there arises a problem that power supply efficiency is reduced. Further, since the power receiving coil 21 includes the core 21a, the power feeding mechanism also affects the induction operation by the magnetic field.

(給電特性:受電コイルのインピーダンス特性の測定)
受電コイル21と磁石22がともに搭載されているカプセル型内視鏡20についての給電特性を調べるため、まず、受電コイル21のコイルA、B、C自体のインピーダンス特性を測定した。コイルA、B、Cには上述した磁性めっき線を使用し、コイルA、B、Cの巻数はそれぞれ、NMA=102、NMB=110、NMC=115である。前述したように、コイルA,B、Cは若干コイルの巻線の形態が異なる。コイルA、B、Cの巻数を若干変えているのは、コイルのQ値が最大となるときの周波数が大きく相違しないように設定するためである。
(Feeding characteristics: measurement of impedance characteristics of receiving coil)
In order to examine the power feeding characteristics of the capsule endoscope 20 on which both the power receiving coil 21 and the magnet 22 are mounted, first, impedance characteristics of the coils A, B, and C of the power receiving coil 21 were measured. The above-described magnetic plating wires are used for the coils A, B, and C, and the numbers of turns of the coils A, B, and C are N MA = 102, N MB = 110, and N MC = 115, respectively. As described above, the coils A, B, and C are slightly different in the form of coil winding. The reason why the number of turns of the coils A, B, and C is slightly changed is that the frequency when the Q value of the coil is maximized is set so as not to differ greatly.

図7にコイルA、B、CのQ値、図8に抵抗値、図9にインダクタンスについて、それぞれ周波数特性を測定した結果を示す。
コイルA、B、CのQ値に着目すると、コイルAについては、最大となるQ値が657kHz QMA=151、コイルBについては669kHz QMB=148、コイルCについては682 kHz QMC=118である。
なお、コイルA、B、Cのいずれについても特定の周波数でQ値が急激に下がる現象が見られた。これらの現象はいずれもそれぞれのコイルの自己共振周波数で生じていることから、自己共振による影響であると考えられる。
FIG. 7 shows the results of measuring the frequency characteristics of the Q values of the coils A, B, and C, FIG. 8 shows the resistance value, and FIG. 9 shows the inductance.
Focusing on the Q values of coils A, B, and C, the maximum Q value for coil A is 657 kHz Q MA = 151, 669 kHz Q MB = 148 for coil B, and 682 kHz Q MC = 118 for coil C. It is.
In addition, for all of the coils A, B, and C, a phenomenon was observed in which the Q value suddenly decreased at a specific frequency. Since these phenomena occur at the self-resonant frequency of each coil, it is considered that these phenomena are caused by self-resonance.

(給電特性の測定)
受電コイル21と磁石22とを組み合わせた実験用のサンプルを作製し、一様な磁界を発生する磁界発生装置を利用して実験用のサンプルに給電し、受電コイル21によって受電される電力を測定する実験を行った。
受電コイル21と磁石22との組み合わせとして、受電コイル21のみを使用し磁石22を組み合わせない場合、受電コイル21と磁石22とを組み合わせ受電コイル21と磁石22とを相互に当接させた場合(ギャップ無し)、受電コイル21と磁石22との間にギャップを設けた場合について測定した。
(Measurement of power supply characteristics)
An experimental sample in which the receiving coil 21 and the magnet 22 are combined is manufactured, and the experimental sample is fed using a magnetic field generator that generates a uniform magnetic field, and the power received by the receiving coil 21 is measured. An experiment was conducted.
When only the power receiving coil 21 is used as the combination of the power receiving coil 21 and the magnet 22 and the magnet 22 is not combined, the power receiving coil 21 and the magnet 22 are combined and the power receiving coil 21 and the magnet 22 are brought into contact with each other ( No gap), and the case where a gap was provided between the receiving coil 21 and the magnet 22 was measured.

受電コイル21は厚さ5mm、径10mmのフェライトコアに、前述した磁性めっき線を使用したコイルA、B、C(巻数NMA=102、NMB=110、NMC=115)を巻回したものである。磁界発生装置による印加磁界はコイルCに鎖交する向きとした。
磁石22にはネオジウム磁石(厚さ5mm、径9mm、表面磁束密度427mT)を使用した。
The power receiving coil 21 is formed by winding coils A, B, and C (number of turns N MA = 102, N MB = 110, N MC = 115) using the above-described magnetic plating wire around a ferrite core having a thickness of 5 mm and a diameter of 10 mm. Is. The magnetic field applied by the magnetic field generator was in a direction interlinking with the coil C.
The magnet 22 was a neodymium magnet (thickness 5 mm, diameter 9 mm, surface magnetic flux density 427 mT).

