JP2017122587A - Storage battery degradation level measurement method and device using the method - Google Patents

Storage battery degradation level measurement method and device using the method Download PDF

Info

Publication number
JP2017122587A
JP2017122587A JP2016000341A JP2016000341A JP2017122587A JP 2017122587 A JP2017122587 A JP 2017122587A JP 2016000341 A JP2016000341 A JP 2016000341A JP 2016000341 A JP2016000341 A JP 2016000341A JP 2017122587 A JP2017122587 A JP 2017122587A
Authority
JP
Japan
Prior art keywords
storage battery
internal resistance
resistance component
capacitor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016000341A
Other languages
Japanese (ja)
Inventor
裕 岩堀
Yutaka Iwabori
裕 岩堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016000341A priority Critical patent/JP2017122587A/en
Publication of JP2017122587A publication Critical patent/JP2017122587A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a degradation level measurement device capable of easily measuring internal resistance components which are minute change, and a degradation level measurement method using the device.SOLUTION: The storage battery degradation level measurement device includes a control unit 6 that measures degradation level the storage battery 1. The storage battery degradation level measurement device includes a capacitor 3 having a voltage resistance larger than a rated voltage of the storage battery; a first switching part 4a which includes the storage battery 1 and the capacitor 3 connected in series to each other to form a closed loop; a measurement section 5 that measures a voltage across both ends of the first switching part 4a; and a current source 2 that flows a current to the storage battery 1. The control unit 6 estimates degradation level of the storage battery 1 by executing a switching operation of the first switching part 4a to flow a current from the current source 2 to the storage battery 1 using a voltage value measured by the measurement section 5.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電池の劣化度を測定する方法およびその方法を用いて劣化度を測定する装置に関する。   The present invention relates to a method for measuring the degree of deterioration of a storage battery and an apparatus for measuring the degree of deterioration using the method.

従来、特許文献1に示すように、蓄電池の直流電圧を除いた交流電圧のみを測定することによって、蓄電池の内部抵抗成分を測定する蓄電池の劣化判定装置が開示されていた。   Conventionally, as shown in Patent Document 1, a storage battery deterioration determination device that measures an internal resistance component of a storage battery by measuring only an AC voltage excluding the DC voltage of the storage battery has been disclosed.

特開平11−118891号公報JP-A-11-118891

蓄電池(二次電池)は長年使い続けると、内部で内部抵抗成分が増量し、劣化していく。この内部抵抗成分は、蓄電池の劣化度の度合いを量る指標として重視すべき変化量であるにも関わらず、蓄電池の出力電圧に比べて微小な変化を示すに過ぎないので、直流での測定によっても、交流での測定によっても、変化量を把握する測定が難しかった。   When a storage battery (secondary battery) continues to be used for many years, the internal resistance component increases and deteriorates. This internal resistance component shows only a small change compared to the output voltage of the storage battery, although it is a change that should be emphasized as an index for measuring the degree of deterioration of the storage battery. Because of this, it was difficult to measure the amount of change by measuring with AC.

そこで、本発明は、直流電圧・交流電圧に関わらず、微小な変化を示す内部抵抗成分を簡易に測定でき、内部抵抗成分の大きさを劣化度として算出する劣化度測定方法および同方法を使用する劣化度測定装置を提供することを目的とする。   Therefore, the present invention can easily measure the internal resistance component showing a minute change regardless of the DC voltage / AC voltage, and uses the degradation degree measuring method and the same method for calculating the magnitude of the internal resistance component as the degradation degree. An object of the present invention is to provide a degradation degree measuring apparatus.

上記課題を解決するために、本発明の蓄電池劣化度測定方法は、充放電可能な蓄電池の内部抵抗成分を測定する蓄電池劣化度測定方法であって、前記蓄電池の定格電圧以上の耐電圧を有するコンデンサと前記蓄電池と開閉部とを直列に接続して前記開閉部を閉じて閉ループを形成する第一のステップと、前記蓄電池と前記コンデンサとの電位が等しくなったか否かを判断する第二のステップと、前記蓄電池と前記コンデンサとの電位が等しくなった後に、前記開閉部を開いて前記閉ループを開成する第三のステップと、前記閉ループの外部に備わる電流源から前記蓄電池へ内部抵抗成分測定用の電流を流す第四のステップと、前記内部抵抗成分測定用の電流を流している間に、前記開閉部の両端の電圧値を測り、得られた電圧値から前記蓄電池の劣化によって生じる内部抵抗成分を算出し、前記内部抵抗成分を前記蓄電池の劣化度として推定する第五のステップとを備えることを特徴とする。   In order to solve the above problems, a storage battery deterioration degree measuring method of the present invention is a storage battery deterioration degree measuring method for measuring an internal resistance component of a chargeable / dischargeable storage battery, and has a withstand voltage equal to or higher than the rated voltage of the storage battery. A first step of connecting a capacitor, the storage battery, and an open / close unit in series to close the open / close unit to form a closed loop; and a second step of determining whether the potentials of the storage battery and the capacitor are equal A third step of opening the open / close unit to open the closed loop after the potentials of the storage battery and the capacitor are equal, and measuring an internal resistance component from a current source provided outside the closed loop to the storage battery And measuring the voltage value at both ends of the opening / closing part while passing the current for measuring the internal resistance component, and from the obtained voltage value, the power storage Calculating the internal resistance component resulting from deterioration, characterized in that it comprises a fifth step of estimating the internal resistance component as the deterioration degree of the battery.

