JP2017120710A - Negative electrode material for secondary batteries, and nonaqueous electrolyte secondary battery using the same - Google Patents

Negative electrode material for secondary batteries, and nonaqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP2017120710A
JP2017120710A JP2015256521A JP2015256521A JP2017120710A JP 2017120710 A JP2017120710 A JP 2017120710A JP 2015256521 A JP2015256521 A JP 2015256521A JP 2015256521 A JP2015256521 A JP 2015256521A JP 2017120710 A JP2017120710 A JP 2017120710A
Authority
JP
Japan
Prior art keywords
negative electrode
silicon
electrode material
secondary battery
dlc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015256521A
Other languages
Japanese (ja)
Inventor
松原 恵子
Keiko Matsubara
恵子 松原
壮紘 佐藤
Takehiro Sato
壮紘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Priority to JP2015256521A priority Critical patent/JP2017120710A/en
Priority to KR1020160181454A priority patent/KR102202011B1/en
Publication of JP2017120710A publication Critical patent/JP2017120710A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material which can decrease and hold down a silicon expansion coefficient and which can realize the increase in conductivity and satisfactory charge and discharge cycle characteristics.SOLUTION: Particles including amorphous or microcrystalline silicon as a negative electrode active substance are coated with a conductive DLC under a temperature condition of 500°C or lower to impart conductivity to the particles, which enables the decrease in the electric resistance of an electrode, and allows lithium ions to go into or out of the material smoothly. In addition, the amorphous or microcrystalline structure of the silicon can be retained and as such, a stress caused by the volume expansion and shrinkage during the time of charge/discharge is relaxed within a range of a yield stress. Further, a hard DLC film reduces the expansion during the time of charge. Therefore, the fine powdering or the increase in expansion coefficient, which accompanies the charge/discharge, can be suppressed at a high level, and satisfactory cycle characteristics can be retained.SELECTED DRAWING: Figure 1

Description

本発明は、ケイ素を含むリチウム二次電池用負極材料に、被覆物として、導電性ダイヤモンドライクカーボン(DLC)を備えた、二次電池用負極材料及びそれを用いた非水電解質二次電池に関する。   TECHNICAL FIELD The present invention relates to a negative electrode material for a secondary battery comprising a silicon-containing negative electrode material for a lithium secondary battery and a conductive diamond-like carbon (DLC) as a coating, and a nonaqueous electrolyte secondary battery using the same. .

近年、モバイルツール、パーソナルコンピュータ、電気モーター、一時蓄電装置の開発及び普及に伴って、高容量のエネルギー源が求められており、その代表的な例として、リチウム二次電池が挙げられる。   In recent years, with the development and popularization of mobile tools, personal computers, electric motors, and temporary power storage devices, high-capacity energy sources have been demanded, and a typical example is a lithium secondary battery.

従来、次世代型非水電解質二次電池の負極材料として、従来の黒鉛系材料(理論容量が372mAh/g)の10倍以上の容量(4200mAh/g)を有するSi(ケイ素)が注目されている。   Conventionally, Si (silicon) having a capacity (4200 mAh / g) more than 10 times that of a conventional graphite-based material (theoretical capacity is 372 mAh / g) has attracted attention as a negative electrode material for next-generation non-aqueous electrolyte secondary batteries. Yes.

他方、ケイ素は、充放電時における膨張・収縮により微粉化することが知られている。金属の降伏応力は、結晶子の大きさと反比例するため、ケイ素の結晶子の大きさをできるだけ小さくし、充放電に伴う膨張・収縮の応力を降伏応力以下にすることができれば、粒子の形状を維持し、微粉化による容量劣化が起こりにくくなる。このため、急冷凝固やメカニカルアロイングによって作成したアモルファスもしくは微結晶のケイ素を含む合金粉末や、SiO2中に微結晶ケイ素が点在しているSiOxなどのケイ素酸化物粉末材料の検討がなされている。 On the other hand, silicon is known to be pulverized by expansion / contraction during charge / discharge. Since the yield stress of a metal is inversely proportional to the size of the crystallite, if the size of the silicon crystallite is made as small as possible and the stress of expansion / contraction associated with charge / discharge can be made less than the yield stress, the shape of the particles can be reduced. Maintaining and capacity deterioration due to pulverization is less likely to occur. Therefore, studies have been made on amorphous or microcrystalline silicon-containing alloy powders prepared by rapid solidification or mechanical alloying, and silicon oxide powder materials such as SiOx in which microcrystalline silicon is scattered in SiO 2. Yes.

しかし、これらの材料で微粉化が抑制できたとしても、ケイ素の導電率は現行の負極活物質として用いられている黒鉛と比べると非常に低く、ケイ素そのものは電池材料としてはほぼ不導体といってよい水準であるため、その酸化物はもちろん、導電性が高い金属と合金化したケイ素合金であっても円滑な充放電を行うために十分な導電性を得ることは難しく、充放電による容量劣化の要因になる。   However, even if the pulverization can be suppressed with these materials, the conductivity of silicon is very low compared with the graphite used as the current negative electrode active material, and silicon itself is almost non-conductive as a battery material. Therefore, it is difficult to obtain sufficient conductivity for smooth charge / discharge even if it is a silicon alloy alloyed with a metal having high conductivity as well as its oxide. It becomes a factor of deterioration.

上記課題に対して、例えば、導電性炭素との複合化する技術(例えば、特許文献1:特開2006−228640公報)、2)ケイ素を被覆するように銅やニッケル等の金属を集電体上にめっきする技術(例えば、特許文献2:特開2006−236684公報)、3)CVDにより表面に炭素皮膜を形成する技術(例えば、特許文献3:特開2009−212074A号公報)、4)集電体に直接ケイ素の薄膜を形成する技術(例えば、特許文献4:WO2004/109839号公報)、等が提案されている。   In order to solve the above-mentioned problems, for example, a technique for compounding with conductive carbon (for example, Patent Document 1: Japanese Patent Laid-Open No. 2006-228640), 2) A current collector made of metal such as copper or nickel so as to cover silicon Technology for plating on top (for example, Patent Document 2: Japanese Patent Laid-Open No. 2006-236684), 3) Technology for forming a carbon film on the surface by CVD (for example, Patent Document 3: Japanese Patent Laid-Open No. 2009-212074A), 4) A technique for directly forming a silicon thin film on a current collector (for example, Patent Document 4: WO2004 / 109839) has been proposed.

1)一般的な天然黒鉛の表面被覆で用いられているように、軟化させたピッチと混合、焼成することで導電性炭素と複合化すると、比較的均一に被覆することができ、導電性を高め、表面抵抗を黒鉛同等水準までに低下させることが可能であるが、電池性能に効果が得られる導電性を得るためには、1000℃以上の温度で熱処理をしてピッチを炭化する必要がある。膨張抑制のためにケイ素の結晶性が低い酸化珪素や低結晶合金などのケイ素材料に対して、このような手法で炭素と複合化すると、焼成時の熱によってケイ素の結晶性が発達してしまい、充放電時の応力緩和ができずにケイ素が割れて、微粉化し、電極内で孤立することにより容量劣化が生じてしまうことがある。   1) As used in the surface coating of general natural graphite, when mixed with conductive carbon by mixing and firing with softened pitch, it can be coated relatively uniformly, and the conductivity is improved. It is possible to increase and lower the surface resistance to the equivalent level of graphite, but in order to obtain conductivity that is effective for battery performance, it is necessary to carbonize the pitch by heat treatment at a temperature of 1000 ° C. or higher. is there. When silicon materials such as silicon oxide and low crystal alloys with low silicon crystallinity are combined with carbon in this way to suppress expansion, the crystallinity of silicon develops due to heat during firing. The stress may not be relaxed during charge and discharge, and silicon may crack and become fine powder, and may be isolated in the electrode, resulting in capacity deterioration.

2)熱CVDにより表面に炭素皮膜を形成することで、上記1と同様の効果を得られるが、熱CVDの反応温度は、炭素源にアセチレンを使用した場合が最も低く600℃−750℃であり、一般的にはメタンやエチレンを使用して750℃−950℃の温度下で炭素皮膜が生成されるため、ケイ素の結晶構造に影響を与えて、やはり、寿命低下の要因となる。   2) By forming a carbon film on the surface by thermal CVD, the same effect as the above 1 can be obtained, but the reaction temperature of thermal CVD is the lowest when acetylene is used as the carbon source at 600 ° C. to 750 ° C. In general, since a carbon film is formed at a temperature of 750 ° C. to 950 ° C. using methane or ethylene, it affects the crystal structure of silicon, which also causes a decrease in life.

3)集電体上でケイ素に金属メッキを施すことで、ケイ素の表面に導電性を付与するとともに電極抵抗を低減することができるが、この手法では電極内部に空隙を含まないため、充放電に伴う膨張収縮により、メッキ層とケイ素の間に亀裂が生じ、ケイ素粒子が電気的に孤立し、充放電ができなくなることがある。   3) By applying metal plating to silicon on the current collector, conductivity can be imparted to the surface of silicon and electrode resistance can be reduced. Due to the expansion and contraction associated with, cracks may be generated between the plating layer and silicon, and the silicon particles may be electrically isolated, making it impossible to charge and discharge.

4)集電体に直接ケイ素の薄膜を形成する場合は、導電性を集電体側からしか得る事ができず、電極の厚みによって著しく抵抗が高まるとともに、充放電に伴う膨張によって集電体から脱離してしまった場合には、導電パスの確保ができなくなるといった弊害がある。   4) When a silicon thin film is formed directly on the current collector, conductivity can be obtained only from the current collector side, and the resistance increases remarkably with the thickness of the electrode, and from the current collector due to expansion due to charge / discharge. If it is detached, there is an adverse effect that it is impossible to secure a conductive path.

充放電に伴う膨張収縮によってケイ素を含む負極活物質に亀裂が入ったり、微粉化しないようにするためには、結晶子の大きさを小さくして降伏応力を高めることが有用であるが、導電性を付与する過程で結晶子が成長しないようにすることが求められる。特に、ケイ素を遷移金属などと合金化して負極活物質とする場合、ケイ素単体よりも融点が低くなるため、ケイ素の結晶成長を発生させないことが求められる。   In order to prevent the negative electrode active material containing silicon from cracking or pulverizing due to expansion and contraction due to charge and discharge, it is useful to reduce the crystallite size and increase the yield stress. It is required to prevent crystallites from growing in the process of imparting properties. In particular, when silicon is alloyed with a transition metal or the like to form a negative electrode active material, since the melting point is lower than that of silicon alone, it is required not to cause silicon crystal growth.

従って、ケイ素の結晶成長を抑制しつつ、導電性を向上させて、二次電池の電池性能を向上させた二次電池用負極活性物質の開発が急務となっている。   Accordingly, there is an urgent need to develop a negative electrode active material for a secondary battery that improves the conductivity of the secondary battery while suppressing the crystal growth of silicon and improving the battery performance of the secondary battery.

特開2006−228640号公報JP 2006-228640 A 特開2006−236684号公報JP 2006-236684 A 特開2005−294079号公報JP 2005-294079 A WO2004/109839号公報WO2004 / 109839

本発明者等は、ケイ素を包含する負極材料においてケイ素を包含することの技術的利点を有しつつ、ケイ素の結晶性を考慮し、二次電池用負極材料としての機能を向上させることを見出したのである。また、本発明者等は、ケイ素の結晶成長を抑制するために、導電性付与の工程における温度を低温度(好ましくは500℃以下)にすることをも見出したのである。本発明はこれら知見に基づいてなされたものである。   The present inventors have found that the negative electrode material containing silicon has the technical advantage of including silicon, and considers the crystallinity of silicon to improve the function as a negative electrode material for secondary batteries. It was. The present inventors have also found that the temperature in the step of imparting conductivity is lowered (preferably 500 ° C. or lower) in order to suppress the crystal growth of silicon. The present invention has been made based on these findings.

本発明は、リチウム二次電池用負極材料であって、
少なくとも、ケイ素と、導電性ダイヤモンドライクカーボン(DLC)とを備えてなり、
前記導電性DLCが、前記ケイ素を含む前記リチウム二次電池用負極材料の一部または全部の被覆物であり、
前記リチウム二次電池用負極材料のX線回折パターンにおいて、前記ケイ素の(111)回折線の半価幅より得られる結晶子の大きさが20nm以下であることを特徴とする、二次電池用負極材料である。
The present invention is a negative electrode material for a lithium secondary battery,
Comprising at least silicon and conductive diamond-like carbon (DLC);
The conductive DLC is a coating of a part or all of the negative electrode material for a lithium secondary battery containing the silicon,
In the X-ray diffraction pattern of the negative electrode material for a lithium secondary battery, the size of the crystallite obtained from the half width of the (111) diffraction line of the silicon is 20 nm or less. It is a negative electrode material.

本発明の別の態様では、リチウム二次電池用負極材料の製造方法であって、
少なくとも、ケイ素を用意し、
前記ケイ素を含む前記リチウム二次電池用負極材料の一部または全部に、低温度(好ましくは、500℃以下の温度)で、導電性DLCを被覆又は付着させることを含んでなる、製造方法である。
In another aspect of the present invention, a method for producing a negative electrode material for a lithium secondary battery, comprising:
At least silicon,
In a manufacturing method, comprising covering or adhering conductive DLC to a part or all of the negative electrode material for lithium secondary battery containing silicon at a low temperature (preferably a temperature of 500 ° C. or less). is there.

本発明による二次電池用負極材料を用いた二次電池によれば、負極活物質であるケイ素含有粒子が、導電性DLCで被覆されてなることにより、ケイ素含有負極活物質および、それを含む電極の電気抵抗を低下させることが可能となる。また、ケイ素含有粒子において、ケイ素がアモルファスもしくは微結晶構造を維持し、充放電時の体積膨張・収縮によるストレスを降伏応力の範囲で緩和することにより、充放電に伴う微粉化を高い次元において抑制することが可能となる。その結果、ケイ素の利用率が充放電の繰り返しによって低下せずに良好なサイクル特性を維持することができる。   According to the secondary battery using the negative electrode material for the secondary battery according to the present invention, the silicon-containing negative electrode active material and the silicon-containing negative electrode active material are formed by covering the silicon-containing particles as the negative electrode active material with the conductive DLC. It becomes possible to reduce the electrical resistance of the electrode. In addition, in silicon-containing particles, silicon maintains an amorphous or microcrystalline structure and relieves stress caused by volume expansion and contraction during charge / discharge within the range of yield stress, thereby suppressing pulverization associated with charge / discharge at a high level. It becomes possible to do. As a result, it is possible to maintain good cycle characteristics without the silicon utilization rate being lowered by repeated charge and discharge.

本発明によれば、ケイ素の結晶子の大きさが20nm以下のケイ素相を含むケイ素粒子の全部または一部を、低温度(好ましくは500℃以下の温度)で形成させた導電性DLCで被覆することにより、ケイ素の結晶子の大きさを増大させずに、高い導電性を付与することができる。導電性が向上することにより、ケイ素を含む活物質へのリチウムイオンの吸蔵・放出が円滑になされるとともに、被覆後もアモルファスもしくは微結晶構造が維持されているため、充放電に伴うケイ素の膨張収縮を降伏応力の範囲で抑えることができるため、良好な充放電サイクル特性を得ることができる。さらに、硬質なDLC膜が充電時の膨張も低減するため、電極膨張率も低減される。   According to the present invention, all or part of silicon particles containing a silicon phase having a silicon crystallite size of 20 nm or less is coated with conductive DLC formed at a low temperature (preferably a temperature of 500 ° C. or less). By doing so, high conductivity can be imparted without increasing the size of the silicon crystallites. The improved conductivity facilitates the insertion and extraction of lithium ions into and from silicon-containing active materials, and the amorphous or microcrystalline structure is maintained after coating, so that silicon expands during charge and discharge. Since shrinkage can be suppressed within the range of yield stress, good charge / discharge cycle characteristics can be obtained. Furthermore, since the hard DLC film also reduces expansion during charging, the electrode expansion coefficient is also reduced.

図1は、本発明による二次電子負極材料のラマンスペクトルを示す図である。FIG. 1 is a diagram showing a Raman spectrum of a secondary electron negative electrode material according to the present invention.

〔定義〕
(ラマン分光法)
ラマン分光法は、物質に単色光を照射し、その物質から散乱されるラマン散乱光を測定し、化合物の同定や、結晶性や配向性などの構造の情報を得ることができる分析方法である。炭素材料の構造を調べるためにもよく用いられ、特にsp2混成軌道である黒鉛は、1580cm-1にGバンドとよばれる鋭いピークが現れ、黒鉛構造に乱れが生じるとGバンドのピークがやや広がるとともに、1350cm-1にDバンドとよばれるピークがあらわれる。
完全なダイヤモンド構造のsp3混成軌道は1330cm-1に鋭いピークとして現れるため、このピークがDバンド中にショルダーバンドとなって観察されることもある。DバンドとGバンドの比I(D)/I(G)は黒鉛化度を評価する指標となり、それと関連して導電性の目安にもなる。DLC膜の場合、sp3構造とsp2構造それぞれの炭素を含んでいることが知られており、これらの比率によってダイヤモンドに近い絶縁性なのか、黒鉛由来の導電性をもつのかを知ることができる。
完全なダイヤモンド構造に由来する1330cm-1のピークが弱まり、Dバンドのピークに吸収され、Gバンドのピーク強度I(G)がDバンドのピーク強度I(D)を上回りはじめると導電性が出現し、さらに、I(D)/I(G)が減少するほど、黒鉛構造が発達する。ラマン分光は、堀場製作所製のLabRam HREvolutionラマン分光装置を用いて測定することができ、本発明にあっては実際に使用した。
[Definition]
(Raman spectroscopy)
Raman spectroscopy is an analytical method that can illuminate a material with monochromatic light, measure the Raman scattered light scattered from the material, and obtain structural information such as compound identification and crystallinity and orientation. . Graphite, which is often used for investigating the structure of carbon materials, especially sp2 hybrid orbitals, shows a sharp peak called the G band at 1580 cm −1 , and when the graphite structure is disturbed, the G band peak expands slightly. At the same time, a peak called D band appears at 1350 cm −1 .
Since the sp3 hybrid orbit of the complete diamond structure appears as a sharp peak at 1330 cm −1 , this peak may be observed as a shoulder band in the D band. The ratio I (D) / I (G) between the D band and the G band is an index for evaluating the degree of graphitization, and is also an index of conductivity in connection with it. In the case of the DLC film, it is known that carbons of the sp3 structure and the sp2 structure are included, and it is possible to know whether the insulating property is close to diamond or the conductivity derived from graphite by the ratio of these.
The 1330 cm -1 peak derived from the complete diamond structure is weakened, absorbed by the D band peak, and conductivity appears when the G band peak intensity I (G) begins to exceed the D band peak intensity I (D). Furthermore, the graphite structure develops as I (D) / I (G) decreases. Raman spectroscopy can be measured using a LabRam HREvolution Raman spectrometer manufactured by HORIBA, and was actually used in the present invention.

(X線回折測定: X‐Ray Diffraction:XRDの測定)
XRDは、試料にX線を照射した際、X線が原子の周りにある電子によって散乱、干渉した結果生じる回折(ブラック条件:2dsinθ=nλ:2つの面の間隔をd、X線と平面のなす角をθ、任意の整数n、X線の波長λとする)を解析するものであり、これにより、構成成分の同定や定量、結晶サイズや結晶化度等を特定することが可能である。
本発明にあっては、XRDにより、DLC被膜の生成前後で、ケイ素合金およびケイ素酸化物粒子中のケイ素の結晶子の大きさが変化していないことを確認する。
(X-ray diffraction measurement: X-Ray Diffraction: measurement of XRD)
XRD is a diffraction that occurs when X-rays are scattered and interfered by electrons around the atoms when the sample is irradiated with X-rays (black condition: 2 dsin θ = nλ: d is the distance between the two surfaces, The angle formed is θ, an arbitrary integer n, and the wavelength λ of X-rays), and this makes it possible to identify the constituent components, determine their quantification, specify the crystal size, crystallinity, etc. .
In the present invention, it is confirmed by XRD that the crystallite size of silicon in the silicon alloy and silicon oxide particles is not changed before and after the formation of the DLC film.

(結晶子)
結晶子とは、単結晶と看做される粒子の最大集合体をいい、一個の粒子が複数の結晶子によって構成されているものをいう。
(結晶子の大きさ)
結晶子の大きさ(サイズ)は、X線を用いた回折装置によって測定値を、例えば、半価幅及びシェラー(Scherrer)式〔D(Å)=K*λ/(β*cosθ):式中、Kは定数、λはX線の波長、βは結晶子の大きさによる回折線の広がり、θは回折角 2θ/θ〕に導入して算出される。
本発明において、ケイ素の結晶子の大きさは、ケイ素の(111)結晶面に対応する回折角2θ=28.4°のピーク半価幅から算出した。
(Crystallite)
A crystallite means a maximum aggregate of particles regarded as a single crystal, and one particle is composed of a plurality of crystallites.
(Crystallite size)
The crystallite size (size) is measured by a diffraction device using X-rays, for example, half width and Scherrer formula [D (Å) = K * λ / (β * cos θ): formula Where K is a constant, λ is the wavelength of the X-ray, β is the broadening of the diffraction line depending on the size of the crystallite, and θ is introduced into the diffraction angle 2θ / θ].
In the present invention, the size of silicon crystallites was calculated from the peak half-value width at a diffraction angle 2θ = 28.4 ° corresponding to the (111) crystal plane of silicon.

〔二次電池用負極材料〕
本発明による二次電池用負極材料は、導電性DLCが、ケイ素を含む前記リチウム二次電池用負極材料の一部または全部の被覆物(付着物)として存在し、 リチウム二次電池用負極材料のX線回折パターンにおいて、ケイ素の(111)回折線の半価幅より得られる結晶子の大きさが20nm以下のものである。
[Anode material for secondary battery]
The negative electrode material for a secondary battery according to the present invention is a negative electrode material for a lithium secondary battery, wherein the conductive DLC is present as a coating (attachment) of a part or all of the negative electrode material for a lithium secondary battery containing silicon. In the X-ray diffraction pattern, the crystallite size obtained from the half width of the silicon (111) diffraction line is 20 nm or less.

本発明にあっては、ケイ素を含む前記リチウム二次電池用負極材料(表面)の一部又は全部、例えば、アモルファスもしくは微結晶ケイ素を含む粉末表面に、ケイ素の結晶性に変化を与えないように、導電性DLCを被覆又は付着されているので、良好な電池伝導性を付与することができる。   In the present invention, a part or all of the negative electrode material (surface) for a lithium secondary battery containing silicon, for example, a powder surface containing amorphous or microcrystalline silicon is not changed in crystallinity of silicon. In addition, since the conductive DLC is coated or adhered, good battery conductivity can be imparted.

本発明にあっては、ケイ素の(111)回折線の半価幅より得られる結晶子の大きさが20nm以下とされてなる。これによって、充放電に伴うケイ素の膨張収縮による電池の寿命劣化を抑制することができる。X線回折パターンは上記定義で説明した通りである。   In the present invention, the crystallite size obtained from the half width of the (111) diffraction line of silicon is 20 nm or less. As a result, it is possible to suppress the deterioration of the battery life due to the expansion and contraction of silicon accompanying charging and discharging. The X-ray diffraction pattern is as described in the above definition.

本発明の態様によれば、ケイ素の結晶成長が起こらず、ケイ素を含む負極材料のX線回折パターンにおいて、ケイ素の(111)回折線の半価幅より得られる結晶子の大きさは、DLCの生成前後で変化しない。   According to the aspect of the present invention, no crystal growth of silicon occurs, and in the X-ray diffraction pattern of the negative electrode material containing silicon, the size of the crystallite obtained from the half width of the (111) diffraction line of silicon is DLC. It does not change before and after the generation.

そして、本発明による二次電池用負極材料は、結晶子の大きさが20nm以下のケイ素相を含む、かつ、導電性DLCの被覆(付着)によって、両者以上の電気化学性能を向上させることができる。即ち、これら技術的事項を採用する本発明によれば、充放電に伴う膨張収縮が降伏応力の範囲でなされるため、微粉化が起こらず、また導電性の付与によって、リチウムイオンの挿入・脱離が円滑に行われることによって良好な寿命特性を得ることができる。   The negative electrode material for a secondary battery according to the present invention includes a silicon phase having a crystallite size of 20 nm or less, and can improve the electrochemical performance of both of them by coating (adhesion) with conductive DLC. it can. That is, according to the present invention that employs these technical matters, since expansion and contraction associated with charge and discharge are performed within the range of yield stress, pulverization does not occur, and lithium ion insertion / desorption is performed by imparting conductivity. By performing the separation smoothly, good life characteristics can be obtained.

(ケイ素物質)
本発明による負極材料は、少なくともケイ素を含んでなるものである。ケイ素は、ケイ素合金やケイ素酸化物(SiOx)の他に、アモルファスケイ素粉末、ケイ素ナノファイバー、ケイ素ナノワイヤー、ケイ素・黒鉛複合体などを原料として使用することができる。また、二種以上のケイ素原料を混合して使用してもよい。
(Silicon material)
The negative electrode material according to the present invention comprises at least silicon. In addition to silicon alloys and silicon oxides (SiOx), silicon can be used as a raw material such as amorphous silicon powder, silicon nanofibers, silicon nanowires, and silicon / graphite composites. Two or more silicon raw materials may be mixed and used.

(導電性DLC:ダイヤモンドライクカーボン)
本発明によれば、導電性DLCは、その被覆(付着)前後で前記ケイ素を含む粒子中のケイ素の結晶子の大きさに変化を与えずに、被覆物及び付着物として採用される。導電性DLCは、低温度、好ましくは500℃以下、より好ましくは350℃以下で生成された物が好ましい。
DLC(DLCは、その形状を問わず、板、箔、膜、層等であってよい)は、ケイ素物質、好ましくはケイ素合金もしくはケイ素を含む酸化物粒子に被覆又は付着されてなるが、これらの粒子の全部、または一部だけを被覆していてもよい。
(Conductive DLC: Diamond-like carbon)
According to the present invention, the conductive DLC is employed as a coating and a deposit without changing the size of the silicon crystallites in the silicon-containing particles before and after the coating (deposition). The conductive DLC is preferably produced at a low temperature, preferably 500 ° C. or less, more preferably 350 ° C. or less.
DLC (DLC may be a plate, foil, film, layer, etc., regardless of its shape) is coated or adhered to a silicon substance, preferably a silicon alloy or oxide particles containing silicon. All or only a part of the particles may be coated.

本発明の好ましい態様によれば、DLCのラマンスペクトルにおける1580cm-1の波長領域に存在するSP2構造由来のGバンドのスペクトルと、1350cm-1の波長領域に存在するSP3構造由来のDバンドのスペクトルの一部は重なっており、ピーク分離によって得られるDバンドの半価幅が150cm-1以上、であり、かつ、Dバンドのピーク強度I(D)とGバンドのピーク強度I(G)との比[I(D)/I(G)]が1.0以下である。Dバンドの半価幅が150cm-1以下では本来DLC膜がもっている硬さが得られないため、膨張抑制効果が低下し、I(D)/I(G)が1.0以上では充放電を円滑に行うための導電性が十分に得られない。 According to a preferred embodiment of the present invention, the spectrum of G band derived from SP2 structures present in the wavelength region of 1580 cm -1 in the DLC Raman spectrum, the spectrum of the D band derived SP3 structure present in a wavelength region of 1350 cm -1 Are overlapped, the half-width of the D band obtained by peak separation is 150 cm −1 or more, and the peak intensity I (D) of the D band and the peak intensity I (G) of the G band The ratio [I (D) / I (G)] is 1.0 or less. When the half band width of the D band is 150 cm −1 or less, the hardness inherently possessed by the DLC film cannot be obtained, so that the effect of suppressing the expansion is reduced, and when I (D) / I (G) is 1.0 or more, charge / discharge is performed. In this case, sufficient conductivity cannot be obtained.

本発明の好ましい態様によれば、DLCによる被覆の厚さは、5nm以上、500nm以下であり、好ましくは 10nm以上であり、50nm以下である。DLCの被覆が薄すぎると十分な導電性が発揮されず、また厚すぎるとリチウムイオンの挿入・脱理に時間が必要になるとともに、粒子中に占めるケイ素の割合が相対的に少なくなるため、容量が低下してしまう。   According to a preferred embodiment of the present invention, the thickness of the coating by DLC is 5 nm or more and 500 nm or less, preferably 10 nm or more and 50 nm or less. If the DLC coating is too thin, sufficient conductivity will not be exhibited, and if it is too thick, it will take time to insert and remove lithium ions, and the proportion of silicon in the particles will be relatively small. Capacity will drop.

本発明の好ましい態様によれば、負極材中に含まれるDLCの比抵抗は50mΩ・cm以下であり、好ましくは、20mΩ・cm以下である。   According to a preferred embodiment of the present invention, the specific resistance of DLC contained in the negative electrode material is 50 mΩ · cm or less, preferably 20 mΩ · cm or less.

(体積累積粒度分布)
本発明の好ましい態様によれば、負極材料の体積累積粒度分布の50%径が1μm以上10μm以下である。また、負極材料の体積累積粒度分布の90%径が30μm以下であり、好ましくは、20μm以下である。体積累積粒度分布の50%径及び90%径の測定は、例えば、日機装社製のレーザー回折粒度分布測定装置を用いて、内蔵超音波により3分間分散させた後に測定したときの累積頻度によって得られることができる。
(Volume cumulative particle size distribution)
According to a preferred aspect of the present invention, the 50% diameter of the volume cumulative particle size distribution of the negative electrode material is 1 μm or more and 10 μm or less. The 90% diameter of the volume cumulative particle size distribution of the negative electrode material is 30 μm or less, and preferably 20 μm or less. The measurement of 50% diameter and 90% diameter of the volume cumulative particle size distribution is obtained, for example, by the cumulative frequency when measured after dispersing for 3 minutes by built-in ultrasonic waves using a laser diffraction particle size distribution measuring device manufactured by Nikkiso Co., Ltd. Can be done.

〔二次電池用負極材料の製造方法〕
(ケイ素物質の用意)
二次電池用負極材料で説明したように、本発明で使用するケイ素含有原料は、ケイ素合金やケイ素酸化物(SiOx)の他に、アモルファスケイ素粉末、ケイ素ナノファイバー、ケイ素ナノワイヤー、ケイ素・黒鉛複合体などを使用することができる。また、二種以上のケイ素原料を混合して使用してもよい。これらの原料を前記の好ましい体積粒度分布になるように粉砕、造粒等によって粒子の大きさを調整する。
[Method for producing negative electrode material for secondary battery]
(Preparation of silicon material)
As described in the negative electrode material for secondary batteries, the silicon-containing raw material used in the present invention is amorphous silicon powder, silicon nanofiber, silicon nanowire, silicon / graphite, in addition to silicon alloy and silicon oxide (SiOx). A complex or the like can be used. Two or more silicon raw materials may be mixed and used. The size of the particles is adjusted by pulverization, granulation or the like so that these raw materials have the preferable volume particle size distribution.

(導電性DLC形成)
DLCの形成方法としては、プラズマ化学気相堆積法(CVD)、プラズマイオン注入法、イオンプレーティング法、イオンビーム蒸着法、スパッタ法などの方法があり、本発明にあっては、誘導結合型プラズマイオン注入成膜法を用いることが好ましい。本発明では、プラズマイオンアシスト社のプラズマイオンアシスト成膜装置を使用することができる。
(Conductive DLC formation)
As a method for forming DLC, there are plasma chemical vapor deposition (CVD), plasma ion implantation, ion plating, ion beam evaporation, sputtering, and the like. In the present invention, inductive coupling type is used. It is preferable to use a plasma ion implantation film forming method. In the present invention, a plasma ion assist film forming apparatus manufactured by Plasma Ion Assist can be used.

いずれの方法によってもsp2構造とsp3構造が混在し、炭素源や成膜温度、添加物、その他の製造条件によってsp2とsp3の比率が変わり、それに伴い導電性も変化する。導電性DLCの比抵抗は10〜100mΩ・cm程度であり、ケイ素の比抵抗と比較して6桁以上低い。また、DLCは硬質膜であるため、ケイ素を含む負極活物質の充放電に伴う膨張を抑制する効果も得られる。   In either method, the sp2 structure and the sp3 structure are mixed, and the ratio of sp2 and sp3 varies depending on the carbon source, film formation temperature, additives, and other manufacturing conditions, and the conductivity also varies accordingly. The specific resistance of the conductive DLC is about 10 to 100 mΩ · cm, which is 6 digits or more lower than the specific resistance of silicon. Moreover, since DLC is a hard film, the effect which suppresses the expansion | swelling accompanying charging / discharging of the negative electrode active material containing silicon is also acquired.

一般的にDLCはsp3構造が主体であるため絶縁性であるが、成膜時に窒素やボロンのイオンを注入すると導電性が付与される。
本発明のより好ましい態様では、DLCの形成にあっては、ケイ素の結晶性が変化しない、低温度領域、例えば、500℃以下の温度行うことが好ましい。この点、500℃以下で成膜(付着)できるDLCは最適であり、その中でもイオン注入により導電性を付与できるプラズマイオン注入法は、本発明において特に好ましい方法である。
In general, DLC is insulative because it mainly has an sp3 structure, but conductivity is imparted when nitrogen or boron ions are implanted during film formation.
In a more preferred embodiment of the present invention, the DLC is preferably formed in a low temperature region where the crystallinity of silicon does not change, for example, a temperature of 500 ° C. or lower. In this respect, DLC that can be formed (attached) at 500 ° C. or less is optimal, and among these, plasma ion implantation that can impart conductivity by ion implantation is a particularly preferable method in the present invention.

本発明の態様によれば、ケイ素を含む負極材料は結晶子の大きさが20nm以下であることが好ましい。アモルファスケイ素、ケイ素ナノファイバー、ケイ素合金、SiOxなどのケイ素酸化物、ケイ素・黒鉛複合体などが例として上げられるが、ケイ素合金はケイ素単体やケイ素酸化物と比較して融点が数百度低くなる場合が多く、従来の導電性付与工程の環境温度ではケイ素の結晶が成長してしまう。しかし、本発明によれば、DLCは低温度、好ましくは500℃以下で形成(成膜)するため、結晶成長を引き起こさずに導電性を付与することができる。   According to the aspect of the present invention, the negative electrode material containing silicon preferably has a crystallite size of 20 nm or less. Examples include amorphous silicon, silicon nanofibers, silicon alloys, silicon oxides such as SiOx, and silicon / graphite composites. Silicon alloys have a melting point that is several hundred degrees lower than silicon alone or silicon oxide. In many cases, silicon crystals grow at the ambient temperature in the conventional conductivity imparting step. However, according to the present invention, since DLC is formed (film formation) at a low temperature, preferably 500 ° C. or less, conductivity can be imparted without causing crystal growth.

〔二次電池用負極〕
本発明にあっては、本発明による二次電池用負極材料を備えた、リチウム二次電池用負極を提案することができる。
[Anode for secondary battery]
In this invention, the negative electrode for lithium secondary batteries provided with the negative electrode material for secondary batteries by this invention can be proposed.

〔二次電池〕
本発明にあっては、正極と、負極と、非水電解質と、セパレータとを備えてなり、前記負極が本発明による二次電池用負極である、リチウム二次電池を提案する。
[Secondary battery]
The present invention proposes a lithium secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator, wherein the negative electrode is a negative electrode for a secondary battery according to the present invention.

一般に、リチウム二次電池は、正極材料及び正極集電体からなる正極と、負極材料及び負極集電体からなる負極と、正極及び負極間で電子伝導を遮断してリチウムイオンを伝導できるセパレータとからなり、電極及びセパレータ材料の隙間には、リチウムイオンを伝導するためのリチウム塩含有の有機電解質が注入されている。   Generally, a lithium secondary battery includes a positive electrode made of a positive electrode material and a positive electrode current collector, a negative electrode made of a negative electrode material and a negative electrode current collector, and a separator capable of conducting lithium ions by blocking electronic conduction between the positive electrode and the negative electrode. An organic electrolyte containing lithium salt for conducting lithium ions is injected into the gap between the electrode and the separator material.

(負極)
負極は、例えば、負極集電体上に、負極材料(負極活物質)、導電剤及びバインダーの混合物を塗布した後、乾燥して製造される。必要に応じては前記混合物に充填剤をさらに添加できる。負極材料(負極活物質)は、本発明による二次電池用負極材料である。
(Negative electrode)
The negative electrode is produced, for example, by applying a mixture of a negative electrode material (negative electrode active material), a conductive agent and a binder onto a negative electrode current collector, and then drying. If necessary, a filler can be further added to the mixture. The negative electrode material (negative electrode active material) is a negative electrode material for a secondary battery according to the present invention.

(負極用バインダー)
バインダーは、材料及び導電剤などの結合や、材料の集電体に対する結合を促進させる成分である。通常、バインダーは負極材料を含む混合物の全体重量に基づいて0.5〜20質量%で添加される。
バインダーとしては、スチレンブタジエンゴム(stryrene butadiene rubber、SBR)、ポリアクリル酸(polyacrylic acid)、ポリイミド(polyimide)、ポリフッ化ビニリデン(polyvinylidenefluoride)、ポリアクリロニトリル(polyacrylonitrile)、ポリフッ化ビニリデン‐ヘキサフルオロプロピレンコポリマー(polyvinylidene fluoride‐co‐hexafluoropropylene、PVDF‐co‐HFP)、ポリフッ化ビニリデン(polyvinylidenefluo
ride)、ポリフッ化ビニリデン‐トリクロロエチレン(polyvinylidene fluoride‐co‐trichloro ethylene)、ポリフッ化ビニリデン‐クロロトリフルオロエチレン(polyvinylidene fluororide‐co‐chlorotrifluoro ethylene)、ポリメチルメタクリレート(polymethyl methacrylate)、ポリアクリロニトリル(polyacrylonitrile)、ポリビニルピロリドン(polyvinylpyrrolidone)、ポリビニルアセテート(polyvinylacetat
e)、エチレンビニルアセテート共重合体(polyethylene‐co‐vinyl acetate)、ポリエチレンオキサイド(polyethylene oxide)、セルロースアセテート(cellulose acetate)、セルロースアセテートブチレート(cellulose acetate butyrate)、セルロースアセテートプロピオネート(cellulose acetate propionate)、シアノエチルプルラン(cyanoethylpullulan)、シアノエチルポリビニルアルコール(cyanoethylpolyvinylalchol)、シアノエチルセルロース(cyanoethyl cellulose)、シアノエチルスクロース(cyanoethyl sucrose)、プルラン(pulluan)、カルボキシルメチルセルロース(carboxyl methyl cellulose、CMC)、アクリロニトリル‐スチレン‐ブタジエン共重合体(acrylonitrile‐styrene‐butadiene copolymer)からなる群より選択されたいずれか一つまたはこれらのうち2種以上の混合物が挙げられるが、特にこれらに限定されず、多様な種類のバインダー高分子が使用され得る。
(Binder for negative electrode)
The binder is a component that promotes the bonding of the material and the conductive agent and the bonding of the material to the current collector. Usually, the binder is added at 0.5 to 20% by mass based on the total weight of the mixture including the negative electrode material.
Examples of the binder include styrene butadiene rubber (SBR), polyacrylic acid, polyimide, polyvinylidene fluoride, and polyacrylonitrile (polypropylene). polyvinylidene fluoride-co-hexafluoropropylene, PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluo)
), poly (vinylidene fluoride-trichloroethylene), poly (vinylidene fluoride-co-chloroethylene) Polyvinylpyrrolidone, Polyvinylacetate
e), ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate), polyethylene oxide (polyethylene oxide), cellulose acetate (cellulose acetate), cellulose acetate butyrate (cellulose acetate butyrate), cellulose acetate propionate (celloate acetate) propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose. one selected from the group consisting of rose), pullulan, carboxymethyl cellulose (CMC), and acrylonitrile-styrene-butadiene copolymer, or two of them A mixture of two or more species can be used, but the present invention is not particularly limited thereto, and various types of binder polymers can be used.

(導電材)
本発明のケイ素を含む負極材料は、DLCにより導電性が付与されているが、電極製造時に別途導電材を添加してもよい。導電剤は、通常、負極材料を含む混合物の全体重量に基づいて0.1〜50質量%で添加される。ケイ素を含む粒子を負極活物質に用いた場合、黒鉛と比べて導電性が低いが、導電材を適切に選択することにより、黒鉛電極と同等の電池特性を得ることができる。このような導電剤は、当該電池に化学的変化を誘発しない導電材として、例えば、天然黒鉛や人造黒鉛などの黒鉛;カーボンブラック、アセチレンブラック、ケッチェンブラック(商品名)、グラフェン、カーボンナノチューブ、カーボンナノファイバー、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック、炭素繊維や金属繊維などの導電性繊維、フロロカーボン、アルミニウム、ニッケル粉末などの金属粉末;酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー、酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの導電性素材などが挙げられる。なかでも繊維状の導電材は、ケイ素を含む粒子を負極活物質の用いた場合、充放電による膨張収縮によっても活物質間もしくは活物質と集電体の間の導電パスを維持し、活物質からも脱落しにくい構造であるため、特に好ましい。
(Conductive material)
Although the conductivity of the negative electrode material containing silicon of the present invention is given by DLC, a conductive material may be added separately at the time of manufacturing the electrode. The conductive agent is usually added at 0.1 to 50% by mass based on the total weight of the mixture including the negative electrode material. When particles containing silicon are used for the negative electrode active material, the conductivity is lower than that of graphite, but battery characteristics equivalent to those of a graphite electrode can be obtained by appropriately selecting a conductive material. Such a conductive agent is, for example, graphite such as natural graphite or artificial graphite; carbon black, acetylene black, ketjen black (trade name), graphene, carbon nanotube, Carbon nanofibers, channel blacks, furnace blacks, lamp blacks, thermal blacks and other carbon blacks, conductive fibers such as carbon fibers and metal fibers, fluorocarbons, aluminum, nickel powders and other metal powders; zinc oxide, potassium titanate, etc. Examples thereof include conductive metal oxides such as conductive whiskers and titanium oxide; and conductive materials such as polyphenylene derivatives. In particular, the fibrous conductive material, when particles containing silicon are used as the negative electrode active material, maintains a conductive path between the active materials or between the active material and the current collector even by expansion and contraction due to charge and discharge. It is particularly preferable because it has a structure that does not easily fall off.

(負極集電体)
集電体は3〜50μmの厚さで製造される。このような集電体は、当該電池に化学的変化を誘発せず、高い導電性を持つものであればよい。例えば、銅、ステンレススチール、アルミニウム、ニッケル、チタン、焼結炭素、又は、アルミニウムやステンレススチールの表面にカーボン、ニッケル、チタン、銀などで表面処理したもの等が用いられる。負極集電体は、表面に微細な凹凸を形成して正極材料の接着力を高めることができ、フィルム、シート、ホイール、ネット、多孔質体、発泡体、不織布体等の多様な形態が可能である。
(Negative electrode current collector)
The current collector is manufactured with a thickness of 3 to 50 μm. Such a current collector is not limited as long as it does not induce a chemical change in the battery and has high conductivity. For example, copper, stainless steel, aluminum, nickel, titanium, sintered carbon, or aluminum or stainless steel surface-treated with carbon, nickel, titanium, silver, or the like is used. The negative electrode current collector can form fine irregularities on the surface to increase the adhesion of the positive electrode material, and various forms such as films, sheets, wheels, nets, porous bodies, foams, and nonwoven fabrics are possible. It is.

(正極)
正極は、例えば、正極集電体上に、正極材料、導電剤及びバインダーの混合物を塗布した後、乾燥して製造される。必要に応じては前記混合物に充填剤をさらに添加できる。
(Positive electrode)
The positive electrode is produced, for example, by applying a mixture of a positive electrode material, a conductive agent and a binder on a positive electrode current collector and then drying. If necessary, a filler can be further added to the mixture.

<正極活物質>
正極活物質としては、リチウム含有遷移金属酸化物を望ましく使用でき、例えば、LixCoO2(0.5<x<1.3)、LixNiO2(0.5<x<1.3)、LixMnO2(0.5<x<1.3)、LixMn24(0.5<x<1.3)、Lix(NiaCobMnc)O2(0.5<x<1.3、0<a<1、0<b<1、0<c<1、a+b+c=1)、LixNi1-yCoy2(0.5<x<1.3、0<y<1)、LixCo1-y Mny2(0.5<x<1.3、0≦y<1)、LixNi1-y Mny2(0.5<x<1.3、0≦y<1)、Lix(NiaCobMnc)O4(0.5<x<1.3、0<a<2、0<b<2、0<c<2、a+b+c=2)、LixMn2-zNiz4(0.5<x<1.3、0<z<2)、LixMn2-zCoz4(0.5<x<1.3、0<z<2)、LixCoPO4(0.5<x<1.3)、及びLixFePO4(0.5<x<1.3)からなる群より選択されるいずれか一つまたはこれらのうち2種以上の混合物を使用でき、前記リチウム含有遷移金属酸化物を、アルミニウム(Al)などの金属や金属酸化物でコーティングすることもできる。また、前記リチウム含有遷移金属酸化物(oxide)の外に硫化物(sulfide)、セレン化物(selenide)、及びハロゲン化物(halide)なども使用することができる。
<Positive electrode active material>
As the positive electrode active material, a lithium-containing transition metal oxide can be desirably used. For example, Li x CoO 2 (0.5 <x <1.3), Li x NiO 2 (0.5 <x <1.3) Li x MnO 2 (0.5 <x <1.3), Li x Mn 2 O 4 (0.5 <x <1.3), Li x (Ni a Co b Mn c ) O 2 (0. 5 <x <1.3, 0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), Li x Ni 1-y Co y O 2 (0.5 <x <1. 3,0 <y <1), Li x Co 1-y Mn y O 2 (0.5 <x <1.3,0 ≦ y <1), Li x Ni 1-y Mn y O 2 (0. 5 <x <1.3, 0 ≦ y <1), Li x (Ni a Co b Mn c ) O 4 (0.5 <x <1.3, 0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), Li x Mn 2-z Ni z O 4 (0.5 <x <1.3 0 <z <2), Li x Mn 2-z Co z O 4 (0.5 <x <1.3,0 <z <2), Li x CoPO 4 (0.5 <x <1.3) And any one selected from the group consisting of Li x FePO 4 (0.5 <x <1.3), or a mixture of two or more thereof, wherein the lithium-containing transition metal oxide is It can also be coated with a metal such as aluminum (Al) or a metal oxide. In addition to the lithium-containing transition metal oxide (oxide), a sulfide, a selenide, a halide, and the like can also be used.

(正極用バインダー)
正極用バインダーは、活性物質及び導電剤などの結合や、活性物質の集電体に対する結合を促進させる成分である。通常、バインダーは正極活性物質を含む混合物の全体重量に基づいて1〜50重量%で添加される。例えば、ポリフッ化ビニリデン、ポリビニルアルコール、ポリイミド、カルボキシメチルセルロース(CMC)、澱粉、ヒドロキシプロピルセルロース、再生セルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエン共重合体(EPDM)、スルフォン化EPDM、スチレンブチレンゴム、フッ素ゴム、多様な共重合体などが挙げられる。
(Binder for positive electrode)
The positive electrode binder is a component that promotes the binding of the active substance and the conductive agent, and the binding of the active substance to the current collector. Usually, the binder is added at 1 to 50% by weight based on the total weight of the mixture containing the positive electrode active material. For example, polyvinylidene fluoride, polyvinyl alcohol, polyimide, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene copolymer (EPDM), sulfone EPDM, styrene butylene rubber, fluororubber, various copolymers and the like.

<正極集電体>
正極集電体は3〜500μmの厚さで製造される。このような正極集電体は、当該電池に化学的変化を誘発せず、高い導電性を持つものであればよい。例えば、ステンレススチール、アルミニウム、ニッケル、チタン、焼結炭素、又は、アルミニウムやステンレススチールの表面にカーボン、ニッケル、チタン、銀などで表面処理したもの等が用いられる。正極集電体は、表面に微細な凹凸を形成して正極材料の接着力を高めることができ、フィルム、シート、ホイール、ネット、多孔質体、発泡体、不織布体等の多様な形態が可能である。
<Positive electrode current collector>
The positive electrode current collector is manufactured with a thickness of 3 to 500 μm. Such a positive electrode current collector is not particularly limited as long as it does not induce a chemical change in the battery and has high conductivity. For example, stainless steel, aluminum, nickel, titanium, sintered carbon, or a surface of aluminum or stainless steel that has been surface-treated with carbon, nickel, titanium, silver, or the like is used. The positive electrode current collector can increase the adhesion of the positive electrode material by forming fine irregularities on the surface, and various forms such as films, sheets, wheels, nets, porous bodies, foams, and nonwoven fabrics are possible. It is.

(正極用導電材)
負極において述べたものと同様のものを使用することができるが、これに限定されるものではない。
(Conductive material for positive electrode)
Although the thing similar to what was described in the negative electrode can be used, it is not limited to this.

(セパレータ)
セパレータは、正極及び負極間に介在され、高いイオン透過度及び機械的強度を持つ絶縁性の薄膜が用いられる。一般に、セパレータの気孔直径は0.01〜10μmであり、厚さは5〜300μmである。
このようなセパレータとしては、例えば、多孔性高分子フィルム、例えばエチレン単独重合体、プロピレン単独重合体、エチレン/ブテン共重合体、エチレン/ヘキセン共重合体、及びエチレン/メタクリレート共重合体などのようなポリオレフィン系高分子から製造された多孔性高分子フィルムを単独でまたはこれらを積層して使用でき、もしくは通常の多孔性不織布、例えば高融点のガラス繊維、ポリエチレンテレフタレート繊維などからなる不織布を使用できるが、特にこれらに限定されることはない。または、多孔性高分子フィルム或いは多孔性不織布の少なくとも一面に無機物粒子とバインダー高分子との混合物を含む多孔性有機‐無機コーティング層を含むこともできる。前記バインダーは、前記無機物粒子の一部または全部に位置し、前記無機物粒子の間を連結及び固定する機能をする。
(Separator)
The separator is an insulating thin film that is interposed between the positive electrode and the negative electrode and has high ion permeability and mechanical strength. Generally, the separator has a pore diameter of 0.01 to 10 μm and a thickness of 5 to 300 μm.
Examples of such separators include porous polymer films such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, and ethylene / methacrylate copolymer. Porous polymer films produced from various polyolefin polymers can be used alone or in layers, or ordinary porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers, etc. can be used. However, it is not particularly limited to these. Alternatively, a porous organic-inorganic coating layer containing a mixture of inorganic particles and a binder polymer may be included on at least one surface of a porous polymer film or a porous nonwoven fabric. The binder is located in a part or all of the inorganic particles and functions to connect and fix the inorganic particles.

(非水電解質)
本発明で使用される非水電解質において、非水電解質として含まれ得るリチウム塩は、リチウム二次電池用電解質に通常使用されるものなどが制限なく使用され得、例えば、前記リチウム塩の陰イオンとしては、F-、Cl-、Br-、I-、NO3 -、N(CN)2 -、BF4 -、ClO4 -、PF6 -、(CF32PF4 -、(CF33PF3 -、(CF34PF2 -、(CF35PF-、(CF36-、CF3SO3 -、CF3CF2SO3 -、(CF3SO22-、(FSO22-、CF3CF2(CF32CO-、(CF3SO22CH-、(SF53-、(CF3SO23-、CF3(CF27SO3 -、CF3CO2 -、CH3CO2 -、SCN-、及び(CF3CF2SO22-からなる群より選択されたいずれか一つが挙げられる。
(Nonaqueous electrolyte)
In the non-aqueous electrolyte used in the present invention, the lithium salt that can be included as the non-aqueous electrolyte can be used without limitation, such as those normally used for electrolytes for lithium secondary batteries, for example, the anion of the lithium salt F , Cl , Br , I , NO 3 , N (CN) 2 , BF 4 , ClO 4 , PF 6 , (CF 3 ) 2 PF 4 , (CF 3 ) 3 PF 3 , (CF 3 ) 4 PF 2 , (CF 3 ) 5 PF , (CF 3 ) 6 P , CF 3 SO 3 , CF 3 CF 2 SO 3 , (CF 3 SO 2 ) 2 N , (FSO 2 ) 2 N , CF 3 CF 2 (CF 3 ) 2 CO , (CF 3 SO 2 ) 2 CH , (SF 5 ) 3 C , (CF 3 SO 2 ) 3 C -, CF 3 (CF 2 ) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN -, and (CF 3 CF 2 SO 2) 2 N - group consisting of Any one selected.

本発明において、非水電解質に含まれる有機溶媒としては、通常使用されるものなどを制限なく使用でき、代表的に、フルオロエチレンカーボネート(fluoro‐ethylene carbonate、FEC)プロピオネートエステル(propionate ester)、より具体的に、メチルプロピオネート(methyl propionate)、エチルプロピオネート(ethyl propionate)、プロピルプロピオネート(propyl propionate)及びブチルプロピオネート(buthyl propionate)、プロピレンカーボネート(propylene carbonate、PC)、エチレンカーボネート(ethylene carbonate、EC)、ジエチルカーボネート(diethyl carbonate、DEC)、ジメチルカーボネート(dimethyl carbonate、DMC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート、ジプロピルカーボネート、ジメチルスルホキシド、アセトニトリル、ジメトキシエタン、ジエトキシエタン、ビニレンカーボネート、スルホラン、γ‐ブチロラクトン、ポリエチレンスルファイト、並びにテトラヒドロフランからなる群より選択されるいずれか一つまたはこれらのうち2種以上の混合物などを使用することができる。特に、前記カーボネート系有機溶媒のうち環状カーボネートであるエチレンカーボネート及びプロピレンカーボネートは高粘度の有機溶媒であって、誘電率が高く、電解質内のリチウム塩をよく解離させるため、望ましく使用できる。また、このような環状カーボネートにジメチルカーボネート及びジエチルカーボネートのような低粘度、低誘電率の線状カーボネートを適切な比率で混合して使用すれば、高い電気伝導率を有する非水電解質を作ることができ、より望ましく使用することができる。
選択的に、本発明で使用される非水電解質は、通常の非水電解質に含まれる過充電防止剤などのような添加剤を更に含むことができる。
In the present invention, as the organic solvent contained in the non-aqueous electrolyte, those usually used can be used without limitation, and typically, fluoro-ethylene carbonate (FEC) propionate ester (propionate ester). , More specifically, methyl propionate, ethyl propionate, propyl propionate and butyl propionate, propylene carbonate, PC , Ethylene carbonate (EC), diethyl carbonate (d Ethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methyl propyl carbonate, dipropyl carbonate, dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, vinylene carbonate, sulfolane, γ-butyrolactone , Polyethylene sulfite, and any one selected from the group consisting of tetrahydrofuran, or a mixture of two or more thereof can be used. In particular, among the carbonate-based organic solvents, cyclic carbonates such as ethylene carbonate and propylene carbonate are high-viscosity organic solvents, have a high dielectric constant, and can be desirably used because they dissociate lithium salts in the electrolyte well. Also, by using such cyclic carbonate with low viscosity and low dielectric constant linear carbonate such as dimethyl carbonate and diethyl carbonate in an appropriate ratio, a non-aqueous electrolyte having high electrical conductivity can be made. Can be used more desirably.
Optionally, the non-aqueous electrolyte used in the present invention may further include an additive such as an overcharge inhibitor contained in a normal non-aqueous electrolyte.

(製造)
本発明による二次電池は、通常の方法により正極及び負極間に多孔性のセパレータを挿入し、非水電解質を投入して製造することができる。本発明による二次電池は、円筒型、角型、パウチ型電池など、外形に関係なく用いられる。
(Manufacturing)
The secondary battery according to the present invention can be manufactured by inserting a porous separator between a positive electrode and a negative electrode and introducing a nonaqueous electrolyte by a usual method. The secondary battery according to the present invention is used regardless of the outer shape, such as a cylindrical type, a square type, or a pouch type battery.

本発明の内容を以下の実施例を用いて説明するが、本発明の範囲は、これら実施例に限定して解釈されるものではない。また、これら実施例は、本発明の好ましい態様を実現したものであり、当業者であれば、これら実施例の内容と、本明細書に開示された技術的事項から、本発明の全ての態様を容易に認識し、かつ、その内容を容易に実施できるものである。   The content of the present invention will be described using the following examples, but the scope of the present invention should not be construed as being limited to these examples. In addition, these examples realize preferred aspects of the present invention, and those skilled in the art will understand all aspects of the present invention based on the contents of these examples and the technical matters disclosed in this specification. Can be easily recognized and its contents can be easily implemented.

(負極材料の調製)
[実施例1]
(1)負極材料を下記手順に沿って調製した。
1)ケイ素原料用意
ケイ素原料として酸化ケイ素粉末を用意した。市販品であり、平均粒径5μmのSiOxを用いた。また、このSiOxのX線回折パターンにおけるケイ素の(111)結晶面に対応する回折角2θ=28.4°のピークは観測されず、ケイ素がアモルファスであることを確認した。
(Preparation of negative electrode material)
[Example 1]
(1) A negative electrode material was prepared according to the following procedure.
1) Preparation of silicon raw material Silicon oxide powder was prepared as a silicon raw material. This is a commercial product, and SiOx having an average particle diameter of 5 μm was used. Moreover, the peak of diffraction angle 2θ = 28.4 ° corresponding to the (111) crystal plane of silicon in the X-ray diffraction pattern of SiOx was not observed, and it was confirmed that silicon was amorphous.

2)ケイ素合金粉末調製
ケイ素(Si)と、クロム(Cr)と、チタン(Ti)を用意し、ガスアトマイズ法により、SiCrTi合金粉末(Si/Cr/Ti=74/14/13:質量%)を得た。さらに、次工程のメカニカルアロイング処理で、ケイ素のアモルファス化を容易にするため、最大径が40μm以下になるように篩いで篩った。上記SiCrTi合金粉末に助剤として1wt%のステアリン酸を加え、振動ミルの容器の80%を満たす量の直径15mmのスチールボールとともに、振動ミルの容器に投入し、窒素ガスで置換後、振動数1200cpmで24時間メカニカルアロイング処理をした。その後、気流分級によって平均粒径が3μmとなるように粒度調整をした。
得られたケイ素合金粉末のXRD回折線を測定し、結晶性ケイ素由来の(111)回折線ピークが出現しないことを確認した。このことから、ケイ素合金粉末中のケイ素はアモルファス構造であることがわかる。
2) Preparation of silicon alloy powder Silicon (Si), chromium (Cr), and titanium (Ti) are prepared, and SiCrTi alloy powder (Si / Cr / Ti = 74/14/13: mass%) is prepared by gas atomization. Obtained. Further, in order to facilitate the amorphization of silicon in the next mechanical alloying process, sieving was performed so that the maximum diameter was 40 μm or less. Add 1 wt% stearic acid as an auxiliary agent to the SiCrTi alloy powder, put it into a vibration mill container together with a steel ball with a diameter of 15 mm to fill 80% of the vibration mill container, replace with nitrogen gas, and change the vibration frequency. The mechanical alloying treatment was performed at 1200 cpm for 24 hours. Thereafter, the particle size was adjusted by airflow classification so that the average particle size became 3 μm.
The XRD diffraction line of the obtained silicon alloy powder was measured, and it was confirmed that the (111) diffraction line peak derived from crystalline silicon did not appear. This shows that the silicon in the silicon alloy powder has an amorphous structure.

3)導電性ダイヤモンドライクカーボン(DLC)被覆
得られたケイ素合金粒子に、導電性ダイヤモンドライクカーボン(DLC)被覆を行う。炭化水素ガスをプラズマ化し、生成された炭素イオンと、窒素イオンとボロンイオン注入を同時に行うことで導電性を発現することができるプラズマイオンアシスト社のプラズマイオン注入成膜装置を用いて350℃で平均厚さ50nmのDLC膜を形成した。
得られた粉末のラマンスペクトルは、1350cm-1にピークをもつブロードなDバンドと、1580cm-1にピークをもつブロードなGバンドが一部重なって観測され、それらをピーク分離すると図1に示すようなスペクトルが得られた。このときのDバンドの半価幅は274cm-1,Gバンドの半価幅は112cm-1であった。
DLC被覆形成時にケイ素合金粉末の直近に設置したカプトンテープ上に成膜されたDLC膜の比抵抗を三菱化学アナリテック社製のロレスタで測定したところ、15mΩ・cmであった。また、導電性DLC被覆後のケイ素合金の粒度の変化は粒度分布計の測定誤差の範囲であり、ほとんど変化していないことを確認した。
3) Conductive diamond-like carbon (DLC) coating Conductive diamond-like carbon (DLC) coating is performed on the obtained silicon alloy particles. Using a plasma ion implantation film forming apparatus of Plasma Ion Assist Co., Ltd., which can develop conductivity by converting hydrocarbon gas into plasma and implanting carbon ions, nitrogen ions and boron ions simultaneously. A DLC film having an average thickness of 50 nm was formed.
Raman spectra of the powder obtained, a broad D band with a peak at 1350 cm -1, a broad G band with a peak at 1580 cm -1 is observed partially overlap, show them in Figure 1 when peak separation Such a spectrum was obtained. At this time, the half band width of the D band was 274 cm −1 , and the half band width of the G band was 112 cm −1 .
When the specific resistance of the DLC film formed on the Kapton tape placed in the immediate vicinity of the silicon alloy powder during the DLC coating formation was measured with a Loresta manufactured by Mitsubishi Chemical Analytech, it was 15 mΩ · cm. Moreover, the change of the particle size of the silicon alloy after electroconductive DLC coating | cover was the range of the measurement error of the particle size distribution meter, and it confirmed that there was almost no change.

(2)電極及び電池の作製
調製したケイ素合金粉末と平均粒径15μmの黒鉛の重量比が10:90になるように混合し負極活物質とした。
負極活物質95wt%、導電材としてカーボンブラック1wt%、結着剤としてSBRを2wt%、増粘剤としてCMCを2wt%を混合し、純水によって適度な粘度になるように固形分濃度を調整したスラリーを、厚さ20μmの銅箔に約100μmの厚さになるように塗布し、120度で真空乾燥、プレス後、直径13mmの円形に打ち抜き、電極密度1.7g/ccの負極を作製した。打ち抜いた負極を厚さ0.3mmの金属リチウムを対極にまた、エチレンカーボネートとジエチルカーボネートを3:7の割合で混合し、LiPF6が1モル溶解されている電解液を用いて、2016型コインセルを作製した。
(2) Production of Electrode and Battery The negative electrode active material was prepared by mixing the prepared silicon alloy powder and graphite having an average particle size of 15 μm in a weight ratio of 10:90.
Negative electrode active material 95wt%, carbon black 1wt% as conductive material, SBR 2wt% as binder, CMC 2wt% as thickener, solid content concentration adjusted to pure viscosity with pure water The resulting slurry is applied to a copper foil of 20 μm thickness to a thickness of about 100 μm, vacuum dried at 120 degrees, pressed, and punched into a circle with a diameter of 13 mm to produce a negative electrode having an electrode density of 1.7 g / cc. did. A 2016 type coin cell using a negative electrode punched with 0.3 mm-thick metal lithium as a counter electrode and an electrolytic solution in which ethylene carbonate and diethyl carbonate are mixed at a ratio of 3: 7 and 1 mol of LiPF 6 is dissolved. Was made.

[実施例2]
ケイ素合金粉末の代わりに平均粒径5μmのSiO粉末を用いた以外は、実施例1と同様にして、コインセルを作製した。
[Example 2]
A coin cell was produced in the same manner as in Example 1 except that SiO powder having an average particle diameter of 5 μm was used instead of the silicon alloy powder.

[比較例1]
実施例1のケイ素合金粉末に導電性DLC被覆をしないこと以外は、実施例1と同様にして、コインセルを作製した。
[Comparative Example 1]
A coin cell was produced in the same manner as in Example 1 except that the silicon alloy powder of Example 1 was not coated with conductive DLC.

[比較例2]
実施例2のSiO粉末に導電性DLC被覆しない以外は、実施例2と同様にして、コインセルを作製した。
[比較例3]
実施例1のケイ素合金粉末に導電性DLCを被覆する代わりに、アセチレンを原料ガスとした化学蒸着法(CVD法)により、700℃で炭素被覆を行った以外は、実施例1と同様にして、コインセルを作製した。
[Comparative Example 2]
A coin cell was produced in the same manner as in Example 2 except that the SiO powder of Example 2 was not coated with conductive DLC.
[Comparative Example 3]
Instead of coating the conductive DLC on the silicon alloy powder of Example 1, the same procedure as in Example 1 was performed except that carbon coating was performed at 700 ° C. by chemical vapor deposition (CVD) using acetylene as a source gas. A coin cell was prepared.

<評価試験1:充放電サイクル試験>
実施例と比較例のコインセル(二次電池)について、0.5C電流レートで40サイクル充放電を繰り返した。40サイクル目の放電容量を1サイクル目の放電容量で除し100倍することで、容量維持率を計算した。また、41サイクル目の充電状態で試験を終了し、露点−50℃のドライ雰囲気中でコインセルを解体し、電極の厚みを測定した。この厚みから、充電前の電極の厚みを差し引いて、充電前の電極の厚みで除し、100倍することで、電極膨張率を計算した。
<Evaluation Test 1: Charge / Discharge Cycle Test>
About the coin cell (secondary battery) of an Example and a comparative example, 40 cycle charging / discharging was repeated at the 0.5C current rate. The capacity retention rate was calculated by dividing the discharge capacity at the 40th cycle by the discharge capacity at the first cycle and multiplying by 100. Moreover, the test was completed in the charge state of the 41st cycle, the coin cell was disassembled in a dry atmosphere with a dew point of −50 ° C., and the electrode thickness was measured. From this thickness, the electrode expansion coefficient was calculated by subtracting the thickness of the electrode before charging, dividing by the thickness of the electrode before charging, and multiplying by 100.

〔評価結果〕
実施例と比較例とについて、低温度で生成された導電性DLC被覆又は炭素被覆の前後でX線回折線のケイ素の(111)回折ピークの半価幅から計算されるケイ素の結晶子の大きさ、容量維持率及び電極膨張率を表1に示した。
実施例1,2は導電性DLC被覆前後でどちらもピークが観測されず、ケイ素はアモルファス構造を維持していた。比較例3では結晶子サイズは増大していることが確認された。
また、実施例1のケイ素含有合金は、導電性DLC被覆をしなかった比較例1に比べ、容量維持率が高くなった。これは導電性が付与され、ケイ素へのリチウムイオンの挿入・脱理が円滑に行われることができるようになったためである。
更に、実施例1と比較例1の膨張率は差違がなく、DLC被覆前後でケイ素のアモルファス構造が維持されることによって微粉化やそれにともなう電極内の空隙増加などが起こっていないことを示している。
実施例2と比較例2のSiOについても、ケイ素合金と同様の結果が得られた。比較例3では比較例1の容量維持率はDLC被覆前の結果と比べて向上するが、膨張率は増大した。これはケイ素の結晶子サイズが増大したことに起因すると考えられる。
〔Evaluation results〕
For Examples and Comparative Examples, the size of silicon crystallites calculated from the half width of silicon (111) diffraction peak of X-ray diffraction line before and after conductive DLC coating or carbon coating produced at low temperature The capacity retention rate and the electrode expansion rate are shown in Table 1.
In Examples 1 and 2, no peak was observed before and after the conductive DLC coating, and silicon maintained an amorphous structure. In Comparative Example 3, it was confirmed that the crystallite size was increased.
Moreover, the capacity | capacitance maintenance factor became high compared with the comparative example 1 which the silicon containing alloy of Example 1 did not carry out conductive DLC coating. This is because conductivity is imparted, and lithium ions can be smoothly inserted and removed from silicon.
Furthermore, there is no difference in the expansion coefficient between Example 1 and Comparative Example 1, and it is shown that the silicon amorphous structure is maintained before and after the DLC coating, so that no pulverization or accompanying increase in voids in the electrode occurs. Yes.
With respect to the SiO of Example 2 and Comparative Example 2, the same result as that of the silicon alloy was obtained. In Comparative Example 3, the capacity retention rate of Comparative Example 1 was improved compared to the result before DLC coating, but the expansion rate increased. This is thought to be due to the increase in the crystallite size of silicon.

〔総合評価〕
本発明によれば、アモルファスもしくは微結晶ケイ素を含む粉末に、ケイ素の結晶性に変化を与えず、粉末表面に低温度(500℃以下)生成された導電性DLC膜を被覆または一部付着させることにより、ケイ素の結晶子サイズを増大させることなく、リチウムイオンの挿入・脱理を円滑にする導電性を付与することができるため、良好なサイクル特性を得ることができるとともに、膨張率も抑制することができた。これは、DLC被覆前のケイ素のアモルファスもしくは微結晶構造が維持されることにより、充放電時の体積膨張・収縮によるストレスを降伏応力の範囲で緩和することができ、さらに硬いDLC膜被覆によりさらに充電時の膨張が低減されたためである。微粉化が抑制されることにより、ケイ素の利用率が充放電の繰り返しによって低下せずに導電性付与とあわせてさらに良好なサイクル特性を維持することができる。
〔Comprehensive evaluation〕
According to the present invention, a powder containing amorphous or microcrystalline silicon is coated with or partially adhered to the powder surface with a conductive DLC film generated at a low temperature (500 ° C. or lower) without changing the crystallinity of silicon. As a result, it is possible to provide conductivity that facilitates insertion and removal of lithium ions without increasing the crystallite size of silicon, so that good cycle characteristics can be obtained and expansion coefficient is also suppressed. We were able to. By maintaining the amorphous or microcrystalline structure of silicon before DLC coating, the stress due to volume expansion / contraction during charge / discharge can be alleviated within the range of yield stress. This is because the expansion during charging is reduced. By suppressing the pulverization, the utilization rate of silicon is not lowered by repeated charge and discharge, and better cycle characteristics can be maintained together with the provision of conductivity.

Claims (8)

リチウム二次電池用負極材料であって、
少なくとも、ケイ素と、導電性ダイヤモンドライクカーボン(DLC)とを備えてなり、
前記導電性DLCが、前記ケイ素を含む前記リチウム二次電池用負極材料の一部または全部の被覆物であり、
前記リチウム二次電池用負極材料のX線回折パターンにおいて、前記ケイ素の(111)回折線の半価幅より得られる結晶子の大きさが20nm以下であることを特徴とする、二次電池用負極材料。
A negative electrode material for a lithium secondary battery,
Comprising at least silicon and conductive diamond-like carbon (DLC);
The conductive DLC is a coating of a part or all of the negative electrode material for a lithium secondary battery containing the silicon,
In the X-ray diffraction pattern of the negative electrode material for a lithium secondary battery, the size of the crystallite obtained from the half width of the (111) diffraction line of the silicon is 20 nm or less. Negative electrode material.
前記リチウム二次電池用負極材料が、遷移金属を含むケイ素合金、もしくはケイ素を含む酸化物であることを特徴とする、請求項1に記載の二次電池用負極材料。   2. The negative electrode material for a secondary battery according to claim 1, wherein the negative electrode material for a lithium secondary battery is a silicon alloy containing a transition metal or an oxide containing silicon. 前記二次電池用負極材料の導電性DLC膜のラマンスペクトル分析において、1580cm-1の波長領域に存在するSP2構造由来のGバンドのスペクトルと、1350cm-1の波長領域に存在するSP3構造由来のDバンドのスペクトルの一部が重なっていて、ピーク分離によって得られるDバンドの半価幅が150cm-1以上であり、Dバンドのピーク強度I(D)とGバンドのピーク強度I(G)との比 I(D)/I(G)が<1.0であることを特徴とする、請求項1又は2に記載の二次電池用負極材料。 In the Raman spectrum analysis of a conductive DLC film of the negative electrode material for the secondary battery, the spectrum of G band derived from SP2 structure present in a wavelength region of 1580 cm -1, from SP3 structure present in a wavelength region of 1350 cm -1 Part of the spectrum of the D band overlaps, the half band width of the D band obtained by peak separation is 150 cm −1 or more, the peak intensity I (D) of the D band and the peak intensity I (G) of the G band The negative electrode material for a secondary battery according to claim 1, wherein the ratio I (D) / I (G) is <1.0. 前記負極材料のDLD膜の比抵抗が50mΩ・cm以下であることを特徴とする、請求項1〜3に記載の二次電池用負極材料。   The negative electrode material for a secondary battery according to claim 1, wherein a specific resistance of the DLD film of the negative electrode material is 50 mΩ · cm or less. 前記DLD膜の膜厚が5nm以上500nm以下であることを特徴とする、
請求項1〜4に記載の二次電池用負極材料。
The DLD film has a thickness of 5 nm or more and 500 nm or less,
The negative electrode material for secondary batteries according to claim 1.
請前記負極材料のDLC膜被覆前後のX線回折パターンにおいて、ケイ素の(111)回折線に帰属するピークの半価幅に変化がないことを特徴とする、請求項1〜5に記載の二次電池用負極材料。   6. The X-ray diffraction pattern before and after coating of the negative electrode material with a DLC film has no change in the half-value width of a peak attributed to a (111) diffraction line of silicon. Negative electrode material for secondary batteries. 請求項1に記載の導電性DLC膜が、プラズマイオン注入成膜法によって生成されたことを特徴とする、請求項1〜6の何れか一項に記載の二次電池用負極材料。   The negative electrode material for a secondary battery according to any one of claims 1 to 6, wherein the conductive DLC film according to claim 1 is produced by a plasma ion implantation film forming method. 非水電解質リチウム二次電池であって、
正極と、負極と、非水電解質と、セパレータとを備えてなり、
前記負極が、請求項1〜7の何れか一項に記載の二次電池用負極材料を備えてなることを特徴とする、非水電解質リチウム二次電池。
A non-aqueous electrolyte lithium secondary battery,
Comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator;
The said negative electrode is equipped with the negative electrode material for secondary batteries as described in any one of Claims 1-7, The nonaqueous electrolyte lithium secondary battery characterized by the above-mentioned.
JP2015256521A 2015-12-28 2015-12-28 Negative electrode material for secondary batteries, and nonaqueous electrolyte secondary battery using the same Pending JP2017120710A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015256521A JP2017120710A (en) 2015-12-28 2015-12-28 Negative electrode material for secondary batteries, and nonaqueous electrolyte secondary battery using the same
KR1020160181454A KR102202011B1 (en) 2015-12-28 2016-12-28 Material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015256521A JP2017120710A (en) 2015-12-28 2015-12-28 Negative electrode material for secondary batteries, and nonaqueous electrolyte secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2017120710A true JP2017120710A (en) 2017-07-06

Family

ID=59272675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015256521A Pending JP2017120710A (en) 2015-12-28 2015-12-28 Negative electrode material for secondary batteries, and nonaqueous electrolyte secondary battery using the same

Country Status (2)

Country Link
JP (1) JP2017120710A (en)
KR (1) KR102202011B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218822A (en) * 2018-06-01 2021-01-12 东洋油墨Sc控股株式会社 Carbon nanotube, carbon nanotube dispersion, and use thereof
CN114142015A (en) * 2021-12-03 2022-03-04 珠海冠宇电池股份有限公司 Negative electrode material and battery comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099523A (en) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd Lithium secondary battery
JP2011090869A (en) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2015049965A (en) * 2013-08-30 2015-03-16 三菱自動車工業株式会社 Electrode for secondary battery
JP2015079727A (en) * 2013-09-10 2015-04-23 東レ株式会社 Negative electrode material for lithium ion secondary batteries, method for manufacturing negative electrode material for lithium ion secondary batteries, resin composition for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2015115055A1 (en) * 2014-01-31 2015-08-06 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary cell, method for producing negative electrode material for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4416734B2 (en) 2003-06-09 2010-02-17 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP4547963B2 (en) 2004-03-31 2010-09-22 日本電気株式会社 Negative electrode for secondary battery, method for producing the same, and secondary battery
JP5158460B2 (en) 2005-02-21 2013-03-06 日本カーボン株式会社 Silicon-added graphite negative electrode material for lithium ion secondary battery and production method
JP2006236684A (en) 2005-02-23 2006-09-07 Sony Corp Negative electrode, battery, and their manufacturing methods
TWI594485B (en) * 2012-10-26 2017-08-01 日立化成股份有限公司 Anode material for lithium ion secondary battery, anode for lithium ion secondary battery and lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099523A (en) * 2007-09-27 2009-05-07 Sanyo Electric Co Ltd Lithium secondary battery
JP2011090869A (en) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2015049965A (en) * 2013-08-30 2015-03-16 三菱自動車工業株式会社 Electrode for secondary battery
JP2015079727A (en) * 2013-09-10 2015-04-23 東レ株式会社 Negative electrode material for lithium ion secondary batteries, method for manufacturing negative electrode material for lithium ion secondary batteries, resin composition for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2015115055A1 (en) * 2014-01-31 2015-08-06 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary cell, method for producing negative electrode material for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218822A (en) * 2018-06-01 2021-01-12 东洋油墨Sc控股株式会社 Carbon nanotube, carbon nanotube dispersion, and use thereof
CN112218822B (en) * 2018-06-01 2023-10-20 东洋油墨Sc控股株式会社 Carbon nanotube, carbon nanotube dispersion, resin composition, composite slurry, and electrode film
CN114142015A (en) * 2021-12-03 2022-03-04 珠海冠宇电池股份有限公司 Negative electrode material and battery comprising same

Also Published As

Publication number Publication date
KR102202011B1 (en) 2021-01-11
KR20170077845A (en) 2017-07-06

Similar Documents

Publication Publication Date Title
TWI697148B (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
US9843045B2 (en) Negative electrode active material and method for producing the same
US8748036B2 (en) Non-aqueous secondary battery
US9196905B2 (en) Diamond film coated electrode for battery
KR20160065028A (en) Anode active material for lithium secondary battery and lithium secondary battery including the same
JPH09237638A (en) Nonaqueous secondary battery
JP2021116191A (en) Composite carbon material and lithium-ion secondary battery
JPWO2016136178A1 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
EP2765636A1 (en) Cathode material for lithium secondary battery, method for manufacturing same and lithium secondary battery comprising same
US20170200948A1 (en) Nano silicon material, method for producing same, and negative electrode of secondary battery
US20220407053A1 (en) Anode active material, anode composition including the same and lithium secondary battery including the same
JP2014519159A (en) Li-ion battery anode
KR20220087143A (en) Negative electrode material for lithium ion secondary battery, preparation method thereof, and lithium ion secondary battery comprising same
KR20140070162A (en) Anode active material for lithium secondary battery with high capacity, a manufacturing method of the same and Lithium secondary battery comprising the same
KR102202011B1 (en) Material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US20150311513A1 (en) Negative electrode material for lithium ion secondary batteries, and method for evaluating same
JP2013201058A (en) Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN115472786A (en) Cathode composition for lithium secondary battery and lithium secondary battery manufactured using the same
CN115668539A (en) Composite particle, negative electrode material, and lithium ion secondary battery
KR20130055668A (en) Powder for negative electrode material of lithium-ion secondary battery, as well as negative electrode of lithium-ion secondary battery, negative electrode of capacitor, lithium-ion secondary battery, and capacltor using same
JP6634398B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP7071701B2 (en) Non-aqueous lithium-ion secondary battery
US20230378445A1 (en) Anode active material for secondary battery and lithium secondary battery including the same
JP6496864B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
TW202345442A (en) Negative electrode active substance, mixed negative electrode active substance material, and production method for negative electrode active substance

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107