図10に給電特性の測定に使用した装置のブロック図を示す。給電用の磁界を発生させる装置として、一様磁界発生装置40を使用し、一様磁界発生装置40の中心に樹脂製の支持プレート42を配置し、支持プレート42上に実験サンプル44をセットして実験した。
受電コイル21に接続した回路は図3に示したものと同一で、負荷抵抗(300Ω)にパワーアナライザ47を接続して受電した電力を測定した。
給電用として、発振器(NF Electronic Instruments,WF1974)と増幅器(NF Electronic Instruments,4055 HIGH SPEED Power Amplifier)を使用し、発振器45の出力信号を増幅器46で増幅し、増幅器46からの出力を一様磁界発生装置40に印加した。
FIG. 10 shows a block diagram of an apparatus used for measurement of power feeding characteristics. A uniform magnetic field generator 40 is used as a device for generating a magnetic field for power supply, a resin support plate 42 is arranged at the center of the uniform magnetic field generator 40, and an experimental sample 44 is set on the support plate 42. And experimented.
The circuit connected to the power receiving coil 21 is the same as that shown in FIG. 3, and the power received by connecting the power analyzer 47 to the load resistance (300Ω) was measured.
For power supply, an oscillator (NF Electronic Instruments, WF1974) and an amplifier (NF Electronic Instruments, 4055 HIGH SPEED Power Amplifier) are used, the output signal of the oscillator 45 is amplified by the amplifier 46, and the output from the amplifier 46 is a uniform magnetic field. Applied to generator 40.

図11は、一様磁界発生装置40による給電周波数を671kHzに固定して測定した結果を示す。この測定で使用した給電周波数(671kHz)は、前述した受電コイルのインピーダンス特性についての測定結果に基づき、磁石を組み合わせず受電コイル(コイルA、B、C)のみを用いて受電した場合に最大の電力を得ることができる周波数である。   FIG. 11 shows the result of measurement with the feeding frequency by the uniform magnetic field generator 40 fixed at 671 kHz. The power supply frequency (671 kHz) used in this measurement is the maximum when receiving power using only the receiving coil (coils A, B, C) without combining magnets based on the measurement result of the impedance characteristics of the receiving coil described above. This is the frequency at which power can be obtained.

図11のグラフの横軸は実験サンプルに印加した磁界の強度(A/m)、縦軸が受電コイル21からの出力電力である。実験では、磁界の強度を0〜80(A/m)の範囲で変化させて測定した。磁界の強度を80(A/m)を上限とした理由は、周波数3kHzから10MHzの範囲では健康上人体に作用させることができる職業的暴露の限界が80(A/m)であるためである。
縦軸に表示されている受電コイルの電力としては30mWが目安となる。30mW程度の電力が得られれば、撮像機構や通信機構の駆動が可能である。
The horizontal axis of the graph of FIG. 11 is the intensity (A / m) of the magnetic field applied to the experimental sample, and the vertical axis is the output power from the receiving coil 21. In the experiment, the intensity of the magnetic field was measured in the range of 0 to 80 (A / m). The reason why the upper limit of the magnetic field strength is 80 (A / m) is that the limit of occupational exposure that can be applied to the human body is 80 (A / m) in the frequency range of 3 kHz to 10 MHz. .
As a guideline, the power of the receiving coil displayed on the vertical axis is 30 mW. If power of about 30 mW can be obtained, the imaging mechanism and communication mechanism can be driven.

図11において、Without magnetとあるのは、受電コイルのみとした場合の測定値、With magnet,Without gapとあるのは、受電コイルと磁石とを組み合わせ端面を当接させた場合である。また、Gap=1.82mmとあるのは、受電コイルと磁石とのギャップを1.82mmとした場合である。受電コイルと磁石とのギャップを1.82mmと設定した理由は、受電コイルと磁石とのギャップに給電用の回路を搭載した基板を挿入することを想定し、その場合の基板の厚さ1.82mmに基づいている。ギャップ間隔を変えた測定では、1.82mmを単位として2倍、3倍、4倍のギャップを設定した。   In FIG. 11, “Without magnet” is a measured value when only the power receiving coil is used, and “With magnet” and “Without gap” are when the power receiving coil and the magnet are combined and the end face is brought into contact. Gap = 1.82 mm is when the gap between the power receiving coil and the magnet is 1.82 mm. The reason for setting the gap between the receiving coil and the magnet to 1.82 mm is that a board with a power feeding circuit is inserted into the gap between the receiving coil and the magnet, and the board thickness in that case is 1.82 mm. Is based. In the measurement with the gap interval changed, a gap of 2 times, 3 times and 4 times was set in units of 1.82 mm.