また、充放電可能な蓄電池の内部抵抗成分を測定する制御部を有する蓄電池劣化度測定装置は、前記蓄電池の定格電圧以上の耐電圧を有するコンデンサと、前記蓄電池と前記コンデンサとが直列に接続され閉ループを開閉可能に形成する開閉部と、前記開閉部の両端の電圧を測定する測定部と、前記蓄電池に電流を流す電流源とを備え、前記制御部は、前記開閉部を閉じてから、前記蓄電池と前記コンデンサとの電位が等しくなれば前記開閉部を開いて前記電流源から前記蓄電池に電流を流させ、前記測定部が測定する電圧値から前記蓄電池の劣化によって生じる内部抵抗成分を算出し、前記内部抵抗成分をもとにして前記蓄電池の劣化度を推定することを特徴とする。   The storage battery deterioration degree measuring device having a control unit that measures the internal resistance component of a chargeable / dischargeable storage battery includes a capacitor having a withstand voltage equal to or higher than a rated voltage of the storage battery, and the storage battery and the capacitor connected in series. An open / close unit that can be opened and closed; a measurement unit that measures a voltage at both ends of the open / close unit; and a current source that supplies current to the storage battery, and the control unit closes the open / close unit, If the potential of the storage battery and the capacitor are equal, the switching unit is opened to allow current to flow from the current source to the storage battery, and the internal resistance component caused by the deterioration of the storage battery is calculated from the voltage value measured by the measurement unit The deterioration degree of the storage battery is estimated based on the internal resistance component.

上記構成により、直流電圧・交流電圧に関わらず、簡素な回路を用いて蓄電池の劣化度
を測定できる。
With the above configuration, the deterioration degree of the storage battery can be measured using a simple circuit regardless of the DC voltage / AC voltage.

本発明の実施形態を示す蓄電池劣化度測定装置の回路ブロック図The circuit block diagram of the storage battery degradation degree measuring apparatus which shows embodiment of this invention 同上の蓄電池劣化度装置が有する制御部のフローチャート図The flowchart figure of the control part which a storage battery degradation degree apparatus same as the above has. 同上の蓄電池劣化度測定装置を用いたシステム例の回路ブロック図Circuit block diagram of a system example using the above storage battery deterioration degree measuring device 同上の実施形態の(a)測定部(b)コンデンサ(c)蓄電池それぞれにおける電圧値を表すグラフThe graph showing the voltage value in each of (a) measurement part (b) capacitor | condenser (c) storage battery of embodiment same as the above

以下、本発明の実施形態について、図面を用いて説明する。本発明は、蓄電池の劣化によって生じる内部抵抗成分を算出し、内部抵抗成分の大きさを劣化度として求めるものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention calculates an internal resistance component caused by deterioration of a storage battery, and obtains the magnitude of the internal resistance component as a degree of deterioration.

図1は本実施形態に係る蓄電池劣化度測定装置の回路図である。   FIG. 1 is a circuit diagram of a storage battery deterioration degree measuring apparatus according to this embodiment.

蓄電池劣化度測定装置は、蓄電池1と、電流源2と、コンデンサ3と、第一の開閉部4aと、第二の開閉部4bと、測定部5と、制御部6とを備えて構成される。   The storage battery deterioration degree measuring device includes a storage battery 1, a current source 2, a capacitor 3, a first opening / closing part 4a, a second opening / closing part 4b, a measuring part 5, and a control part 6. The

充放電可能な蓄電池1は、放電可能な蓄電量を反映する理想電圧値を示す理想電源Videalと、蓄電池1の充電と放電とを繰り返すうちに劣化し、その劣化によって生じる内部抵抗成分Rとの直列接続による等価回路とみなせる。内部抵抗成分Rは、蓄電池1が充電と放電とを繰り返すうちに微小な値ながら徐々に増加していく。内部抵抗成分Rは、微小な値ながら、蓄電池1の劣化度を示しうる重要な指標であり、微小な値で変化する可変抵抗値とみなせる。   The chargeable / dischargeable storage battery 1 deteriorates as the ideal power supply Video indicating the ideal voltage value reflecting the dischargeable storage amount and the charging and discharging of the storage battery 1 are repeated, and the internal resistance component R generated by the deterioration. It can be regarded as an equivalent circuit by series connection. The internal resistance component R gradually increases with a small value while the storage battery 1 repeats charging and discharging. The internal resistance component R is an important index that can indicate the degree of deterioration of the storage battery 1 with a small value, and can be regarded as a variable resistance value that changes with a small value.

電流源2は、蓄電池1に充電電流(符号i1)を印加するものであり、直流電源でも交流電源でもよく、本実施形態では、外部電源(図3の符号15)から供給される直流電力を蓄電池1への印加にふさわしい直流電圧レベルに変換する蓄電動作と、蓄電池1から外部電源(図3の符号15)へ直流電源の供給を行う放電動作とを有する、双方向DC/DCコンバータ回路として例示される。   The current source 2 applies a charging current (symbol i1) to the storage battery 1 and may be a DC power source or an AC power source. In this embodiment, the DC power supplied from an external power source (symbol 15 in FIG. 3) is used. As a bidirectional DC / DC converter circuit having a storage operation for converting to a DC voltage level suitable for application to the storage battery 1 and a discharge operation for supplying DC power from the storage battery 1 to an external power source (reference numeral 15 in FIG. 3) Illustrated.

