JP2017117835A - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP2017117835A
JP2017117835A JP2015248640A JP2015248640A JP2017117835A JP 2017117835 A JP2017117835 A JP 2017117835A JP 2015248640 A JP2015248640 A JP 2015248640A JP 2015248640 A JP2015248640 A JP 2015248640A JP 2017117835 A JP2017117835 A JP 2017117835A
Authority
JP
Japan
Prior art keywords
pixel
pixels
photoelectric conversion
conversion element
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015248640A
Other languages
Japanese (ja)
Other versions
JP6734644B2 (en
Inventor
晃永 山本
Akinaga Yamamoto
晃永 山本
中村 重幸
Shigeyuki Nakamura
重幸 中村
輝昌 永野
Terumasa Nagano
輝昌 永野
健一 里
Kenichi Sato
健一 里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2015248640A priority Critical patent/JP6734644B2/en
Priority to EP16878450.2A priority patent/EP3396723A4/en
Priority to CN201680074846.7A priority patent/CN108431968B/en
Priority to KR1020187020412A priority patent/KR102659875B1/en
Priority to PCT/JP2016/086923 priority patent/WO2017110559A1/en
Priority to TW105141778A priority patent/TWI778948B/en
Publication of JP2017117835A publication Critical patent/JP2017117835A/en
Application granted granted Critical
Publication of JP6734644B2 publication Critical patent/JP6734644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion element capable of supporting a wide light quantity range.SOLUTION: A photoelectric conversion element 1A comprises: a plurality of pixels 10 which are formed on a common semiconductor substrate 30 and each of which includes an avalanche photodiode (APD) operating on common bias voltage; a first wiring 21 electrically connected to two or more first pixels 11 included in the plurality of pixels 10 and for collectively taking out output current from the two or more first pixels 11; and a second wiring 22 electrically connected to two or more second pixels 12 included in the plurality of pixels 10 and for collectively taking out output current from the two or more second pixels 12. A resistance value of a quenching resistor 24 of the second pixel 12 is larger than a resistance value of a quenching resistor 23 of the first pixel 11.SELECTED DRAWING: Figure 1

Description

本発明は、光電変換素子に関するものである。   The present invention relates to a photoelectric conversion element.

特許文献1には、放射線画像読取装置が開示されている。この放射線画像読取装置は、放射線画像が記録された輝尽性蛍光体層に励起光を走査して得られる画像情報を読み取るための光電変換素子を備えている。光電変換素子は、フォトダイオード及びシリコン光電子増倍管を有する。そして、光電変換素子により読み取られる輝尽光の光量に応じて、画像情報を読み取る光電変換素子をフォトダイオードとシリコン光電子増倍管との間で切り換える。   Patent Document 1 discloses a radiation image reading apparatus. This radiation image reading apparatus includes a photoelectric conversion element for reading image information obtained by scanning excitation light on a photostimulable phosphor layer on which a radiation image is recorded. The photoelectric conversion element has a photodiode and a silicon photomultiplier tube. Then, the photoelectric conversion element for reading image information is switched between the photodiode and the silicon photomultiplier tube in accordance with the amount of stimulated light read by the photoelectric conversion element.

特開2008−287165号公報JP 2008-287165 A

微弱な光を検出するための光電変換素子として、近年、アバランシェフォトダイオード(以下、APD)からなるピクセルが二次元状に配置されて成るものが知られている。このような光電変換素子では、各ピクセルに共通のバイアス電圧を供給するとともに、各ピクセルからの出力電流を一括して収集してフォトンカウンティングを行うことにより、フォトダイオードアレイへの微弱な入射光量を精度良く測定することができる。このような光電変換デバイスとしては、例えば浜松ホトニクス社製MPPC(登録商標)がある。   2. Description of the Related Art In recent years, a photoelectric conversion element for detecting weak light is known in which pixels made of avalanche photodiodes (hereinafter referred to as APDs) are two-dimensionally arranged. In such a photoelectric conversion element, a common bias voltage is supplied to each pixel, and the output current from each pixel is collected in a lump to perform photon counting, thereby reducing the amount of light incident on the photodiode array. It can measure with high accuracy. An example of such a photoelectric conversion device is MPPC (registered trademark) manufactured by Hamamatsu Photonics.

しかしながら、このような光電変換素子の適用範囲の拡大に従って、微弱光量から比較的大きな光量まで幅広い光量レンジに対応し得ることが望まれている。本発明は、このような課題に鑑みてなされたものであり、幅広い光量レンジに対応し得る光電変換素子を提供することを目的とする。   However, as the application range of such a photoelectric conversion element expands, it is desired to be able to cope with a wide light amount range from a weak light amount to a relatively large light amount. This invention is made | formed in view of such a subject, and it aims at providing the photoelectric conversion element which can respond to a wide light quantity range.

上述した課題を解決するために、本発明による光電変換素子は、共通の半導体基板に形成され、アバランシェフォトダイオードをそれぞれ含む複数のピクセルと、半導体基板上に形成されて複数のピクセルに含まれる二以上の第1のピクセルとクエンチング抵抗を介して電気的に接続され、二以上の第1のピクセルからの出力電流を一括して取り出す第1の配線と、半導体基板上に形成されて複数のピクセルに含まれる二以上の第2のピクセルとクエンチング抵抗を介して電気的に接続され、二以上の第2のピクセルからの出力電流を一括して取り出す第2の配線とを備える。第2のピクセルのクエンチング抵抗の抵抗値は、第1のピクセルのクエンチング抵抗の抵抗値よりも大きい。   In order to solve the above-described problems, a photoelectric conversion element according to the present invention is formed on a common semiconductor substrate and includes a plurality of pixels each including an avalanche photodiode and a plurality of pixels formed on the semiconductor substrate and included in the plurality of pixels. A first wiring that is electrically connected to the first pixel via a quenching resistor and that collectively outputs output currents from the two or more first pixels; and a plurality of wirings formed on the semiconductor substrate. Two or more second pixels included in the pixel are electrically connected to each other through a quenching resistor, and a second wiring that collectively outputs output currents from the two or more second pixels is provided. The resistance value of the quenching resistor of the second pixel is larger than the resistance value of the quenching resistor of the first pixel.

この光電変換素子では、第2のピクセルのクエンチング抵抗の抵抗値が、第1のピクセルのクエンチング抵抗の抵抗値よりも大きい。クエンチング抵抗の抵抗値が比較的小さい二以上の第1のピクセルでは、入射光量が微弱な場合であっても比較的大きな電流を出力することができる。言い換えれば、入射光量に対して高いゲインで電流を出力することができるので、検出可能な入射光量の下限を小さくすることができる。一方、クエンチング抵抗の抵抗値が比較的大きい二以上の第2のピクセルでは、入射光量が比較的大きい場合であっても比較的小さな電流を出力することができる。言い換えれば、入射光量に対して低いゲインで電流を出力することができるので、出力が飽和する入射光量の上限をより大きくすることができる。従って、上記の光電変換素子によれば、入射光量に応じて第1の配線または第2の配線から選択的に出力電流を取り出すことによって、微弱光量から比較的大きな光量まで幅広い光量レンジに対応することができる。   In this photoelectric conversion element, the resistance value of the quenching resistor of the second pixel is larger than the resistance value of the quenching resistor of the first pixel. In the two or more first pixels having a relatively small quenching resistance value, a relatively large current can be output even when the amount of incident light is weak. In other words, since the current can be output with a high gain with respect to the incident light amount, the lower limit of the detectable incident light amount can be reduced. On the other hand, two or more second pixels having relatively large quenching resistance values can output a relatively small current even when the amount of incident light is relatively large. In other words, since the current can be output with a low gain with respect to the incident light amount, the upper limit of the incident light amount at which the output is saturated can be further increased. Therefore, according to the above-described photoelectric conversion element, an output current is selectively extracted from the first wiring or the second wiring in accordance with the incident light amount, thereby supporting a wide light amount range from a weak light amount to a relatively large light amount. be able to.

上記の光電変換素子において、第1のピクセルの受光面積と第2のピクセルの受光面積とは互いに略等しくてもよい。これにより、従来の光電変換素子に対してクエンチング抵抗の抵抗値を変更するだけで、上記の効果を容易に得ることができる。   In the above photoelectric conversion element, the light receiving area of the first pixel and the light receiving area of the second pixel may be substantially equal to each other. Thereby, said effect can be easily acquired only by changing the resistance value of quenching resistance with respect to the conventional photoelectric conversion element.

上記の光電変換素子において、第2のピクセルのクエンチング抵抗は第1のピクセルのクエンチング抵抗よりも長くてもよい。或いは、第2のピクセルのクエンチング抵抗の延在方向と交差する方向の幅は、第1のピクセルのクエンチング抵抗の延在方向と交差する方向の幅よりも狭くてもよい。例えばこれらのうち少なくとも一方の構成を採用することにより、第2のピクセルのクエンチング抵抗の抵抗値を、第1のピクセルのクエンチング抵抗の抵抗値よりも容易に大きくすることができる。   In the above photoelectric conversion element, the quenching resistance of the second pixel may be longer than the quenching resistance of the first pixel. Alternatively, the width in the direction intersecting with the extending direction of the quenching resistance of the second pixel may be narrower than the width in the direction intersecting with the extending direction of the quenching resistance of the first pixel. For example, by adopting at least one of these configurations, the resistance value of the quenching resistance of the second pixel can be easily made larger than the resistance value of the quenching resistance of the first pixel.

上記の光電変換素子において、第2のピクセルに印加されるバイアス電圧は、第1のピクセルに印加されるバイアス電圧よりも小さくてもよい。これにより、対応可能な光量レンジを更に拡大することができる。   In the above photoelectric conversion element, the bias voltage applied to the second pixel may be smaller than the bias voltage applied to the first pixel. Thereby, the light quantity range which can respond can be expanded further.

本発明によれば、幅広い光量レンジに対応し得る光電変換素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the photoelectric conversion element which can respond to a wide light quantity range can be provided.

本発明の第1実施形態に係る光電変換素子の平面図である。It is a top view of the photoelectric conversion element concerning a 1st embodiment of the present invention. 受光面の一部を拡大して示す平面図である。It is a top view which expands and shows a part of light-receiving surface. 光電変換素子の断面構成を概略的に示す図である。It is a figure which shows roughly the cross-sectional structure of a photoelectric conversion element. 外部回路の構成例を概略的に示す図である。It is a figure which shows schematically the structural example of an external circuit. 第1変形例として、クエンチング抵抗の形状の例を示す図である。It is a figure which shows the example of the shape of quenching resistance as a 1st modification. 第2変形例に係る光電変換素子の平面図である。It is a top view of the photoelectric conversion element which concerns on a 2nd modification. 受光面の一部を拡大して示す平面図である。It is a top view which expands and shows a part of light-receiving surface. 光電変換素子の断面構成を概略的に示す図である。It is a figure which shows roughly the cross-sectional structure of a photoelectric conversion element. 第3変形例に係る回路構成を概略的に示す図である。It is a figure which shows roughly the circuit structure which concerns on a 3rd modification.

以下、添付図面を参照しながら本発明による光電変換素子の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, embodiments of a photoelectric conversion element according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の一実施形態に係る光電変換素子1Aの平面図である。光電変換素子1Aは、半導体基板30を備えており、半導体基板30の主面上は光を受ける受光部3Aとなっている。受光部3Aでは、複数のピクセル10が二次元状に配列されている。複数のピクセル10は、共通のバイアス電圧により動作するAPDをそれぞれ含んで構成されている。   FIG. 1 is a plan view of a photoelectric conversion element 1A according to an embodiment of the present invention. The photoelectric conversion element 1 </ b> A includes a semiconductor substrate 30, and the main surface of the semiconductor substrate 30 is a light receiving unit 3 </ b> A that receives light. In the light receiving unit 3A, a plurality of pixels 10 are arranged two-dimensionally. The plurality of pixels 10 each include an APD that operates with a common bias voltage.

複数のピクセル10には、二以上の第1のピクセル11と、二以上の第2のピクセル12とが含まれる。第1のピクセル11の受光面積(実効的な有感領域)と、第2のピクセル12の受光面積とは互いに略等しい。一例では、隣り合う第1のピクセル11同士のピッチ(中心間隔)は50μmであり、隣り合う第2のピクセル12同士のピッチも50μmである。本実施形態では、第1のピクセル11が列方向に並んで配置されて成る第1のピクセル列11Aと、第2のピクセル12が列方向に並んで配置されて成る第2のピクセル列12Aとが、行方向に交互に並んでいる。   The plurality of pixels 10 include two or more first pixels 11 and two or more second pixels 12. The light receiving area (effective sensitive area) of the first pixel 11 and the light receiving area of the second pixel 12 are substantially equal to each other. In one example, the pitch (center distance) between adjacent first pixels 11 is 50 μm, and the pitch between adjacent second pixels 12 is also 50 μm. In the present embodiment, a first pixel column 11A in which the first pixels 11 are arranged in the column direction, and a second pixel column 12A in which the second pixels 12 are arranged in the column direction, Are arranged alternately in the row direction.

光電変換素子1Aは、信号読出用の第1の配線21及び第2の配線22を更に備えている。第1の配線21は、二以上の第1のピクセル11と電気的に接続されており、これらの第1のピクセル11からの出力電流を一括して取り出す。第2の配線22は、二以上の第2のピクセル12と電気的に接続されており、これらの第2のピクセル12からの出力電流を一括して取り出す。   The photoelectric conversion element 1A further includes a first wiring 21 and a second wiring 22 for signal reading. The first wiring 21 is electrically connected to two or more first pixels 11, and takes out output currents from these first pixels 11 at a time. The second wiring 22 is electrically connected to two or more second pixels 12, and takes out output currents from these second pixels 12 in a lump.

図2は、受光部3Aの一部を拡大して示す平面図である。図2に示されるように、第1のピクセル11のAPDと第1の配線21とは、クエンチング抵抗23を介して電気的に接続されている。言い換えると、クエンチング抵抗23の一端が第1のピクセル11のAPDと電気的に接続され、他端が第1の配線21と電気的に接続されている。同様に、第2のピクセル12のAPDと第2の配線22とは、クエンチング抵抗24を介して電気的に接続されている。言い換えると、クエンチング抵抗24の一端が第2のピクセル12のAPDと電気的に接続され、他端が第2の配線22と電気的に接続されている。   FIG. 2 is an enlarged plan view showing a part of the light receiving unit 3A. As shown in FIG. 2, the APD of the first pixel 11 and the first wiring 21 are electrically connected via a quenching resistor 23. In other words, one end of the quenching resistor 23 is electrically connected to the APD of the first pixel 11, and the other end is electrically connected to the first wiring 21. Similarly, the APD of the second pixel 12 and the second wiring 22 are electrically connected via a quenching resistor 24. In other words, one end of the quenching resistor 24 is electrically connected to the APD of the second pixel 12, and the other end is electrically connected to the second wiring 22.

第2のピクセル12のクエンチング抵抗24の抵抗値は、前記第1のピクセル11のクエンチング抵抗23の抵抗値よりも大きい。一例では、クエンチング抵抗24の抵抗値は500kΩであり、クエンチング抵抗23の抵抗値は250kΩである。別の例では、クエンチング抵抗24の抵抗値は750kΩであり、クエンチング抵抗23の抵抗値は250kΩである。更に別の例では、クエンチング抵抗24の抵抗値は1MΩであり、クエンチング抵抗23の抵抗値は250kΩである。クエンチング抵抗23の抵抗値は、ラッチングしない(すなわちクエンチング可能な)値であればよい。   The resistance value of the quenching resistor 24 of the second pixel 12 is larger than the resistance value of the quenching resistor 23 of the first pixel 11. In one example, the resistance value of the quenching resistor 24 is 500 kΩ, and the resistance value of the quenching resistor 23 is 250 kΩ. In another example, the resistance value of the quenching resistor 24 is 750 kΩ, and the resistance value of the quenching resistor 23 is 250 kΩ. In yet another example, the resistance value of the quenching resistor 24 is 1 MΩ, and the resistance value of the quenching resistor 23 is 250 kΩ. The resistance value of the quenching resistor 23 may be a value that does not latch (that is, can be quenched).

このようなクエンチング抵抗の抵抗値の相違は、例えばクエンチング抵抗の断面積を互いに異ならせること、或いはクエンチング抵抗の長さを互いに異ならせることにより好適に実現される。図2に示される例では、クエンチング抵抗23の抵抗値を小さくするためにクエンチング抵抗23を直線状に配設して短くし、またクエンチング抵抗24の抵抗値を大きくするためにクエンチング抵抗24を渦巻き状に配設して長くしている。クエンチング抵抗23,24は、例えば光透過性(半透明)の導電性材料からなる。   Such a difference in resistance value of the quenching resistor is preferably realized, for example, by making the cross-sectional areas of the quenching resistors different from each other or making the lengths of the quenching resistors different from each other. In the example shown in FIG. 2, the quenching resistor 23 is linearly arranged and shortened to reduce the resistance value of the quenching resistor 23, and the quenching resistor 24 is increased to increase the resistance value of the quenching resistor 24. The resistor 24 is arranged in a spiral shape to make it longer. The quenching resistors 23 and 24 are made of, for example, a light transmissive (translucent) conductive material.

図3は、光電変換素子1Aの断面構成を概略的に示す図である。光電変換素子1Aは、半導体基板30を備えている。上述した複数のピクセル10は、この共通の半導体基板30に形成されている。具体的には、半導体基板30は主面30a及び裏面30bを有しており、裏面30b上の全面には下面電極(カソード)31が設けられている。また、半導体基板30は、裏面30bを含みn型Siからなる領域30cと、主面30aを含みp型Siからなる領域30dとが積層されてなる。主面30aを含む領域30dの内部には、第1のピクセル11を構成するp型半導体領域32aと、第2のピクセル12を構成するp型半導体領域32bとが、互いに間隔を空けて並んで形成されている。p型半導体領域32a,32bは例えばp型Siからなる。第1のピクセル11のAPDは、p型半導体領域32a直下の領域30dと領域30cとがpn接合を成すことによって構成されている。同様に、第2のピクセル12のAPDは、p型半導体領域32b直下の領域30dと領域30cとがpn接合を成すことによって構成されている。   FIG. 3 is a diagram schematically showing a cross-sectional configuration of the photoelectric conversion element 1A. The photoelectric conversion element 1 </ b> A includes a semiconductor substrate 30. The plurality of pixels 10 described above are formed on this common semiconductor substrate 30. Specifically, the semiconductor substrate 30 has a main surface 30a and a back surface 30b, and a lower surface electrode (cathode) 31 is provided on the entire surface of the back surface 30b. The semiconductor substrate 30 is formed by laminating a region 30c including the back surface 30b and made of n-type Si, and a region 30d including the main surface 30a and made of p-type Si. Inside the region 30d including the main surface 30a, a p-type semiconductor region 32a constituting the first pixel 11 and a p-type semiconductor region 32b constituting the second pixel 12 are arranged at intervals. Is formed. The p-type semiconductor regions 32a and 32b are made of, for example, p-type Si. The APD of the first pixel 11 is configured by forming a pn junction between the region 30d and the region 30c immediately below the p-type semiconductor region 32a. Similarly, the APD of the second pixel 12 is configured by forming a pn junction between the region 30d and the region 30c immediately below the p-type semiconductor region 32b.

主面30a上の全面には、第1の絶縁膜33が設けられている。第1の絶縁膜33は、例えばSiO2、SiNといった絶縁性シリコン化合物によって好適に構成され得る。p型半導体領域32a上かつ第1の絶縁膜33上にはコンタクト電極(アノード)34aが設けられている。コンタクト電極34aは、第1の絶縁膜33に形成された開口を介してp型半導体領域32aと接触している。同様に、p型半導体領域32b上かつ第1の絶縁膜33上にはコンタクト電極(アノード)34bが設けられている。コンタクト電極34bは、第1の絶縁膜33に形成された開口を介してp型半導体領域32bと接触している。 A first insulating film 33 is provided on the entire surface of the main surface 30a. The first insulating film 33 can be preferably composed of an insulating silicon compound such as SiO 2 or SiN. A contact electrode (anode) 34 a is provided on the p-type semiconductor region 32 a and on the first insulating film 33. The contact electrode 34 a is in contact with the p-type semiconductor region 32 a through the opening formed in the first insulating film 33. Similarly, a contact electrode (anode) 34 b is provided on the p-type semiconductor region 32 b and on the first insulating film 33. The contact electrode 34 b is in contact with the p-type semiconductor region 32 b through the opening formed in the first insulating film 33.

第1の配線21及び第2の配線22は、金属製であり、半導体基板30上に形成されている。本実施形態では、第1の配線21及び第2の配線22は、p型半導体領域32a及びp型半導体領域32bのいずれも形成されていない半導体基板30の領域上に位置する第1の絶縁膜33上に設けられている。   The first wiring 21 and the second wiring 22 are made of metal and are formed on the semiconductor substrate 30. In the present embodiment, the first wiring 21 and the second wiring 22 are the first insulating film located on the region of the semiconductor substrate 30 where neither the p-type semiconductor region 32a nor the p-type semiconductor region 32b is formed. 33 is provided.

第1の配線21及び第2の配線22、第1の絶縁膜33、並びにコンタクト電極34a及び34bは、第2の絶縁膜35によって覆われている。第2の絶縁膜35は、半導体基板30上の全面を覆っており、例えばSiO2、SiNといった無機絶縁体によって好適に構成され得る。前述したクエンチング抵抗23,24は、第2の絶縁膜35上に設けられている。クエンチング抵抗23の一端及び他端それぞれは、第2の絶縁膜35に形成された開口を介して、コンタクト電極34a及び第1の配線21のそれぞれと電気的に接続されている。クエンチング抵抗24の一端及び他端それぞれは、第2の絶縁膜35に形成された開口を介して、コンタクト電極34b及び第2の配線22のそれぞれと電気的に接続されている。 The first wiring 21 and the second wiring 22, the first insulating film 33, and the contact electrodes 34 a and 34 b are covered with a second insulating film 35. The second insulating film 35 covers the entire surface of the semiconductor substrate 30 and can be suitably configured by an inorganic insulator such as SiO 2 or SiN. The quenching resistors 23 and 24 described above are provided on the second insulating film 35. One end and the other end of the quenching resistor 23 are electrically connected to the contact electrode 34 a and the first wiring 21 through an opening formed in the second insulating film 35. One end and the other end of the quenching resistor 24 are electrically connected to each of the contact electrode 34 b and the second wiring 22 through an opening formed in the second insulating film 35.

ここで、本実施形態の光電変換素子1Aから信号を読み出すための外部回路の構成例について説明する。図4は、外部回路の構成例を概略的に示す図である。図4に示されるように、複数のピクセル10の各APDのカソードすなわち下面電極31(図3参照)には、共通のバイアス電圧HVが印加される。   Here, a configuration example of an external circuit for reading a signal from the photoelectric conversion element 1A of the present embodiment will be described. FIG. 4 is a diagram schematically showing a configuration example of the external circuit. As shown in FIG. 4, a common bias voltage HV is applied to the cathode of each APD of the plurality of pixels 10, that is, the lower surface electrode 31 (see FIG. 3).

第1のピクセル11のAPDのアノードは、クエンチング抵抗23及び第1の配線21を介して、光電変換素子1Aの外部に設けられた抵抗41の一端に接続される。抵抗41の他端は基準電位(GND)線51に接続される。そして、抵抗41の一端はフォトンカウンティング回路60に接続されており、抵抗41における降下電圧が、フォトンカウンティング回路60に入力される。   The anode of the APD of the first pixel 11 is connected to one end of a resistor 41 provided outside the photoelectric conversion element 1 </ b> A via the quenching resistor 23 and the first wiring 21. The other end of the resistor 41 is connected to a reference potential (GND) line 51. One end of the resistor 41 is connected to the photon counting circuit 60, and the voltage drop across the resistor 41 is input to the photon counting circuit 60.

フォトンカウンティング回路60は、コンパレータ61と、カウンタ62とを含む。コンパレータ61は、D/Aコンバータ63によって生成された基準電圧と、抵抗41における降下電圧とを比較する。そして、抵抗41における降下電圧が基準電圧を超えたとき(すなわち閾値を超える電流パルスが第1のピクセル11から出力されたとき)に、信号をカウンタ62に送る。カウンタ62は、コンパレータ61から信号が送られた回数をカウントする。そのカウント値は、全ての第1のピクセル11への入射光量に相当する。   The photon counting circuit 60 includes a comparator 61 and a counter 62. The comparator 61 compares the reference voltage generated by the D / A converter 63 with the voltage drop across the resistor 41. When the voltage drop across the resistor 41 exceeds the reference voltage (that is, when a current pulse exceeding the threshold is output from the first pixel 11), a signal is sent to the counter 62. The counter 62 counts the number of times the signal is sent from the comparator 61. The count value corresponds to the amount of incident light on all the first pixels 11.

第2のピクセル12のAPDのアノードは、クエンチング抵抗24及び第2の配線22を介して、光電変換素子1Aの外部に設けられた抵抗42の一端に接続される。抵抗42の他端は基準電位(GND)線51に接続される。そして、抵抗42の一端は、増幅回路70及びピークホールド回路71を介して、A/Dコンバータ72に接続されている。抵抗42における降下電圧は、増幅回路70によって増幅されたのち、ピークホールド回路71によって保持される。そして、保持された電圧が、A/Dコンバータ72に入力される。A/Dコンバータ72は、入力された電圧信号(アナログ信号)をデジタル信号に変換する。そのデジタル値は、全ての第2のピクセル12への入射光量に相当する。   The anode of the APD of the second pixel 12 is connected to one end of a resistor 42 provided outside the photoelectric conversion element 1 </ b> A via the quenching resistor 24 and the second wiring 22. The other end of the resistor 42 is connected to a reference potential (GND) line 51. One end of the resistor 42 is connected to the A / D converter 72 via the amplifier circuit 70 and the peak hold circuit 71. The voltage drop across the resistor 42 is amplified by the amplifier circuit 70 and then held by the peak hold circuit 71. Then, the held voltage is input to the A / D converter 72. The A / D converter 72 converts the input voltage signal (analog signal) into a digital signal. The digital value corresponds to the amount of incident light on all the second pixels 12.

カウンタ62から出力されるカウント値およびA/Dコンバータ72から出力されるデジタル値は、信号処理部80へ送られる。信号処理部80は、これらのカウント値およびデジタル値のうち有意な値を有する方を採用し、その値に基づいて入射光量を特定する。   The count value output from the counter 62 and the digital value output from the A / D converter 72 are sent to the signal processing unit 80. The signal processing unit 80 employs one having a significant value among the count value and the digital value, and specifies the amount of incident light based on the value.

以上に説明した、本実施形態の光電変換素子1Aによって得られる効果について説明する。本実施形態の光電変換素子1Aでは、第2のピクセル12のクエンチング抵抗24の抵抗値が、第1のピクセル11のクエンチング抵抗23の抵抗値よりも大きい。クエンチング抵抗23の抵抗値が比較的小さい二以上の第1のピクセル11では、入射光量が微弱な場合であっても比較的大きな電流を出力することができる。言い換えれば、入射光量に対して高いゲインで電流を出力することができるので、検出可能な入射光量の下限を小さくすることができる。一方、クエンチング抵抗24の抵抗値が比較的大きい二以上の第2のピクセル12では、入射光量が比較的大きい場合であっても比較的小さな電流を出力することができる。言い換えれば、入射光量に対して低いゲインで電流を出力することができるので、出力が飽和する入射光量の上限をより大きくすることができる。従って、本実施形態の光電変換素子1Aによれば、入射光量に応じて第1の配線21または第2の配線22から選択的に出力電流を取り出すことによって、微弱光量から比較的大きな光量まで幅広い光量レンジに対応することができる。   The effects obtained by the photoelectric conversion element 1A of the present embodiment described above will be described. In the photoelectric conversion element 1 </ b> A of the present embodiment, the resistance value of the quenching resistor 24 of the second pixel 12 is larger than the resistance value of the quenching resistor 23 of the first pixel 11. The two or more first pixels 11 having a relatively low resistance value of the quenching resistor 23 can output a relatively large current even when the amount of incident light is weak. In other words, since the current can be output with a high gain with respect to the incident light amount, the lower limit of the detectable incident light amount can be reduced. On the other hand, two or more second pixels 12 having a relatively large resistance value of the quenching resistor 24 can output a relatively small current even when the amount of incident light is relatively large. In other words, since the current can be output with a low gain with respect to the incident light amount, the upper limit of the incident light amount at which the output is saturated can be further increased. Therefore, according to the photoelectric conversion element 1A of the present embodiment, the output current is selectively extracted from the first wiring 21 or the second wiring 22 in accordance with the amount of incident light, thereby widening from a weak light amount to a relatively large light amount. It can correspond to the light intensity range.

また、本実施形態によれば、入射光量が微弱な場合、及び比較的大きい場合の双方に対し、各ピクセルの光検出原理を共通とする一つのデバイスで対応することが可能となる。これにより、動作電圧の共通化、同一基板上に構成することによる低コスト化、並びに、特性の均一化が期待できる。また、本実施形態によれば、多数のピクセル10を二次元状に配列することが可能であり、大面積の受光面を容易に実現できる。また、複数のピクセル10の配列の自由度が高く、受光部3Aを正方形、長方形、円形、及び多角形といった、用途や光学系に適した形状に変更することが容易である。   Further, according to the present embodiment, it is possible to cope with both a case where the amount of incident light is weak and a case where the amount of incident light is relatively large with a single device that shares the light detection principle of each pixel. As a result, it is expected that the operating voltage is shared, the cost is reduced by configuring the same on the same substrate, and the characteristics are made uniform. Further, according to the present embodiment, it is possible to arrange a large number of pixels 10 in a two-dimensional manner, and a large area light receiving surface can be easily realized. In addition, the degree of freedom of arrangement of the plurality of pixels 10 is high, and it is easy to change the light receiving unit 3A to a shape suitable for a use and an optical system such as a square, a rectangle, a circle, and a polygon.

また、本実施形態のように、第1のピクセル11の受光面積と第2のピクセル12の受光面積とは互いに略等しくてもよい。これにより、従来の光電変換素子に対してクエンチング抵抗23,24の抵抗値を変更するだけで、上記の効果を容易に得ることができる。   Further, as in the present embodiment, the light receiving area of the first pixel 11 and the light receiving area of the second pixel 12 may be substantially equal to each other. Thereby, said effect can be easily acquired only by changing the resistance value of quenching resistance 23 and 24 with respect to the conventional photoelectric conversion element.

また、本実施形態のように、クエンチング抵抗24はクエンチング抵抗23よりも長くてもよい。このような構成を採用することにより、クエンチング抵抗24の抵抗値を、クエンチング抵抗23の抵抗値よりも容易に大きくすることができる。   Moreover, the quenching resistor 24 may be longer than the quenching resistor 23 as in the present embodiment. By adopting such a configuration, the resistance value of the quenching resistor 24 can be easily made larger than the resistance value of the quenching resistor 23.

(第1変形例)
図5(a)及び図5(b)は、一変形例に係るクエンチング抵抗24,23の断面図であって、クエンチング抵抗24,23の延在方向と交差する(典型的には垂直な)断面を示している。この例では、クエンチング抵抗24の幅W1が、クエンチング抵抗23の幅W2よりも狭くなっている。上述した実施形態では、クエンチング抵抗23,24の長さを異ならせることによって抵抗値を異ならせているが、本変形例のように、クエンチング抵抗23,24の幅を異ならせることによっても、抵抗値を容易に異ならせることができる。
(First modification)
FIG. 5A and FIG. 5B are cross-sectional views of quenching resistors 24 and 23 according to a modification, and intersect with the extending direction of the quenching resistors 24 and 23 (typically vertical). N) shows a cross section. In this example, the width W 1 of the quenching resistor 24 is narrower than the width W 2 of the quenching resistor 23. In the embodiment described above, the resistance values are made different by making the lengths of the quenching resistors 23 and 24 different, but also by making the widths of the quenching resistors 23 and 24 different as in this modification. The resistance value can be easily varied.

(第2変形例)
図6は、本発明の第2変形例に係る光電変換素子1Bの平面図である。光電変換素子1Bと上記実施形態との相違点は、受光面における第1のピクセル11及び第2のピクセル12の配置である。本変形例の受光部3Bにおいては、K1個(K1は2以上の整数、図ではK1=16の場合を例示)の第1のピクセル11をそれぞれ含む複数の第1の領域A1と、K2個(K2は2以上の整数、図ではK2=16の場合を例示)の第2のピクセル12をそれぞれ含む複数の第2の領域A2とが、受光部3Bにおいて混在して二次元状(マトリクス状)に配列されている。図6に示される例では、第1の領域A1と第2の領域A2とが市松模様のごとく配置されている。
(Second modification)
FIG. 6 is a plan view of a photoelectric conversion element 1B according to a second modification of the present invention. The difference between the photoelectric conversion element 1B and the above embodiment is the arrangement of the first pixels 11 and the second pixels 12 on the light receiving surface. In the light receiving unit 3B of the present modification, a plurality of first regions A1 each including K 1 (K 1 is an integer equal to or greater than 2 and K 1 = 16 is illustrated in the figure), respectively. , K 2 (K 2 is an integer greater than or equal to 2 ; in the figure, K 2 = 16 is exemplified) a plurality of second regions A 2 each including a second pixel 12 are mixed in the light receiving unit 3 B. They are arranged in a two-dimensional form (matrix form). In the example shown in FIG. 6, the first area A1 and the second area A2 are arranged in a checkered pattern.

図7(a)及び図7(b)は、第1の領域A1及び第2の領域A2をそれぞれ拡大して示す平面図である。また、図8は、光電変換素子1Bの断面構成を概略的に示す図である。一例では、第1の領域A1において第1のピクセル11はM1行N1列(M1,N1は1以上の整数。但しM1×N1=K1)の二次元状に配列されている。そして、2列おきに第1の配線21が配設されており、各第1の配線21の両側に位置する第1のピクセル11が、その第1の配線21にクエンチング抵抗23を介して電気的に接続されている。同様に、第2の領域A2において第2のピクセル12はM2行N2列(M2,N2は1以上の整数。但しM2×N2=K2)の二次元状に配列されている。そして、2列おきに第2の配線22が配設されており、各第2の配線22の両側に位置する第2のピクセル12が、その第2の配線22にクエンチング抵抗24を介して電気的に接続されている。 FIG. 7A and FIG. 7B are enlarged plan views showing the first region A1 and the second region A2, respectively. FIG. 8 is a diagram schematically showing a cross-sectional configuration of the photoelectric conversion element 1B. In one example, in the first area A1, the first pixels 11 are two-dimensionally arranged in M 1 rows and N 1 columns (M 1 and N 1 are integers of 1 or more, where M 1 × N 1 = K 1 ). ing. The first wirings 21 are arranged every two rows, and the first pixels 11 located on both sides of each first wiring 21 are connected to the first wirings 21 via quenching resistors 23. Electrically connected. Similarly, in the second area A2, the second pixels 12 are two-dimensionally arranged in M 2 rows and N 2 columns (M 2 and N 2 are integers of 1 or more, where M 2 × N 2 = K 2 ). ing. The second wirings 22 are arranged every two rows, and the second pixels 12 located on both sides of each second wiring 22 are connected to the second wirings 22 via quenching resistors 24. Electrically connected.

本発明における第1及び第2のピクセルの配置は上記実施形態に限られるものではなく、例えば本変形例の光電変換素子1Bなど、様々な形態が可能である。そして、どのようなピクセル配置であっても、上述した実施形態の光電変換素子1Aと同様の効果を好適に奏することができる。   The arrangement of the first and second pixels in the present invention is not limited to the above-described embodiment, and various forms such as the photoelectric conversion element 1B of the present modification are possible. Further, the same effects as those of the photoelectric conversion element 1A of the above-described embodiment can be suitably achieved regardless of the pixel arrangement.

(第3変形例)
図9は、本発明の第3変形例に係る回路構成を示す図である。上記実施形態(図4を参照)では複数のピクセル10に共通のバイアス電圧HVが印加されているが、本変形例では、第2のピクセル12に印加されるバイアス電圧が、第1のピクセル11に印加されるバイアス電圧よりも小さい。具体的には、各APDのカソードには共通のバイアス電位HVが印加されるが、第1のピクセル11のAPDのアノードは、クエンチング抵抗23、第1の配線21、及び抵抗41を介して、第1の基準電位(GND)線52に接続される。一方、第2のピクセル12のAPDのアノードは、クエンチング抵抗24、第2の配線22、及び抵抗42を介して、第2の基準電位(GND)線53に接続される。第2の基準電位(GND)線53の電位は、第1の基準電位(GND)線52の電位よりも高く設定される。これにより、第2のピクセル12に印加されるバイアス電圧は、第1のピクセル11に印加されるバイアス電圧よりも実質的に小さくなる。
(Third Modification)
FIG. 9 is a diagram showing a circuit configuration according to a third modification of the present invention. In the above embodiment (see FIG. 4), the common bias voltage HV is applied to the plurality of pixels 10. However, in this modification, the bias voltage applied to the second pixel 12 is the first pixel 11. Smaller than the bias voltage applied to. Specifically, a common bias potential HV is applied to the cathodes of the respective APDs. The anode of the APD of the first pixel 11 is connected via the quenching resistor 23, the first wiring 21, and the resistor 41. Are connected to the first reference potential (GND) line 52. On the other hand, the anode of the APD of the second pixel 12 is connected to the second reference potential (GND) line 53 through the quenching resistor 24, the second wiring 22, and the resistor 42. The potential of the second reference potential (GND) line 53 is set higher than the potential of the first reference potential (GND) line 52. As a result, the bias voltage applied to the second pixel 12 is substantially smaller than the bias voltage applied to the first pixel 11.

本変形例によれば、第1のピクセル11では入射光量に対する感度を高め、微弱な入射光量に対して更に大きな電流を出力することができる。言い換えれば、入射光量に対して更に高いゲインで電流を出力することができるので、検出可能な入射光量の下限をより小さくすることができる。一方、第2のピクセル12では入射光量に対する感度を低くし、大きな入射光量に対して出力電流を更に小さくすることができる。言い換えれば、入射光量に対して更に低いゲインで電流を出力することができるので、出力が飽和する入射光量の上限をより大きくすることができる。従って、本変形例によれば、上記実施形態と比較して、対応可能な光量レンジを更に拡大することができる。   According to this modification, the first pixel 11 can increase the sensitivity to the incident light amount and output a larger current with respect to the weak incident light amount. In other words, since the current can be output with a higher gain with respect to the incident light amount, the lower limit of the detectable incident light amount can be further reduced. On the other hand, in the second pixel 12, the sensitivity to the incident light amount can be lowered, and the output current can be further reduced with respect to the large incident light amount. In other words, since the current can be output with a lower gain with respect to the incident light amount, the upper limit of the incident light amount at which the output is saturated can be further increased. Therefore, according to the present modification, it is possible to further expand the compatible light quantity range as compared with the above embodiment.

なお、第1のピクセル11のAPDのカソードと、第2のピクセル12のAPDのカソードとを電気的に分離し、第1のピクセル11のAPDのカソードに印加されるバイアス電圧を、第2のピクセル12のAPDのカソードに印加されるバイアス電圧よりも大きくしてもよい。このような構成であっても、本変形例の上記効果を好適に得ることができる。   Note that the APD cathode of the first pixel 11 and the APD cathode of the second pixel 12 are electrically separated, and the bias voltage applied to the APD cathode of the first pixel 11 is set to the second voltage. The bias voltage applied to the cathode of the APD of the pixel 12 may be larger. Even if it is such a structure, the said effect of this modification can be acquired suitably.

また、上記実施形態において、第1のピクセル11からの出力電流を電圧信号に変換する抵抗41の抵抗値を、第2のピクセル12からの出力電流を電圧信号に変換する抵抗42の抵抗値よりも大きくしてもよい。これにより、入射光量が微弱な場合であっても、第1のピクセル11からの出力電流を比較的大きな増幅率でもって電圧信号に変換することができる。言い換えれば、入射光量に対して高いゲインで電圧信号を生成することができるので、フォトンカウンティングを精度良く行うことができる。一方、入射光量が比較的大きい場合であっても、第2のピクセル12からの出力電流を比較的小さな増幅率でもって電圧信号に変換することができる。言い換えれば、入射光量に対して低いゲインで電圧信号を生成することができるので、出力が飽和する入射光量の上限をより大きくすることができる。従って、対応可能な光量レンジを更に拡大することができる。   In the above embodiment, the resistance value of the resistor 41 that converts the output current from the first pixel 11 into a voltage signal is greater than the resistance value of the resistor 42 that converts the output current from the second pixel 12 into a voltage signal. May be larger. Thereby, even when the amount of incident light is weak, the output current from the first pixel 11 can be converted into a voltage signal with a relatively large amplification factor. In other words, since a voltage signal can be generated with a high gain with respect to the incident light amount, photon counting can be performed with high accuracy. On the other hand, even when the amount of incident light is relatively large, the output current from the second pixel 12 can be converted into a voltage signal with a relatively small amplification factor. In other words, since the voltage signal can be generated with a low gain with respect to the incident light amount, the upper limit of the incident light amount at which the output is saturated can be further increased. Therefore, it is possible to further expand the light quantity range that can be handled.

本発明による光電変換素子は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上述した実施形態及び各変形例を、必要に応じて互いに組み合わせてもよい。また、上記実施形態及び第1変形例では、クエンチング抵抗23,24の抵抗値を互いに異ならせる方法としてこれらの長さや幅を異ならせることを例示したが、他の方法によってクエンチング抵抗23,24の抵抗値を互いに異ならせてもよい。例えば、クエンチング抵抗23,24に添加される抵抗成分の濃度を互いに異ならせることによっても、これらの抵抗値を好適に異ならせることができる。また、上記実施形態では半導体基板30及びp型半導体領域32a,32bの構成材料としてSiを例示したが、本発明では、半導体基板及び各p型半導体領域には種々の半導体材料を採用し得る。   The photoelectric conversion element according to the present invention is not limited to the above-described embodiment, and various other modifications are possible. For example, the above-described embodiments and modifications may be combined with each other as necessary. Moreover, in the said embodiment and the 1st modification, although exemplifying changing these length and width as a method of making resistance value of quenching resistance 23 and 24 mutually differ, quenching resistance 23, The resistance values of 24 may be different from each other. For example, these resistance values can be suitably varied by making the concentrations of the resistance components added to the quenching resistors 23 and 24 different from each other. In the above embodiment, Si is exemplified as the constituent material of the semiconductor substrate 30 and the p-type semiconductor regions 32a and 32b. However, in the present invention, various semiconductor materials can be adopted for the semiconductor substrate and each p-type semiconductor region.

1A,1B…光電変換素子、3A,3B…受光部、10…ピクセル、11…第1のピクセル、11A…第1のピクセル列、12…第2のピクセル、12A…第2のピクセル列、21…第1の配線、22…第2の配線、23,24…クエンチング抵抗、30…半導体基板、31…下面電極、32a,32b…p型半導体領域、33…第1の絶縁膜、34a,34b…コンタクト電極、35…第2の絶縁膜、41,42…抵抗、60…フォトンカウンティング回路、61…コンパレータ、62…カウンタ、63…D/Aコンバータ、70…増幅回路、71…ピークホールド回路、72…A/Dコンバータ、80…信号処理部、A1…第1の領域、A2…第2の領域。   DESCRIPTION OF SYMBOLS 1A, 1B ... Photoelectric conversion element, 3A, 3B ... Light-receiving part, 10 ... Pixel, 11 ... 1st pixel, 11A ... 1st pixel row, 12 ... 2nd pixel, 12A ... 2nd pixel row, 21 ... 1st wiring, 22 ... 2nd wiring, 23, 24 ... Quenching resistance, 30 ... Semiconductor substrate, 31 ... Bottom electrode, 32a, 32b ... p-type semiconductor region, 33 ... 1st insulating film, 34a, 34b ... contact electrode, 35 ... second insulating film, 41, 42 ... resistor, 60 ... photon counting circuit, 61 ... comparator, 62 ... counter, 63 ... D / A converter, 70 ... amplification circuit, 71 ... peak hold circuit 72 ... A / D converter, 80 ... signal processing unit, A1 ... first region, A2 ... second region.

Claims (5)

共通の半導体基板に形成され、アバランシェフォトダイオードをそれぞれ含む複数のピクセルと、
前記半導体基板上に形成されて前記複数のピクセルに含まれる二以上の第1のピクセルとクエンチング抵抗を介して電気的に接続され、前記二以上の第1のピクセルからの出力電流を一括して取り出す第1の配線と、
前記半導体基板上に形成されて前記複数のピクセルに含まれる二以上の第2のピクセルとクエンチング抵抗を介して電気的に接続され、前記二以上の第2のピクセルからの出力電流を一括して取り出す第2の配線と、を備え、
前記第2のピクセルの前記クエンチング抵抗の抵抗値が、前記第1のピクセルの前記クエンチング抵抗の抵抗値よりも大きい、光電変換素子。
A plurality of pixels formed on a common semiconductor substrate and each including an avalanche photodiode;
Two or more first pixels included in the plurality of pixels formed on the semiconductor substrate are electrically connected via a quenching resistor, and output currents from the two or more first pixels are collectively collected. First wiring to be taken out,
Two or more second pixels included in the plurality of pixels formed on the semiconductor substrate are electrically connected via a quenching resistor, and output currents from the two or more second pixels are collectively collected. And a second wiring to be taken out,
The photoelectric conversion element in which a resistance value of the quenching resistor of the second pixel is larger than a resistance value of the quenching resistor of the first pixel.
前記第1のピクセルの受光面積と前記第2のピクセルの受光面積とが互いに略等しい、請求項1に記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein a light receiving area of the first pixel and a light receiving area of the second pixel are substantially equal to each other. 前記第2のピクセルの前記クエンチング抵抗が、前記第1のピクセルの前記クエンチング抵抗よりも長い、請求項1または2に記載の光電変換素子。   3. The photoelectric conversion element according to claim 1, wherein the quenching resistance of the second pixel is longer than the quenching resistance of the first pixel. 前記第2のピクセルの前記クエンチング抵抗の延在方向と交差する方向の幅が、前記第1のピクセルの前記クエンチング抵抗の延在方向と交差する方向の幅よりも狭い、請求項1〜3のいずれか一項に記載の光電変換素子。   The width of the second pixel in the direction intersecting with the extending direction of the quenching resistor is narrower than the width of the first pixel in the direction intersecting with the extending direction of the quenching resistor. The photoelectric conversion element according to any one of 3. 前記第2のピクセルに印加されるバイアス電圧が、前記第1のピクセルに印加されるバイアス電圧よりも小さい、請求項1〜4のいずれか一項に記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein a bias voltage applied to the second pixel is smaller than a bias voltage applied to the first pixel.
JP2015248640A 2015-12-21 2015-12-21 Photoelectric conversion device Active JP6734644B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015248640A JP6734644B2 (en) 2015-12-21 2015-12-21 Photoelectric conversion device
EP16878450.2A EP3396723A4 (en) 2015-12-21 2016-12-12 Photoelectric conversion element and photoelectric conversion module
CN201680074846.7A CN108431968B (en) 2015-12-21 2016-12-12 Photoelectric conversion element and photoelectric conversion module
KR1020187020412A KR102659875B1 (en) 2015-12-21 2016-12-12 Photoelectric conversion element and photoelectric conversion module
PCT/JP2016/086923 WO2017110559A1 (en) 2015-12-21 2016-12-12 Photoelectric conversion element and photoelectric conversion module
TW105141778A TWI778948B (en) 2015-12-21 2016-12-16 Photoelectric conversion elements and photoelectric conversion modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248640A JP6734644B2 (en) 2015-12-21 2015-12-21 Photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2017117835A true JP2017117835A (en) 2017-06-29
JP6734644B2 JP6734644B2 (en) 2020-08-05

Family

ID=59232176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248640A Active JP6734644B2 (en) 2015-12-21 2015-12-21 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP6734644B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169643A (en) * 2018-03-23 2019-10-03 パナソニックIpマネジメント株式会社 Solid state image sensor
WO2019216242A1 (en) * 2018-05-10 2019-11-14 浜松ホトニクス株式会社 Back-illuminated semiconductor light detecting device
US10833207B2 (en) 2018-04-24 2020-11-10 Canon Kabushiki Kaisha Photo-detection device, photo-detection system, and mobile apparatus
JP2021072347A (en) * 2019-10-30 2021-05-06 株式会社東芝 Photodetector, light detection system, rider device, and vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136373A (en) * 1989-06-22 1992-08-04 Hamamatsu Photonics K. K. Image processing apparatus
JP2000125209A (en) * 1998-10-12 2000-04-28 Fuji Photo Film Co Ltd Solid-state image pickup device and signal read-out method
US20100148040A1 (en) * 2008-12-17 2010-06-17 Stmicroelectronics S.R.L. Geiger-mode photodiode with integrated and adjustable quenching resistor, photodiode array, and manufacturing method thereof
US20100316184A1 (en) * 2008-10-17 2010-12-16 Jan Iwanczyk Silicon photomultiplier detector for computed tomography
US20110210255A1 (en) * 2010-02-28 2011-09-01 Chang Lyong Kim multiplexing readout scheme for a gamma ray detector
US20120068050A1 (en) * 2010-09-16 2012-03-22 Stmicroelectronics S.R.I. Multi pixel photo detector array of geiger mode avalanche photodiodes
JP2012099580A (en) * 2010-10-29 2012-05-24 Hamamatsu Photonics Kk Photodiode array
US20130009267A1 (en) * 2011-07-06 2013-01-10 Siemens Medical Solutions Usa, Inc. Providing Variable Cell Density and Sizes in a Radiation Detector
US20140367576A1 (en) * 2013-06-12 2014-12-18 Kabushiki Kaisha Toshiba Photodetector and computed tomography apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136373A (en) * 1989-06-22 1992-08-04 Hamamatsu Photonics K. K. Image processing apparatus
JP2000125209A (en) * 1998-10-12 2000-04-28 Fuji Photo Film Co Ltd Solid-state image pickup device and signal read-out method
US6831692B1 (en) * 1998-10-12 2004-12-14 Fuji Photo Film Co., Ltd. Solid-state image pickup apparatus capable of outputting high definition image signals with photosensitive cells different in sensitivity and signal reading method
JP4018820B2 (en) * 1998-10-12 2007-12-05 富士フイルム株式会社 Solid-state imaging device and signal readout method
US20100316184A1 (en) * 2008-10-17 2010-12-16 Jan Iwanczyk Silicon photomultiplier detector for computed tomography
US20100148040A1 (en) * 2008-12-17 2010-06-17 Stmicroelectronics S.R.L. Geiger-mode photodiode with integrated and adjustable quenching resistor, photodiode array, and manufacturing method thereof
US20110210255A1 (en) * 2010-02-28 2011-09-01 Chang Lyong Kim multiplexing readout scheme for a gamma ray detector
US20120068050A1 (en) * 2010-09-16 2012-03-22 Stmicroelectronics S.R.I. Multi pixel photo detector array of geiger mode avalanche photodiodes
JP2012099580A (en) * 2010-10-29 2012-05-24 Hamamatsu Photonics Kk Photodiode array
US20130009267A1 (en) * 2011-07-06 2013-01-10 Siemens Medical Solutions Usa, Inc. Providing Variable Cell Density and Sizes in a Radiation Detector
US20140367576A1 (en) * 2013-06-12 2014-12-18 Kabushiki Kaisha Toshiba Photodetector and computed tomography apparatus
JP2014241543A (en) * 2013-06-12 2014-12-25 株式会社東芝 Photo-detection device and ct device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169643A (en) * 2018-03-23 2019-10-03 パナソニックIpマネジメント株式会社 Solid state image sensor
JP7174932B2 (en) 2018-03-23 2022-11-18 パナソニックIpマネジメント株式会社 Solid-state image sensor
US10833207B2 (en) 2018-04-24 2020-11-10 Canon Kabushiki Kaisha Photo-detection device, photo-detection system, and mobile apparatus
WO2019216242A1 (en) * 2018-05-10 2019-11-14 浜松ホトニクス株式会社 Back-illuminated semiconductor light detecting device
JP2019197833A (en) * 2018-05-10 2019-11-14 浜松ホトニクス株式会社 Back surface incident type semiconductor light detection device
CN112088435A (en) * 2018-05-10 2020-12-15 浜松光子学株式会社 Back-illuminated semiconductor photodetector
US11508770B2 (en) 2018-05-10 2022-11-22 Hamamatsu Photonics K.K. Back-illuminated semiconductor light detecting device
JP7271091B2 (en) 2018-05-10 2023-05-11 浜松ホトニクス株式会社 Back-thinned semiconductor photodetector
JP2021072347A (en) * 2019-10-30 2021-05-06 株式会社東芝 Photodetector, light detection system, rider device, and vehicle
CN112820794A (en) * 2019-10-30 2021-05-18 株式会社东芝 Photodetector, photodetection system, laser radar device, and vehicle
JP7328868B2 (en) 2019-10-30 2023-08-17 株式会社東芝 Photodetectors, photodetection systems, lidar devices, and vehicles

Also Published As

Publication number Publication date
JP6734644B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6650261B2 (en) Photoelectric conversion element
JP5926921B2 (en) Photodetector
JP6967755B2 (en) Photodetector
JP5791461B2 (en) Photodetector
JP6543565B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND PHOTOELECTRIC CONVERSION MODULE
CN107408563B (en) Optical detection device
JP5297276B2 (en) Photodiode array
JP6734644B2 (en) Photoelectric conversion device
TWI778948B (en) Photoelectric conversion elements and photoelectric conversion modules
US20240105753A1 (en) Semiconductor devices with single-photon avalanche diodes and light spreading lenses
JPWO2020196083A1 (en) Photodetector
US9917127B2 (en) Pixel arrangement
JP6517664B2 (en) Readout circuit
JP5911629B2 (en) Photodetector
WO2022202451A1 (en) Photodetector and distance measurement system
JP6318190B2 (en) Photodetector
KR102145088B1 (en) Device for reading radiological images
JP6244403B2 (en) Semiconductor photo detector
JP6282307B2 (en) Semiconductor photo detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200128

AA91 Notification that invitation to amend document was cancelled

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20200407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200710

R150 Certificate of patent or registration of utility model

Ref document number: 6734644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250