図11に示す測定結果は、受電コイル21と磁石22とを当接させた場合と、受電コイル21と磁石22との間隔を1.82mm(基板1枚程度)とした場合では、受電コイル21で受電される電力量は、磁界強度を上限の80(A/m)としてもカプセル型内視鏡の駆動に必要な30mWの電力をはるかに下回ることを示す。
これに対して、磁石22を組み合わせない受電コイル21のみの場合には、きわめて大きな電力が得られている。
この測定結果は、受電コイル21と磁石22とを単に組み合わせると、磁石22の作用により受電電力が顕著に減退する(-97%)ことを示している。本実験結果のように、受電コイル21と磁石22とを近接させて配置したときに受電電力が大きく減退する理由は、磁石22の磁界により受電コイル21のコアが磁気飽和してしまい、コイルの誘導起電力が減少するためである。
The measurement results shown in FIG. 11 show that when the receiving coil 21 and the magnet 22 are brought into contact with each other and when the distance between the receiving coil 21 and the magnet 22 is 1.82 mm (about one board), the receiving coil 21 The amount of power received indicates that the magnetic field strength is far below the 30 mW power required for driving the capsule endoscope even when the upper limit is 80 (A / m).
On the other hand, in the case of only the power receiving coil 21 not combined with the magnet 22, extremely large power is obtained.
This measurement result shows that when the receiving coil 21 and the magnet 22 are simply combined, the received power is significantly reduced (−97%) by the action of the magnet 22. As shown in this experimental result, when the power receiving coil 21 and the magnet 22 are arranged close to each other, the reason that the power received greatly decreases is that the core of the power receiving coil 21 is magnetically saturated by the magnetic field of the magnet 22, and the coil This is because the induced electromotive force decreases.

また、図11に示す測定結果は、受電コイル21と磁石22の端面間のギャップを広げると、受電コイル21による受電電力が大きく改善されることを示している。すなわち、受電コイル21と磁石22とを単に組み合わせただけでは、磁石22による磁界の影響や、磁石22の表面を被覆するニッケルめっき膜の渦電流の影響によって受電コイル21による受電作用が大きく阻害されるが、受電コイル21と磁石22との設置間隔(ギャップ)を適当に設定することにより(本実験では基板2枚分程度以上)、受電コイル21による受電電力が顕著に改善され、カプセル型内視鏡20の駆動に必要とする電力を十分に得ることが可能であることを示す。言い換えれば、カプセル型内視鏡で受電コイル21と磁石22とを併用する場合には、受電コイル21と磁石22の設置間隔を調節することによって、非接触給電を利用して所要の電力を給電することが可能である。   Further, the measurement results shown in FIG. 11 indicate that the power received by the power receiving coil 21 is greatly improved when the gap between the power receiving coil 21 and the end face of the magnet 22 is widened. That is, when the power receiving coil 21 and the magnet 22 are simply combined, the power receiving action by the power receiving coil 21 is greatly hindered by the influence of the magnetic field by the magnet 22 and the influence of the eddy current of the nickel plating film covering the surface of the magnet 22. However, by appropriately setting the installation interval (gap) between the power receiving coil 21 and the magnet 22 (in this experiment, about two or more substrates), the power received by the power receiving coil 21 is remarkably improved, and the inside of the capsule type It shows that it is possible to obtain sufficient electric power required for driving the endoscope 20. In other words, when the power receiving coil 21 and the magnet 22 are used in combination in a capsule endoscope, the required power is supplied using non-contact power feeding by adjusting the installation interval between the power receiving coil 21 and the magnet 22. Is possible.

図12は、給電特性の実験条件として、ニッケルめっき膜を除去した磁石22を使用し、最大電力が得られるように給電周波数を調整して実験した結果を示す。
図12からわかるように、この実験条件による場合は、受電コイル21と磁石22とをギャップなしとして配置した場合でも、磁界強度80(A/m)で、100mWというカプセル型内視鏡の駆動に十分な電力が得られた。この実験結果は、磁石の表面の保護用のめっき被膜(金属被膜)を除去して渦電流損による影響を排除することと、給電周波数を調整する方法が給電効率を向上させる上で有効であることを示している。
表面に金属被膜が形成されていない磁石として、樹脂で磁石の表面を被覆した製品がある。カプセル型内視鏡に用いる磁石として、表面を保護する金属被膜にかえて樹脂被膜により表面を保護した磁石を使用するのがよい。
FIG. 12 shows the results of experiments using the magnet 22 from which the nickel plating film has been removed and adjusting the power supply frequency so as to obtain the maximum power as the experimental condition of the power supply characteristics.
As can be seen from FIG. 12, in the case of this experimental condition, even when the power receiving coil 21 and the magnet 22 are arranged without a gap, the capsule endoscope can be driven with a magnetic field intensity of 80 (A / m) at 100 mW. Sufficient power was obtained. The results of this experiment show that removing the protective plating film (metal film) on the surface of the magnet to eliminate the effect of eddy current loss and adjusting the power supply frequency are effective in improving power supply efficiency. It is shown that.
As a magnet having no metal film formed on the surface, there is a product in which the surface of the magnet is coated with a resin. As a magnet used for the capsule endoscope, it is preferable to use a magnet whose surface is protected by a resin film instead of a metal film that protects the surface.

上述した方法により、受電コイル21と磁石22とを組み合わせた場合に受電コイル21による受電電力が減退する問題を抑制し、効率的に給電コイル12から給電できるようにすれば、カプセル型内視鏡を使用するときに給電コイルから印加する磁界強度をできるだけ弱く設定して使用することが可能となるから、カプセル型内視鏡を使用する際の検査の安全性をさらに向上させることができる。   When the above-described method is used to suppress the problem that the power received by the power receiving coil 21 is reduced when the power receiving coil 21 and the magnet 22 are combined, and the power can be efficiently fed from the power feeding coil 12, the capsule endoscope Since the magnetic field strength applied from the power supply coil can be set as weak as possible when using the capsule endoscope, it is possible to further improve the safety of inspection when using the capsule endoscope.

(誘導動作特性:推進力の測定)
図13はカプセル型内視鏡の動きを誘導する誘導用コイル14を利用してカプセル型内視鏡を誘導させる際の推進力を測定する実験に用いた測定装置のブロック図を示す。
測定対象であるサンプルは、水平に設置したアクリル樹脂からなる平板51の上に支持プレート52を固定し、この支持プレート52の上に移動自在に配置した。
推進力の測定は、サンプルのカプセルの一端側の端部と、平板51上に固定したバネ秤54の検出用のフックとをビニル紐により連結し、バネ秤54の指針位置を読み取ることで測定した。
(Induction motion characteristics: measurement of propulsive force)
FIG. 13 shows a block diagram of a measuring apparatus used in an experiment for measuring the driving force when guiding the capsule endoscope using the guiding coil 14 for guiding the movement of the capsule endoscope.
In the sample to be measured, a support plate 52 was fixed on a flat plate 51 made of acrylic resin placed horizontally, and the sample was movably disposed on the support plate 52.
The propulsive force is measured by connecting the end of one end of the capsule of the sample and the detection hook of the spring balance 54 fixed on the flat plate 51 with a vinyl string, and reading the pointer position of the spring balance 54. did.

サンプルの磁石に磁力を作用させる誘導用コイル14として、支持プレート52にのせたサンプル50の他端側から若干離間した位置にコイル56を配置した。コイル56は、図13に示すように、コイル56の軸線(中心線)とサンプル50のカプセルの軸線とが一致するように配置した。コイル56の軸線とカプセルの軸線とを一致させることにより、コイル56の軸線とカプセル内に収納した磁石の軸線とが一致する。
コイル56には、発振器57から出力された電流を増幅器58により増幅し、直流電流をコイル56に印加する構成とした。実験では、コイル56に印加する電流を1〜5Aの範囲で変化させて推進力を測定した。
As the induction coil 14 for applying a magnetic force to the sample magnet, a coil 56 was disposed at a position slightly spaced from the other end of the sample 50 placed on the support plate 52. As shown in FIG. 13, the coil 56 is arranged so that the axis (center line) of the coil 56 and the axis of the capsule of the sample 50 coincide. By making the axis of the coil 56 coincide with the axis of the capsule, the axis of the coil 56 and the axis of the magnet housed in the capsule coincide.
The coil 56 is configured to amplify the current output from the oscillator 57 by the amplifier 58 and apply a direct current to the coil 56. In the experiment, the propulsive force was measured by changing the current applied to the coil 56 in the range of 1 to 5A.