コンデンサ3は、蓄電池1の定格電圧値以上の電圧を耐電圧とする蓄電素子であり、内部抵抗成分Rがゼロのとき、言い換えると理想電圧値が最大値のときの理想電圧値が印加されても、破損せず蓄電を行える性能が要求される。コンデンサ3は、蓄電池1の任意の理想電圧値が印加されても破損を起こさなければよいので、極めて安価で扱いが簡単な汎用の電解コンデンサ素子を採用されればよい。蓄電池1は内部抵抗成分Rを含み、蓄電池1の定格電圧を、たとえば45Vとした場合、コンデンサ3の定格電圧を60Vとするが、コンデンサ3の定格電圧が蓄電池1の定格電圧よりも大きければ、蓄電池1とコンデンサ3と共に大きさはこれに限るものではない。   The capacitor 3 is a storage element having a withstand voltage equal to or higher than the rated voltage value of the storage battery 1, and when the internal resistance component R is zero, in other words, the ideal voltage value when the ideal voltage value is the maximum value is applied. However, the ability to store electricity without damage is required. Since the capacitor 3 does not have to be damaged even if any ideal voltage value of the storage battery 1 is applied, a general-purpose electrolytic capacitor element that is extremely inexpensive and easy to handle may be employed. The storage battery 1 includes an internal resistance component R. When the rated voltage of the storage battery 1 is 45 V, for example, the rated voltage of the capacitor 3 is 60 V. If the rated voltage of the capacitor 3 is larger than the rated voltage of the storage battery 1, The size of the storage battery 1 and the capacitor 3 is not limited to this.

第一の開閉部4aは、蓄電池1とコンデンサ3との直列回路を接続して閉ループを形成したり、または、同閉回路を開放するための、物理的または電気的な開閉接点を有するスイッチング素子やリレーなどである。   The first switching part 4a is a switching element having a physical or electrical switching contact for connecting a series circuit of the storage battery 1 and the capacitor 3 to form a closed loop or opening the closed circuit. And relays.

第二の開閉部4bは、蓄電池1と電流源2との直列回路を接続して閉ループを形成したり、または、同閉回路を開放するための、物理的または電気的な開閉接点を有するスイッチング素子やリレーなどであり、第一の開閉部4aとは連携せずに開閉されてもよいが、後述する図2で説明する制御順序と矛盾しなければ、第一の開閉部4aと連携して開閉されてもよい。   The second switching unit 4b is a switching having a physical or electrical switching contact for connecting a series circuit of the storage battery 1 and the current source 2 to form a closed loop or opening the closed circuit. It may be an element, a relay, etc., and may be opened and closed without cooperation with the first opening / closing part 4a. However, as long as it does not contradict the control sequence described in FIG. May be opened and closed.

測定部5は、第一の開閉部4aの開閉接点の両端の電位差を測定してデジタル出力するものであり、AD変換器を用いればよい。   The measuring unit 5 measures the potential difference between both ends of the switching contact of the first switching unit 4a and outputs it digitally, and an AD converter may be used.

制御部6は、第一の開閉部4aの開閉接点を開閉する制御と、第二の開閉部4bの開閉接点を開閉する制御との結果として得られる測定部5から出力されるデジタル電圧値を読み取る電圧検出部(図3の符号7)と、電圧検出部(図3の符号7)で読み取ったデジタル電圧値をもとにして内部抵抗成分Rの大きさから蓄電池1の劣化度を推定する劣化判断部(図3の符号10)とを少なくとも有している。   The control unit 6 calculates the digital voltage value output from the measurement unit 5 obtained as a result of the control for opening / closing the switching contact of the first switching unit 4a and the control for opening / closing the switching contact of the second switching unit 4b. The deterioration level of the storage battery 1 is estimated from the magnitude of the internal resistance component R based on the voltage detection unit (reference numeral 7 in FIG. 3) to be read and the digital voltage value read by the voltage detection section (reference numeral 7 in FIG. 3). It has at least a deterioration judgment unit (reference numeral 10 in FIG. 3).

このように構成された蓄電池劣化度測定装置は、第一の開閉部4aが閉じれば蓄電池1とコンデンサ3とを通る第一の閉ループを形成し、第二の開閉部4bが閉じれば蓄電池1と電流源2とを通る第二の閉ループを形成する。   The storage battery degradation degree measuring apparatus configured as described above forms a first closed loop that passes through the storage battery 1 and the capacitor 3 when the first opening / closing part 4a is closed, and the storage battery 1 when the second opening / closing part 4b is closed. A second closed loop is formed through the current source 2.

また、図1の蓄電池1はひとつで表されているが、複数繋がれたものであってもよい。このときのコンデンサ3は、複数で繋がれた蓄電池1の全体の電圧よりも大きいものをひとつ接続してもよいし、蓄電池1ひとつあたりの定格電圧よりも大きいものを繋がれた蓄電池1と同じ数分繋げて接続されていてもよい。   Moreover, although the storage battery 1 of FIG. 1 is represented by one, what was connected two or more may be sufficient. At this time, the capacitor 3 may be connected to one of the plurality of connected storage batteries 1 having a voltage larger than the whole voltage, or the same as the storage battery 1 connected to a storage battery having a voltage larger than the rated voltage per storage battery. It may be connected for several minutes.

以下、本実施形態の動作方法について説明する。図2は本実施形態の動作方法を示す制御部6のフローチャート図である。   Hereinafter, the operation method of this embodiment will be described. FIG. 2 is a flowchart of the control unit 6 showing the operation method of the present embodiment.

まず、蓄電池1は、接続された周囲の電源設備の電源がオンになると(ステップS0−1)、電流源2からの充電を受けるか、電流源への放電を行うかの、どちらかの状態にあり、これを通常運用時と称し、劣化が始まっているとみなせる(ステップS0−2)。   First, when the storage battery 1 is turned on (step S0-1), the storage battery 1 is either charged from the current source 2 or discharged to the current source. This is called normal operation, and it can be considered that the deterioration has started (step S0-2).

次に、蓄電池1についての劣化度測定方法を使用する劣化度測定装置としての動作モードに移行する旨の外部入力指示が制御部6に与えられるまでは上記ステップS0−2での通常運用時を継続し(ステップS0−3 のNo)、上記外部入力指示が制御部6に与えられれば(ステップS0−3 のYes)、制御部6は、コンデンサ3側の第一の開閉部4aを閉じる(ステップS1)。このとき、ステップS0−3における外部入力指示は、外部の観測回路等(不図示)から制御部6への制御信号を意味し、第二の閉ループに設けられた電流センサ(不図示)の計測によって、蓄電池1から放たれる放電電流の値が低下しているなどの疑わしい事象が観測された場合に、蓄電池1の劣化度を推定するよう命令する旨の外部入力指示が、外部の観測回路等から制御部6へ発せられるのである。   Next, the normal operation in step S0-2 is performed until an external input instruction for shifting to the operation mode as a deterioration degree measuring apparatus using the deterioration degree measuring method for the storage battery 1 is given to the control unit 6. If the external input instruction is given to the control unit 6 (No in step S0-3) (Yes in step S0-3), the control unit 6 closes the first opening / closing unit 4a on the capacitor 3 side ( Step S1). At this time, the external input instruction in step S0-3 means a control signal from an external observation circuit or the like (not shown) to the control unit 6, and is measured by a current sensor (not shown) provided in the second closed loop. When a suspicious event such as a decrease in the value of the discharge current emitted from the storage battery 1 is observed, an external input instruction for instructing to estimate the deterioration degree of the storage battery 1 is received from an external observation circuit. Etc., to the control unit 6.

これにより、蓄電池1からの放電電流i2がコンデンサ3に向かって流れ、コンデンサ3に蓄電が行われ、コンデンサ3に電圧が生じる。蓄電池1とコンデンサ3とが等電圧Vopになったとき、すなわち、蓄電池1から電流i2が流れなくなったとき(ステップS2)、第一の開閉部4aを開く(ステップS3)。このとき、測定部5が感知する電圧値はゼロ(V)である。なお、制御部6は、電流源2から蓄電池1へ電力の転送が完了するまでの所定時間が経過したか、あるいは、蓄電池1とコンデンサ3との閉ループに流れていた電流i2が不図示の電流センサに感知されなくなったら、ステップS2からステップS3への移行を制御部6自身に許可する。   As a result, the discharge current i2 from the storage battery 1 flows toward the capacitor 3, the power is stored in the capacitor 3, and a voltage is generated in the capacitor 3. When the storage battery 1 and the capacitor 3 become equal voltage Vop, that is, when the current i2 stops flowing from the storage battery 1 (step S2), the first opening / closing part 4a is opened (step S3). At this time, the voltage value sensed by the measurement unit 5 is zero (V). Note that the controller 6 determines that a predetermined time has elapsed until the transfer of power from the current source 2 to the storage battery 1 is completed, or the current i2 flowing in the closed loop between the storage battery 1 and the capacitor 3 is a current not shown. When the sensor no longer senses, the control unit 6 itself is permitted to move from step S2 to step S3.

続いて、制御部6は、電流源2側の第二の開閉部4bを閉じる。すると、電流源2から蓄電池1に向かって電流i1が流れるので、電流i1が流れている最中に、測定部5が、第一の開閉部4aの開閉接点の両端の電圧値を測り、サンプリング化してデジタル信号として出力するので、このデジタル信号を、蓄電池1の内部抵抗成分Rによって生じる電圧値Vbitとして取り込む(ステップS4)。   Subsequently, the control unit 6 closes the second opening / closing unit 4b on the current source 2 side. Then, since the current i1 flows from the current source 2 toward the storage battery 1, the measurement unit 5 measures the voltage value at both ends of the switching contact of the first switching unit 4a while the current i1 is flowing, and performs sampling. Therefore, the digital signal is taken in as a voltage value Vbit generated by the internal resistance component R of the storage battery 1 (step S4).

そして、制御部6は、電圧値Vbitから劣化によって生じる内部抵抗成分Rを算出し、その大きさを劣化度とした、劣化度に関する閾値を有しており、設定された閾値と比較して、算出された閾値のほうが大きい値であれば(ステップS5)、蓄電池1の内部抵抗成分Rが大きくなってきたことを示すので、そろそろ蓄電池1のメンテナンスまたは新品との交換を促す旨の報知信号を、外部へ出力する(ステップS6)。なお、制御部6は、内部抵抗成分Rに関する閾値を有さずに、内部抵抗成分Rの値を外部へ出力して、内部抵抗成分Rの増加の推移を外部で判断してもらうようにしてもよく、この場合は、蓄電池1の劣化の経緯を時系列で知らせることができる。なお、上記では、ステップS5にて、劣化度に関する閾値を有することとしたが、これに代わって、予め制御部6に用意した所定の関数によって、内部抵抗成分Rの測定値を蓄電池1の劣化度に変換するようにしてもよい。   The control unit 6 calculates the internal resistance component R generated by the deterioration from the voltage value Vbit, and has a threshold relating to the deterioration degree, the magnitude of which is the deterioration degree. Compared with the set threshold value, If the calculated threshold value is a larger value (step S5), it indicates that the internal resistance component R of the storage battery 1 has increased, so a notification signal to prompt the maintenance of the storage battery 1 or replacement with a new one is about to be issued. And output to the outside (step S6). Note that the control unit 6 outputs the value of the internal resistance component R to the outside without having a threshold regarding the internal resistance component R so that the transition of the increase in the internal resistance component R is externally determined. In this case, the process of deterioration of the storage battery 1 can be notified in time series. In the above description, in step S5, the threshold value relating to the deterioration degree is provided, but instead, the measured value of the internal resistance component R is deteriorated by the predetermined function prepared in the control unit 6 in advance. You may make it convert into degree.

上記の一連の動作を行うことにより、制御部6は、測定部5に出力される電圧値Vbitと電流源2から流れる電流i1とを用いて、蓄電池1の内部抵抗成分Rを算出し、算出された内部抵抗成分Rの大きさを劣化度として、蓄電池1の劣化度を測定することができる。   By performing the above-described series of operations, the control unit 6 calculates the internal resistance component R of the storage battery 1 using the voltage value Vbit output to the measurement unit 5 and the current i1 flowing from the current source 2, and calculates The degree of deterioration of the storage battery 1 can be measured using the magnitude of the internal resistance component R thus made as the degree of deterioration.

以下、本発明の装置もしくは方法を電力供給装置に用いた例を示す。   Hereinafter, an example in which the apparatus or method of the present invention is used in a power supply apparatus will be described.

図3は、本発明の蓄電池劣化度を測定する制御部6を備えた住宅もしくは非住宅用の太陽電池11による電力供給システムAである。   FIG. 3 shows a power supply system A using a solar cell 11 for home or non-home that includes the control unit 6 for measuring the deterioration degree of the storage battery according to the present invention.

電力供給システムAは、コンバータ制御部13と、単方向DC/DCコンバータ14と、第二の双方向DC/DCコンバータ15と、双方向AC/DCコンバータ16と、システム制御部100とを備える。この電力供給システムAは、単方向DC/DCコンバータ14と、第二の双方向DC/DCコンバータ15と、双方向AC/DCコンバータ16と、第二の双方向DC/DCコンバータ15と接続する電流源2の一例である第一の双方向DC/DCコンバータ2との少なくともひとつがシステム制御部100からの制御によって創出する電力を、系統電源である商用電源12と接続するブレーカ18を経由して、設備や家庭内の負荷機器へ、電力供給するものである。   The power supply system A includes a converter control unit 13, a unidirectional DC / DC converter 14, a second bidirectional DC / DC converter 15, a bidirectional AC / DC converter 16, and a system control unit 100. The power supply system A is connected to the unidirectional DC / DC converter 14, the second bidirectional DC / DC converter 15, the bidirectional AC / DC converter 16, and the second bidirectional DC / DC converter 15. At least one of the first bidirectional DC / DC converter 2 which is an example of the current source 2 generates power generated by control from the system control unit 100 via a breaker 18 connected to a commercial power supply 12 which is a system power supply. Power is supplied to equipment and household load equipment.

なお、図3における制御部6は、図1と図2を用いて上述した内部抵抗成分Rの測定機能(電圧検出部7)と、蓄電池1の劣化度を推定する機能(劣化判断部10)とを、システム制御部100に集中させて委譲している。図3における制御部6の主たる役割は、システム制御部100からの指令を受けて、第一の開閉部4aと第二の開閉部4bとに対する開閉制御を行うことに、特化されている。   3 is a function for measuring the internal resistance component R described above with reference to FIGS. 1 and 2 (voltage detection unit 7) and a function for estimating the degree of deterioration of the storage battery 1 (degradation determination unit 10). Are concentrated in the system control unit 100 and transferred. The main role of the control unit 6 in FIG. 3 is specialized in performing opening / closing control on the first opening / closing unit 4a and the second opening / closing unit 4b in response to a command from the system control unit 100.

