JP2017121648A - Assembly manufacturing method, pressure junction container and pressure junction apparatus - Google Patents

Assembly manufacturing method, pressure junction container and pressure junction apparatus Download PDF

Info

Publication number
JP2017121648A
JP2017121648A JP2016001741A JP2016001741A JP2017121648A JP 2017121648 A JP2017121648 A JP 2017121648A JP 2016001741 A JP2016001741 A JP 2016001741A JP 2016001741 A JP2016001741 A JP 2016001741A JP 2017121648 A JP2017121648 A JP 2017121648A
Authority
JP
Japan
Prior art keywords
support member
assembly
manufacturing
bonding
bonding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016001741A
Other languages
Japanese (ja)
Other versions
JP6720534B2 (en
Inventor
鈴木 智久
Tomohisa Suzuki
智久 鈴木
健 寺崎
Ken Terasaki
健 寺崎
雄亮 保田
Yusuke Yasuda
雄亮 保田
俊章 守田
Toshiaki Morita
俊章 守田
蔵渕 和彦
Kazuhiko Kurabuchi
和彦 蔵渕
偉夫 中子
Takeo Nakako
偉夫 中子
正人 西村
Masato Nishimura
正人 西村
石川 大
Masaru Ishikawa
大 石川
祐貴 川名
Yuki Kawana
祐貴 川名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016001741A priority Critical patent/JP6720534B2/en
Publication of JP2017121648A publication Critical patent/JP2017121648A/en
Application granted granted Critical
Publication of JP6720534B2 publication Critical patent/JP6720534B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • H01L2224/75314Auxiliary members on the pressing surface
    • H01L2224/75315Elastomer inlay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7598Apparatus for connecting with bump connectors or layer connectors specially adapted for batch processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering

Abstract

PROBLEM TO BE SOLVED: To realize pressure junction for forming a junction part where a junction material containing metal fine particles is sintered without using a complicated pressure mechanism.SOLUTION: When an assembly comprising a first member and a second member and having a junction part between them is to be manufactured by pressurization and heating, a sandwich of a junction material containing metal fine particles between the first member and the second member is so arranged as to be sandwiched between the first member and the second member to maintain a distance from a first support member to a second support member, and the first member, the second member and the junction material are heated to pressurize the junction material by utilizing compression stress from the first support member and the second support member that press down their thermal expansion at that time, thereby sintering the metal fine particles of the junction material to form a junction part.SELECTED DRAWING: Figure 1

Description

本発明は、接合部を有する組立品の製造方法、加圧接合容器及び加圧接合装置に関するものである。   The present invention relates to a method for manufacturing an assembly having a joint, a pressure bonding container, and a pressure bonding apparatus.

パワーデバイス用のチップ接合材として従来使用されてきた鉛はんだは、将来的に環境規制によって使用できなくなる可能性があり、代替材料の開発が急務となっている。代替材料として、ナノメートルオーダーやマイクロメートルオーダーの金属粒子を焼結させることによって接合を実現する焼結金属接合材が期待されている。   Lead solder that has been conventionally used as a chip bonding material for power devices may become unusable due to environmental regulations in the future, and there is an urgent need to develop alternative materials. As an alternative material, a sintered metal bonding material that realizes bonding by sintering metal particles of nanometer order or micrometer order is expected.

焼結金属接合材は、その接合強度を保つため、例えば特許文献1に示されているように、電子部材の接合方向に対して加圧しながら焼結熱処理を施すことが望ましい。特許文献2には、加圧方向に対して直交する方向についても接合強度を保つ方法が記載されている。   In order to maintain the bonding strength of the sintered metal bonding material, for example, as disclosed in Patent Document 1, it is desirable to perform a sintering heat treatment while applying pressure to the bonding direction of the electronic member. Patent Document 2 describes a method of maintaining the bonding strength in a direction orthogonal to the pressing direction.

特開2013−091835号公報JP2013-091835A 特開2014−200825号公報Japanese Unexamined Patent Publication No. 2014-200245

通常、焼結金属接合材に加圧力を与える方法としては、モータや油圧を用いた加圧機構が用いられる。従来使用されてきた鉛はんだでは、加圧工程が不要であったため、焼結金属接合材の適用のためには、従来の製造ラインに加圧工程を追加する必要があり、コスト面の問題があった。   Usually, a pressure mechanism using a motor or hydraulic pressure is used as a method of applying pressure to the sintered metal bonding material. Conventionally used lead solder does not require a pressurization process, so it is necessary to add a pressurization process to the conventional production line in order to apply the sintered metal bonding material. there were.

特許文献2においては昇降機構と加圧バネを用いた治具によって加圧する方法が記載されている。しかし、このような複雑な構造の治具を高温環境で用いる場合、治具の劣化による不具合の発生が問題となる。また、単に錘をのせる方法も考えられるが、チップサイズによっては、1個のチップに対して約200kg程度の錘が必要になるケースもあり、現実的ではない。このため、より簡便な方法で加圧加熱接合を実現することが望まれていた。   Patent Document 2 describes a method of applying pressure by a jig using a lifting mechanism and a pressure spring. However, when a jig having such a complicated structure is used in a high-temperature environment, the occurrence of problems due to the deterioration of the jig becomes a problem. Although a method of simply placing a weight is conceivable, depending on the chip size, there are cases where a weight of about 200 kg is required for one chip, which is not practical. For this reason, it has been desired to realize pressure-heat bonding by a simpler method.