図14は、コイル56に1〜5Aの直流電流を印加したときのコイル56の中心線上における磁束密度を測定した結果を示す。横軸が、コイル56の中心位置からの距離である。図14に示すように、コイル56に直流電流を印加したときに生じる磁界は、コイル56から離れるにしたがって磁束密度の強度が低下する勾配磁界である。実験では、コイル56とサンプル50に収納した磁石22の前端面(コイル56に対向する面)までの距離を20mmとして実験した。   FIG. 14 shows the result of measuring the magnetic flux density on the center line of the coil 56 when a direct current of 1 to 5 A is applied to the coil 56. The horizontal axis is the distance from the center position of the coil 56. As shown in FIG. 14, the magnetic field generated when a direct current is applied to the coil 56 is a gradient magnetic field in which the strength of the magnetic flux density decreases as the distance from the coil 56 increases. In the experiment, the distance between the coil 56 and the front end surface of the magnet 22 housed in the sample 50 (the surface facing the coil 56) was 20 mm.

図15は実験に使用したサンプルの構成を示す。図15(a)はカプセル26に磁石22のみを収容したもの、図15(b)はカプセル26と磁石22を互いに端面を当接させて収容したもの、図15(c)は磁石22とフェライトコア21bを端面を離間させて(ギャップ1.82mm)収容したものである。
実験では、推進力を比較するため、厚さlPMが異なる4種類の磁石を使用した。使用した磁石はネオジウム磁石で、径9mm×厚さ5mm:表面磁束密度427 mT、径9mm×厚さ4mm:表面磁束密度384mT、径9mm×厚さ3mm :表面磁束密度306mT、径9mm×厚さ2mm:表面磁束密度241mTのものである。
フェライトコアは径10mm、厚さ5mmのものを使用した。
FIG. 15 shows the configuration of the sample used in the experiment. 15 (a) shows the capsule 26 containing only the magnet 22, FIG. 15 (b) shows the capsule 26 and the magnet 22 held in contact with each other, and FIG. 15 (c) shows the magnet 22 and the ferrite. The core 21b is accommodated with the end face separated (gap 1.82 mm).
In the experiment, four types of magnets with different thickness l PM were used to compare the propulsive force. The magnet used was a neodymium magnet, 9mm diameter x 5mm thickness: surface magnetic flux density 427mT, 9mm diameter x 4mm thickness: surface magnetic flux density 384mT, 9mm diameter x 3mm thickness: surface magnetic flux density 306mT, 9mm diameter x thickness 2 mm: The surface magnetic flux density is 241 mT.
A ferrite core having a diameter of 10 mm and a thickness of 5 mm was used.

図16〜19は、図15に示す磁石とフェライトコア21bの配置で4種類の磁石lPM=2mm、lPM=3mm、lPM=4mm、lPM=5mmを使った場合の推進力を測定した結果を示す。実験は同一条件で5回、繰り返して行った。
いずれの測定結果も、磁石22を単独で使用した場合と比較してフェライトコア21bを使用した場合は、ギャップを設けた場合であっても、推進力が向上する結果が得られた。この実験結果は、フェライトコア21bが磁石22により着磁され磁石とみなせる容量が大きくなり、フェライトコア21bを使用することの優位性を示す。
FIGS. 16 to 19 show the propulsive force when the four magnets 1 PM = 2 mm, 1 PM = 3 mm, 1 PM = 4 mm, and 1 PM = 5 mm with the arrangement of the magnet and the ferrite core 21 b shown in FIG. 15. The results are shown. The experiment was repeated 5 times under the same conditions.
In any of the measurement results, when the ferrite core 21b was used as compared with the case where the magnet 22 was used alone, the result that the propulsive force was improved was obtained even when the gap was provided. This experimental result shows that the ferrite core 21b is magnetized by the magnet 22 to increase the capacity that can be regarded as a magnet, and shows the advantage of using the ferrite core 21b.

上述した推進力についての実験結果は、カプセル型内視鏡に誘導用の磁石と非接触給電用のコアを含む受電コイルの双方を収容することにより、単に誘導用の磁石を収容した場合と比較してより効率的に誘導動作を行うことができ、磁石と受電コイルとの間にギャップを設けた場合も、誘導動作を改善する作用があることを示している。したがって、磁石と受電コイルとの間にギャップを設けて非接触給電が効果的になされるようにする方法は、給電効率とあわせて誘導動作にも有効であるという相乗的な作用を有することになる。   The above-mentioned experimental results on the propulsive force are compared with the case where the guiding magnet is simply accommodated by accommodating both the guiding magnet and the receiving coil including the core for non-contact power feeding in the capsule endoscope. Thus, the induction operation can be performed more efficiently, and even when a gap is provided between the magnet and the power receiving coil, this indicates that there is an effect of improving the induction operation. Therefore, the method of providing a gap between the magnet and the power receiving coil so that non-contact power feeding is effectively performed has a synergistic effect that it is effective for induction operation in addition to power feeding efficiency. Become.