太陽電池11から供給される電力は、コンバータ制御部13によって、単方向DC/DCコンバータ14の出力である中間電位を経て、第二の双方向DC/DCコンバータ15を通じ、蓄電池1に蓄積される。このとき、第二の双方向DC/DCコンバータ15は電流源2となる。また、系統連係を行えるよう、商用電源12には双方向AC/DCコンバータ16が接続しており、双方向AC/DCコンバータ16は、単方向DC/DCコンバータ14とは独立の給電路を経由して、第二の双方向DC/DCコンバータ15へ給電を行えるものである。これら単方向DC/DCコンバータ14、第二の双方向DC/DCコンバータ15、双方向AC/DCコンバータ16は、いずれも、パワー半導体素子を有するフルブリッジ回路をベース回路とした公知のものでよく、コンバータ制御部13によって動作制御を施されるものである。なお、電流源2の一例として挙げた、第一の双方向DC/DCコンバータ2は、本来は、制御部6によって制御されるべき回路であるが、制御部6とコンバータ制御部13との双方の各制御タイミングの時間ズレが拡大していくのを
防ぐために、制御部6によって制御されなくとも、コンバータ制御部13によって動作制御を施されてもよい。
The electric power supplied from the solar cell 11 is accumulated in the storage battery 1 by the converter control unit 13 through the second bidirectional DC / DC converter 15 via the intermediate potential that is the output of the unidirectional DC / DC converter 14. . At this time, the second bidirectional DC / DC converter 15 becomes the current source 2. In addition, a bidirectional AC / DC converter 16 is connected to the commercial power supply 12 so as to perform system linkage, and the bidirectional AC / DC converter 16 passes through a power supply path independent of the unidirectional DC / DC converter 14. Thus, power can be supplied to the second bidirectional DC / DC converter 15. The unidirectional DC / DC converter 14, the second bidirectional DC / DC converter 15, and the bidirectional AC / DC converter 16 may all be known ones based on a full bridge circuit having a power semiconductor element as a base circuit. The operation control is performed by the converter control unit 13. The first bidirectional DC / DC converter 2 mentioned as an example of the current source 2 is originally a circuit to be controlled by the control unit 6, but both the control unit 6 and the converter control unit 13. In order to prevent the time deviation of each control timing from expanding, the converter control unit 13 may perform operation control without being controlled by the control unit 6.

ここで、制御部6は電圧検出部7と電流検出部8とを有する。第一の開閉部4aを閉じると、蓄電池1からコンデンサ3に電流i2が流れる。蓄電池1とコンデンサ3とが同電圧、すなわち電流i2が流れないことが電圧検出部7または電流検出部8によって判断されたら、第一の開閉部4aを開く。   Here, the control unit 6 includes a voltage detection unit 7 and a current detection unit 8. When the first opening / closing part 4a is closed, a current i2 flows from the storage battery 1 to the capacitor 3. When it is determined by the voltage detection unit 7 or the current detection unit 8 that the storage battery 1 and the capacitor 3 have the same voltage, that is, the current i2 does not flow, the first opening / closing unit 4a is opened.

続いて、第二の開閉部4bを閉じて、第二の双方向DC/DCコンバータ15から電流i1を流す。このとき測定部5によって、測定される電圧値Vbitが内部抵抗成分Rによって生じる電圧である。測定された電圧値Vbitと第二の双方向DC/DCコンバータ15から流れる電流i1とを用いて、蓄電池1の内部抵抗成分Rを算出し、算出された内部抵抗成分Rは、制御部6が有する劣化判断部10によって、劣化度として算出される。   Subsequently, the second opening / closing part 4 b is closed, and a current i <b> 1 is supplied from the second bidirectional DC / DC converter 15. At this time, the voltage value Vbit measured by the measuring unit 5 is a voltage generated by the internal resistance component R. Using the measured voltage value Vbit and the current i1 flowing from the second bidirectional DC / DC converter 15, the internal resistance component R of the storage battery 1 is calculated, and the calculated internal resistance component R is calculated by the control unit 6. It is calculated as the degree of deterioration by the deterioration determining unit 10 having it.

このとき、劣化度が、あらかじめ設定した閾値を超えた場合、蓄電池の交換を促す報知信号が発せられる。この報知信号は通信機器を通じて、住宅内の電子機器、たとえばインターホンやテレビなどに表示されるのが好ましい。例えば、制御部6は、住宅住戸のインターホンなどや同インターホンから転送可能なスマートフォンなどに代表されるユーザインタフェース17を介して、蓄電池1の交換を促す報知信号を発する。   At this time, if the degree of deterioration exceeds a preset threshold value, a notification signal that prompts replacement of the storage battery is issued. This notification signal is preferably displayed on an electronic device in the house, for example, an interphone or a television through a communication device. For example, the control unit 6 issues a notification signal that prompts the user to replace the storage battery 1 via a user interface 17 typified by an interphone of a residential unit or a smartphone that can be transferred from the interphone.

また、制御部6は、温度検出部9を有する。温度検出部9はサーミスタや熱電対などの蓄電池発熱測定素子9−1を使って、蓄電池1の表面温度を測定し、一定値以上の発熱が生じている場合は、蓄電池1が何らかの原因で異常発熱しているものとみなし、蓄電池1の電力供給を止めるために、第一の双方向DC/DCコンバータを停止させる信号を、劣化判断部10を介して発する。   The control unit 6 includes a temperature detection unit 9. The temperature detection unit 9 measures the surface temperature of the storage battery 1 using a storage battery heat generation measuring element 9-1 such as a thermistor or a thermocouple, and if the heat generation exceeds a certain value, the storage battery 1 is abnormal for some reason. A signal for stopping the first bidirectional DC / DC converter is issued via the deterioration determination unit 10 in order to stop the power supply of the storage battery 1 assuming that the battery is generating heat.

また、商用電源12による電力供給を電流源2として用いてもよい。このとき、商用電源12からの供給電力は双方向AC/DCコンバータ16に供給され、商用電源12から供給される電流成分は、双方向AC/DCコンバータ16の出力である中間電位を経て、第二の双方向DC/DCコンバータ15を通じて、蓄電池1に蓄積される。   Further, power supply by the commercial power source 12 may be used as the current source 2. At this time, the power supplied from the commercial power supply 12 is supplied to the bidirectional AC / DC converter 16, and the current component supplied from the commercial power supply 12 passes through an intermediate potential that is the output of the bidirectional AC / DC converter 16 to It is stored in the storage battery 1 through the two bidirectional DC / DC converters 15.

図4は、上から(a)測定部5、(b)コンデンサ3、(c)蓄電池1のそれぞれにおける電流印加時の電圧値のグラフである。横軸は電流印加時の経過時間を示し、縦軸は各々で検出される電圧値を示している。   FIG. 4 is a graph of voltage values at the time of current application in each of (a) measuring unit 5, (b) capacitor 3, and (c) storage battery 1 from above. The horizontal axis indicates the elapsed time when the current is applied, and the vertical axis indicates the voltage value detected by each.

蓄電池1から電流i2が流れている際(A期間)、蓄電池1に充電されている電圧をVopとすると、測定部5における電圧値はゼロ、コンデンサ3における電圧値は徐々に上昇しVopに、蓄電池1における電圧値Vopが検出される。コンデンサ3が蓄電池1の電圧値Vopに達したとき、すなわち電流i2が流れなくなったとき、電流源2から電流i1が流れる(B期間)。このとき、測定部5には内部抵抗成分Rによって生じる電圧値Vbitが、コンデンサ3には電流が流れないので蓄積されたままである電圧値Vopが、蓄電池1には充電されている電圧値と内部抵抗成分Rによって生じる電圧値Vop+Vbitが検出される。   When the current i2 is flowing from the storage battery 1 (period A), if the voltage charged in the storage battery 1 is Vop, the voltage value in the measurement unit 5 is zero, the voltage value in the capacitor 3 gradually increases to Vop, A voltage value Vop in the storage battery 1 is detected. When the capacitor 3 reaches the voltage value Vop of the storage battery 1, that is, when the current i2 stops flowing, the current i1 flows from the current source 2 (period B). At this time, the voltage value Vbit generated by the internal resistance component R in the measuring unit 5, the voltage value Vop that remains accumulated because no current flows through the capacitor 3, the voltage value charged in the storage battery 1 and the internal voltage A voltage value Vop + Vbit generated by the resistance component R is detected.

本蓄電池劣化度装置を用いた測定方法を用いることで、直流電圧・交流電圧に関わらず、容易な回路で蓄電池1の定格電圧を除き、劣化によって生じた電圧値のみ測定することができる。   By using the measuring method using the present storage battery degradation degree device, it is possible to measure only the voltage value caused by the deterioration by removing the rated voltage of the storage battery 1 with an easy circuit regardless of the DC voltage / AC voltage.

図4のグラフにも示されるように、測定部5は内部抵抗成分Rによる電圧値Vbitの
みをAD変換器にフルスケールで割り付けることができるので、簡易な回路かつビット数の小さなAD変換器を用いても高精度な測定が可能であり、微小な変化も検出することが可能である。
As shown in the graph of FIG. 4, the measurement unit 5 can assign only the voltage value Vbit due to the internal resistance component R to the AD converter in full scale. Therefore, a simple circuit and an AD converter with a small number of bits can be provided. Even if it is used, highly accurate measurement is possible, and even minute changes can be detected.

コンデンサ3の電圧値は蓄電池1の定格電圧よりも大きなものを用いることにより、蓄電池1の充電量によらずに劣化度の測定を行うことができる。   By using a voltage value of the capacitor 3 that is larger than the rated voltage of the storage battery 1, the degree of deterioration can be measured regardless of the amount of charge of the storage battery 1.

また、第一の開閉部4aは両端に増幅回路を介して、AD変換器を有する測定部5と接続されるのが好ましい。このとき、増幅回路の増幅率をAD変換器の最大電圧に設定しておくことで、AD変換器の最大範囲で変化量を検出することができるので、測定の精度をより向上させることができる。   Moreover, it is preferable that the 1st opening / closing part 4a is connected to the measurement part 5 which has an AD converter via an amplifier circuit at both ends. At this time, by setting the amplification factor of the amplifier circuit to the maximum voltage of the AD converter, the amount of change can be detected in the maximum range of the AD converter, so that the measurement accuracy can be further improved. .

1 蓄電池
2 電流源
3 コンデンサ
4a 第一の開閉部
4b 第二の開閉部
5 測定部
6 制御部
R 内部抵抗成分
DESCRIPTION OF SYMBOLS 1 Storage battery 2 Current source 3 Capacitor 4a First opening / closing part 4b Second opening / closing part 5 Measuring part 6 Control part R Internal resistance component

Claims (2)

充放電可能な蓄電池の内部抵抗成分を測定する蓄電池劣化度測定方法であって、
前記蓄電池の定格電圧以上の耐電圧を有するコンデンサと前記蓄電池と開閉部とを直列に接続して前記開閉部を閉じて閉ループを形成する第一のステップと、
前記蓄電池と前記コンデンサとの電位が等しくなったか否かを判断する第二のステップと、
前記蓄電池と前記コンデンサとの電位が等しくなった後に、前記開閉部を開いて前記閉ループを開成する第三のステップと、
前記閉ループの外部に備わる電流源から前記蓄電池へ内部抵抗成分測定用の電流を流す第四のステップと、
前記内部抵抗成分測定用の電流を流している間に、前記開閉部の両端の電圧値を測り、得られた電圧値から前記蓄電池の劣化によって生じる内部抵抗成分を算出し、前記内部抵抗成分を前記蓄電池の劣化度として推定する第五のステップと
を備えることを特徴とする、蓄電池劣化度測定方法。
A storage battery deterioration measuring method for measuring an internal resistance component of a chargeable / dischargeable storage battery,
A first step of forming a closed loop by connecting the capacitor having a withstand voltage equal to or higher than the rated voltage of the storage battery, the storage battery and the open / close unit in series to close the open / close unit;
A second step of determining whether or not the potentials of the storage battery and the capacitor are equal;
A third step of opening the open / close portion and opening the closed loop after the potentials of the storage battery and the capacitor are equal;
A fourth step of flowing a current for measuring an internal resistance component from a current source provided outside the closed loop to the storage battery;
While the current for measuring the internal resistance component is flowing, the voltage value at both ends of the switching unit is measured, and the internal resistance component generated by the deterioration of the storage battery is calculated from the obtained voltage value, and the internal resistance component is calculated. And a fifth step of estimating the degree of deterioration of the storage battery.
充放電可能な蓄電池の内部抵抗成分を測定する制御部を有する蓄電池劣化度測定装置であって、
前記蓄電池の定格電圧以上の耐電圧を有するコンデンサと、
前記蓄電池と前記コンデンサとが直列に接続され閉ループを開閉可能に形成する開閉部と、
前記開閉部の両端の電圧を測定する測定部と、
前記蓄電池に電流を流す電流源と
を備え、
前記制御部は、
前記開閉部を閉じてから、前記蓄電池と前記コンデンサとの電位が等しくなれば前記開閉部を開いて前記電流源から前記蓄電池に電流を流させ、
前記測定部が測定する電圧値から前記蓄電池の劣化によって生じる内部抵抗成分を算出し、前記内部抵抗成分をもとにして前記蓄電池の劣化度を推定する
ことを特徴とする蓄電池劣化度測定装置。
A storage battery deterioration measuring device having a control unit for measuring the internal resistance component of a chargeable / dischargeable storage battery,
A capacitor having a withstand voltage equal to or higher than the rated voltage of the storage battery;
An open / close portion that connects the storage battery and the capacitor in series to form a closed loop; and
A measuring unit for measuring a voltage at both ends of the switching unit;
A current source for passing current to the storage battery,
The controller is
After closing the opening / closing part, if the potential of the storage battery and the capacitor becomes equal, the opening / closing part is opened to allow a current to flow from the current source to the storage battery,
A storage battery deterioration degree measuring apparatus that calculates an internal resistance component caused by deterioration of the storage battery from a voltage value measured by the measurement unit and estimates the deterioration degree of the storage battery based on the internal resistance component.
JP2016000341A 2016-01-05 2016-01-05 Storage battery degradation level measurement method and device using the method Pending JP2017122587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016000341A JP2017122587A (en) 2016-01-05 2016-01-05 Storage battery degradation level measurement method and device using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016000341A JP2017122587A (en) 2016-01-05 2016-01-05 Storage battery degradation level measurement method and device using the method

Publications (1)

Publication Number Publication Date
JP2017122587A true JP2017122587A (en) 2017-07-13

Family

ID=59306244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016000341A Pending JP2017122587A (en) 2016-01-05 2016-01-05 Storage battery degradation level measurement method and device using the method

Country Status (1)

Country Link
JP (1) JP2017122587A (en)

Similar Documents

Publication Publication Date Title
KR102307999B1 (en) Device detecting fault of inverter power relay
KR102113054B1 (en) Battery monitoring device and method
JP5857247B2 (en) Power management system
JP5035401B2 (en) Battery state detection method, battery state detection device, and arithmetic expression derivation method
JP6548387B2 (en) Method and apparatus for estimating state of charge of secondary battery
JPWO2011118039A1 (en) Charge state estimation device
JP2017103077A (en) Power storage system and control method thereof, and device and method for diagnosing sign of thermorunaway of lithium ion secondary battery
JP6367217B2 (en) Internal state estimation system and estimation method thereof
JP2016090399A (en) Method for detecting short circuit, short-circuit detecting system, and method for calculating short-circuit current value
JPWO2016189832A1 (en) Storage battery control device, power storage system, control method, and computer-readable medium
JP2005039918A (en) Charging equipment for battery
JP2012120376A (en) Inverter device
JP2017167034A (en) Deterioration determination device and deterioration determination method
US20160245870A2 (en) Apparatus and method for estimating power storage device degradation
JP7155486B2 (en) Battery management system, battery management method, battery pack and electric vehicle
JP2015161624A (en) Storage battery system, and soc estimation method of storage battery
JPWO2018051442A1 (en) Storage capacity estimation device, method and program
JP2017125680A (en) Battery control device
JP2009204320A (en) Charge rate estimating device and charge rate estimating method for secondary cell
JP2019164148A (en) Secondary battery charge state estimation method and secondary battery charge state estimation device
WO2013105570A1 (en) Battery temperature estimation device
JP6790706B2 (en) Monitoring equipment, collection equipment, monitoring system and monitoring method
JP6738263B2 (en) Insulation resistance inspection device, power converter, and insulation resistance measuring method
JP2017122587A (en) Storage battery degradation level measurement method and device using the method
JP2020038138A (en) Storage battery diagnostic device, system, program, and method