本発明の目的は、複雑な加圧機構を用いずに、金属微粒子を含む接合材料を焼結した接合部を形成する加圧接合を実現することにある。   An object of the present invention is to realize pressure bonding that forms a bonded portion obtained by sintering a bonding material containing metal fine particles without using a complicated pressure mechanism.

本発明の組立品の製造方法は、第1の部材と、第2の部材と、を含み、これらの間に接合部を有する組立品を加圧及び加熱により製造する方法であって、第1の部材と第2の部材との間に、金属微粒子を含む接合材料を挟んだものを、第1の支持部材と第2の支持部材との間に、第1の支持部材と第2の支持部材との距離を維持するように挟み込むように配置し、第1の部材、第2の部材及び接合材料を加熱し、その際にこれらの熱膨張を押さえ込む第1の支持部材及び第2の支持部材からの圧縮応力を利用して接合材料を加圧し、これにより接合材料の金属微粒子を焼結させて接合部を形成する。   A method of manufacturing an assembly according to the present invention is a method of manufacturing an assembly including a first member and a second member and having a joint between them by pressurization and heating. The first support member and the second support are sandwiched between the first support member and the second support member by sandwiching a bonding material containing metal fine particles between the first member and the second member. The first support member and the second support are arranged so as to be sandwiched so as to maintain a distance from the member, and the first member, the second member, and the bonding material are heated, and the thermal expansion is suppressed at that time. The bonding material is pressurized using the compressive stress from the member, and thereby the metal fine particles of the bonding material are sintered to form the bonded portion.

本発明によれば、複雑な加圧機構を用いずに、熱膨張を押さえ込む反作用である圧縮応力を利用することができるため、金属微粒子を含む接合材料を焼結した接合部を形成する加圧接合を実現することができる。   According to the present invention, since a compressive stress, which is a reaction that suppresses thermal expansion, can be used without using a complicated pressurizing mechanism, pressurization that forms a joint obtained by sintering a joining material containing metal fine particles. Bonding can be realized.

また、本発明によれば、接合部の厚さを所望の値とすることができる。   Moreover, according to this invention, the thickness of a junction part can be made into a desired value.

本発明の第1の実施形態である組立品の製造方法の一工程を示す断面図である。It is sectional drawing which shows 1 process of the manufacturing method of the assembly which is the 1st Embodiment of this invention. 本発明の第1の実施形態である加圧接合装置の一例を示す図である。It is a figure which shows an example of the pressure bonding apparatus which is the 1st Embodiment of this invention. 本発明の第2の実施形態である組立品の製造方法の一工程を示す断面図である。It is sectional drawing which shows 1 process of the manufacturing method of the assembly which is the 2nd Embodiment of this invention. 図3に対応する構成の一例である加圧接合容器を示す断面図である。It is sectional drawing which shows the pressurization joining container which is an example of the structure corresponding to FIG. 図4の加圧接合容器において半導体デバイスを固定するための構成の一例を示す断面図である。It is sectional drawing which shows an example of the structure for fixing a semiconductor device in the pressure bonding container of FIG. 図4の加圧接合容器の変形例における半導体デバイスの設置工程を示す図である。It is a figure which shows the installation process of the semiconductor device in the modification of the pressure bonding container of FIG. 本発明の第3の実施形態である組立品の製造方法の一工程を示す断面図である。It is sectional drawing which shows 1 process of the manufacturing method of the assembly which is the 3rd Embodiment of this invention. 図7の緩衝部材19の応力ひずみ関係を示すグラフである。It is a graph which shows the stress-strain relationship of the buffer member 19 of FIG. 本発明の組立品の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the assembly of this invention.

以下、本発明に係る実施形態について、図面を参照しながら詳細に説明する。ただし、本発明は、ここで取り上げた実施形態に限定されることはなく、発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the embodiment taken up here, and can be appropriately combined and improved without departing from the technical idea of the present invention.

(第1の実施形態)
図1は、本発明の第1の実施形態である組立品の製造方法の一工程を示す断面図である。ここでは、組立品が半導体デバイスの場合を示している。
(First embodiment)
FIG. 1 is a cross-sectional view showing one step of a method for manufacturing an assembly according to the first embodiment of the present invention. Here, the case where the assembly is a semiconductor device is shown.

少なくとも第1の部材11、第2の部材12及び接合材料13を用いて作製する半導体デバイス10を、ともに剛性の高い第1の支持部材51と第2の支持部材52との間に挟み込む。第1の支持部材51は第1の面14を有し、第2の支持部材52は第2の面15を有する。第1の面14は第1の部材11と接し、第2の面15は第2の部材12と接する。接合材料13は、金属微粒子を含む。この場合において、第1の支持部材51と第2の支持部材52との距離を維持するように設置する。   The semiconductor device 10 manufactured using at least the first member 11, the second member 12, and the bonding material 13 is sandwiched between the first support member 51 and the second support member 52 having high rigidity. The first support member 51 has the first surface 14, and the second support member 52 has the second surface 15. The first surface 14 is in contact with the first member 11, and the second surface 15 is in contact with the second member 12. The bonding material 13 includes metal fine particles. In this case, it installs so that the distance of the 1st supporting member 51 and the 2nd supporting member 52 may be maintained.