実際にカプセル型内視鏡に受電コイルと磁石を内蔵して、非接触給電により給電操作を行い、かつカプセル型内視鏡の誘導動作を行う場合は、使用する受電コイルの構成(周波数特性)や使用する磁石を種々選択することが可能である。そのような場合も、上述した非接触給電についての給電特性や誘導用コイルによる誘導動作の特性を考慮することにより、できるだけ効率的に給電することができ、誘導動作を行うことができる設計とすることができる。
なお、上記例では誘導動作用としてカプセル型内視鏡に磁石を内蔵した例について説明したが、カプセル型内視鏡に内蔵する磁石は誘導動作用に限らず、体内におけるカプセル型内視鏡の位置を検知する目的(センシング用)として用いる場合もある。この場合も上記例と同様に受電コイルに対する磁石による磁界の影響を考慮して設計することができる。
When the capsule endoscope is actually equipped with a power receiving coil and magnet, power feeding is performed by non-contact power feeding, and the capsule endoscope is guided, the configuration of the power receiving coil used (frequency characteristics) It is possible to select various magnets to be used. Even in such a case, by considering the above-described power supply characteristics for the non-contact power supply and the characteristics of the induction operation by the induction coil, the power supply can be supplied as efficiently as possible and the design can perform the induction operation. be able to.
In the above example, the example in which the magnet is incorporated in the capsule endoscope for the guidance operation has been described. However, the magnet incorporated in the capsule endoscope is not limited to the guidance operation, but the capsule endoscope in the body. It may be used for the purpose of sensing the position (for sensing). In this case as well, as in the above example, the design can be made in consideration of the influence of the magnetic field by the magnet on the power receiving coil.

10 支持フレーム
12 給電コイル
14 誘導用コイル
20 カプセル型内視鏡
21 受電コイル
21a コア
21b フェライトコア
22 磁石
30 コントローラ
31 処理部
32 増幅器
40 一様磁界発生装置
44 実験サンプル
50 サンプル
54 バネ秤
56 コイル
57 発振器
58 増幅器
DESCRIPTION OF SYMBOLS 10 Support frame 12 Feeding coil 14 Guiding coil 20 Capsule endoscope 21 Power receiving coil 21a Core 21b Ferrite core 22 Magnet 30 Controller 31 Processing unit 32 Amplifier 40 Uniform magnetic field generator 44 Experimental sample 50 Sample 54 Spring scale 56 Coil 57 Oscillator 58 Amplifier

Claims (8)

非接触給電用の受電コイルと磁石とを内蔵したカプセル型内視鏡であって、
前記受電コイルは、磁性体からなるコアの外面に、相互に直交する3軸方向にそれぞれコイルが巻回して設けられ、
前記受電コイルと前記磁石とが相互に離間して設けられていることを特徴とするカプセル型内視鏡。
A capsule endoscope including a receiving coil and a magnet for non-contact power feeding,
The power receiving coil is provided on the outer surface of a core made of a magnetic material by winding the coils in three axial directions orthogonal to each other,
A capsule endoscope, wherein the power receiving coil and the magnet are provided apart from each other.
前記受電コイルと前記磁石とが離間する空隙内に、回路基板が配置されていることを特徴とする請求項1記載のカプセル型内視鏡。   The capsule endoscope according to claim 1, wherein a circuit board is disposed in a gap where the power receiving coil and the magnet are separated from each other. 前記コアは円板状に形成され、前記受電コアに巻回される3個のコイルのうち、2個のコイルは、コアの平面内を通過し、コアの平面内で十字形に交差する配置に巻回され、他の1個のコイルは、コアの円周外面に巻回されていることを特徴とする請求項1または2記載のカプセル型内視鏡。   The core is formed in a disc shape, and among the three coils wound around the power receiving core, two coils are arranged so as to pass through the plane of the core and cross in a cross shape in the plane of the core The capsule endoscope according to claim 1 or 2, wherein the other coil is wound around a circumferential outer surface of the core. 非接触給電用の受電コイルと磁石を内蔵したカプセル型内視鏡であって、
前記受電コイルは、磁性体からなるコアの外面に、相互に直交する3軸方向にそれぞれコイルが巻回して設けられ、
前記磁石は、外面に金属被膜を備えないことを特徴とするカプセル型内視鏡。
A capsule endoscope including a receiving coil and a magnet for non-contact power feeding,
The power receiving coil is provided on the outer surface of a core made of a magnetic material by winding the coils in three axial directions orthogonal to each other,
A capsule endoscope, wherein the magnet does not have a metal coating on an outer surface.
前記受電コイルと前記磁石とが相互に離間して設けられ、前記受電コイルと前記磁石とが離間する空隙内に、回路基板が設置されていることを特徴とする請求項4記載のカプセル型内視鏡。   5. The capsule mold according to claim 4, wherein the power receiving coil and the magnet are provided apart from each other, and a circuit board is installed in a gap where the power receiving coil and the magnet are separated from each other. Endoscope. 前記コアは円板状に形成され、前記受電コアに巻回される3個のコイルのうち、2個のコイルは、コアの平面内を通過し、コアの平面内で十字形に交差する配置に巻回され、他の1個のコイルは、コアの円周外面に巻回されていることを特徴とする請求項4または5記載のカプセル型内視鏡。   The core is formed in a disc shape, and among the three coils wound around the power receiving core, two coils are arranged so as to pass through the plane of the core and cross in a cross shape in the plane of the core The capsule endoscope according to claim 4 or 5, wherein the other coil is wound around the outer circumferential surface of the core. 非接触給電用の受電コイルと磁石とを内蔵したカプセル型内視鏡の駆動システムであって、
前記受電コイルに給電する給電機構として、磁界共振結合方式により前記受電コイルに給電する給電コイルを備え、
前記カプセル型内視鏡の誘導機構として、前記磁石に磁力を作用させてカプセル型内視鏡を誘導移動させる磁界発生手段を備え、
前記カプセル型内視鏡の前記受電コイルは、磁性体からなるコアの外面に、相互に直交する3軸方向にそれぞれコイルが巻回して設けられ、前記受電コイルと前記磁石とが相互に離間して設けられていることを特徴とするカプセル型内視鏡の駆動システム。
A capsule endoscope drive system including a power receiving coil and a magnet for non-contact power feeding,
As a power feeding mechanism for feeding power to the power receiving coil, a power feeding coil for feeding power to the power receiving coil by a magnetic resonance coupling method is provided.
As the capsule endoscope guiding mechanism, magnetic field generating means for guiding and moving the capsule endoscope by applying a magnetic force to the magnet,
The power receiving coil of the capsule endoscope is provided on the outer surface of a core made of a magnetic material by winding the coils in three orthogonal directions, and the power receiving coil and the magnet are separated from each other. A drive system for a capsule endoscope, characterized by being provided.
非接触給電用の受電コイルと磁石とを内蔵したカプセル型内視鏡の駆動システムであって、
前記受電コイルに給電する給電機構として、磁界共振結合方式により前記受電コイルに給電する給電コイルを備え、
前記カプセル型内視鏡の誘導機構として、前記磁石に磁力を作用させてカプセル型内視鏡を誘導移動させる磁界発生手段を備え、
前記カプセル型内視鏡の前記受電コイルは、磁性体からなるコアの外面に、相互に直交する3軸方向にそれぞれコイルが巻回して設けられ、前記磁石は、外面に金属被膜を備えないことを特徴とするカプセル型内視鏡の駆動システム。
A capsule endoscope drive system including a power receiving coil and a magnet for non-contact power feeding,
As a power feeding mechanism for feeding power to the power receiving coil, a power feeding coil for feeding power to the power receiving coil by a magnetic resonance coupling method is provided.
As the capsule endoscope guiding mechanism, magnetic field generating means for guiding and moving the capsule endoscope by applying a magnetic force to the magnet,
The power receiving coil of the capsule endoscope is provided on the outer surface of a core made of a magnetic material by winding the coils in three axial directions orthogonal to each other, and the magnet does not have a metal coating on the outer surface. Capsule endoscope drive system characterized by the above.
JP2016004937A 2016-01-14 2016-01-14 Capsule endoscope and drive system for capsule endoscope Expired - Fee Related JP6701590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004937A JP6701590B2 (en) 2016-01-14 2016-01-14 Capsule endoscope and drive system for capsule endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004937A JP6701590B2 (en) 2016-01-14 2016-01-14 Capsule endoscope and drive system for capsule endoscope

Publications (2)

Publication Number Publication Date
JP2017124026A true JP2017124026A (en) 2017-07-20
JP6701590B2 JP6701590B2 (en) 2020-05-27

Family

ID=59363563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004937A Expired - Fee Related JP6701590B2 (en) 2016-01-14 2016-01-14 Capsule endoscope and drive system for capsule endoscope

Country Status (1)

Country Link
JP (1) JP6701590B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017744A1 (en) * 2017-07-21 2019-01-24 주식회사 우영메디칼 Method and device for turning on/off power of capsule endoscope
CN110996828A (en) * 2017-08-11 2020-04-10 汉阳大学校产学协力团 Magnetic robot system
JP2021176413A (en) * 2020-05-08 2021-11-11 国立大学法人信州大学 Position detector for capsule endoscope

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102652537B1 (en) * 2021-09-16 2024-03-28 한양대학교 산학협력단 Magnetic field generating module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526293A (en) * 2004-12-30 2008-07-24 ギブン イメージング リミテッド Device, system, and method for orientation control of a sensor in vivo
US20100152539A1 (en) * 2008-12-17 2010-06-17 Ethicon Endo-Surgery, Inc. Positionable imaging medical devices
US20110115891A1 (en) * 2009-11-13 2011-05-19 Ethicon Endo-Surgery, Inc. Energy delivery apparatus, system, and method for deployable medical electronic devices
WO2011096569A1 (en) * 2010-02-05 2011-08-11 日立金属株式会社 Magnetic circuit for a non-contact charging device, power supply device, power receiving device, and non-contact charging device
JP2015112169A (en) * 2013-12-10 2015-06-22 国立大学法人信州大学 Non-contact power feeding system for in-body robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526293A (en) * 2004-12-30 2008-07-24 ギブン イメージング リミテッド Device, system, and method for orientation control of a sensor in vivo
US20100152539A1 (en) * 2008-12-17 2010-06-17 Ethicon Endo-Surgery, Inc. Positionable imaging medical devices
US20110115891A1 (en) * 2009-11-13 2011-05-19 Ethicon Endo-Surgery, Inc. Energy delivery apparatus, system, and method for deployable medical electronic devices
WO2011096569A1 (en) * 2010-02-05 2011-08-11 日立金属株式会社 Magnetic circuit for a non-contact charging device, power supply device, power receiving device, and non-contact charging device
JP2015112169A (en) * 2013-12-10 2015-06-22 国立大学法人信州大学 Non-contact power feeding system for in-body robot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017744A1 (en) * 2017-07-21 2019-01-24 주식회사 우영메디칼 Method and device for turning on/off power of capsule endoscope
CN110996828A (en) * 2017-08-11 2020-04-10 汉阳大学校产学协力团 Magnetic robot system
CN110996828B (en) * 2017-08-11 2023-07-14 汉阳大学校产学协力团 Magnetic robot system
JP2021176413A (en) * 2020-05-08 2021-11-11 国立大学法人信州大学 Position detector for capsule endoscope
JP7429921B2 (en) 2020-05-08 2024-02-09 国立大学法人信州大学 Capsule endoscope position detection device

Also Published As

Publication number Publication date
JP6701590B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP5477393B2 (en) Magnetic circuit for non-contact charging device, power supply device, power receiving device, and non-contact charging device
NL2019616B1 (en) Device and method for foreign object detection in wireless energy transfer
US11056918B2 (en) System for inductive wireless power transfer for portable devices
JP6100788B2 (en) Wireless rechargeable battery
JP5717090B2 (en) Power receiving unit, charging system including the power receiving unit, and electric device
JP6701590B2 (en) Capsule endoscope and drive system for capsule endoscope
JP6427228B2 (en) Wireless power supply system, power feeding device, and power receiving device
TWI637575B (en) Secondary coil module
US20180054078A1 (en) Device having wireless charging function and wireless charging system
TWI686823B (en) Secondary coil module
JP6205572B2 (en) Vector potential generator, vector potential transformer, shield transmission device, non-contact space electric field generator, null circuit, and structure for vector potential generator
WO2000006252A1 (en) Electromagnet for magnetotherapeutic device, coil for magnetotherapeutic device, and magnetotherapeutic device
US20180062441A1 (en) Segmented and Longitudinal Receiver Coil Arrangements for Wireless Power Transfer
JP2019524177A5 (en)
JP6233880B2 (en) Non-contact power supply system for internal robots
KR101093092B1 (en) Portable system of monitoring patient's status using wireless battery charging
Kim et al. Microrobot propulsion force generation using semiconductor based wireless power transfer coils
JP2017191506A (en) Input device
JP2023108946A (en) Power generating element and power generating device using power generating element
CN117092569A (en) Magnetic resonance permanent magnet and magnetic resonance device
JP2018038199A (en) Non-contact power supply device
JP2566421B2 (en) Static magnetic field generator for MRI
JP2012182919A (en) Oscillatory generator
JP2016061645A (en) Device and method for detecting magnetic foreign metal in insulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200417

R150 Certificate of patent or registration of utility model

Ref document number: 6701590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees