JP2013201058A - Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents

Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2013201058A
JP2013201058A JP2012069533A JP2012069533A JP2013201058A JP 2013201058 A JP2013201058 A JP 2013201058A JP 2012069533 A JP2012069533 A JP 2012069533A JP 2012069533 A JP2012069533 A JP 2012069533A JP 2013201058 A JP2013201058 A JP 2013201058A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electrode active
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012069533A
Other languages
Japanese (ja)
Inventor
Machiko Abe
真知子 阿部
Hiroyuki Akita
宏之 秋田
Kazuhisa Takeda
和久 武田
Tetsuya Waseda
哲也 早稲田
Fumino Nakayama
ふみ乃 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012069533A priority Critical patent/JP2013201058A/en
Publication of JP2013201058A publication Critical patent/JP2013201058A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide anode active material for a nonaqueous electrolyte secondary battery in which a non-graphite carbon coating film is formed on a surface of a particulate graphite to reduce initial resistance.SOLUTION: Anode active material for a nonaqueous electrolyte secondary battery comprises a particulate graphite and a non-graphite carbon coating film. A lattice fringe is detected on the non-graphite carbon coating film by STEM observation. A DDTA integrated value obtained by integrating values on a differential curve of DTA curve (DDTA curve) within a range between 620°C and 640°C, is 8.7-13.0 μV/s when carrying out TG-DTA measurement on the anode active material. When obtaining an approximate equation, y=a×Q, on obtained data within a range of Q=4πsinθ/λ=0.0015-0.01 nmby carrying out X-ray small angle scattering measurement on the anode active material (where, y denotes scattering intensity, θ denotes 1/2 of scattering angle, λ denotes wavelength of the X-ray, and a and b are constants), a fractal dimension denoted by 6-b is 2.175-2.230.

Description

本発明は、非水電解質二次電池用の負極活物質、及びこれを用いた非水電解質二次電池に関するものである。   The present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.

リチウムイオン二次電池等の非水電解質二次電池において、負極活物質としては従来、粒子状黒鉛が広く用いられている。電界質との反応性を抑制するために、粒子状黒鉛の表面に非晶質炭素被膜を設けることがなされている。   In non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries, particulate graphite has been widely used as the negative electrode active material. In order to suppress the reactivity with the electrolyte, an amorphous carbon film is provided on the surface of the particulate graphite.

例えば、特許文献1には、負極の密着性及び負荷特性に優れた非水電解質二次電池を提供することを目的として、粒子状黒鉛の表面に、単体で焼成した場合の比表面積が200〜500m/g、分子量が300〜500の非晶質炭素となる物質が被覆され、且つ被覆量が前記黒鉛に対して0.1〜10質量%である非水電解質二次電池用の負極活物質が開示されている(請求項1)。 For example, Patent Document 1 has a specific surface area of 200 to 200 when sintered on the surface of particulate graphite for the purpose of providing a non-aqueous electrolyte secondary battery excellent in adhesion and load characteristics of the negative electrode. A negative electrode active for a non-aqueous electrolyte secondary battery, which is coated with a substance which becomes 500 m 2 / g, a molecular weight of 300 to 500 amorphous carbon, and whose coating amount is 0.1 to 10% by mass with respect to the graphite. A substance is disclosed (claim 1).

特開2009-211818号公報JP 2009-211818

日本結晶学会誌41.,p.213-226(1999)The Crystallographic Society of Japan 41., p.213-226 (1999)

粒子状黒鉛の表面に非晶質炭素被膜を形成すると、粒子状黒鉛単独よりも性能は向上する。
非水電解質二次電池においては、初期抵抗が低いことが望ましい。炭素被膜の状態が初期抵抗に影響すると考えられるが、初期抵抗に関与する因子が不明である。炭素被膜量が少ないため、その状態を評価すること自体が難しい。
When an amorphous carbon film is formed on the surface of particulate graphite, the performance is improved as compared with particulate graphite alone.
In the nonaqueous electrolyte secondary battery, it is desirable that the initial resistance is low. The state of the carbon film is thought to affect the initial resistance, but the factors involved in the initial resistance are unknown. Since the amount of carbon coating is small, it is difficult to evaluate the state itself.

本発明は上記事情に鑑みてなされたものであり、非黒鉛炭素被膜において初期抵抗と関与する因子を明らかにし、粒子状黒鉛の表面に非黒鉛炭素被膜が形成されており、初期抵抗を低減することが可能な非水電解質二次電池用の負極活物質を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, clarifying the factors involved in the initial resistance in the non-graphitic carbon coating, and the non-graphitic carbon coating is formed on the surface of the particulate graphite, thereby reducing the initial resistance. An object of the present invention is to provide a negative electrode active material for a non-aqueous electrolyte secondary battery.

本発明の非水電解質二次電池用の負極活物質は、
粒子状黒鉛と、当該粒子状黒鉛の表面に形成された非黒鉛炭素被膜とを有する非水電解質二次電池用の負極活物質であって、
前記非黒鉛炭素被膜は、走査型透過電子顕微鏡(STEM)観察にて格子縞が確認されるものであり、
前記負極活物質のTG−DTA測定を実施したとき、得られるDTA(Differential Thermal Analysis)曲線の微分曲線の620〜640℃の範囲のDDTA合算値が8.7〜13.0μV/sであり、
かつ、
前記負極活物質のX線小角散乱測定を実施し、Q=4πsinθ/λ=0.0015〜0.01nm−1の範囲において、得られたデータの近似式y=a・Q−bを求めたとき(ここで、yは散乱強度、θは散乱角の1/2、λはX線の波長、a及びbは定数をそれぞれ示す。)、6−bで表されるフラクタル次元が2.175〜2.230である非水電解質二次電池用の負極活物質である。
The negative electrode active material for the non-aqueous electrolyte secondary battery of the present invention is
A negative electrode active material for a non-aqueous electrolyte secondary battery having a particulate graphite and a non-graphite carbon coating formed on the surface of the particulate graphite,
The non-graphitic carbon coating is one in which lattice fringes are confirmed by scanning transmission electron microscope (STEM) observation,
When the TG-DTA measurement of the negative electrode active material is performed, the DDTA total value in the range of 620 to 640 ° C. of the differential curve of the obtained DTA (Differential Thermal Analysis) curve is 8.7 to 13.0 μV / s,
And,
X-ray small angle scattering measurement of the negative electrode active material was performed, and an approximate expression y = a · Q −b of the obtained data was determined in the range of Q = 4πsin θ / λ = 0.015 to 0.01 nm −1 . (Where y is the scattering intensity, θ is 1/2 the scattering angle, λ is the X-ray wavelength, and a and b are constants), the fractal dimension represented by 6-b is 2.175. It is the negative electrode active material for nonaqueous electrolyte secondary batteries which are -2.230.

本発明の非水電解質二次電池は、正極と、上記の非水電解質二次電池用の負極活物質を含む負極と、非水電解質とを備えたものである。   The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode including the negative electrode active material for the non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte.

本発明によれば、非黒鉛炭素被膜において初期抵抗と関与する因子が明らかとされ、粒子状黒鉛の表面に非黒鉛炭素被膜が形成されており、初期抵抗を低減することが可能な非水電解質二次電池用の負極活物質を提供することができる。   According to the present invention, the non-graphite carbon coating has been clarified as to the factors involved in the initial resistance, and the non-graphite carbon coating is formed on the surface of the particulate graphite, so that the initial resistance can be reduced. A negative electrode active material for a secondary battery can be provided.

一般的なX線小角散乱測定において、粒子サイズの逆数、散乱強度、及び得られる粒子情報の関係を示すグラフである。In general X-ray small angle scattering measurement, it is a graph which shows the relationship of the reciprocal of particle size, scattering intensity, and the particle information obtained. DTA曲線及びDDTA曲線の測定例である。It is an example of a measurement of a DTA curve and a DDTA curve. X線小角散乱の測定例である。It is an example of a measurement of X-ray small angle scattering. 実施例1〜3及び比較例1〜5において、DDTA合算値と初期抵抗比との関係を示すグラフである。In Examples 1-3 and Comparative Examples 1-5, it is a graph which shows the relationship between a DDTA total value and an initial stage resistance ratio. 実施例1〜3及び比較例1〜5のフラクタル次元を示すグラフである。It is a graph which shows the fractal dimension of Examples 1-3 and Comparative Examples 1-5.

以下、本発明について詳述する。
本発明は、非水電解質二次電池用の負極活物質、及びこれを用いた非水電解質二次電池に関するものである。
Hereinafter, the present invention will be described in detail.
The present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.

「負極活物質」
本発明の非水電解質二次電池用の負極活物質は、
粒子状黒鉛と、当該粒子状黒鉛の表面に形成された非黒鉛炭素被膜とを有する非水電解質二次電池用の負極活物質であって、
前記非黒鉛炭素被膜は、走査型透過電子顕微鏡(STEM)観察にて格子縞が確認されるものであり、
前記負極活物質のTG−DTA測定を実施したとき、得られるDTA(Differential Thermal Analysis)曲線の微分曲線(DDTA曲線)の620〜640℃の範囲のDDTA合算値が8.7〜13.0μV/sであり、
かつ、
前記負極活物質のX線小角散乱測定を実施し、Q=4πsinθ/λ=0.0015〜0.01nm−1の範囲において、得られたデータの近似式y=a・Q−bを求めたとき(ここで、yは散乱強度、θは散乱角の1/2、λはX線の波長、a及びbは定数をそれぞれ示す。)、6−bで表されるフラクタル次元が2.175〜2.230である非水電解質二次電池用の負極活物質である。
"Negative electrode active material"
The negative electrode active material for the non-aqueous electrolyte secondary battery of the present invention is
A negative electrode active material for a non-aqueous electrolyte secondary battery having a particulate graphite and a non-graphite carbon coating formed on the surface of the particulate graphite,
The non-graphitic carbon coating is one in which lattice fringes are confirmed by scanning transmission electron microscope (STEM) observation,
When the TG-DTA measurement of the negative electrode active material was performed, the total DDTA value in the range of 620 to 640 ° C. of the differential curve (DDTA curve) of the obtained DTA (Differential Thermal Analysis) curve was 8.7 to 13.0 μV / s,
And,
X-ray small angle scattering measurement of the negative electrode active material was performed, and an approximate expression y = a · Q −b of the obtained data was determined in the range of Q = 4πsin θ / λ = 0.015 to 0.01 nm −1 . (Where y is the scattering intensity, θ is 1/2 the scattering angle, λ is the X-ray wavelength, and a and b are constants), the fractal dimension represented by 6-b is 2.175. It is the negative electrode active material for nonaqueous electrolyte secondary batteries which are -2.230.

リチウムイオン二次電池等の非水電解質二次電池において、負極活物質には、リチウムイオン等の吸蔵及び放出が可能な炭素材料が広く使用されている。特に高結晶性を有する黒鉛は、放電電位が平坦であり、真密度が高く、かつ充填性が良いなどの特性を有していることから、市販のリチウムイオン二次電池の多くの負極活物質として使用されている。   In nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries, carbon materials capable of inserting and extracting lithium ions and the like are widely used as negative electrode active materials. In particular, graphite having high crystallinity has characteristics such as a flat discharge potential, high true density, and good filling properties. Therefore, many negative electrode active materials for commercially available lithium ion secondary batteries are used. It is used as

本発明の負極活物質においては、電界質との反応性を抑制するために、粒子状黒鉛の表面に非黒鉛炭素被膜が形成されている。
「背景技術」の項で述べたように、従来、粒子状黒鉛の表面に形成される非黒鉛炭素被膜は、「非晶質」であることが一般的である。
本発明では、粒子状黒鉛の表面に形成される非黒鉛炭素被膜は、「非晶質」ではなく、黒鉛よりも低い「低結晶性」を有する。かかる低結晶性を有する非黒鉛炭素被膜を有する負極活物質自体、新規である。
In the negative electrode active material of the present invention, a non-graphitic carbon film is formed on the surface of particulate graphite in order to suppress reactivity with the electrolyte.
As described in the “Background Art” section, conventionally, the non-graphite carbon coating formed on the surface of particulate graphite is generally “amorphous”.
In the present invention, the non-graphite carbon film formed on the surface of the particulate graphite is not “amorphous” but has “low crystallinity” lower than that of graphite. The negative electrode active material itself having such a non-graphite carbon film having low crystallinity is novel.

「炭素材料の結晶性」は、STEM観察にて評価できる。炭素材料のSTEM像に格子縞が確認された場合、その材料は結晶性を有していると特定できる。
本発明において、粒子状黒鉛の表面に形成される低結晶性の非黒鉛炭素被膜は、STEM像にて格子縞が観察され、かつ、a軸方向の結晶子サイズが小さく、あるいは、格子縞がウェーブするなど、黒鉛よりも格子縞の秩序が低く観察される。
The “crystallinity of the carbon material” can be evaluated by STEM observation. When lattice fringes are confirmed in the STEM image of the carbon material, it can be specified that the material has crystallinity.
In the present invention, the low crystalline non-graphite carbon film formed on the surface of particulate graphite has lattice fringes observed in the STEM image, and the crystallite size in the a-axis direction is small, or the lattice fringes are waved. For example, the order of lattice fringes is lower than that of graphite.

本発明者は、低結晶性を有する非黒鉛炭素被膜を備えた負極活物質を用いることにより、非晶質の非黒鉛炭素被膜を備えた従来の負極活物質を用いるよりも、初期抵抗の低い非水電解質二次電池が得られることを見出している。
非黒鉛炭素被膜が低結晶性を有することで、被膜の導電性等の特性が向上して、初期抵抗が低減されると考えられる。
なお、非黒鉛炭素被膜の結晶性が高くなりすぎて、黒鉛と同等あるいはそれに極めて近いレベルになると、粒子状黒鉛単独の場合との差がなくなり、表面凹凸が過小になって、電解質との反応性の抑制効果が低減されたり、リチウムイオン等の電気伝導を担うイオンの入るサイトが低減されてしまうと考えられる。
したがって、非黒鉛炭素被膜は、黒鉛よりも低い「低結晶性」を有することが重要である。
By using a negative electrode active material having a non-graphite carbon coating having low crystallinity, the present inventor has a lower initial resistance than using a conventional negative electrode active material having an amorphous non-graphite carbon coating. It has been found that a non-aqueous electrolyte secondary battery can be obtained.
It is considered that the non-graphite carbon coating has low crystallinity, thereby improving the properties such as the conductivity of the coating and reducing the initial resistance.
Note that if the non-graphite carbon coating becomes too high in crystallinity and is equivalent to or very close to that of graphite, there will be no difference from the case of particulate graphite alone, surface irregularities will be too small, and reaction with the electrolyte will occur. It is considered that the site where ions that bear electric conduction such as lithium ions enter is reduced.
Therefore, it is important that the non-graphitic carbon coating has a “low crystallinity” lower than that of graphite.

本発明者はさらに、初期抵抗に関与する新たな因子を見出し、これを好適化することで、STEM観察にて格子縞が確認される低結晶性を有する炭素被膜を有する負極活物質において、より高レベルに非水電解質二次電池の初期抵抗を低減可能であることを見出した。   The present inventor further found a new factor related to the initial resistance, and by optimizing this, in the negative electrode active material having a carbon film having low crystallinity in which lattice fringes are confirmed by STEM observation, It was found that the initial resistance of the non-aqueous electrolyte secondary battery can be reduced to the level.

TG−DTA測定においては、温度上昇に伴って、負極活物質の各粒子はその表面側から燃焼が開始する。したがって、DTA曲線においては、非黒鉛炭素被膜に由来する第1のピークが相対的に低温側で現れ、粒子状黒鉛に由来する第2のピークが相対的に高温側で現れる。
ここで、粒子状黒鉛に対して非黒鉛炭素被膜の量がはるかに少ないことから、粒子状黒鉛に由来する第2のピークに対して、非黒鉛炭素被膜に由来する第1のピークははるかに小さいものとなる。
In the TG-DTA measurement, as the temperature rises, each particle of the negative electrode active material starts to burn from the surface side. Therefore, in the DTA curve, the first peak derived from the non-graphite carbon film appears on the relatively low temperature side, and the second peak derived from the particulate graphite appears on the relatively high temperature side.
Here, since the amount of the non-graphite carbon coating is much smaller than that of the particulate graphite, the first peak derived from the non-graphite carbon coating is much more than the second peak derived from the particulate graphite. It will be small.

なお、DTA曲線においては、常温〜500℃程度の比較的低温の領域に、不純物等に起因してブロードなピークが現れる場合があるが、このブロードなピークは無視するものとする。
非黒鉛炭素被膜に由来する相対的に低温側の第1のピークと、粒子状黒鉛に由来する相対的に高温側の第2のピークは、通常500℃程度以上に現れる。本発明の負極活物質において、非黒鉛炭素被膜に由来する相対的に低温側の第1のピークは例えば、620〜640℃の範囲に現れ、粒子状黒鉛に由来する相対的に高温側の第2のピークは例えば、700℃以上に現れる。
In the DTA curve, a broad peak may appear in a relatively low temperature region of room temperature to about 500 ° C. due to impurities or the like, but this broad peak is ignored.
The first peak on the relatively low temperature side derived from the non-graphite carbon coating and the second peak on the relatively high temperature side derived from the particulate graphite usually appear at about 500 ° C. or more. In the negative electrode active material of the present invention, the first peak on the relatively low temperature side derived from the non-graphite carbon film appears in the range of 620 to 640 ° C., for example, and the first peak on the relatively high temperature side derived from the particulate graphite. The peak of 2 appears at 700 ° C. or higher, for example.

本発明者は、負極活物質の製造条件を変えてTG-DTAを行い、種々の条件で評価を実施した結果、DTA曲線の微分曲線(DDTA曲線)を得、非黒鉛炭素被膜に由来する相対的に低温側の第1のピークが現れる620〜640℃の範囲のDDTA合算値を求めたとき、このDDTA合算値が非水電界二次電池の初期抵抗と関与すること、さらに、そのDDTA合算値が8.7〜13.0μV/sであるとき、初期抵抗がより高レベルに向上されることを見出した(後記[実施例]の項、図4−図5、表1−表2を参照)。DDTA合算値は、9.0〜12.5μV/sであることが特に好ましい。
上記評価により、DTA曲線において、非黒鉛炭素被膜に由来する相対的に小さく現れる低温側の第1のピークをより高度に解析することが可能である。
なお、DTA曲線の微分曲線(DDTA曲線)を求めること自体は従来公知の方法であるが、DDTA曲線において特定温度範囲内のDDTA合算値を求める評価方法は従来にない新規な方法である。
The present inventor performed TG-DTA by changing the production conditions of the negative electrode active material, and as a result of performing the evaluation under various conditions, a differential curve (DDTA curve) of the DTA curve was obtained. When the DDTA total value in the range of 620 to 640 ° C. in which the first peak on the low temperature side appears is obtained, this DDTA total value is related to the initial resistance of the non-aqueous electric field secondary battery, and the DDTA total It was found that when the value was 8.7 to 13.0 μV / s, the initial resistance was improved to a higher level (see “Example”, FIG. 4 to FIG. 5, Table 1 to Table 2 below). reference). The total value of DDTA is particularly preferably 9.0 to 12.5 μV / s.
By the above evaluation, it is possible to analyze the first peak on the low temperature side, which appears relatively small derived from the non-graphite carbon coating, in the DTA curve to a higher degree.
Note that obtaining a differential curve (DDTA curve) of a DTA curve is a conventionally known method, but an evaluation method for obtaining a DDTA total value within a specific temperature range in a DDTA curve is a novel method that has not been found in the past.

非黒鉛炭素被膜の熱安定性と結晶性との間には相関関係があると考えられる。非黒鉛炭素被膜の結晶性が高くなる程、その熱安定性は高くなり、DTA曲線において、非黒鉛炭素被膜に由来する相対的に低温側の第1のピークはより高温側に現れ、かつそのピークはよりシャープになり、ピーク面積が大きくなる傾向がある。非黒鉛炭素被膜の結晶性が高くなる程、上記DDTA合算値が大きくなる傾向がある。
上記DDTA合算値が大きく、非黒鉛炭素被膜の結晶性が高い程、被膜の導電性等の特性が向上して、初期抵抗が低減されると考えられる。
There seems to be a correlation between the thermal stability and crystallinity of the non-graphitic carbon coating. The higher the crystallinity of the non-graphitic carbon coating, the higher its thermal stability. In the DTA curve, the first peak on the relatively low temperature side derived from the non-graphitic carbon coating appears on the higher temperature side, and The peak tends to be sharper and the peak area tends to be larger. As the crystallinity of the non-graphitic carbon coating increases, the DDTA total value tends to increase.
It is considered that the higher the DDTA combined value and the higher the crystallinity of the non-graphitic carbon coating, the more improved the properties such as the conductivity of the coating and the lower the initial resistance.

上記DDTA合算値によって非黒鉛炭素被膜の結晶性を評価することは有効であるが、この評価だけでは不充分であり、初期抵抗の低減効果が充分に現れない場合がある。
非黒鉛炭素被膜の結晶性が高くなりすぎて、黒鉛と同等あるいはそれに極めて近いレベルになると、粒子状黒鉛単独の場合との差がなくなり、表面凹凸が過小になって、電界質との反応性を抑制する効果が低減されたり、リチウムイオン等の電気伝導を担うイオンの入るサイトが低減されてしまうと考えられる。
したがって、非黒鉛炭素被膜は、黒鉛よりも低い「低結晶性」を有しつつ、その中でより高い結晶性を有することが好ましい。
Although it is effective to evaluate the crystallinity of the non-graphite carbon coating by the above DDTA total value, this evaluation alone is insufficient and the effect of reducing the initial resistance may not be sufficiently exhibited.
If the crystallinity of the non-graphite carbon coating becomes too high and is equivalent to or very close to that of graphite, there will be no difference from the case of particulate graphite alone, surface irregularities will be too small, and reactivity with the electric field will be reduced. It is considered that the effect of suppressing the decrease in the number of ions and the site where ions responsible for electrical conduction such as lithium ions enter are reduced.
Therefore, the non-graphitic carbon coating preferably has higher crystallinity while having “low crystallinity” lower than that of graphite.

本発明者はまた、X線小角散乱測定にて評価可能なフラクタル次元に着目した。フラクタル次元によって、非黒鉛炭素被膜のフラクタル界面の情報が得られ、被膜の表面凹凸を良好に評価することができる
本発明者は、負極活物質の製造条件を変えてX線小角散乱測定を行い、種々の条件で評価を実施した結果、Q=4πsinθ/λ=0.0015〜0.01nm−1の範囲において、得られたデータの近似式y=a・Q−bを求めたとき(ここで、yは散乱強度、θは散乱角の1/2、λはX線の波長、a及びbは定数をそれぞれ示す。)、6−bで表されるフラクタル次元が非水電界二次電池の初期抵抗と関与すること、さらに、そのフラクタル次元が2.175〜2.230であるとき、初期抵抗がより高レベルに向上されることを見出した(後記[実施例]の項、図4−図5、表1−表2を参照)。
The inventor has also focused on the fractal dimension that can be evaluated by X-ray small angle scattering measurement. Information on the fractal interface of the non-graphite carbon coating can be obtained by the fractal dimension, and the surface irregularity of the coating can be satisfactorily evaluated. The present inventor performs X-ray small angle scattering measurement by changing the production conditions of the negative electrode active material. As a result of evaluation under various conditions, when an approximate expression y = a · Q −b of the obtained data is obtained in a range of Q = 4π sin θ / λ = 0.015 to 0.01 nm −1 (here Where y is the scattering intensity, θ is 1/2 of the scattering angle, λ is the X-ray wavelength, a and b are constants), and the fractal dimension represented by 6-b is a non-aqueous electric field secondary battery. It was found that the initial resistance is improved to a higher level when the fractal dimension is 2.175 to 2.230 (see [Example], FIG. 4). -See Fig. 5, Table 1-Table 2).

近似式y=a・Q−bは例えば、得られたデータについて表計算ソフトExcelを用い、「y=a・x−b」という種類の近似を行って、求められる。 The approximate expression y = a · Q −b is obtained, for example, by performing the type of approximation “y = a · x −b ” on the obtained data using the spreadsheet software Excel.

一般的にX線小角散乱測定においては、粒子の形状あるいは粒子の界面状態等の情報が取得可能である。一般的なX線小角散乱測定において、粒子サイズの逆数、散乱強度、及び得られる粒子情報については、図1左図のグラフに示す関係がある(非特許文献1より引用)。このグラフにおける横軸のk値は、粒子サイズR、L、又はεの逆数に対応する。粒子サイズR、L、εについては、図1右図を参照されたい。X線小角散乱測定におけるQ値は、上記のk値である。   In general, in X-ray small angle scattering measurement, information such as particle shape or particle interface state can be acquired. In general X-ray small angle scattering measurement, the reciprocal of the particle size, the scattering intensity, and the obtained particle information have the relationship shown in the left graph of FIG. 1 (cited from Non-Patent Document 1). The k value on the horizontal axis in this graph corresponds to the inverse of the particle size R, L, or ε. For the particle sizes R, L, and ε, see the right figure in FIG. The Q value in the X-ray small angle scattering measurement is the k value described above.

本発明者は、Q値を上記範囲(0.0015〜0.01nm−1)としてフラクタル次元を求めることで、非黒鉛炭素被膜のフラクタル界面の情報が良好に得られることを見出している。 The present inventor has found that the information on the fractal interface of the non-graphitic carbon coating can be obtained satisfactorily by obtaining the fractal dimension with the Q value in the above range (0.0015 to 0.01 nm −1 ).

非黒鉛炭素被膜の表面凹凸が大きく、上記フラクタル次元が大きくなる程、初期抵抗の低減効果がより大きく現れる傾向がある。これは、リチウムイオン等の電気伝導を担うイオンの入るサイトが増加することなどの理由によると考えられる。
ただし、非黒鉛炭素被膜の表面凹凸が大きくなりすぎると、結晶性が非晶質又は黒鉛に近いことが予想され、性能が低下する傾向がある。
As the surface irregularity of the non-graphitic carbon coating is larger and the fractal dimension is larger, the effect of reducing the initial resistance tends to appear more. This is considered to be due to an increase in the sites where ions responsible for electrical conduction such as lithium ions enter.
However, if the surface irregularity of the non-graphitic carbon coating becomes too large, the crystallinity is expected to be amorphous or close to that of graphite, and the performance tends to decrease.

本発明者は、上記DDTA合算値を8.7〜13.0μV/sの範囲に規定し、かつ、上記フラクタル次元を2.175〜2.230の範囲に規定することで、より高レベルな初期抵抗の低減効果が安定的に得られることを見出している(後記[実施例]の項、図4−図5、表1−表2を参照)。   The present inventor defines the DDTA summation value in the range of 8.7 to 13.0 μV / s and defines the fractal dimension in the range of 2.175 to 2.230, thereby achieving a higher level. It has been found that the effect of reducing the initial resistance can be stably obtained (see the section “Example”, FIG. 4 to FIG. 5 and Table 1 to Table 2).

本発明の負極活物質は、粒子状黒鉛の表面に対して、重質油等の油、ポリビニルアルコール(PVA)等のポリマー、石炭あるいは石油等を原料として製造されたピッチ等の炭素材料、及び必要に応じて溶媒等の添加剤を含む被膜材料を、気相法又は液相法により被覆し、不活性雰囲気下で焼成することにより、製造できる。
気相法としては例えば、CVD(Chemical Vapor Deposition)法等が挙げられる。
焼成時の不活性雰囲気としては、N雰囲気、Ar等の希ガス雰囲気、及びこれらの組合わせ等が挙げられる。
The negative electrode active material of the present invention is a carbon material such as pitch produced using oil such as heavy oil, polymer such as polyvinyl alcohol (PVA), coal, petroleum, etc. as a raw material with respect to the surface of particulate graphite. A coating material containing an additive such as a solvent can be coated by a vapor phase method or a liquid phase method, if necessary, and fired in an inert atmosphere.
Examples of the vapor phase method include a CVD (Chemical Vapor Deposition) method.
Examples of the inert atmosphere at the time of firing include an N 2 atmosphere, a rare gas atmosphere such as Ar, and combinations thereof.

例えば、焼成プロファイル等の製造条件を調整することで、DDTA合算値及びフラクタル次元を調整することができる。   For example, the DDTA total value and the fractal dimension can be adjusted by adjusting the manufacturing conditions such as the firing profile.

例えば、800℃以上の第1の温度で焼成した後、いったん室温(20〜30℃程度)まで戻し、その後さらに、第1の温度より高い第2の温度で焼成する焼成プロファイルが好ましい。本発明者は、かかる焼成プロファイルとすることで、本発明で規定するDDTA合算値及びフラクタル次元を有する負極活物質が得られることを見出している(後記[実施例]の項、図4−図5、表1−表2を参照)。   For example, after firing at a first temperature of 800 ° C. or higher, the firing profile is preferably returned to room temperature (about 20 to 30 ° C.) and then fired at a second temperature higher than the first temperature. The present inventor has found that a negative electrode active material having a DDTA total value and a fractal dimension defined in the present invention can be obtained by using such a firing profile (see the section “Examples” below, FIG. 4 to FIG. 4). 5, see Table 1-Table 2).

低結晶性を有する被膜を形成するには、900℃以上の焼成が必要である。また、最高焼成温度が高くなりすぎると、炭素材料の消失が多くなる傾向がある。
例えば、第1の温度は800〜900℃の範囲内が好ましく、第2の温度は900〜1000℃の範囲内が好ましい。
第1の温度と第2の温度の差は特に制限されず、5℃以上が好ましい。後記[実施例]の項では、第1の温度と第2の温度の差を5〜25℃の範囲内として、初期抵抗の低減結果が良好に得られている。
In order to form a film having low crystallinity, baking at 900 ° C. or higher is necessary. Moreover, when the maximum firing temperature becomes too high, the disappearance of the carbon material tends to increase.
For example, the first temperature is preferably in the range of 800 to 900 ° C, and the second temperature is preferably in the range of 900 to 1000 ° C.
The difference between the first temperature and the second temperature is not particularly limited, and is preferably 5 ° C. or higher. In the section of “Examples” to be described later, the difference between the first temperature and the second temperature is set within the range of 5 to 25 ° C., and the initial resistance reduction result is obtained favorably.

粒子状黒鉛に対する非黒鉛炭素被膜の量(被覆量)は特に制限されない。被覆量が過小では、電解質との反応性の抑制効果が充分に発現しなくなる。被覆量が過大では、黒鉛を被覆せずに非黒鉛炭素のみで塊が形成されるなど、マクロなレベルでの不均一性が増して所望の電池特性が得られなくなる恐れ、あるいは、被膜が厚くなりすぎて初期抵抗が増大するなどの恐れがある。
粒子状黒鉛100質量部に対する非黒鉛炭素被膜の量(被覆量)は例えば、2〜7質量部が好ましい。
The amount of non-graphite carbon coating (particulate amount) with respect to particulate graphite is not particularly limited. If the coating amount is too small, the effect of suppressing the reactivity with the electrolyte is not sufficiently exhibited. If the coating amount is too large, a non-graphite carbon layer may be formed only with non-graphite carbon, which may increase the non-uniformity at the macro level, resulting in failure to obtain desired battery characteristics, or a thick coating. There is a risk that the initial resistance will increase due to too much.
The amount of the non-graphitic carbon coating (covering amount) with respect to 100 parts by mass of particulate graphite is preferably 2 to 7 parts by mass, for example.

黒鉛を被覆せずに非黒鉛炭素のみで塊が形成されることなく、粒子状黒鉛に対して非黒鉛炭素を良好に均一に被覆できることから、被覆法としては気相法が特に好ましい。   A gas phase method is particularly preferable as the coating method because the non-graphitic carbon can be coated uniformly and uniformly on the particulate graphite without forming a lump with only the non-graphitic carbon without coating the graphite.

負極活物質のN吸着法によるBET比表面積は特に制限されない。
BET比表面積が大きい程、活性点が多くなり、初期抵抗が低減する傾向があるが、電池容量が低減する傾向がある。
負極活物質のN吸着法によるBET比表面積は例えば、2〜5m/gが好ましい。
The BET specific surface area of the negative electrode active material by the N 2 adsorption method is not particularly limited.
The larger the BET specific surface area, the more active points and the initial resistance tends to decrease, but the battery capacity tends to decrease.
The BET specific surface area by the N 2 adsorption method of the negative electrode active material is preferably 2 to 5 m 2 / g, for example.

「非水電解質二次電池」
本発明の非水電解質二次電池は、正極と、上記の本発明の非水電解質二次電池用の負極活物質を含む負極と、非水電解質とを備えたものである。
"Nonaqueous electrolyte secondary battery"
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode containing the negative electrode active material for the non-aqueous electrolyte secondary battery of the present invention, and a non-aqueous electrolyte.

非水電解質二次電池としては、リチウムイオン二次電池等が挙げられる。以下、リチウムイオン二次電池を例として、主な構成要素について説明する。   Examples of the non-aqueous electrolyte secondary battery include a lithium ion secondary battery. Hereinafter, main components will be described by taking a lithium ion secondary battery as an example.

<正極>
正極は、公知の方法により、アルミニウム箔などの正極集電体に正極活物質を塗布して、製造することができる。
公知の正極活物質としては特に制限なく、例えば、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1−x)、及びLiNiCoMn(1−x−y)等のリチウム含有複合酸化物等が挙げられる。
例えば、N−メチル−2−ピロリドン等の分散剤を用い、上記の正極活物質と、炭素粉末等の導電剤と、ポリフッ化ビニリデン(PVDF)等の結着剤とを混合して、スラリーを得、このスラリーをアルミニウム箔等の正極集電体上に塗布し、乾燥し、プレス加工して、正極を得ることができる。
<Positive electrode>
The positive electrode can be manufactured by applying a positive electrode active material to a positive electrode current collector such as an aluminum foil by a known method.
Known no particular limitation on the positive electrode active material, for example, LiCoO 2, LiMnO 2, LiMn 2 O 4, LiNiO 2, LiNi x Co (1-x) O 2, and LiNi x Co y Mn (1- x-y ) Lithium-containing composite oxides such as O 2 are listed.
For example, using a dispersant such as N-methyl-2-pyrrolidone, the above positive electrode active material, a conductive agent such as carbon powder, and a binder such as polyvinylidene fluoride (PVDF) are mixed to form a slurry. This slurry can be applied onto a positive electrode current collector such as an aluminum foil, dried, and pressed to obtain a positive electrode.

<負極>
上記の本発明の非水電解質二次電池用の負極活物質を含む負極を用いる。
必要に応じて、上記の本発明の非水電解質二次電池用の負極活物質以外の公知の負極活物質を併用しても構わない。
併用可能な負極活物質としては特に制限なく、Li/Li+基準で2.0V以下にリチウム吸蔵能力を持つものが好ましく用いられる。併用可能な負極活物質としては、金属リチウム、リチウム合金、リチウムイオンのド−プ・脱ド−プが可能な遷移金属酸化物/遷移金属窒化物/遷移金属硫化物、及び、これらの組合わせ等が挙げられる。
<Negative electrode>
The negative electrode containing the negative electrode active material for the nonaqueous electrolyte secondary battery of the present invention is used.
As needed, you may use together well-known negative electrode active materials other than the negative electrode active material for said nonaqueous electrolyte secondary batteries of this invention.
The negative electrode active material that can be used in combination is not particularly limited, and those having a lithium storage capacity of 2.0 V or less on the basis of Li / Li + are preferably used. Negative electrode active materials that can be used in combination include lithium metal, lithium alloys, transition metal oxides / transition metal nitrides / transition metal sulfides capable of doping / dedoping lithium ions, and combinations thereof. Etc.

負極は、公知の方法により、銅箔などの負極集電体に負極活物質を塗布して、製造することができる。
例えば、水等の分散剤を用い、上記の負極活物質と、変性スチレン−ブタジエン共重合体ラテックス等の結着剤と、必要に応じてカルボキシメチルセルロースNa塩(CMC)等の増粘剤とを混合して、スラリーを得、このスラリーを銅箔等の負極集電体上に塗布し、乾燥し、プレス加工して、負極を得ることができる。
The negative electrode can be produced by applying a negative electrode active material to a negative electrode current collector such as a copper foil by a known method.
For example, using a dispersant such as water, the negative electrode active material described above, a binder such as a modified styrene-butadiene copolymer latex, and a thickener such as carboxymethyl cellulose Na salt (CMC) as necessary. Mixing is performed to obtain a slurry, and this slurry is applied onto a negative electrode current collector such as a copper foil, dried, and pressed to obtain a negative electrode.

<非水電解質>
非水電解質としては公知のものが使用でき、液状、ゲル状もしくは固体状の非水電解質が使用できる。
例えば、プロピレンカーボネ−トあるいはエチレンカーボネ−ト等の高誘電率カーボネート溶媒と、ジエチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート等の低粘度カーボネート溶媒との混合溶媒に、リチウム含有電解質を溶解した非水電界液が好ましく用いられる。
混合溶媒としては例えば、エチレンカーボネート(EC)/ジメチルカーボネート(DMC)/エチルメチルカーボネート(EMC)の混合溶媒が好ましく用いられる。
リチウム含有電解質としては例えば、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1〜8の整数)、LiPF{C(2k+1)(6−n)(n=1〜5の整数、k=1〜8の整数)等のリチウム塩、及びこれらの組合わせが挙げられる。
<Nonaqueous electrolyte>
As the non-aqueous electrolyte, known ones can be used, and liquid, gel-like or solid non-aqueous electrolytes can be used.
For example, a lithium-containing electrolyte is dissolved in a mixed solvent of a high dielectric constant carbonate solvent such as propylene carbonate or ethylene carbonate and a low viscosity carbonate solvent such as diethyl carbonate, methyl ethyl carbonate, or dimethyl carbonate. A water electrolysis solution is preferably used.
As the mixed solvent, for example, a mixed solvent of ethylene carbonate (EC) / dimethyl carbonate (DMC) / ethyl methyl carbonate (EMC) is preferably used.
Examples of the lithium-containing electrolyte include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiOSO 2 C k F (2k + 1) (k = 1 to 8), LiPF n {C k F (2k + 1) )} (6-n) ( n = 1~5 integer, k = 1 to 8 integer) lithium salts such as, and combinations thereof.

<セパレータ>
セパレータは、正極と負極とを電気的に絶縁し、かつリチウムイオンが透過可能な膜であればよく、多孔質高分子フィルムが好ましく使用される。
セパレータとしては例えば、PP(ポリプロピレン)製多孔質フィルム、PE(ポリエチレン)製多孔質フィルム、あるいは、PP(ポリプロピレン)−PE(ポリエチレン)の積層型多孔質フィルム等のポリオレフィン製多孔質フィルムが好ましく用いられる。
<Separator>
The separator may be a film that electrically insulates the positive electrode and the negative electrode and is permeable to lithium ions, and a porous polymer film is preferably used.
As the separator, for example, a porous film made of polyolefin such as a porous film made of PP (polypropylene), a porous film made of PE (polyethylene), or a laminated porous film of PP (polypropylene) -PE (polyethylene) is preferably used. It is done.

<ケース>
ケースとしては公知のものが使用できる。
二次電池の型としては、円筒型、コイン型、角型、あるいはフィルム型等があり、所望の型に合わせてケースを選定することができる。
<Case>
A well-known case can be used.
The secondary battery type includes a cylindrical type, a coin type, a square type, a film type, and the like, and a case can be selected according to a desired type.

以上説明したように、本発明によれば、非黒鉛炭素被膜において初期抵抗と関与する因子が明らかとされ、粒子状黒鉛の表面に非黒鉛炭素被膜が形成され、非水電解質二次電池の初期抵抗を低減することが可能な非水電解質二次電池用の負極活物質を提供することができる。   As described above, according to the present invention, the factors involved in the initial resistance in the non-graphite carbon coating are clarified, the non-graphite carbon coating is formed on the surface of the particulate graphite, and the initial stage of the non-aqueous electrolyte secondary battery A negative electrode active material for a non-aqueous electrolyte secondary battery capable of reducing resistance can be provided.

本発明に係る実施例及び比較例について説明する。   Examples and comparative examples according to the present invention will be described.

[実施例1〜3、比較例1〜5]
実施例1〜3及び比較例1〜5では、負極活物質の製造条件を変更する以外は、同一条件として、リチウムイオン二次電池を製造した。
[Examples 1-3, Comparative Examples 1-5]
In Examples 1 to 3 and Comparative Examples 1 to 5, lithium ion secondary batteries were manufactured under the same conditions except that the manufacturing conditions of the negative electrode active material were changed.

<正極>
正極活物質として、LiNi1/3Co1/3Mn1/3を用いた。
分散剤としてN−メチル−2−ピロリドンを用い、上記の正極活物質と、導電剤であるアセチレンブラックと、結着剤であるPVDFとを93/4/3(質量比)で混合して、電極層形成用ペーストを得た。
上記電極層形成用ペーストを集電体であるアルミニウム箔の両面にドクターブレード法で塗布し、150℃で30分間乾燥し、プレス機械を用いてプレス加工して、電極層を形成した。
以上のようにして、正極を得た。正極電極層は、片面当たり、目付30mg/cm、密度2.8g/cmとした。
<Positive electrode>
LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material.
Using N-methyl-2-pyrrolidone as a dispersant, mixing the above positive electrode active material, acetylene black as a conductive agent, and PVDF as a binder at 93/4/3 (mass ratio), An electrode layer forming paste was obtained.
The electrode layer forming paste was applied to both surfaces of an aluminum foil as a current collector by a doctor blade method, dried at 150 ° C. for 30 minutes, and pressed using a press machine to form an electrode layer.
As described above, a positive electrode was obtained. The positive electrode layer had a basis weight of 30 mg / cm 2 and a density of 2.8 g / cm 3 per side.

<負極>
いずれの例においても、粒子状黒鉛として、平均粒径(公称径)が10μm、BET比表面積が3.5m/gの天然黒鉛を用いた。
いずれの例においても、上記粒子状黒鉛の表面に対して、ピッチを被覆材料としてCVD法により被覆し、N雰囲気下で焼成することにより、負極活物質を製造した。粒子状黒鉛に対する非黒鉛炭素被膜の被覆量は5質量%とした。
<Negative electrode>
In each example, natural graphite having an average particle diameter (nominal diameter) of 10 μm and a BET specific surface area of 3.5 m 2 / g was used as the particulate graphite.
In any example, the surface of the particulate graphite was coated with a pitch as a coating material by a CVD method, and fired in an N 2 atmosphere to produce a negative electrode active material. The coating amount of the non-graphite carbon coating on the particulate graphite was 5% by mass.

各例においては、焼成プロファイルを変更し、それ以外の条件は同一として負極活物質を製造した。
比較例1(試料A)においては、室温(25℃程度)から昇温速度10℃/minで900℃に昇温し、この温度で10時間保持し、室温(25℃程度)まで自然冷却するプロファイルとした。
実施例1(試料B)においては、900℃で10時間焼成し、室温(25℃程度)まで自然冷却し、昇温速度10℃/minで905℃に昇温し、この温度で10時間保持し、室温(25℃程度)まで自然冷却するプロファイルとした。
比較例2(試料C)においては、900℃で10時間焼成し、室温(25℃程度)まで自然冷却し、昇温速度10℃/minで895℃に昇温し、この温度で10時間保持し、室温(25℃程度)まで自然冷却するプロファイルとした。
比較例3(試料D)においては、900℃で10時間焼成し、室温(25℃程度)まで自然冷却し、昇温速度10℃/minで890℃に昇温し、この温度で10時間保持し、室温(25℃程度)まで自然冷却するプロファイルとした。
実施例2(試料E)においては、900℃で10時間焼成し、室温(25℃程度)まで自然冷却し、昇温速度10℃/minで925℃に昇温し、この温度で10時間保持し、室温(25℃程度)まで自然冷却するプロファイルとした。
実施例3(試料F)においては、800℃で10時間焼成し、室温(25℃程度)まで自然冷却し、昇温速度10℃/minで925℃に昇温し、この温度で10時間保持し、室温(25℃程度)まで自然冷却するプロファイルとした。
比較例4(試料G)においては、室温(25℃程度)から昇温速度10℃/minで1000℃に昇温し、この温度で10時間保持するプロファイルとした。
比較例5(試料H)においては、室温(25℃程度)から昇温速度10℃/minで800℃に昇温し、この温度で10時間保持するプロファイルとした。
In each example, the negative electrode active material was manufactured under the same conditions except that the firing profile was changed.
In Comparative Example 1 (Sample A), the temperature is raised from room temperature (about 25 ° C.) to 900 ° C. at a temperature rising rate of 10 ° C./min, held at this temperature for 10 hours, and naturally cooled to room temperature (about 25 ° C.). Profile.
In Example 1 (Sample B), it was fired at 900 ° C. for 10 hours, naturally cooled to room temperature (about 25 ° C.), heated to 905 ° C. at a heating rate of 10 ° C./min, and held at this temperature for 10 hours. And a profile that naturally cools to room temperature (about 25 ° C.).
In Comparative Example 2 (Sample C), it was fired at 900 ° C. for 10 hours, naturally cooled to room temperature (about 25 ° C.), heated to 895 ° C. at a heating rate of 10 ° C./min, and held at this temperature for 10 hours. And a profile that naturally cools to room temperature (about 25 ° C.).
In Comparative Example 3 (Sample D), it was fired at 900 ° C. for 10 hours, naturally cooled to room temperature (about 25 ° C.), heated to 890 ° C. at a heating rate of 10 ° C./min, and held at this temperature for 10 hours. And a profile that naturally cools to room temperature (about 25 ° C.).
In Example 2 (Sample E), it was fired at 900 ° C. for 10 hours, naturally cooled to room temperature (about 25 ° C.), heated to 925 ° C. at a heating rate of 10 ° C./min, and held at this temperature for 10 hours. And a profile that naturally cools to room temperature (about 25 ° C.).
In Example 3 (Sample F), it was fired at 800 ° C. for 10 hours, naturally cooled to room temperature (about 25 ° C.), heated to 925 ° C. at a heating rate of 10 ° C./min, and held at this temperature for 10 hours. And a profile that naturally cools to room temperature (about 25 ° C.).
In Comparative Example 4 (Sample G), the temperature was raised from room temperature (about 25 ° C.) to 1000 ° C. at a temperature rising rate of 10 ° C./min, and the profile was maintained at this temperature for 10 hours.
In Comparative Example 5 (Sample H), the temperature was raised from room temperature (about 25 ° C.) to 800 ° C. at a temperature rising rate of 10 ° C./min, and the profile was maintained at this temperature for 10 hours.

いずれの例においても、分散剤として水を用い、上記の負極活物質と、結着剤である変性スチレン−ブタジエン共重合体ラテックス(SBR)と、増粘剤であるカルボキシメチルセルロースNa塩(CMC)とを98/1/1(質量比)で混合して、スラリーを得た。
上記電極層形成用ペーストを集電体であるアルミニウム箔の両面にドクターブレード法で塗布し、150℃で30分間乾燥し、プレス機械を用いてプレス加工して、電極層を形成した。
以上のようにして、負極を得た。負極電極層は、片面当たり、目付18mg/cm、密度1.4g/cmとした。
In any of these examples, water is used as a dispersant, the negative electrode active material, a modified styrene-butadiene copolymer latex (SBR) as a binder, and a carboxymethyl cellulose Na salt (CMC) as a thickener. Were mixed at 98/1/1 (mass ratio) to obtain a slurry.
The electrode layer forming paste was applied to both surfaces of an aluminum foil as a current collector by a doctor blade method, dried at 150 ° C. for 30 minutes, and pressed using a press machine to form an electrode layer.
A negative electrode was obtained as described above. The negative electrode layer had a basis weight of 18 mg / cm 2 and a density of 1.4 g / cm 3 per side.

<セパレータ>
PE(ポリエチレン)製多孔質フィルムからなる市販のセパレータを用意した。
<Separator>
A commercially available separator made of a PE (polyethylene) porous film was prepared.

<非水電解質>
エチレンカーボネート(EC)/ジメチルカーボネート(DMC)/エチルメチルカーボネート(EMC)=3/4/3(体積比)の混合溶液を溶媒とし、電解質としてリチウム塩であるLiPFを1.1mol/Lの濃度で溶解して、非水電界液を調製した。
<Nonaqueous electrolyte>
A mixed solution of ethylene carbonate (EC) / dimethyl carbonate (DMC) / ethyl methyl carbonate (EMC) = 3/4/3 (volume ratio) was used as a solvent, and LiPF 6 which is a lithium salt as an electrolyte was 1.1 mol / L. A non-aqueous electrolysis solution was prepared by dissolving at a concentration.

<リチウムイオン二次電池の製造>
上記の正極と負極とセパレータと非水電解液と円筒型の缶ケースを用い、公知方法により、リチウムイオン二次電池を製造した。
各例の主な製造条件を表1に示す。
<Manufacture of lithium ion secondary batteries>
Using the above positive electrode, negative electrode, separator, non-aqueous electrolyte, and cylindrical can case, a lithium ion secondary battery was manufactured by a known method.
Table 1 shows the main production conditions for each example.

<BET比表面積>
各例において得られた負極活物質について、窒素吸着法によりBET比表面積を求めた。
装置としては、MOUNTECH社製Macsorb(HM model−1208)を用いた。
BET比表面積の評価結果を表1に示す。
<BET specific surface area>
About the negative electrode active material obtained in each example, the BET specific surface area was calculated | required by the nitrogen adsorption method.
As the apparatus, Macsorb (HM model-1208) manufactured by MOUNTECH was used.
The evaluation results of the BET specific surface area are shown in Table 1.

<STEM観察>
各例において得られた負極活物質について、走査型透過電子顕微鏡(STEM)観察を実施した。
負極活物質をエポキシ系樹脂に包埋させ、FIB(集束イオンビーム)により活物質粒子の断面を得、これをサンプルとした。負極活物質の微小な空隙に樹脂を充填することで、STEM観察が容易となる。
装置としては、株式会社日立ハイテクノロジーズ社製の走査透過電子顕微鏡HD−2700を用いた。加速電圧は200kVとした。
<STEM observation>
The negative electrode active material obtained in each example was observed with a scanning transmission electron microscope (STEM).
The negative electrode active material was embedded in an epoxy resin, and a cross section of the active material particles was obtained by FIB (focused ion beam). This was used as a sample. STEM observation is facilitated by filling the resin in the minute voids of the negative electrode active material.
As the apparatus, a scanning transmission electron microscope HD-2700 manufactured by Hitachi High-Technologies Corporation was used. The acceleration voltage was 200 kV.

各例において、幅150nm×深さ50nmの範囲で負極活物質の断面観察を実施し、非黒鉛炭素被膜の格子縞の有無とそのパターンを観察した。
いずれの例においても、被膜のSTEM像に格子縞が観察された。また、これらの格子縞は、a軸方向の結晶子サイズが小さく、あるいは、格子縞がウェーブするなど、黒鉛よりも格子縞の秩序が低く観察された。
In each example, the cross-section of the negative electrode active material was observed in a range of 150 nm width × 50 nm depth, and the presence and absence of lattice fringes of the non-graphitic carbon coating and its pattern were observed.
In any of the examples, lattice fringes were observed in the STEM image of the coating. In addition, these lattice fringes were observed to have a lower order of lattice fringes than graphite, such as the crystallite size in the a-axis direction being small, or the lattice fringes waved.

<TG−DTA測定>
各例において得られた負極活物質について、TG−DTA測定を実施した。
装置としては、株式会社リガク社製のスマートローダTG−DTA8120を用いた。測定条件は以下の通りとした。
焼成雰囲気:空気(供給速度650ml/min)、
昇温速度:20℃/min、
測定温度範囲:30〜1000℃。
<TG-DTA measurement>
TG-DTA measurement was implemented about the negative electrode active material obtained in each case.
As an apparatus, a smart loader TG-DTA8120 manufactured by Rigaku Corporation was used. The measurement conditions were as follows.
Firing atmosphere: air (supply speed 650 ml / min),
Temperature increase rate: 20 ° C./min,
Measurement temperature range: 30-1000 ° C.

各例において、得られたDTA曲線の微分曲線(DDTA曲線)を求め、この620〜640℃の範囲のDDTA合算値を求めた。
代表例として、実施例1(試料A)の負極活物質におけるDTA曲線及びDDTA曲線を図2に示す。
TG−DTAの評価結果を表2に示す。
In each example, a differential curve (DDTA curve) of the obtained DTA curve was obtained, and a DDTA total value in the range of 620 to 640 ° C. was obtained.
As a typical example, a DTA curve and a DDTA curve in the negative electrode active material of Example 1 (Sample A) are shown in FIG.
Table 2 shows the evaluation results of TG-DTA.

<X線小角散乱測定>
各例において得られた負極活物質について、X線小角散乱測定を実施した。
装置としては、株式会社リガク社製の小角広角X線回折装置を用いた。測定条件は以下の通りとした。
X線とその波長:CuKα 1.541840Å、
管電圧:50kV、
管電流:300mA、
測定範囲:θ=0.1〜50°。
各例において、表計算ソフトExcelを用い、Q=4πsinθ/λ=0.0015〜0.01nm−1の範囲において、「y=a・x−b」という種類の近似を行って、得られたデータの近似式y=a・Q−bを求め(ここで、yは散乱強度、θは散乱角の1/2、λはX線の波長、a及びbは定数をそれぞれ示す。)、6−bで表されるフラクタル次元を求めた。
代表例として、実施例1(試料A)の負極活物質におけるQとyとの関係を示すグラフを図3に示す。
フラクタル次元の評価結果を表2に示す。
<X-ray small angle scattering measurement>
The negative electrode active material obtained in each example was subjected to X-ray small angle scattering measurement.
As the apparatus, a small-angle wide-angle X-ray diffraction apparatus manufactured by Rigaku Corporation was used. The measurement conditions were as follows.
X-ray and its wavelength: CuKα 1.541840Å,
Tube voltage: 50 kV,
Tube current: 300 mA,
Measurement range: θ = 0.1-50 °.
In each example, using spreadsheet software Excel, it was obtained by performing an approximation of the type “y = a · x− b ” in the range of Q = 4π sin θ / λ = 0.015 to 0.01 nm −1 . Approximate data y = a · Q −b is obtained (where y is the scattering intensity, θ is 1/2 of the scattering angle, λ is the X-ray wavelength, and a and b are constants), 6 The fractal dimension represented by −b was obtained.
As a representative example, a graph showing the relationship between Q and y in the negative electrode active material of Example 1 (Sample A) is shown in FIG.
Table 2 shows the evaluation results of the fractal dimension.

<初期抵抗>
得られた非水電解質二次電池について、表3に示す充放電試験を実施し、初期抵抗を求めた。
得られた初期抵抗データに対して比較例3(試料D)の初期抵抗を1.0として基準化して、比較例3(試料D)の初期抵抗に対する初期抵抗比を求めた。
各例における初期抵抗の評価結果を表2に示す。
<Initial resistance>
The obtained non-aqueous electrolyte secondary battery was subjected to the charge / discharge test shown in Table 3 to determine the initial resistance.
The initial resistance ratio for the initial resistance of Comparative Example 3 (Sample D) was determined by standardizing the initial resistance data of Comparative Example 3 (Sample D) as 1.0.
Table 2 shows the evaluation results of the initial resistance in each example.

<結果のまとめ>
実施例1〜3及び比較例1〜5において、DDTA合算値と初期抵抗比との関係を図4に示す。実施例1〜3及び比較例1〜5のフラクタル次元を図5に示す。図5中、実施例1〜3のデータには、「○」を付してある。
図4−図5及び表1−表2に示すように、DDTA合算値が8.7〜13.0μV/sであり、かつ、フラクタル次元2.175〜2.230である負極活物質を用いた実施例1〜3では、比較例1〜5よりも初期抵抗が低減されたリチウムイオン二次電池を得ることができた。
<Summary of results>
In Examples 1 to 3 and Comparative Examples 1 to 5, the relationship between the DDTA total value and the initial resistance ratio is shown in FIG. The fractal dimension of Examples 1-3 and Comparative Examples 1-5 is shown in FIG. In FIG. 5, “◯” is attached to the data of Examples 1 to 3.
As shown in FIG. 4 to FIG. 5 and Table 1 to Table 2, a negative electrode active material having a DDTA total value of 8.7 to 13.0 μV / s and a fractal dimension of 2.175 to 2.230 is used. In Examples 1 to 3, lithium ion secondary batteries having an initial resistance lower than those of Comparative Examples 1 to 5 could be obtained.

Figure 2013201058
Figure 2013201058

Figure 2013201058
Figure 2013201058

Figure 2013201058
Figure 2013201058

本発明の負極活物質は、プラグインハイブリッド車(PHV)あるいは電気自動車(EV)に搭載されるリチウムイオン二次電池等の非水電解質二次電池に好ましく適用できる。   The negative electrode active material of the present invention can be preferably applied to a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery mounted on a plug-in hybrid vehicle (PHV) or an electric vehicle (EV).

Claims (5)

粒子状黒鉛と、当該粒子状黒鉛の表面に形成された非黒鉛炭素被膜とを有する非水電解質二次電池用の負極活物質であって、
前記非黒鉛炭素被膜は、走査型透過電子顕微鏡(STEM)観察にて格子縞が確認されるものであり、
前記負極活物質のTG−DTA測定を実施したとき、得られるDTA(Differential Thermal Analysis)曲線の微分曲線(DDTA曲線)の620〜640℃の範囲のDDTA合算値が8.7〜13.0μV/sであり、
かつ、
前記負極活物質のX線小角散乱測定を実施し、Q=4πsinθ/λ=0.0015〜0.01nm−1の範囲において、得られたデータの近似式y=a・Q−bを求めたとき(ここで、yは散乱強度、θは散乱角の1/2、λはX線の波長、a及びbは定数をそれぞれ示す。)、6−bで表されるフラクタル次元が2.175〜2.230である非水電解質二次電池用の負極活物質。
A negative electrode active material for a non-aqueous electrolyte secondary battery having a particulate graphite and a non-graphite carbon coating formed on the surface of the particulate graphite,
The non-graphitic carbon coating is one in which lattice fringes are confirmed by scanning transmission electron microscope (STEM) observation,
When the TG-DTA measurement of the negative electrode active material was performed, the total DDTA value in the range of 620 to 640 ° C. of the differential curve (DDTA curve) of the obtained DTA (Differential Thermal Analysis) curve was 8.7 to 13.0 μV / s,
And,
X-ray small angle scattering measurement of the negative electrode active material was performed, and an approximate expression y = a · Q −b of the obtained data was determined in the range of Q = 4πsin θ / λ = 0.015 to 0.01 nm −1 . (Where y is the scattering intensity, θ is 1/2 the scattering angle, λ is the X-ray wavelength, and a and b are constants), the fractal dimension represented by 6-b is 2.175. The negative electrode active material for nonaqueous electrolyte secondary batteries which is -2.230.
前記粒子状黒鉛100質量部に対する前記非黒鉛炭素被膜の量が2〜7質量部である請求項1に記載の非水電解質二次電池用の負極活物質。   2. The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of the non-graphite carbon coating is 2 to 7 parts by mass with respect to 100 parts by mass of the particulate graphite. 前記負極活物質のN吸着法によるBET比表面積が2〜5m/gである請求項1又は2に記載の非水電解質二次電池用の負極活物質。 The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material has a BET specific surface area of 2 to 5 m 2 / g by N 2 adsorption method. 正極と、請求項1〜3のいずれかに記載の非水電解質二次電池用の負極活物質を含む負極と、非水電解質とを備えた非水電解質二次電池。   The nonaqueous electrolyte secondary battery provided with the positive electrode, the negative electrode containing the negative electrode active material for nonaqueous electrolyte secondary batteries in any one of Claims 1-3, and a nonaqueous electrolyte. リチウムイオン二次電池である請求項4に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 4, which is a lithium ion secondary battery.
JP2012069533A 2012-03-26 2012-03-26 Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Pending JP2013201058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012069533A JP2013201058A (en) 2012-03-26 2012-03-26 Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012069533A JP2013201058A (en) 2012-03-26 2012-03-26 Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2013201058A true JP2013201058A (en) 2013-10-03

Family

ID=49521147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012069533A Pending JP2013201058A (en) 2012-03-26 2012-03-26 Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2013201058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018185931A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Negative electrode active material particles for lithium ion secondary battery and manufacturing method thereof
WO2020105599A1 (en) * 2018-11-19 2020-05-28 昭和電工株式会社 Composite carbon particles, method for producing same, and lithium ion secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237638A (en) * 1995-12-25 1997-09-09 Sharp Corp Nonaqueous secondary battery
JPH11335106A (en) * 1998-03-25 1999-12-07 Shimadzu Corp Production of carbon
JP2000080378A (en) * 1998-09-07 2000-03-21 Nippon Steel Corp Method for pretreatment of coal for coke oven
JP2004253379A (en) * 2003-01-29 2004-09-09 Jfe Chemical Corp Negative electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2005005113A (en) * 2003-06-11 2005-01-06 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2007294374A (en) * 2006-03-31 2007-11-08 Hitachi Chem Co Ltd Negative electrode material for nonaqueous electrolytic liquid secondary battery, negative electrode for nonaqueous electrolytic liquid secondary battery using negative electrode material, and nonaqueous electrolytic liquid secondary battery
JP2008069015A (en) * 2003-04-04 2008-03-27 Canon Inc Flaky carbonaceous particle and production method thereof
JP2011060467A (en) * 2009-09-07 2011-03-24 Kansai Coke & Chem Co Ltd Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JP2011066009A (en) * 1998-11-27 2011-03-31 Mitsubishi Chemicals Corp Carbon material for electrode

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237638A (en) * 1995-12-25 1997-09-09 Sharp Corp Nonaqueous secondary battery
JPH11335106A (en) * 1998-03-25 1999-12-07 Shimadzu Corp Production of carbon
JP2000080378A (en) * 1998-09-07 2000-03-21 Nippon Steel Corp Method for pretreatment of coal for coke oven
JP2011066009A (en) * 1998-11-27 2011-03-31 Mitsubishi Chemicals Corp Carbon material for electrode
JP2004253379A (en) * 2003-01-29 2004-09-09 Jfe Chemical Corp Negative electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2008069015A (en) * 2003-04-04 2008-03-27 Canon Inc Flaky carbonaceous particle and production method thereof
JP2005005113A (en) * 2003-06-11 2005-01-06 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2007294374A (en) * 2006-03-31 2007-11-08 Hitachi Chem Co Ltd Negative electrode material for nonaqueous electrolytic liquid secondary battery, negative electrode for nonaqueous electrolytic liquid secondary battery using negative electrode material, and nonaqueous electrolytic liquid secondary battery
JP2011060467A (en) * 2009-09-07 2011-03-24 Kansai Coke & Chem Co Ltd Negative electrode material for lithium ion secondary battery and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018185931A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Negative electrode active material particles for lithium ion secondary battery and manufacturing method thereof
US10938025B2 (en) 2017-04-25 2021-03-02 Toyota Jidosha Kabushiki Kaisha Negative electrode active material particles for lithium ion secondary battery and method of producing the same
WO2020105599A1 (en) * 2018-11-19 2020-05-28 昭和電工株式会社 Composite carbon particles, method for producing same, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP6644692B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR101461220B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
CN107112499B (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6847667B2 (en) Negative electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
CN107210424B (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2015098551A1 (en) Solid-state lithium battery, solid-state lithium battery module, and method for producing solid-state lithium battery
JP6544951B2 (en) Positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery
JPWO2015152113A1 (en) Graphite negative electrode active material, negative electrode and lithium ion secondary battery
WO2021117550A1 (en) Non-aqueous electrolyte secondary battery
JP5783029B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2014148043A1 (en) Nonaqueous electrolyte secondary battery
US20220407053A1 (en) Anode active material, anode composition including the same and lithium secondary battery including the same
CN116014120A (en) Nonaqueous electrolyte secondary battery and method for producing same
WO2020003595A1 (en) Nonaqueous electrolyte secondary battery
JP2013095613A (en) CARBON-COATED LiVP2O7 PARTICLE, METHOD FOR PRODUCING THE SAME, AND LITHIUM ION SECONDARY BATTERY
JPWO2017056448A1 (en) Nonaqueous electrolyte secondary battery
CN110088970B (en) Nonaqueous electrolyte secondary battery
JP6508049B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery and method for manufacturing the same
TW201832401A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2020110942A1 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery
WO2021117549A1 (en) Non-aqueous electrolyte secondary battery
JP2017174649A (en) Iron oxide powder for lithium ion secondary battery negative electrode, method for producing the same, and lithium ion secondary battery
WO2020110943A1 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery
JP2013201058A (en) Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013191302A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106