第1の部材11及び第2の部材12は、どのような材質であっても構わないが、例えば第1の部材11として、Si、SiCなどの材質からなる半導体チップ、第2の部材12として、AlN、Cuなどの材質からなる基板を適用することができる。なお、第1の部材11および第2の部材12の表面に、NiやAg等、種々のめっき処理が施してあっても構わない。また、封止樹脂や配線など半導体デバイスを構成する材料の数が増えても構わない。接合材料13は、銀、銅、酸化銀、酸化銅などの金属微粒子を分散媒に混ぜたペースト材や、事前に金属微粒子を焼結して作製しておいたシート材などを適用することができる。   The first member 11 and the second member 12 may be made of any material. For example, as the first member 11, a semiconductor chip made of a material such as Si or SiC, or the second member 12. A substrate made of a material such as AlN or Cu can be applied. Note that the surfaces of the first member 11 and the second member 12 may be subjected to various plating treatments such as Ni and Ag. Further, the number of materials constituting the semiconductor device such as sealing resin and wiring may be increased. The bonding material 13 may be a paste material in which metal fine particles such as silver, copper, silver oxide, and copper oxide are mixed in a dispersion medium, or a sheet material that is prepared by sintering metal fine particles in advance. it can.

第1の面14及び第2の面15は、熱の影響を受けないような形で所定の位置に固定される。本図においては上下方向に対向する位置に固定されている。この状態で半導体デバイス10全体を加熱すると半導体デバイス10が熱膨張しようとするが、第1の面14と第2の面15の位置が固定されているため、接合材料13に圧縮応力が発生する。加熱方法はどのような方法であってもよいが、例えば下面の第2の面15からヒーターで加熱するなどの方法がある。   The first surface 14 and the second surface 15 are fixed at predetermined positions so as not to be affected by heat. In this figure, it fixes to the position which opposes an up-down direction. When the entire semiconductor device 10 is heated in this state, the semiconductor device 10 tends to thermally expand. However, since the positions of the first surface 14 and the second surface 15 are fixed, compressive stress is generated in the bonding material 13. . The heating method may be any method, for example, a method of heating from the second surface 15 on the lower surface with a heater.

図2は、図1に対応する装置構成の一例について更に具体的に示したものである。   FIG. 2 shows more specifically an example of the apparatus configuration corresponding to FIG.

第1の支持部材に相当する上蓋21は、第1の面14を有し、内側に断熱材25を有している。一方、第2の支持部材に相当するヒーター23は、第2の面15を有し、半導体デバイス10を加熱するように配置されている。   The upper lid 21 corresponding to the first support member has the first surface 14 and has a heat insulating material 25 inside. On the other hand, the heater 23 corresponding to the second support member has the second surface 15 and is arranged to heat the semiconductor device 10.

上蓋21は、外部のロック機構22によって位置を固定されている。上蓋21の内面は、半導体デバイス10の上面に接触するように高さが調整されている。半導体デバイス10の高さは、種類によって異なるため、上蓋21の高さを調整する機能があることが好ましい。また、銅や酸化銅を対象とした場合では、炉内の雰囲気を還元雰囲気や不活性雰囲気に変更できる機能があることも好ましい。   The position of the upper lid 21 is fixed by an external lock mechanism 22. The height of the inner surface of the upper lid 21 is adjusted so as to contact the upper surface of the semiconductor device 10. Since the height of the semiconductor device 10 varies depending on the type, it is preferable that the semiconductor device 10 has a function of adjusting the height of the upper lid 21. Further, when copper or copper oxide is used as a target, it is also preferable that there is a function capable of changing the atmosphere in the furnace to a reducing atmosphere or an inert atmosphere.

ヒーター23の加熱により、半導体デバイス10が熱膨張するが、上蓋21は、断熱構造を有するため、熱による影響を受けず、熱膨張による変形は生じない。よって、上蓋21の内面である第1の面14の位置は変化しない。このため、半導体デバイス10の接合材13に適切な圧縮応力が加わり、所望の加圧加熱接合が達成される。   Although the semiconductor device 10 is thermally expanded by the heating of the heater 23, the upper lid 21 is not affected by heat because it has a heat insulating structure, and deformation due to thermal expansion does not occur. Therefore, the position of the first surface 14 that is the inner surface of the upper lid 21 does not change. For this reason, an appropriate compressive stress is applied to the bonding material 13 of the semiconductor device 10 to achieve a desired pressure heating bonding.

図2に示す構成によれば、上蓋21の位置を固定され、加圧時に第1の面14と第2の面15との距離が維持されるため、接合部の厚さを所望の値とすることができる。   According to the configuration shown in FIG. 2, the position of the upper lid 21 is fixed, and the distance between the first surface 14 and the second surface 15 is maintained at the time of pressurization. can do.

本実施の形態によれば、加圧機構を用いることなく加圧加熱接合を実現できる。   According to the present embodiment, it is possible to realize pressure heating bonding without using a pressure mechanism.

(第2の実施形態)
図3は、本発明の第2の実施形態である組立品の製造方法の一工程を示す断面図である。
(Second Embodiment)
FIG. 3 is a cross-sectional view showing one step of the method for manufacturing an assembly according to the second embodiment of the present invention.

本図においては、半導体デバイス10を挟む第1の面14及び第2の面15は、第3の支持部材16によって位置を固定されている。ここで、固定の方法は、特に限定されるものではなく、溶接による接合、ボルトによる締め付け等であってよい。第3の支持部材16は、半導体デバイス10の接合方向(以下「厚さ方向」又は「加圧方向」ともいう。)の等価熱膨張係数αよりも熱膨張係数が低い部材によって構成されていなければならない。半導体デバイス10の等価熱膨張係数αは、以下の式によって計算できる。 In the drawing, the positions of the first surface 14 and the second surface 15 sandwiching the semiconductor device 10 are fixed by a third support member 16. Here, the fixing method is not particularly limited, and may be joining by welding, fastening by bolts, or the like. The third support member 16 is formed of a member having a thermal expansion coefficient lower than the equivalent thermal expansion coefficient α d in the bonding direction of the semiconductor device 10 (hereinafter also referred to as “thickness direction” or “pressing direction”). There must be. The equivalent thermal expansion coefficient α d of the semiconductor device 10 can be calculated by the following equation.

Figure 2017121648
Figure 2017121648

ここで、αは半導体デバイス10を構成する各部材の接合方向(厚さ方向又は加圧方向)の熱膨張係数でtは各部材の厚さ、hは半導体デバイス10全体の厚さ、Nは半導体デバイス10を構成する材料の総数である。 Here, α i is a coefficient of thermal expansion in the joining direction (thickness direction or pressure direction) of each member constituting the semiconductor device 10, t i is the thickness of each member, h is the thickness of the entire semiconductor device 10, N is the total number of materials constituting the semiconductor device 10.

例えば、半導体デバイス10の構成として、第1の部材11にSiチップ(α=3.2×10−6/K、t=0.3mm)、第2の部材12にCu(α=17.0×10−6/K、t=3.0mm)、接合材料13に焼結銀(α=23.7×10−6/K、t=0.075mm)とした場合、等価線膨張係数αは約15.9×10−6/Kとなる。第3の支持部材16は、これよりも熱膨張係数が低く、剛性の高い構造材料である必要がある。そのような構造材料としては、例えば、炭素鋼(α=10.8×10−6/K)、鉄(α=12.1×10−6/K)、SUS410(α=10.4×10−6/K)などを適用することができる。また、第3の支持部材16として、負の熱膨張を有する材料や、ゼロ熱膨張材料を適用してもよい。 For example, as a configuration of the semiconductor device 10, the first member 11 has an Si chip (α 1 = 3.2 × 10 −6 / K, t 1 = 0.3 mm), and the second member 12 has Cu (α 2 = 17.0 × 10 −6 / K, t 2 = 3.0 mm) and when the bonding material 13 is sintered silver (α 3 = 23.7 × 10 −6 / K, t 3 = 0.075 mm), The equivalent linear expansion coefficient α d is about 15.9 × 10 −6 / K. The third support member 16 needs to be a structural material having a lower coefficient of thermal expansion and higher rigidity. Examples of such structural materials include carbon steel (α = 10.8 × 10 −6 / K), iron (α = 12.1 × 10 −6 / K), SUS410 (α = 10.4 × 10). -6 / K) can be applied. Further, as the third support member 16, a material having negative thermal expansion or a zero thermal expansion material may be applied.

また、第3の支持部材16は、接合材料13よりも高い弾性率を有する材質からなることが好ましい。なお、前記の半導体デバイス10の構成(Si、焼結銀、Cu)において、第3の支持部材16として鉄を用いて約175℃の均一な温度変化を与えた場合、接合材料13に相当する焼結銀層において生じる厚さ方向の圧縮応力は、約20MPa程度となることを有限要素解析によって確認している。これは、焼結銀が高強度に焼結接合するために十分な圧力である。このように、接合材料13に発生する圧縮応力は有限要素解析によって予測することが可能であり、その圧力レベルについては第3の支持部材16の材質や周辺構造などによって適宜制御することが可能である。   The third support member 16 is preferably made of a material having a higher elastic modulus than the bonding material 13. In the configuration of the semiconductor device 10 (Si, sintered silver, Cu), when a uniform temperature change of about 175 ° C. is applied using iron as the third support member 16, it corresponds to the bonding material 13. It has been confirmed by finite element analysis that the compressive stress in the thickness direction generated in the sintered silver layer is about 20 MPa. This is a pressure sufficient for the sintered silver to be sintered and bonded with high strength. Thus, the compressive stress generated in the bonding material 13 can be predicted by finite element analysis, and the pressure level can be appropriately controlled by the material of the third support member 16 and the surrounding structure. is there.

第3の支持部材16は、半導体デバイス10と共に加熱され、その際の第3の支持部材16と半導体デバイス10との熱膨張量の差によって半導体デバイス10の接合材料13に圧縮応力が生じ、第1の部材11と第2の部材12が接合材料13によって加圧接合される。加熱の方法はどのようなものであっても構わないが、例えば半導体デバイス10の周囲を囲む形の治具(加圧接合容器)を炉の中に入れる方法がある。   The third support member 16 is heated together with the semiconductor device 10, and a compressive stress is generated in the bonding material 13 of the semiconductor device 10 due to the difference in thermal expansion between the third support member 16 and the semiconductor device 10 at that time. The first member 11 and the second member 12 are pressure bonded by the bonding material 13. Any heating method may be used. For example, there is a method in which a jig (pressure bonding vessel) having a shape surrounding the semiconductor device 10 is placed in a furnace.

図4は、図3に対応する構成の一例である加圧接合容器について具体的に示したものである。   FIG. 4 specifically shows a pressure bonding container which is an example of a configuration corresponding to FIG.

図4においては、治具20(加圧接合容器)は、第1の面を有する第1の支持部材17と、第2の面を有する第2の支持部材18と、第3の支持部材16と、で構成されている。第1の支持部材17及び第2の支持部材18は同一材料であっても構わない。   In FIG. 4, the jig 20 (pressure bonding container) includes a first support member 17 having a first surface, a second support member 18 having a second surface, and a third support member 16. And is composed of. The first support member 17 and the second support member 18 may be made of the same material.

図3及び4に示す構成によれば、加圧時に第1の面14と第2の面15との距離が維持されるため、接合部の厚さを所望の値とすることができる。   3 and 4, since the distance between the first surface 14 and the second surface 15 is maintained during pressurization, the thickness of the joint can be set to a desired value.

図5は、半導体デバイス10(組立品)を加圧接合容器の内部に固定する直前の状態を示したものである。   FIG. 5 shows a state immediately before the semiconductor device 10 (assembly) is fixed inside the pressure bonding container.

本図においては、第2の支持部材18の上面に半導体デバイス10を設置し、その後、半導体デバイス10の上面に蓋をするように第1の支持部材17を配置し、ボルト55により締め付けて第1の支持部材17を固定する。   In this figure, the semiconductor device 10 is installed on the upper surface of the second support member 18, and then the first support member 17 is disposed so as to cover the upper surface of the semiconductor device 10, and is tightened with bolts 55. 1 support member 17 is fixed.

図6は、図4の加圧接合容器の変形例における半導体デバイス10の設置工程を示したものである。   FIG. 6 shows an installation process of the semiconductor device 10 in a modification of the pressure bonding container of FIG.

本図においては、半導体デバイス10を2枚のスライド板61で挟み込み、これらを治具20に挿入する。スライド板61の材質は、第1の支持部材17及び第2の支持部材18と同じであるか、それらよりも弾性率及び熱膨張係数が高い材質であることが好ましい。また、製造の効率を考慮して、複数のデバイスを一度に設置できるようになっていることが好ましい。   In this figure, the semiconductor device 10 is sandwiched between two slide plates 61 and these are inserted into the jig 20. The material of the slide plate 61 is preferably the same as that of the first support member 17 and the second support member 18 or a material having an elastic modulus and a thermal expansion coefficient higher than those. In consideration of manufacturing efficiency, it is preferable that a plurality of devices can be installed at one time.

第1の支持部材17及び第2の支持部材18は、剛性を高くするため、ある程度の厚さが必要となるが、体積が増加すると温度を上昇させるのに時間がかかってしまう。このような問題を考慮して、治具20を構成する部材は、剛性を保ちつつ、短時間で温度が上昇するように、例えばH鋼のようになっているなど、体積を減少させる工夫がされていることが好ましい。トラス構造やハニカム構造など内部が肉抜きされた構造になっていてもよい。第3の支持部材16は、熱が均一となるようになるべく断面積の小さい柱状となっていることが好ましい。   The first support member 17 and the second support member 18 need to have a certain thickness in order to increase the rigidity. However, when the volume increases, it takes time to raise the temperature. In consideration of such a problem, the member constituting the jig 20 is designed to reduce the volume, for example, like H steel so that the temperature rises in a short time while maintaining rigidity. It is preferable that A truss structure or a honeycomb structure such as a hollow structure may be used. It is preferable that the third support member 16 has a columnar shape with a small cross-sectional area so that heat is uniform.

本実施の形態によれば、複雑な治具を用いることなく加圧加熱接合を実現できる。
(第3の実施形態)
図7は、本発明の第3の実施形態である組立品の製造方法の一工程を示す断面図である。
According to the present embodiment, it is possible to realize pressure heating bonding without using a complicated jig.
(Third embodiment)
FIG. 7: is sectional drawing which shows 1 process of the manufacturing method of the assembly which is the 3rd Embodiment of this invention.

本図においては、半導体デバイス10と第1の面14との間に樹脂シートなどの緩衝部材19を配置している。同様に、半導体デバイス10と第2の面15との間に緩衝部材19を配置してもよい。これによって、半導体デバイス10のダメージ緩和や、面圧分布の均一化、ギャップ調整などの効果を付加することが可能となる。また、複数のデバイスを一度に加圧する際の高さのばらつきを吸収することが可能となる。   In this figure, a buffer member 19 such as a resin sheet is disposed between the semiconductor device 10 and the first surface 14. Similarly, a buffer member 19 may be disposed between the semiconductor device 10 and the second surface 15. As a result, it is possible to add effects such as damage reduction of the semiconductor device 10, uniform surface pressure distribution, and gap adjustment. In addition, it is possible to absorb variations in height when a plurality of devices are pressurized at once.

図8は、図7の緩衝部材19の応力ひずみ関係を示すグラフである。   FIG. 8 is a graph showing the stress-strain relationship of the buffer member 19 of FIG.

図8に示すように、降伏応力を超えるとひずみに対して応力が上昇しなくなるような応力ひずみ関係を有する材料を緩衝部材19として用いることが望ましい。これにより、半導体デバイス10にかかる圧力が緩衝部材19の降伏応力以上には上がらなくなるため、高さのばらつきなどに起因する圧力のばらつきを制御することが可能となる。このような材料としては、例えば、発泡材料や樹脂の厚さ方向にフィラーや繊維を配向させた材料などが適用できる。また、樹脂の例としては、ポリイミドが挙げられる。   As shown in FIG. 8, it is desirable to use as the buffer member 19 a material having a stress-strain relationship such that stress does not increase with respect to strain when the yield stress is exceeded. As a result, the pressure applied to the semiconductor device 10 does not increase above the yield stress of the buffer member 19, so that it is possible to control pressure variations due to height variations and the like. As such a material, for example, a foamed material or a material in which fillers and fibers are oriented in the thickness direction of the resin can be applied. Moreover, a polyimide is mentioned as an example of resin.

本実施の形態によれば、高さばらつき等に起因する圧力のばらつきを抑制することが可能となる。   According to the present embodiment, it is possible to suppress pressure variations due to height variations and the like.

図9は、本発明の組立品の製造方法の主要な工程をまとめて示したものである。   FIG. 9 collectively shows the main steps of the method for manufacturing an assembly according to the present invention.

本図においては、まず、接合材料を含む被処理物を第1の支持部材と第2の支持部材との間に挟み込むように配置する(S1)。被処理物は、第1の部材と第2の部材との間に、金属微粒子を含む接合材料を挟み込んだものであり、接合前の組立品である。つぎに、第1の支持部材と第2の支持部材との距離を維持するように固定した状態で被処理物を加熱する(S2)。このように加熱することにより、第1の部材と第2の部材との間に挟み込まれた接合材料が熱膨張に対抗する力を受け、圧縮され、焼結する。   In this figure, first, an object to be processed including a bonding material is disposed so as to be sandwiched between a first support member and a second support member (S1). The object to be processed is an assembly before joining, in which a joining material containing metal fine particles is sandwiched between the first member and the second member. Next, the object to be processed is heated in a state of being fixed so as to maintain the distance between the first support member and the second support member (S2). By heating in this way, the bonding material sandwiched between the first member and the second member receives a force against thermal expansion, and is compressed and sintered.

以上で説明したように、本発明に係る接合方法および接合装置は、複雑な加圧機構を用いずに熱処理するだけで加圧接合を実現できる。   As described above, the bonding method and the bonding apparatus according to the present invention can realize pressure bonding only by heat treatment without using a complicated pressure mechanism.

なお、上記した実施例は、本発明の理解を助けるために具体的に説明したものであり、本発明は、説明した全ての構成を備えることに限定されるものではない。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。   Note that the above-described embodiments have been specifically described in order to help understanding of the present invention, and the present invention is not limited to having all the configurations described. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, a part of the configuration of each embodiment can be deleted, replaced with another configuration, or added with another configuration.

10:半導体デバイス、11:第1の部材、12:第2の部材、13:接合材料、14:第1の面、15:第2の面、16:第3の支持部材、17:第1の支持部材、18:第2の支持部材、19:緩衝部材、20:治具、21:上蓋、22:ロック機構、23:ヒーター、25:断熱材、51:第1の支持部材、52:第2の支持部材、55:ボルト、61:スライド板。   10: Semiconductor device, 11: First member, 12: Second member, 13: Bonding material, 14: First surface, 15: Second surface, 16: Third support member, 17: First 18: second support member, 19: buffer member, 20: jig, 21: upper lid, 22: lock mechanism, 23: heater, 25: heat insulating material, 51: first support member, 52: Second support member, 55: bolt, 61: slide plate.

Claims (18)

第1の部材と、第2の部材と、を含み、これらの間に接合部を有する組立品を加圧及び加熱により製造する方法であって、
前記第1の部材と前記第2の部材との間に、金属微粒子を含む接合材料を挟んだものを、第1の支持部材と第2の支持部材との間に、前記第1の支持部材と前記第2の支持部材との距離を維持するように挟み込むように配置し、
前記第1の部材、前記第2の部材及び前記接合材料を加熱し、その際にこれらの熱膨張を押さえ込む前記第1の支持部材及び前記第2の支持部材からの圧縮応力を利用して前記接合材料を加圧し、これにより前記接合材料の前記金属微粒子を焼結させて前記接合部を形成する、組立品の製造方法。
A method of manufacturing an assembly including a first member and a second member and having a joint portion therebetween by pressurization and heating,
The first support member is formed by sandwiching a bonding material containing metal fine particles between the first member and the second member, between the first support member and the second support member. And so as to be sandwiched so as to maintain a distance between the second support member and
The first member, the second member, and the bonding material are heated, and the compressive stress from the first support member and the second support member that suppresses the thermal expansion of the first member, the second member, and the bonding material is used. A method for manufacturing an assembly, wherein the joining material is formed by pressurizing the joining material, thereby sintering the metal fine particles of the joining material.
前記第1の支持部材と前記第2の支持部材との間には、第3の支持部材が配置され、この第3の支持部材により前記第1の支持部材及び前記第2の支持部材が固定されている、請求項1記載の組立品の製造方法。   A third support member is disposed between the first support member and the second support member, and the first support member and the second support member are fixed by the third support member. The method of manufacturing an assembly according to claim 1. 前記第3の支持部材の熱膨張係数は、前記組立品の加圧方向の等価熱膨張係数よりも低い、請求項2記載の組立品の製造方法。   The method of manufacturing an assembly according to claim 2, wherein a thermal expansion coefficient of the third support member is lower than an equivalent thermal expansion coefficient in the pressurizing direction of the assembly. 前記第1の支持部材と前記第3の支持部材とは、ボルトの締め付けにより固定する、請求項2記載の組立品の製造方法。   The method of manufacturing an assembly according to claim 2, wherein the first support member and the third support member are fixed by tightening a bolt. 前記組立品と前記第1の支持部材との間又は前記組立品と前記第2の支持部材との間には、緩衝部材が配置されている、請求項1〜4のいずれか一項に記載の組立品の製造方法。   The buffer member is arrange | positioned between the said assembly and the said 1st support member, or between the said assembly and the said 2nd support member, It is any one of Claims 1-4. Method of manufacturing the assembly. 前記第1の支持部材と前記第2の支持部材とは、接する部分を有する、請求項1記載の組立品の製造方法。   The method of manufacturing an assembly according to claim 1, wherein the first support member and the second support member have a contact portion. 前記接する部分を押さえ込むロック機構を有する、請求項6記載の組立品の製造方法。   The manufacturing method of the assembly of Claim 6 which has a lock mechanism which presses down the said part to contact | connect. 前記第2の支持部材は、ヒーターである、請求項1〜7のいずれか一項に記載の組立品の製造方法。   The method of manufacturing an assembly according to any one of claims 1 to 7, wherein the second support member is a heater. 前記組立品の周囲は、断熱材で囲まれている、請求項1〜8のいずれか一項に記載の組立品の製造方法。   The manufacturing method of the assembly according to any one of claims 1 to 8, wherein a periphery of the assembly is surrounded by a heat insulating material. さらに、前記組立品を2枚のスライド板の間に挟み込み、その後、これらを前記第1の支持部材と前記第2の支持部材との間に挿入する工程を含む、請求項1記載の組立品の製造方法。   The assembly manufacturing method according to claim 1, further comprising the step of sandwiching the assembly between two slide plates and then inserting the assembly between the first support member and the second support member. Method. 前記組立品は、半導体デバイスである、請求項1〜10のいずれか一項に記載の組立品の製造方法。   The method of manufacturing an assembly according to any one of claims 1 to 10, wherein the assembly is a semiconductor device. 第1の部材と、第2の部材と、を含み、これらの間に接合部を有する組立品を製造する際に、前記接合部となる、金属微粒子を含む接合材料を、前記第1の部材と前記第2の部材との間に挟んだ状態で加圧及び加熱をするために用いる容器であって、
第1の支持部材と、第2の支持部材と、を備え、
前記第1の支持部材と前記第2の支持部材との距離を維持するように、前記第1の部材、前記第2の部材及び前記接合材料を前記第1の支持部材と前記第2の支持部材との間に挟み込んで保持することを可能とした構成を有する、加圧接合容器。
When manufacturing an assembly including a first member and a second member and having a joint portion therebetween, a joining material containing metal fine particles, which becomes the joint portion, is used as the first member. And a container used to pressurize and heat in a state sandwiched between the second member and the second member,
A first support member and a second support member;
The first support member, the second support member, and the second support member are separated from each other so that the distance between the first support member and the second support member is maintained. A pressure bonding container having a configuration that can be sandwiched and held between members.
前記第1の支持部材と前記第2の支持部材との間には、第3の支持部材が配置されている、請求項12記載の加圧接合容器。   The pressure bonding container according to claim 12, wherein a third support member is disposed between the first support member and the second support member. 前記第1の支持部材又は前記第2の支持部材の内面には、緩衝部材が配置されている、請求項12又は13に記載の加圧接合容器。   The pressure bonding container according to claim 12 or 13, wherein a buffer member is disposed on an inner surface of the first support member or the second support member. 第1の部材と、第2の部材と、を含み、これらの間に接合部を有する組立品を加圧及び加熱により製造する装置であって、
前記第1の部材と前記第2の部材との間に、金属微粒子を含む接合材料を挟んだ状態で、これらを第1の支持部材と第2の支持部材との間に、前記第1の支持部材と前記第2の支持部材との距離を維持するように挟み込むように配置し、
前記第1の部材、前記第2の部材及び前記接合材料を加熱し、その際にこれらの熱膨張を押さえ込む前記第1の支持部材及び前記第2の支持部材からの圧縮応力を利用して前記接合材料を加圧し、これにより前記接合材料の前記金属微粒子を焼結させて前記接合部を形成する、加圧接合装置。
An apparatus for manufacturing an assembly including a first member and a second member and having a joint portion therebetween by pressurization and heating,
In a state in which a bonding material containing metal fine particles is sandwiched between the first member and the second member, these are interposed between the first support member and the second support member. Arranged so as to hold the distance between the support member and the second support member,
The first member, the second member, and the bonding material are heated, and the compressive stress from the first support member and the second support member that suppresses the thermal expansion of the first member, the second member, and the bonding material is used. A pressure bonding apparatus that pressurizes a bonding material, thereby sintering the metal fine particles of the bonding material to form the bonding portion.
前記加熱をするために、前記第1の支持部材と前記第2の支持部材との間に前記第1の部材、前記第2の部材及び前記接合材料を配置したものを投入する炉を有する、請求項15記載の加圧接合装置。   A furnace for charging the first member, the second member, and the bonding material disposed between the first support member and the second support member in order to perform the heating; The pressure bonding apparatus according to claim 15. 前記第1の支持部材又は前記第2の支持部材には、前記加熱をするためのヒーターが付設されている、請求項15記載の加圧接合装置。   The pressure bonding apparatus according to claim 15, wherein a heater for performing the heating is attached to the first support member or the second support member. 前記第2の支持部材は、前記加熱をするためのヒーターである、請求項15記載の加圧接合装置。   The pressure bonding apparatus according to claim 15, wherein the second support member is a heater for performing the heating.
JP2016001741A 2016-01-07 2016-01-07 Assembly manufacturing method, pressure joining container and pressure joining apparatus Expired - Fee Related JP6720534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016001741A JP6720534B2 (en) 2016-01-07 2016-01-07 Assembly manufacturing method, pressure joining container and pressure joining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016001741A JP6720534B2 (en) 2016-01-07 2016-01-07 Assembly manufacturing method, pressure joining container and pressure joining apparatus

Publications (2)

Publication Number Publication Date
JP2017121648A true JP2017121648A (en) 2017-07-13
JP6720534B2 JP6720534B2 (en) 2020-07-08

Family

ID=59305480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016001741A Expired - Fee Related JP6720534B2 (en) 2016-01-07 2016-01-07 Assembly manufacturing method, pressure joining container and pressure joining apparatus

Country Status (1)

Country Link
JP (1) JP6720534B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044798A1 (en) * 2017-08-28 2019-03-07 日立化成株式会社 Method for manufacturing power semiconductor device, sheet for hot pressing, and thermosetting resin composition for hot pressing
JP2019140375A (en) * 2018-02-09 2019-08-22 現代自動車株式会社Hyundai Motor Company Sintering bonding method of semiconductor device
CN112041972A (en) * 2018-04-27 2020-12-04 日东电工株式会社 Method for manufacturing semiconductor device
JP7199768B1 (en) 2022-07-29 2023-01-06 アサヒ・エンジニアリング株式会社 Sintering jig, sintering mold, pickup unit, film processing device, sintering device and sintering method
JP7381089B2 (en) 2018-06-15 2023-11-15 ボシュマン テクノロジーズ ビー.ブイ. Press sintering method product carrier, press sintering equipment, and press sintering method
US11967542B2 (en) 2019-03-12 2024-04-23 Absolics Inc. Packaging substrate, and semiconductor device comprising same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044798A1 (en) * 2017-08-28 2019-03-07 日立化成株式会社 Method for manufacturing power semiconductor device, sheet for hot pressing, and thermosetting resin composition for hot pressing
JPWO2019044798A1 (en) * 2017-08-28 2020-09-24 日立化成株式会社 A method for manufacturing a power semiconductor device, a sheet for hot pressing and a thermosetting resin composition for hot pressing.
JP7176523B2 (en) 2017-08-28 2022-11-22 昭和電工マテリアルズ株式会社 Method for manufacturing power semiconductor device, sheet for hot press and thermosetting resin composition for hot press
JP2019140375A (en) * 2018-02-09 2019-08-22 現代自動車株式会社Hyundai Motor Company Sintering bonding method of semiconductor device
JP7255994B2 (en) 2018-02-09 2023-04-11 現代自動車株式会社 Sinter bonding method for semiconductor devices
CN112041972A (en) * 2018-04-27 2020-12-04 日东电工株式会社 Method for manufacturing semiconductor device
EP3787011A4 (en) * 2018-04-27 2022-06-08 Nitto Denko Corporation Semiconductor device manufacturing method
US11594513B2 (en) 2018-04-27 2023-02-28 Nitto Denko Corporation Manufacturing method for semiconductor device
JP7381089B2 (en) 2018-06-15 2023-11-15 ボシュマン テクノロジーズ ビー.ブイ. Press sintering method product carrier, press sintering equipment, and press sintering method
US11967542B2 (en) 2019-03-12 2024-04-23 Absolics Inc. Packaging substrate, and semiconductor device comprising same
JP7199768B1 (en) 2022-07-29 2023-01-06 アサヒ・エンジニアリング株式会社 Sintering jig, sintering mold, pickup unit, film processing device, sintering device and sintering method
JP2024018686A (en) * 2022-07-29 2024-02-08 アサヒ・エンジニアリング株式会社 Sintering jig, sintering mold, pickup unit, film processing device, sintering device and sintering method

Also Published As

Publication number Publication date
JP6720534B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6720534B2 (en) Assembly manufacturing method, pressure joining container and pressure joining apparatus
Quintero et al. Temperature cycling reliability of high-temperature lead-free die-attach technologies
JP6127540B2 (en) Power module substrate manufacturing method
JP6011552B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP5947090B2 (en) Insulating substrate manufacturing method
JP4548509B2 (en) Printed circuit board manufacturing equipment
JP6201828B2 (en) Manufacturing method of power module substrate with heat sink
JP5141623B2 (en) LAMINATED STRUCTURE JOINING JIG AND LAYER STRUCTURE BONDING METHOD
WO2019012738A1 (en) Semiconductor module and method for manufacturing semiconductor module
JP5980110B2 (en) Diffusion bonding jig and diffusion bonding method
TWI229019B (en) Method of fabricating temperature control device
JP6008544B2 (en) Insulating substrate manufacturing method
KR101234358B1 (en) Support unit and substrate treating apparatus with it
JP2010238900A (en) Circuit board connecting tool, and method of manufacturing circuit board
KR102047587B1 (en) Method and device for permanent bonding
JP2005072036A (en) Power module, and method and apparatus for manufacturing circuit board
JP2013504432A (en) Assembly method using brazing
JP6264822B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP5361553B2 (en) Jig for manufacturing membrane / electrode assemblies
JP5333362B2 (en) Semiconductor device and manufacturing method thereof
JP3915722B2 (en) Circuit board manufacturing method and manufacturing apparatus
JP2011206784A (en) Joining jig and joining method
JP7339459B1 (en) pressure device
JP7431857B2 (en) Manufacturing method of bonded substrate
US11437296B2 (en) Semiconductor package, semiconductor apparatus, and method for manufacturing semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200601

R151 Written notification of patent or utility model registration

Ref document number: 6720534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees