JP2017117459A - Multiaxial nc processing wood lathe system, tool root generation program, and recording medium - Google Patents

Multiaxial nc processing wood lathe system, tool root generation program, and recording medium Download PDF

Info

Publication number
JP2017117459A
JP2017117459A JP2016244950A JP2016244950A JP2017117459A JP 2017117459 A JP2017117459 A JP 2017117459A JP 2016244950 A JP2016244950 A JP 2016244950A JP 2016244950 A JP2016244950 A JP 2016244950A JP 2017117459 A JP2017117459 A JP 2017117459A
Authority
JP
Japan
Prior art keywords
axis
dimensional shape
shape model
tool
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016244950A
Other languages
Japanese (ja)
Other versions
JP6623478B2 (en
Inventor
橋本 裕之
Hiroyuki Hashimoto
裕之 橋本
真教 関山
Masanori Sekiyama
真教 関山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahikawa Kikai Kogyo Inc
Hokkaido Research Organization
Original Assignee
Asahikawa Kikai Kogyo Inc
Hokkaido Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahikawa Kikai Kogyo Inc, Hokkaido Research Organization filed Critical Asahikawa Kikai Kogyo Inc
Publication of JP2017117459A publication Critical patent/JP2017117459A/en
Application granted granted Critical
Publication of JP6623478B2 publication Critical patent/JP6623478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling, Drilling, And Turning Of Wood (AREA)
  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute a lathe machining process in a safe and time-efficient manner as a whole including inexpensive and fine uneven processing when an end surface and a side surface of a wood material are subjected to three-dimensional processing.SOLUTION: A multiaxial NC processing wood lathe system 1 executes three-dimensional processing with an actual disk type rotary tool 20 by one feed operation only by a tool route of a virtual thin disk 21 previously generated based on a three-dimensional shape model 2 of a product whose surface is divided by a triangle and inputted to a computer in order to cut a wood material W rotating around a C axis by chucking to the C axis capable of controlling a revolving angle. After that, a micro uneven processing part in the product of the three-dimensional shape to be machined of the workpiece after preliminary grinding is efficiently subjected to cutting using an actual spherical rotary tool 31 on the same stage as the disk type rotary tool 20 by a tool route of a virtual spherical body 32 previously generated based on the same three-dimensional shape model 2 without removing the wood material. The spherical rotary tool 31 turns around a B axis so as to continue facing an arbitrary point Zh on a Z axis.SELECTED DRAWING: Figure 1

Description

本発明は、木工用旋盤装置の切削工具として、円盤型回転工具および先端が球状ないしは半球状の回転工具である球状回転工具を用いたときに、製品の切削に必要な工具経路を生成する工具経路生成方法を有する多軸NC木工旋盤システム、前記の工具経路生成方法、工具経路生成プログラムおよび記録媒体を提供する技術に関する。   The present invention provides a tool for generating a tool path necessary for cutting a product when a disk-type rotary tool and a spherical rotary tool whose tip is a spherical or hemispherical rotary tool are used as a cutting tool of a woodworking lathe device. The present invention relates to a technique for providing a multi-axis NC woodworking lathe system having a path generation method, the above-described tool path generation method, a tool path generation program, and a recording medium.

従来、三次元形状の製品を加工するには、特許文献1に示すように、5軸制御工作機械を使用することができる。所謂、マシニングセンタ等の多軸加工機は工具の向きを制御できるので、入り組んだ形状などの複雑な三次元形状の加工を行うことができる。   Conventionally, in order to process a three-dimensional product, a 5-axis control machine tool can be used as shown in Patent Document 1. A so-called multi-axis processing machine such as a machining center can control the direction of the tool, so that it can process a complicated three-dimensional shape such as an intricate shape.

また、本出願の発明者は、特許文献2に示される三次元形状の製品を加工するために、円盤型回転工具を用いた3軸NC木工旋盤システムを開発している。同システムは、製品の三次元形状の表面が三角形に分割された三次元形状モデルを、3軸NC木工旋盤上の旋回角度を制御可能な旋回軸であるC軸にチャッキングしたと仮定して、予め円盤型回転工具で切削する工具経路を算出することに特徴を有している。当該システムは、一度の送り動作中の切削加工だけで三次元形状の加工を短時間で行う事が可能となっている。   The inventor of the present application has developed a three-axis NC woodworking lathe system using a disk-type rotary tool in order to process a three-dimensional product shown in Patent Document 2. The system assumes that the three-dimensional shape model in which the surface of the three-dimensional shape of the product is divided into triangles is chucked on the C-axis, which is a turning axis that can control the turning angle on the three-axis NC woodworking lathe. Further, it is characterized in that a tool path for cutting with a disk-type rotary tool is calculated in advance. The system can process a three-dimensional shape in a short time only by cutting during one feeding operation.

特開2014−94425号公報JP 2014-94425 A 特許第4784767号公報Japanese Patent No. 4784767

木工材料を三次元加工する際、特許文献1に示すような5軸制御工作機械などの多軸加工機を用いる場合、高価なハードウエアとなる。また、工具経路は直交座標系と回転座標系との合成によらなければ算出できず、複雑で高価なソフトウエアとなる。さらに、用いられる工具はエンドミルやドリルなどのような円筒形状もしくは先端が球状なので深い切り込みを期待できない。しかも、微細な形状を加工するには大きなサイズの工具から次第に小さなサイズの工具へと段階を経ることが必要なため加工時間が長くなる。   When a woodworking material is three-dimensionally processed, when a multi-axis processing machine such as a 5-axis control machine tool as shown in Patent Document 1 is used, it becomes expensive hardware. In addition, the tool path cannot be calculated unless it is a combination of a Cartesian coordinate system and a rotating coordinate system, resulting in complicated and expensive software. Furthermore, since the tool used has a cylindrical shape such as an end mill or a drill or a spherical tip, a deep cut cannot be expected. Moreover, in order to process a fine shape, it is necessary to go through a step from a large size tool to a gradually smaller size tool, which increases the processing time.

特許文献2に示される3軸NC木工旋盤システムは、チャックのC軸にチャッキングした木工材料をC軸回りに旋回させながら、予め算出した工具経路に基づいて円盤型回転工具をX軸方向とZ軸方向に移動することで、特許文献1に示すような5軸制御工作機械に比べて短時間で効率よく切削加工することを可能にしている。さらに、3軸構成の旋盤により三次元での加工が可能であるので、5軸加工機に比べて安価な装置となる。
しかし、円盤型回転工具による切削加工は、回転工具の厚みや半径の大きさによって加工可能な形状が制約され、より微細な切削加工を行うために円盤型回転工具の厚みや半径を小さくするとしても構造的に一定の限界が存在するのも事実である。そのため、さらなる微細な切削加工を行う場合には、5軸加工機を用いる必要があったり、前述した複雑で高価なソフトウエアを必要とするなど、結果として加工時間が長くなったり、コスト高を招くという課題があった。
The 3-axis NC woodworking lathe system disclosed in Patent Document 2 turns a disk-shaped rotary tool in the X-axis direction based on a pre-calculated tool path while turning the woodwork material chucked on the C-axis of the chuck around the C-axis. By moving in the Z-axis direction, cutting can be efficiently performed in a short time compared to a 5-axis control machine tool as shown in Patent Document 1. Further, since a three-dimensional lathe can be used for three-dimensional machining, the apparatus is less expensive than a five-axis machine.
However, cutting with a disk-type rotary tool is limited in the shape that can be processed by the thickness and radius of the rotary tool, and the thickness and radius of the disk-type rotary tool are reduced in order to perform finer cutting. It is also true that there is a certain structural limit. Therefore, when performing further fine cutting processing, it is necessary to use a 5-axis processing machine, or the complicated and expensive software described above is required, resulting in longer processing time and higher cost. There was a problem of inviting.

また、特許文献2に示される円盤型回転工具が三次元形状を削り出す際、円盤型回転工具は木工材料の回転軸に対して常に直角方向に向いている。そのため、回転型円盤工具が木工材料に対して螺旋状の加工点の経路を経て切削される時に、三次元形状モデルの表面が回転軸に対して傾斜している場合は、円盤型回転工具のエッジによる螺旋状のカッターマークが表れる。前記表面の傾斜角度が小さい場合は、カッターマークによる表面粗さが小さくなる。例えば、回転軸に対して平行な表面では、良好な表面粗さとなる。しかし、前記表面の傾斜角度が大きい場合は、表面粗さが大きくなる。つまり、前記傾斜角度が大きくなるほど、表面粗さが悪くなる。そのために、研磨時間が増大し、コスト増を招くという問題が生じる。   Further, when the disk-type rotary tool disclosed in Patent Document 2 cuts out a three-dimensional shape, the disk-type rotary tool is always oriented in a direction perpendicular to the rotation axis of the woodworking material. Therefore, when the surface of the three-dimensional shape model is inclined with respect to the rotation axis when the rotary disk tool is cut through the path of the spiral machining point with respect to the woodworking material, the disk type rotary tool A spiral cutter mark by the edge appears. When the inclination angle of the surface is small, the surface roughness due to the cutter mark is small. For example, a surface that is parallel to the rotation axis has good surface roughness. However, when the inclination angle of the surface is large, the surface roughness increases. That is, the larger the tilt angle, the worse the surface roughness. Therefore, there arises a problem that the polishing time is increased and the cost is increased.

また、特許文献2に示される円盤型回転工具で切削する木工材料は、通常、断面が正方形の正角材である。正角材から三次元形状を削り出すとき、正方形の外形と三次元形状の輪郭との間の削り代は、円盤型回転工具によって粉状の切り屑となる。木工材料が小さい場合、例えば正角材の一辺が数cmの場合は、削り代の切削に必要な動力はわずかである。しかし、建築材料のように一辺が10.5cmの正角材になると、大きな動力が必要になるので無駄なエネルギーが費やされる。   Moreover, the woodworking material cut with the disk-type rotary tool shown in Patent Document 2 is usually a square member having a square cross section. When a three-dimensional shape is cut out from a regular square material, the cutting allowance between the square outer shape and the contour of the three-dimensional shape becomes powdered chips by the disk-type rotary tool. When the woodworking material is small, for example, when one side of the square is several centimeters, the power required for cutting the machining allowance is small. However, if a square material with a side of 10.5 cm is used as a building material, a large amount of power is required, and wasteful energy is consumed.

本発明はこのような事情に鑑みてなされたものであって、木工材料を三次元加工する際に、複雑で高価なハードウエアやソフトウエアを必要とせずに安価で、しかも微細な凹凸加工も含め、全体的に時間的に効率よく旋盤加工することを可能とする多軸NC木工旋盤システム、工具経路生成方法、工具経路生成プログラムおよび記録媒体を提供することを目的とする。   The present invention has been made in view of such circumstances, and when processing a woodworking material three-dimensionally, it is inexpensive and does not require complicated and expensive hardware and software, and fine uneven processing is also possible. In addition, an object of the present invention is to provide a multi-axis NC woodworking lathe system, a tool path generation method, a tool path generation program, and a recording medium that can perform lathe machining efficiently in terms of time.

請求項1記載の多軸NC木工旋盤システムに係る発明は、旋回角度を制御可能な旋回軸であるC軸にチャッキングして前記C軸回りに旋回する木工材料を切削するために、
Z軸方向および前記Z軸に直交するX軸方向に移動可能な円盤型回転工具と、前記円盤型回転工具と同じステージ上に設置され、XZ平面内を移動しかつXZ平面に直角なB軸回りに旋回可能な、先端が球状ないしは半球状の球状回転工具と、を備えた多軸NC木工旋盤システムであって、
表面が三角形で分割されコンピュータに入力されている製品の三次元形状モデルを前記C軸にチャッキングしたと仮定し、
前記円盤型回転工具と同じ形状を有する仮想の薄肉円盤の外周が、旋回中の前記三次元形状モデルに対して接した状態を維持しながらZ軸方向に移動することを前提に、C軸の任意の旋回角度θと前記仮想の薄肉円盤の外周の任意のZ座標に対して前記仮想の薄肉円盤の回転中心のX座標を得るとともに、
前記球状回転工具と同じ直径の球体の先端形状を有する仮想の球体の表面が、前記C軸回りに旋回中の前記三次元形状モデルに対して接した状態を維持しながら、該球状回転工具の回転軸の向きを常にZ軸上の任意の点Zhに向き続けるようB軸回りに旋回することを前提に、
C軸の任意の旋回角度θと、前記球状回転工具における回転軸のZ軸とのなす任意の旋回角度αに対して前記球体の中心のX座標とZ座標を求める際、
前記球体の表面と前記三次元形状モデルを構成する三角形の頂点とが接するときの第一加工点と、前記球体の表面と前記三次元形状モデルを構成する三角形の辺とが接するときの第二加工点と、前記球体の表面と前記三次元形状モデルを構成する三角形平面とが接するときの第三加工点と、の3通りの加工点の候補の中から実際の加工に寄与すべき加工点を一つだけ抽出することで前記球体の中心のX座標とZ座標を得るようにしたことを特徴としている。
The invention related to the multi-axis NC woodworking lathe system according to claim 1 is for chucking a C-axis which is a swivel axis whose swivel angle can be controlled and cutting a woodworking material swiveling around the C-axis.
A disk-type rotary tool that can move in the Z-axis direction and the X-axis direction orthogonal to the Z-axis, and a B-axis that is installed on the same stage as the disk-type rotary tool and moves in the XZ plane and is perpendicular to the XZ plane A multi-axis NC woodworking lathe system having a spherical rotating tool with a spherical or hemispherical tip that can be swiveled around,
Suppose that the three-dimensional shape model of the product whose surface is divided into triangles and input to the computer is chucked on the C axis,
Assuming that the outer periphery of a virtual thin disk having the same shape as the disk-type rotary tool moves in the Z-axis direction while maintaining a state in contact with the rotating three-dimensional shape model, Obtaining the X coordinate of the center of rotation of the virtual thin disk for an arbitrary turning angle θ and an arbitrary Z coordinate of the outer periphery of the virtual thin disk,
While maintaining the state in which the surface of the virtual sphere having the tip shape of the sphere having the same diameter as the spherical rotary tool is in contact with the three-dimensional shape model turning around the C axis, Assuming that the rotation axis always turns to the arbitrary point Zh on the Z-axis so as to turn around the B-axis,
When obtaining the X and Z coordinates of the center of the sphere with respect to an arbitrary turning angle α formed by an arbitrary turning angle θ of the C axis and a Z axis of the rotating shaft of the spherical rotary tool,
A first processing point when the surface of the sphere and the vertex of the triangle constituting the three-dimensional shape model are in contact with each other, and a second processing point when the surface of the sphere and the side of the triangle constituting the three-dimensional shape model are in contact with each other Machining points that should contribute to actual machining from among the three machining point candidates: machining points and third machining points when the surface of the sphere touches the triangular plane that constitutes the three-dimensional shape model It is characterized in that the X coordinate and Z coordinate of the center of the sphere are obtained by extracting only one.

請求項2記載の多軸NC木工旋盤システムに係る発明は、上記1項において、前記三次元形状モデルは、表面が三次元曲面の多角形ポリゴンに分割された製品に対して、前記多角形ポリゴンの曲面上に頂点を持ち、頂点同士を直線で結ばれた三角形に分割したと仮定することを特徴としている。   The invention according to claim 2 relates to the multi-axis NC woodworking lathe system according to claim 1, wherein the three-dimensional shape model is a polygon polygon for a product whose surface is divided into polygon polygons having a three-dimensional curved surface. It is characterized in that it has vertices on the curved surface and is divided into triangles connected by straight lines.

請求項3記載の多軸NC木工旋盤システムに係る発明は、上記1項又は2項において、前記円盤型回転工具は、Z軸方向および前記Z軸に直交するX軸方向に移動可能であるとともに、円盤型回転工具の回転中心を通過し、かつXZ平面に直角なD軸回りに旋回可能であり、
前記円盤型回転工具と同じ形状を有する仮想の薄肉円盤の外周が、旋回中の前記三次元形状モデルに対して接した状態を維持しながらZ軸方向に移動するとともに、前記仮想の薄肉円盤の向きを前記三次元形状モデルの表面に対して垂直に向けることを前提に、
前記仮想の薄肉円盤の外周と前記三次元形状モデルの表面との接触点から、法線方向に向けた長さが仮想の薄肉円盤の半径の法線ベクトルを計算し、前記法線ベクトルの先端位置からZ軸に垂直な直線がXZ平面と一致するまで前記三次元形状モデルをZ軸周りに回転させた回転角γと、前記法線ベクトルのXZ平面への投影成分がX軸とのなす角度βと、C軸の任意の旋回角度θとに対して前記仮想の薄肉円盤の中心のX座標とZ座標を得るようにしたことを特徴としている。
The invention according to claim 3 is the multi-axis NC woodworking lathe system according to claim 1 or 2, wherein the disk-type rotary tool is movable in the Z-axis direction and the X-axis direction orthogonal to the Z-axis. , Can pass around the center of rotation of the disk-type rotary tool, and can turn around the D axis perpendicular to the XZ plane,
The outer circumference of a virtual thin disk having the same shape as the disk-type rotary tool moves in the Z-axis direction while maintaining a state in contact with the three-dimensional shape model that is turning, and the virtual thin disk Assuming that the direction is perpendicular to the surface of the three-dimensional shape model,
From the contact point between the outer periphery of the virtual thin disk and the surface of the three-dimensional shape model, a normal vector whose length in the normal direction is the radius of the virtual thin disk is calculated, and the tip of the normal vector A rotation angle γ obtained by rotating the three-dimensional shape model around the Z axis until a straight line perpendicular to the Z axis from the position coincides with the XZ plane, and a projection component of the normal vector onto the XZ plane forms an X axis. The X-coordinate and Z-coordinate of the center of the virtual thin disk are obtained with respect to the angle β and the arbitrary turning angle θ of the C axis.

請求項4記載の多軸NC木工旋盤システムに係る発明は、上記3項において、前記仮想の薄肉円盤は、その表面の周囲に多数の点からなる工具座標系で定義し、
前記仮想の薄肉円盤の向きを前記三次元形状モデルの表面に対して垂直に向けるために、前記角度βだけスイングさせたと仮定した時、前記工具座標系で定義した多数の点のうちの少なくとも1点が、前記三次元形状モデルの内側にあれば、前記仮想の薄肉円盤が前記三次元形状モデルに干渉したと判断し、
前記仮想の薄肉円盤の向きを角度β−90°スイングし、前記仮想の薄肉円盤の先端を前記三次元形状モデルの加工点に接触するよう位置決めすることを特徴としている。
The invention related to the multi-axis NC woodworking lathe system according to claim 4 is the above-mentioned item 3, wherein the virtual thin disk is defined by a tool coordinate system including a number of points around the surface thereof.
When it is assumed that the virtual thin disk is swung by the angle β in order to orient the perpendicular thin disk in a direction perpendicular to the surface of the three-dimensional shape model, at least one of a plurality of points defined in the tool coordinate system is used. If the point is inside the three-dimensional shape model, it is determined that the virtual thin disk has interfered with the three-dimensional shape model,
The direction of the virtual thin disk is swung by an angle β-90 °, and the tip of the virtual thin disk is positioned so as to contact the machining point of the three-dimensional shape model.

請求項5記載の多軸NC木工旋盤システムに係る発明は、上記1項〜4項のいずれかにおいて、前記Z軸上の任意の点Zhは、製品形状の先端部を半球体に近似したときの底面の中心のZ座標であることを特徴としている。   The invention related to the multi-axis NC woodworking lathe system according to claim 5 is any one of the above items 1 to 4, wherein the arbitrary point Zh on the Z-axis approximates the tip of the product shape to a hemisphere. It is characterized by being the Z coordinate of the center of the bottom surface of.

請求項6記載の多軸NC木工旋盤システムに係る発明は、上記1項〜5項のいずれかににおいて、前記球状回転工具は、先端が球状ないしは半球状の木工用ボールビットあるいは木工用ルータビットであることを特徴としている。   The invention according to claim 6 relates to the multi-axis NC woodworking lathe system according to any one of items 1 to 5, wherein the spherical rotary tool has a spherical or hemispherical woodworking ball bit or woodworking router bit. It is characterized by being.

請求項7記載の多軸NC木工旋盤システムに係る発明は、上記1項、2項又は3項において、C軸に直交する方向と平行に走行する帯鋸刃を備えるとともに、前記帯鋸刃が全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記帯鋸刃の向きをZ軸方向に対して傾斜するように変向可能である帯鋸盤を備え、
前記帯鋸盤の帯鋸刃と同じ形状を有する仮想の帯鋸工具が、C軸の旋回角度θがゼロ度における前記三次元形状モデルに対してZ軸に平行なZ軸方向でスライスする時に、Z軸方向とZ軸に直交するF方向に移動することを前提に、
前記三次元形状モデルをZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面を形成し、各仮想スライス断面において+F方向の最大点Fmaxと最小点Fminを計算し、前記各Fmax同士を結んだ最大部輪郭線と前記各Fmin同士を結んだ最小部輪郭線とを計算し、前記最大部輪郭線に対する最大部オフセット線と、前記最小部輪郭線に対する最小部オフセット線を計算し、前記最大部オフセット線と前記最小部オフセット線のうちの少なくとも一方を前記仮想の帯鋸工具の工具経路として得ることを特徴としている。
The invention related to the multi-axis NC woodworking lathe system according to claim 7 includes a band saw blade that travels in parallel with a direction orthogonal to the C axis in the above item 1, 2, or 3, and the band saw blade as a whole. A band saw machine capable of moving in a Z-axis direction parallel to the Z-axis and an F-direction orthogonal to the Z-axis and capable of turning so as to incline the direction of the band saw blade with respect to the Z-axis direction;
When the virtual band saw tool having the same shape as the band saw blade of the band saw machine slices in the Z-axis direction parallel to the Z-axis with respect to the three-dimensional shape model with the C-axis turning angle θ being zero degrees, the Z-axis Assuming movement in the F direction perpendicular to the direction and the Z axis,
A large number of virtual slice sections parallel to the XY plane are formed at appropriate intervals in the Z-axis direction with respect to the three-dimensional shape model, and a maximum point Fmax and a minimum point Fmin in the + F direction are calculated in each virtual slice section. The maximum contour line connecting Fmax and the minimum contour line connecting each Fmin are calculated, and the maximum offset line for the maximum contour line and the minimum offset line for the minimum contour line are calculated. Then, at least one of the maximum part offset line and the minimum part offset line is obtained as a tool path of the virtual band saw tool.

請求項8記載の多軸NC木工旋盤システムに係る発明は、上記7項において、前記最大部輪郭線と前記最小部輪郭線は、前記三次元形状モデルをC軸の適宜ピッチの旋回角度θで回転させるごとに停止して計算し、最大部輪郭線と最小部輪郭線のそれぞれに対応する最大部オフセット線と最小部オフセット線を計算して得ることを特徴としている。   The invention related to the multi-axis NC woodworking lathe system according to claim 8 is the above-described item 7, wherein the maximum portion contour line and the minimum portion contour line are obtained by turning the three-dimensional shape model at a turning angle θ of an appropriate pitch of the C axis. Each time it is rotated, it is stopped and calculated, and the maximum part offset line and the minimum part offset line corresponding to each of the maximum part outline and the minimum part outline are calculated and obtained.

請求項9記載の多軸NC木工旋盤システムに係る発明は、上記1項、2項、3項又は7項において、C軸に直交する方向と平行に走行する研磨ベルトを備えるとともに、前記研磨ベルトが全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記研磨ベルトの向きをZ軸方向に対して傾斜するように変向可能であるベルトサンダーを備え、
前記ベルトサンダーの研磨ベルトと同じ形状を有する仮想の研磨工具が、C軸の旋回角度θがゼロ度における前記三次元形状モデルに対して研磨する時に、Z軸方向とZ軸に直交するF方向に移動することを前提に、
前記三次元形状モデルをZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面を形成し、各仮想スライス断面において+F方向の最大点Fmaxと最小点Fminを計算し、前記各Fmax同士を結んだ最大部輪郭線と前記各Fmin同士を結んだ最小部輪郭線とを計算し、前記最大部輪郭線と前記最小部輪郭線のうちの少なくとも一方を前記仮想の研磨工具の工具経路として得ることを特徴としている。
The invention according to claim 9 relates to the multi-axis NC woodworking lathe system according to claim 1, wherein the polishing belt includes a polishing belt that runs parallel to a direction orthogonal to the C-axis. Is a belt sander that can move in the Z-axis direction parallel to the Z-axis and the F-direction orthogonal to the Z-axis, and can change the direction of the polishing belt to be inclined with respect to the Z-axis direction. With
When the virtual polishing tool having the same shape as the polishing belt of the belt sander polishes the three-dimensional shape model with the C-axis turning angle θ being zero degrees, the Z direction and the F direction perpendicular to the Z axis On the premise of moving to
A large number of virtual slice sections parallel to the XY plane are formed at appropriate intervals in the Z-axis direction with respect to the three-dimensional shape model, and a maximum point Fmax and a minimum point Fmin in the + F direction are calculated in each virtual slice section. The maximum contour line connecting Fmax and the minimum contour line connecting each Fmin are calculated, and at least one of the maximum contour line and the minimum contour line is used as a tool of the virtual polishing tool. It is characterized by being obtained as a route.

請求項10記載の多軸NC木工旋盤システムに係る発明は、上記9項において、前記最大部輪郭線と前記最小部輪郭線は、前記三次元形状モデルをC軸の適宜ピッチの旋回角度θで回転させるごとに停止して計算して得ることを特徴としている。   The invention related to the multi-axis NC woodworking lathe system according to claim 10 is characterized in that, in the above-mentioned item 9, the maximum portion contour line and the minimum portion contour line are obtained by turning the three-dimensional shape model at a turning angle θ of an appropriate pitch of the C axis. It is characterized by being obtained by calculation after stopping every rotation.

請求項11記載の工具経路生成方法に係る発明は、円盤型回転工具を用いた三次元加工に必要な第一の工具経路生成方法と、先端が球状ないしは半球状の回転工具である球状回転工具を用いた三次元加工に必要な第二の工具経路生成方法と、を組み合わせた工具経路生成方法であって、
表面が三角形で分割されコンピュータに入力されている製品の三次元形状モデルを、多軸NC木工旋盤上での旋回角度を制御可能な旋回軸であるC軸にチャッキングしたと仮定し、
第一の工具経路生成方法は、前記円盤型回転工具と同じ形状を有する仮想の薄肉円盤の外周が、C軸回りに旋回中の前記三次元形状モデルに対して接した状態を維持しながらZ軸方向に移動することを前提に、C軸の任意の旋回角度θと前記仮想の薄肉円盤の外周の任意のZ座標に対して前記仮想の薄肉円盤の回転中心のX座標を求めて工具経路を生成し、
第二の工具経路生成方法は、前記球状回転工具と同じ直径の球体の先端形状を有する仮想の球体の表面が、C軸回りに旋回中の前記三次元形状モデルに対して接した状態を維持しながら、球状回転工具の回転軸がZ軸上の任意の点Zhに常に向いたままXZ平面内を移動しかつXZ平面に直交するB軸回りに旋回することを前提に前記球体の中心のX座標とZ座標を求めるために、C軸の任意の旋回角度θと、前記球状回転工具における回転軸のZ軸とのなす任意の旋回角度αとした場合に、
前記三次元形状モデルと前記球状回転工具の両方を同時に、XZ平面に直角で前記Zhを通る直線回りに前記旋回角度αと同じ旋回角度だけ逆方向に旋回して回転座標変換することで前記球状回転工具の回転軸をZ軸に一致した状態とし、
前記球体の表面と前記三次元形状モデルを構成する三角形の頂点とが接するときの前記球体の中心のZ座標群と、前記球体の表面と前記三次元形状モデルを構成する三角形の辺とが接するときの前記球体の中心のZ座標群と、前記球体の表面と前記三次元形状モデルを構成する三角形平面とが接するときの前記球体の中心のZ座標群と、からなる全部のZ座標群のうちで、点Z=Zhから前記三次元形状モデルの外側に位置する+Z方向へ最も遠いZ座標を採用し、この採用したZ座標を、XZ平面に直角で前記Zhを通る直線回りに前記旋回角度αだけ正方向に旋回して回転座標変換して得られるX座標とZ座標とを工具経路にすることを特徴としている。
The invention relating to the tool path generation method according to claim 11 includes a first tool path generation method necessary for three-dimensional machining using a disk-type rotary tool and a spherical rotary tool whose tip is a spherical or hemispherical rotary tool. A tool path generation method combining the second tool path generation method necessary for three-dimensional machining using
Assuming that the three-dimensional shape model of the product whose surface is divided into triangles and input to the computer is chucked to the C axis, which is the pivot axis that can control the pivot angle on a multi-axis NC woodworking lathe,
In the first tool path generation method, the outer periphery of a virtual thin disk having the same shape as that of the disk-type rotary tool is kept in contact with the three-dimensional shape model that is turning around the C axis. The tool path is obtained by obtaining the X coordinate of the rotation center of the virtual thin disk with respect to the arbitrary turning angle θ of the C axis and the arbitrary Z coordinate of the outer periphery of the virtual thin disk on the assumption that the axis moves. Produces
In the second tool path generation method, the surface of the virtual sphere having the sphere tip shape having the same diameter as that of the spherical rotary tool is maintained in contact with the three-dimensional shape model turning around the C axis. However, assuming that the rotational axis of the spherical rotary tool always moves to the arbitrary point Zh on the Z axis and moves in the XZ plane and turns around the B axis perpendicular to the XZ plane, In order to obtain the X coordinate and the Z coordinate, when an arbitrary turning angle θ of the C axis and an arbitrary turning angle α formed by the Z axis of the rotating shaft in the spherical rotary tool,
Both the three-dimensional shape model and the spherical rotating tool are simultaneously rotated in the opposite direction by the same turning angle as the turning angle α around the straight line passing through the Zh at a right angle to the XZ plane, thereby converting the spherical coordinates. Make the rotation axis of the rotary tool coincide with the Z axis,
The Z coordinate group of the center of the sphere when the surface of the sphere and the apex of the triangle constituting the three-dimensional shape model are in contact with the surface of the sphere and the sides of the triangle constituting the three-dimensional shape model Z coordinate group of the center of the sphere at the time, and the Z coordinate group of the center of the sphere when the surface of the sphere is in contact with the triangular plane constituting the three-dimensional shape model, Among them, the Z coordinate farthest in the + Z direction located outside the three-dimensional shape model from the point Z = Zh is adopted, and the adopted Z coordinate is rotated around the straight line passing through the Zh at right angles to the XZ plane. The X axis and Z coordinate obtained by turning in the positive direction by the angle α and converting the rotational coordinates are used as a tool path.

請求項12記載の工具経路生成方法に係る発明は、上記11項において、前記三次元形状モデルは、表面が三次元曲面の多角形ポリゴンに分割された製品に対して、前記多角形ポリゴンの曲面上に頂点を持ち、頂点同士を直線で結ばれた三角形に分割したと仮定することを特徴としている。   The invention according to claim 12, wherein the three-dimensional shape model is a curved surface of the polygonal polygon with respect to a product whose surface is divided into polygonal polygons having a three-dimensional curved surface. It is characterized by assuming that it is divided into triangles with vertices on top and vertices connected by straight lines.

請求項13記載の工具経路生成方法に係る発明は、上記11項又は12項において、前記第一の工具経路生成方法としては、前記円盤型回転工具と同じ形状を有する仮想の薄肉円盤の外周が、C軸周りに旋回中の前記三次元形状モデルに対して接した状態を維持しながらZ軸方向に移動するとともに、前記仮想の薄肉円盤の向きを前記三次元形状モデルの表面に対して垂直に向けることを前提に、
前記仮想の薄肉円盤の外周と前記三次元形状モデルの表面との接触点から、法線方向に向けた長さが仮想の薄肉円盤の半径の法線ベクトルを計算し、前記法線ベクトルの先端位置からZ軸に垂直な直線がXZ平面と一致するまで前記三次元形状モデルをZ軸周りに回転させた回転角γと、前記法線ベクトルのXZ平面への投影成分がX軸とのなす角度βと、C軸の任意の旋回角度θとに対して前記仮想の薄肉円盤の中心のX座標とZ座標を得るようにしたことを特徴としている。
The invention related to the tool path generation method according to claim 13 is the above 11 or 12, wherein the first tool path generation method includes an outer periphery of a virtual thin disk having the same shape as the disk type rotary tool. , Moving in the Z-axis direction while maintaining a state in contact with the three-dimensional shape model turning around the C axis, and the direction of the virtual thin disk is perpendicular to the surface of the three-dimensional shape model Assuming that
From the contact point between the outer periphery of the virtual thin disk and the surface of the three-dimensional shape model, a normal vector whose length in the normal direction is the radius of the virtual thin disk is calculated, and the tip of the normal vector A rotation angle γ obtained by rotating the three-dimensional shape model around the Z axis until a straight line perpendicular to the Z axis from the position coincides with the XZ plane, and a projection component of the normal vector onto the XZ plane forms an X axis. The X-coordinate and Z-coordinate of the center of the virtual thin disk are obtained with respect to the angle β and the arbitrary turning angle θ of the C axis.

請求項14記載の工具経路生成方法に係る発明は、上記13項において、前記仮想の薄肉円盤は、その表面の周囲に多数の点からなる工具座標系で定義し、
前記仮想の薄肉円盤の向きを前記三次元形状モデルの表面に対して垂直に向けるために、前記角度βだけスイングさせたと仮定した時、前記工具座標系で定義した多数の点のうちの少なくとも1点が、前記三次元形状モデルの内側にあれば、前記仮想の薄肉円盤が前記三次元形状モデルに干渉したと判断し、
前記仮想の薄肉円盤の向きを角度β−90°スイングし、前記仮想の薄肉円盤の先端を前記三次元形状モデルの加工点に接触するよう位置決めすることを特徴としている。
The invention according to claim 14, wherein the virtual thin disk is defined by a tool coordinate system consisting of a large number of points around the surface thereof in the above-mentioned item 13,
When it is assumed that the virtual thin disk is swung by the angle β in order to orient the perpendicular thin disk in a direction perpendicular to the surface of the three-dimensional shape model, at least one of a plurality of points defined in the tool coordinate system is used. If the point is inside the three-dimensional shape model, it is determined that the virtual thin disk has interfered with the three-dimensional shape model,
The direction of the virtual thin disk is swung by an angle β-90 °, and the tip of the virtual thin disk is positioned so as to contact the machining point of the three-dimensional shape model.

請求項15記載の工具経路生成方法に係る発明は、上記11項〜14項のいずれかにおいて、C軸に直交する方向と平行に走行する帯鋸刃を備えるとともに、前記帯鋸刃が全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記帯鋸刃の向きをZ軸方向に対して傾斜するように変向可能である帯鋸盤を用いた三次元加工に必要な第三の工具経路生成方法を加え、
前記第三の工具経路生成方法としては、前記帯鋸盤の帯鋸刃と同じ形状を有する仮想の帯鋸工具が、C軸の旋回角度θがゼロ度における前記三次元形状モデルに対してZ軸に平行なZ軸方向でスライスする時に、Z軸方向とZ軸に直交するF方向に移動することを前提に、
前記三次元形状モデルをZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面を形成し、各仮想スライス断面において+F方向の最大点Fmaxと最小点Fminを計算し、前記各Fmax同士を結んだ最大部輪郭線と前記各Fmin同士を結んだ最小部輪郭線とを計算し、前記最大部輪郭線に対する最大部オフセット線と、前記最小部輪郭線に対する最小部オフセット線を計算し、前記最大部オフセット線と前記最小部オフセット線のうちの少なくとも一方を前記仮想の帯鋸工具の工具経路を生成することを特徴としている。
The invention according to claim 15 is the tool path generation method according to any one of claims 11 to 14, further comprising a band saw blade that travels in parallel with a direction orthogonal to the C axis, and the band saw blade as a whole is a Z axis. 3D using a band saw that can move in the Z-axis direction parallel to the Z-axis and the F-direction orthogonal to the Z-axis, and can change the direction of the band saw blade so as to be inclined with respect to the Z-axis direction. Add a third tool path generation method necessary for machining,
As the third tool path generation method, a virtual band saw tool having the same shape as the band saw blade of the band saw machine is parallel to the Z axis with respect to the three-dimensional shape model with the C axis turning angle θ being zero degrees. When slicing in the Z-axis direction, assuming that the Z-axis direction and the F-direction perpendicular to the Z-axis move,
A large number of virtual slice sections parallel to the XY plane are formed at appropriate intervals in the Z-axis direction with respect to the three-dimensional shape model, and a maximum point Fmax and a minimum point Fmin in the + F direction are calculated in each virtual slice section. The maximum contour line connecting Fmax and the minimum contour line connecting each Fmin are calculated, and the maximum offset line for the maximum contour line and the minimum offset line for the minimum contour line are calculated. A tool path of the virtual band saw tool is generated for at least one of the maximum part offset line and the minimum part offset line.

請求項16記載の工具経路生成方法に係る発明は、上記11項〜15項のいずれかにおいて、C軸に直交する方向と平行に旋回走行する研磨ベルトを備えるとともに、前記研磨ベルトが全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記研磨ベルトの向きをZ軸方向に対して傾斜するように変向可能であるベルトサンダーを用いた三次元加工に必要な第四の工具経路生成方法を加え、
前記第四の工具経路生成方法としては、前記ベルトサンダーの研磨ベルトと同じ形状を有する仮想の研磨工具が、C軸の旋回角度θがゼロ度における前記三次元形状モデルに対して研磨する時に、Z軸方向とZ軸に直交するF方向に移動することを前提に、
前記三次元形状モデルをZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面を形成し、各仮想スライス断面において+F方向の最大点Fmaxと最小点Fminを計算し、前記各Fmax同士を結んだ最大部輪郭線と前記各Fmin同士を結んだ最小部輪郭線とを計算し、前記最大部輪郭線と前記最小部輪郭線のうちの少なくとも一方を前記仮想の研磨工具の工具経路を生成することを特徴としている。
The invention according to a sixteenth aspect of the present invention is the tool path generation method according to any one of the eleventh to fifteenth aspects, further comprising a polishing belt that rotates in parallel with a direction orthogonal to the C axis, and the polishing belt is Z as a whole. Tertiary using a belt sander that can move in the Z-axis direction parallel to the axis and the F-direction orthogonal to the Z-axis, and can change the direction of the polishing belt so as to be inclined with respect to the Z-axis direction. Add the fourth tool path generation method necessary for original machining,
As the fourth tool path generation method, when a virtual polishing tool having the same shape as the polishing belt of the belt sander is polished with respect to the three-dimensional shape model in which the turning angle θ of the C axis is zero degrees, On the premise of moving in the Z-axis direction and the F-direction orthogonal to the Z-axis,
A large number of virtual slice sections parallel to the XY plane are formed at appropriate intervals in the Z-axis direction with respect to the three-dimensional shape model, and a maximum point Fmax and a minimum point Fmin in the + F direction are calculated in each virtual slice section. The maximum contour line connecting Fmax and the minimum contour line connecting each Fmin are calculated, and at least one of the maximum contour line and the minimum contour line is used as a tool of the virtual polishing tool. It is characterized by generating a route.

請求項17記載の工具経路生成プログラムに係る発明は、表面が三角形で分割されコンピュータに入力されている製品の三次元形状モデルを、多軸NC木工旋盤上での旋回角度を制御可能な旋回軸であるC軸にチャッキングしたと仮定し、円盤型回転工具を用いた三次元加工に必要な第一の工具経路生成プログラムと、先端が球状ないしは半球状の回転工具である球状回転工具を用いた三次元加工に必要な第二の工具経路生成プログラムと、を組み合わせた工具経路生成プログラムであって、該第一及び第二の工具経路生成プログラムは以下のように構成されている。
第一の工具経路生成プログラムは、前記円盤型回転工具と同じ形状を有する仮想の薄肉円盤の外周が、C軸回りに旋回中の前記三次元形状モデルに対して接した状態を維持しながらZ軸方向に移動することを前提に、C軸の任意の旋回角度θと前記仮想の薄肉円盤の外周の任意のZ座標に対し、前記仮想の薄肉円盤の回転中心のX座標を求めることにより、前記円盤型回転工具の工具経路とする。
第二の工具経路生成プログラムは、前記球状回転工具と同じ直径の球体の先端形状を有する仮想の球体の表面が、C軸回りに旋回中の前記三次元形状モデルに対して接した状態を維持しながら、球状回転工具の回転軸がZ軸上の任意の点Zhに常に向いたままXZ平面内を移動しかつXZ平面に直交する旋回することを前提に前記球体の中心のX座標とZ座標を求めるために、C軸の任意の旋回角度θと前記球状回転工具における回転軸のZ軸とのなす任意の旋回角度αとした場合、前記三次元形状モデルと前記球状回転工具の両方を同時に、XZ平面に直角で前記Zhを通る直線回りに前記旋回角度αと同じ旋回角度だけ逆方向に旋回して回転座標変換することで前記球状回転工具の回転軸をZ軸に一致した状態にし、
前記球体の表面と前記三次元形状モデルを構成する三角形の頂点とが接するときの前記球体の中心のZ座標群と、前記球体の表面と前記三次元形状モデルを構成する三角形の辺とが接するときの前記球体の中心のZ座標群と、前記球体の表面と前記三次元形状モデルを構成する三角形平面とが接するときの前記球体の中心のZ座標群と、からなる全部のZ座標群のうちで、点Z=Zhから前記三次元形状モデルの外側に位置する+Z方向へ最も遠いZ座標を採用し、
この採用したZ座標を、XZ平面に直角で前記Zhを通る直線回りに前記旋回角度αだけ正方向に旋回して回転座標変換して得られるX座標とZ座標とを、前記球状回転工具の工具経路とすることを特徴とする。
The invention related to the tool path generation program according to claim 17 is a turning axis capable of controlling a turning angle on a multi-axis NC woodworking lathe from a three-dimensional shape model of a product whose surface is divided into triangles and inputted to a computer. The first tool path generation program required for three-dimensional machining using a disk-type rotary tool and a spherical rotary tool whose tip is a spherical or hemispherical rotary tool are used. A tool path generation program that combines a second tool path generation program necessary for three-dimensional machining, and the first and second tool path generation programs are configured as follows.
The first tool path generation program maintains a state in which the outer periphery of a virtual thin disk having the same shape as the disk-type rotary tool is in contact with the three-dimensional shape model turning around the C axis. On the premise of moving in the axial direction, by determining the X coordinate of the center of rotation of the virtual thin disk with respect to the arbitrary turning angle θ of the C axis and the arbitrary Z coordinate of the outer periphery of the virtual thin disk, A tool path of the disk-type rotary tool is used.
The second tool path generation program maintains a state in which the surface of a virtual sphere having a sphere tip shape having the same diameter as that of the spherical rotary tool is in contact with the three-dimensional shape model turning around the C axis. However, the X coordinate and Z of the center of the sphere are assumed on the assumption that the rotating axis of the spherical rotary tool always moves to the arbitrary point Zh on the Z-axis and moves in the XZ plane and rotates in the direction orthogonal to the XZ plane. In order to obtain the coordinates, when the arbitrary turning angle α between the arbitrary turning angle θ of the C axis and the Z axis of the rotating shaft in the spherical rotating tool is set, both the three-dimensional shape model and the spherical rotating tool are At the same time, the rotational axis of the spherical rotary tool is made to coincide with the Z-axis by turning in the opposite direction by the same turning angle as the turning angle α around the straight line perpendicular to the XZ plane and passing through the Zh. ,
The Z coordinate group of the center of the sphere when the surface of the sphere and the apex of the triangle constituting the three-dimensional shape model are in contact with the surface of the sphere and the sides of the triangle constituting the three-dimensional shape model Z coordinate group of the center of the sphere at the time, and the Z coordinate group of the center of the sphere when the surface of the sphere is in contact with the triangular plane constituting the three-dimensional shape model, Among them, the Z coordinate farthest from the point Z = Zh in the + Z direction located outside the three-dimensional shape model is adopted,
The X coordinate and Z coordinate obtained by turning the adopted Z coordinate in the positive direction by the turning angle α around the straight line perpendicular to the XZ plane and passing through the Zh are converted into the rotational coordinates of the spherical rotary tool. It is characterized by a tool path.

請求項18記載の工具経路生成プログラムに係る発明は、上記17項において、前記三次元形状モデルは、表面が三次元曲面の多角形ポリゴンに分割された製品に対して、前記多角ポリゴンの曲面上に頂点を持ち、頂点同士を直線で結ばれた三角形に分割したと仮定することを特徴としている。   An invention according to a tool path generation program according to claim 18 is the method according to claim 17, wherein the three-dimensional shape model is formed on a curved surface of the polygon polygon with respect to a product whose surface is divided into polygon polygons having a three-dimensional curved surface. It is characterized by assuming that it is divided into triangles that have vertices and are connected by straight lines.

請求項19記載の工具経路生成プログラムに係る発明は、上記17項又は18項において、前記第一の工具経路生成プログラムは、前記円盤型回転工具と同じ形状を有する仮想の薄肉円盤の外周が、C軸周りに旋回中の前記三次元形状モデルに対して接した状態を維持しながらZ軸方向に移動するとともに、前記仮想の薄肉円盤の向きを前記三次元形状モデルの表面に対して垂直に向けることを前提に、
前記仮想の薄肉円盤の外周と前記三次元形状モデルの表面との接触点から、法線方向に向けた長さが仮想の薄肉円盤の半径の法線ベクトルを計算し、前記法線ベクトルの先端位置からZ軸に垂直な直線がXZ平面と一致するまで前記三次元形状モデルをZ軸周りに回転させた回転角γと、前記法線ベクトルのXZ平面への投影成分がX軸とのなす角度βと、C軸の任意の旋回角度θとに対して前記仮想の薄肉円盤の中心のX座標とZ座標を得るようにしたことを特徴としている。
The invention related to the tool path generation program according to claim 19 is the above 17 or 18, wherein the first tool path generation program has an outer periphery of a virtual thin disk having the same shape as the disk-type rotary tool. While moving in the Z-axis direction while maintaining a state in contact with the three-dimensional shape model turning around the C-axis, the direction of the virtual thin disk is made perpendicular to the surface of the three-dimensional shape model Assuming that
From the contact point between the outer periphery of the virtual thin disk and the surface of the three-dimensional shape model, a normal vector whose length in the normal direction is the radius of the virtual thin disk is calculated, and the tip of the normal vector A rotation angle γ obtained by rotating the three-dimensional shape model around the Z axis until a straight line perpendicular to the Z axis from the position coincides with the XZ plane, and a projection component of the normal vector onto the XZ plane forms an X axis. The X-coordinate and Z-coordinate of the center of the virtual thin disk are obtained with respect to the angle β and the arbitrary turning angle θ of the C axis.

請求項20記載の工具経路生成プログラムに係る発明は、上記19項において、前記仮想の薄肉円盤は、その表面の周囲に多数の点からなる工具座標系で定義し、
前記仮想の薄肉円盤の向きを前記三次元形状モデルの表面に対して垂直に向けるために、前記角度βだけスイングさせたと仮定した時、前記工具座標系で定義した多数の点のうちの少なくとも1点が、前記三次元形状モデルの内側にあれば、前記仮想の薄肉円盤が前記三次元形状モデルに干渉したと判断し、
前記仮想の薄肉円盤の向きを角度β−90°スイングし、前記仮想の薄肉円盤の先端を前記三次元形状モデルの加工点に接触するよう位置決めすることを特徴としている。
The invention related to the tool path generation program according to claim 20 is the above-described item 19, wherein the virtual thin disk is defined by a tool coordinate system including a number of points around the surface thereof.
When it is assumed that the virtual thin disk is swung by the angle β in order to orient the perpendicular thin disk in a direction perpendicular to the surface of the three-dimensional shape model, at least one of a plurality of points defined in the tool coordinate system is used. If the point is inside the three-dimensional shape model, it is determined that the virtual thin disk has interfered with the three-dimensional shape model,
The direction of the virtual thin disk is swung by an angle β-90 °, and the tip of the virtual thin disk is positioned so as to contact the machining point of the three-dimensional shape model.

請求項21記載の工具経路生成プログラムに係る発明は、上記17項〜20項のいずれかにおいて、C軸に直交する方向と平行に走行する帯鋸刃を備えるとともに、前記帯鋸刃が全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記帯鋸刃の向きをZ軸方向に対して傾斜するように変向可能である帯鋸盤を用いた三次元加工に必要な第三の工具経路生成プログラムを加え、
前記第三の工具経路生成プログラムは、前記帯鋸盤の帯鋸刃と同じ形状を有する仮想の帯鋸工具が、C軸の旋回角度θがゼロ度における前記三次元形状モデルに対してZ軸に平行なZ軸方向でスライスする時に、Z軸方向とZ軸に直交するF方向に移動することを前提に、
前記三次元形状モデルをZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面を形成し、各仮想スライス断面において+F方向の最大点Fmaxと最小点Fminを計算し、前記各Fmax同士を結んだ最大部輪郭線と前記各Fmin同士を結んだ最小部輪郭線とを計算し、前記最大部輪郭線に対する最大部オフセット線と、前記最小部輪郭線に対する最小部オフセット線を計算し、前記最大部オフセット線と前記最小部オフセット線のうちの少なくとも一方を前記仮想の帯鋸工具の工具経路にすることを特徴としている。
The invention according to claim 21 is the tool path generation program according to any one of items 17 to 20, further comprising a band saw blade that travels in parallel with a direction orthogonal to the C axis, and the band saw blade as a whole is a Z axis. 3D using a band saw that can move in the Z-axis direction parallel to the Z-axis and the F-direction orthogonal to the Z-axis, and can change the direction of the band saw blade so as to be inclined with respect to the Z-axis direction. Add a third tool path generation program necessary for machining,
In the third tool path generation program, a virtual band saw tool having the same shape as the band saw blade of the band saw machine is parallel to the Z axis with respect to the three-dimensional shape model in which the turning angle θ of the C axis is zero degrees. When slicing in the Z-axis direction, assuming that the Z-axis direction and the F-direction perpendicular to the Z-axis move,
A large number of virtual slice sections parallel to the XY plane are formed at appropriate intervals in the Z-axis direction with respect to the three-dimensional shape model, and a maximum point Fmax and a minimum point Fmin in the + F direction are calculated in each virtual slice section. The maximum contour line connecting Fmax and the minimum contour line connecting each Fmin are calculated, and the maximum offset line for the maximum contour line and the minimum offset line for the minimum contour line are calculated. Then, at least one of the maximum part offset line and the minimum part offset line is used as a tool path of the virtual band saw tool.

請求項22記載の工具経路生成プログラムに係る発明は、上記17項〜21項のいずれかにおいて、C軸に直交する方向と平行に走行する研磨ベルトを備えるとともに、前記研磨ベルトが全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記研磨ベルトの向きをZ軸方向に対して傾斜するように変向可能であるベルトサンダーを用いた三次元加工に必要な第四の工具経路生成プログラムを加え、
前記第四の工具経路生成プログラムとしては、前記ベルトサンダーの研磨ベルトと同じ形状を有する仮想の研磨工具が、C軸の旋回角度θがゼロ度における前記三次元形状モデルに対して研磨する時に、Z軸方向とZ軸に直交するF方向に移動することを前提に、
前記三次元形状モデルをZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面を形成し、各仮想スライス断面において+F方向の最大点Fmaxと最小点Fminを計算し、前記各Fmax同士を結んだ最大部輪郭線と前記各Fmin同士を結んだ最小部輪郭線とを計算し、前記最大部輪郭線と前記最小部輪郭線のうちの少なくとも一方を前記仮想の研磨工具の工具経路を生成することを特徴としている。
An invention according to a tool path generation program according to a twenty-second aspect includes the polishing belt according to any one of the seventeenth to twenty-first aspects, wherein the polishing belt travels in parallel with a direction orthogonal to the C axis, and the polishing belt as a whole is a Z axis 3D using a belt sander that can move in the Z-axis direction parallel to the Z-axis and the F-direction orthogonal to the Z-axis, and can change the direction of the polishing belt so as to be inclined with respect to the Z-axis direction. Add the fourth tool path generation program necessary for machining,
As the fourth tool path generation program, when a virtual polishing tool having the same shape as the polishing belt of the belt sander is polished with respect to the three-dimensional shape model in which the turning angle θ of the C axis is zero degrees, On the premise of moving in the Z-axis direction and the F-direction orthogonal to the Z-axis,
A large number of virtual slice sections parallel to the XY plane are formed at appropriate intervals in the Z-axis direction with respect to the three-dimensional shape model, and a maximum point Fmax and a minimum point Fmin in the + F direction are calculated in each virtual slice section. The maximum contour line connecting Fmax and the minimum contour line connecting each Fmin are calculated, and at least one of the maximum contour line and the minimum contour line is used as a tool of the virtual polishing tool. It is characterized by generating a route.

請求項22記載の発明の記録媒体は、請求項17〜21のいずれかに記載の工具経路生成プログラムを記録したことを特徴とする。   A recording medium according to a twenty-second aspect records the tool path generation program according to any one of the seventeenth to twenty-first aspects.

本発明によれば、製品の三次元形状モデルに接する仮想の薄肉円盤による工具経路を生成しておき、次いで、前記三次元形状モデルの先端から側面に対して接する仮想の球体の工具経路も生成しておくことで、以下の効果を奏する。
前記仮想の薄肉円板による工具経路に基づいて円盤型切削工具で一度の送り動作だけによる粗加工を先ず行い、その後、材料を取り外すことなく直ちに前記仮想の球体による工具経路に基づいて球状回転工具で微細な凹凸の加工を行うことができる。その結果、粗加工から微細加工までの一連の工程を、1台の加工機の上で連続して加工することが可能になるので、結果的に微細な三次元の旋盤加工を短時間で且つ精度良く行うことが可能となる。これにより、複雑で高価なハードウエアやソフトウエアを必要とせずに安価で、しかも微細な凹凸加工も含め、全体的に短時間で効率の良い三次元加工を行うことを可能ならしめている。
According to the present invention, a tool path is generated by a virtual thin disk that is in contact with the three-dimensional shape model of the product, and then a virtual spherical tool path that is in contact with the side surface from the tip of the three-dimensional shape model is also generated. By doing so, the following effects can be obtained.
Based on the tool path by the virtual thin disk, first, rough machining is performed only by a single feed operation with a disk-type cutting tool, and then the spherical rotary tool is immediately based on the tool path by the virtual sphere without removing the material. It is possible to process fine irregularities. As a result, a series of steps from rough machining to fine machining can be continuously performed on one processing machine, and as a result, fine three-dimensional lathe machining can be performed in a short time and It becomes possible to carry out with high accuracy. As a result, it is possible to perform efficient three-dimensional processing in a short time as a whole, including low-priced processing that is inexpensive and does not require complicated and expensive hardware and software.

三次元形状モデルは、表面が三角形で分割された三次元形状の製品の三次元形状モデルであっても、あるいは表面が三次元曲面の多角形ポリゴンに分割された製品の三次元形状モデルであっても適用できる。   The three-dimensional shape model is a three-dimensional shape model of a three-dimensional product whose surface is divided by a triangle, or a three-dimensional shape model of a product whose surface is divided into polygon polygons of a three-dimensional curved surface. Even applicable.

また、円盤型回転工具が三次元形状モデルの表面に対して法線方向に向けるように制御することで、加工面の粗さが小さくなり、研磨面に相当する加工面が得られる。さらに、円盤型回転工具が三次元形状モデルに干渉しないように接線方向に向くようにスイングできるので、加工面の粗さが小さくなり、研磨面に相当する加工面が得られる。その結果、研磨工程の時間短縮を図ることができる。   Further, by controlling the disk-type rotary tool so that it is directed in the normal direction with respect to the surface of the three-dimensional shape model, the roughness of the processed surface is reduced, and a processed surface corresponding to the polished surface is obtained. Further, since the disk-type rotary tool can swing so as to face in the tangential direction so as not to interfere with the three-dimensional shape model, the roughness of the processed surface is reduced, and a processed surface corresponding to the polished surface is obtained. As a result, the time for the polishing process can be shortened.

また、C軸に直交する方向と平行に走行する帯鋸刃を有する帯鋸盤が、さらに備えられることで、木工材料の外形と三次元形状の輪郭との間の削り代を、少ないエネルギーで、かつ、短時間で切り落とすことができる。   In addition, a band saw machine having a band saw blade that runs parallel to the direction orthogonal to the C axis is further provided, so that the cutting allowance between the outer shape of the woodworking material and the contour of the three-dimensional shape can be reduced with less energy, and Can be cut off in a short time.

また、C軸に直交する方向と平行に走行する研磨ベルトを有するベルトサンダーをさらに備えることで、円盤型回転工具や球状回転工具によって木工材料から三次元形状を削り出した後に、前記三次元形状の輪郭に対して研磨ベルトにて自動的に研磨する。その結果、研磨工程の時間短縮と省力化を図ることができる。   Further, by further comprising a belt sander having a polishing belt that runs parallel to the direction orthogonal to the C axis, the three-dimensional shape is cut out from the woodworking material by a disk-type rotary tool or a spherical rotary tool. It is automatically polished with a polishing belt against the contour of As a result, the polishing process can be shortened and labor can be saved.

本発明に係る実施形態の多軸NC木工旋盤システムの概略を示す斜視図である。1 is a perspective view schematically showing a multi-axis NC woodworking lathe system according to an embodiment of the present invention. (a)は、多軸NC木工旋盤のC軸にチャッキングした仮想の三次元形状モデルと、仮想の薄肉円盤と、仮想の球体を示す斜視図である。(b)は、(a)のZ軸方向から視た側面図である。(A) is a perspective view showing a virtual three-dimensional shape model chucked on the C-axis of a multi-axis NC woodworking lathe, a virtual thin disk, and a virtual sphere. (B) is the side view seen from the Z-axis direction of (a). 仮想の薄肉円盤の空間領域に位置する仮想の三次元形状モデルの表面の三角形との幾何学的位置関係を示す概略的な説明図である。It is a schematic explanatory drawing which shows the geometric positional relationship with the triangle of the surface of the virtual three-dimensional shape model located in the space area | region of a virtual thin disk. 点Aを通る円の中心X座標を求める方法を示す概略図である。FIG. 6 is a schematic diagram illustrating a method for obtaining a center X coordinate of a circle passing through a point A. (a)は、球状回転工具が常に点Z=Zhを向きながらB軸回りに旋回する状態を示す平面図である。(b)は、(a)の仮想の三次元形状モデルと球状回転工具を点Z=Zhを原点として逆方向に回転変換した状態を示す平面図である。(A) is a top view which shows the state in which a spherical rotary tool turns around a B-axis, always facing the point Z = Zh. (B) is a plan view showing a state in which the virtual three-dimensional model and the spherical rotary tool of (a) are rotationally converted in the reverse direction with the point Z = Zh as the origin. 仮想の球体の空間領域に位置する仮想の三次元形状モデルの表面の三角形との幾何学的位置関係を示す概略的な斜視図である。It is a schematic perspective view which shows the geometric positional relationship with the triangle of the surface of the virtual three-dimensional shape model located in the space area | region of a virtual sphere. 第一の加工点における仮想の球体の中心のZ座標を示す概略図である。It is the schematic which shows the Z coordinate of the center of the virtual sphere in a 1st process point. 第二の加工点における仮想の球体の中心のZ座標を示す概略図である。It is the schematic which shows the Z coordinate of the center of the virtual sphere in a 2nd process point. 第三の加工点における仮想の球体の中心のZ座標を示す概略図である。It is the schematic which shows Z coordinate of the center of the virtual sphere in the 3rd processing point. (a)〜(c)は、三次元曲面で定義される多角形ポリゴンの表面が三角形に分割された、製品の三次元形状モデルにおける概略的な斜視図である。(A)-(c) is a schematic perspective view in the three-dimensional shape model of a product by which the surface of the polygon polygon defined by a three-dimensional curved surface was divided | segmented into the triangle. 仮想の薄肉円盤が仮想の三次元形状モデルの表面に対して法線方向に接触した平面図である。It is the top view which the virtual thin disk contacted the normal direction with respect to the surface of the virtual three-dimensional shape model. 仮想の三次元形状モデルの表面に対して法線方向に接触した仮想の薄肉円盤の回転中心座標を得ることを説明する斜視図である。It is a perspective view explaining obtaining the rotation center coordinate of the virtual thin disk which contacted the surface of the virtual three-dimensional shape model in the normal direction. 図12の状態をY軸方向から視たXZ平面図である。It is the XZ top view which looked at the state of FIG. 12 from the Y-axis direction. 図12の状態をZ軸方向から視た側面図である。It is the side view which looked at the state of Drawing 12 from the Z-axis direction. 凹みを有する製品の一例を示す斜視図である。It is a perspective view which shows an example of the product which has a dent. 図15の製品の三次元形状モデルを仮想の薄肉円盤にて仮想切削する状態を示すXZ平面図である。FIG. 16 is an XZ plan view showing a state in which the three-dimensional shape model of the product of FIG. 15 is virtually cut with a virtual thin disk. 帯鋸盤の帯鋸刃にて木工材料を切り落とす状態を示す斜視図である。It is a perspective view which shows the state which cuts off the woodwork material with the band saw blade of a band saw machine. 三次元形状モデルのスライス断面を示す斜視図である。It is a perspective view which shows the slice cross section of a three-dimensional shape model. 三次元形状モデルの最大部輪郭線と最小部輪郭線を示す斜視図である。It is a perspective view which shows the maximum part outline and minimum part outline of a three-dimensional shape model. 最大部輪郭線に対する最大部オフセット線を示す概略図である。It is the schematic which shows the maximum part offset line with respect to the maximum part outline. 木工材料を切断する際の帯鋸刃の断面から、切断曲線の曲率半径の限界を計測するための断面図である。It is sectional drawing for measuring the limit of the curvature radius of a cutting curve from the section of the band saw blade at the time of cutting woodworking material. (a)〜(d)は、円盤型回転工具と帯鋸刃を使用して木工材料から三次元形状を削り出す一連の動作を示す概略的な斜視図である。(A)-(d) is a schematic perspective view which shows a series of operation | movement which cuts a three-dimensional shape from woodworking material using a disk type | mold rotary tool and a band saw blade. ベルトサンダーの研磨ベルトにて木工材料を研磨する状態を示す斜視図である。It is a perspective view which shows the state which grinds woodwork material with the grinding | polishing belt of a belt sander. 図23における研磨ベルトにて木工材料を研磨する状態を示す側面図である。It is a side view which shows the state which grinds woodworking material with the grinding | polishing belt in FIG.

以下、本発明の実施形態に係る多軸NC木工旋盤システムについて図面を参照して説明する。図1は、多軸NC木工旋盤システムに用いる4軸NC木工旋盤の概略的な構成を示す斜視図である。   Hereinafter, a multi-axis NC woodworking lathe system according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration of a 4-axis NC woodworking lathe used in a multi-axis NC woodworking lathe system.

本実施形態の多軸NC木工旋盤システム1は、4軸NC木工旋盤10のベースプレート上に、図1に示すように、木工材料Wをチャッキングして旋回するためのチャック11と、木工材料Wを切削するための円盤型回転工具20および球状回転工具31を備える。すなわち、円盤型回転工具20と球状回転工具31は、同じステージ上に備えられている。   A multi-axis NC woodworking lathe system 1 according to the present embodiment includes a chuck 11 for chucking and turning a woodworking material W on a base plate of a 4-axis NC woodworking lathe 10 and a woodworking material W as shown in FIG. The disk-type rotary tool 20 and the spherical rotary tool 31 for cutting are provided. That is, the disk-type rotary tool 20 and the spherical rotary tool 31 are provided on the same stage.

前記チャック11は、木工材料Wをチャッキングして旋回角度を制御可能な旋回軸であるC軸を備えている。   The chuck 11 includes a C-axis that is a pivot that can chuck the woodwork material W and control the pivot angle.

円盤型回転工具20は、外周に鋸刃23を備えた円盤型の回転工具であり、本実施形態ではチップソーを使用している。また、前記C軸回りに旋回する木工材料Wを切削するために、円盤型回転工具20は、C軸の延長線上にあるZ軸方向および前記Z軸に直交するX軸方向に移動可能に構成されている。なお、本実施形態では、X軸はベースプレートの面にほぼ平行である。   The disk-type rotary tool 20 is a disk-type rotary tool having a saw blade 23 on the outer periphery, and a tip saw is used in this embodiment. Further, in order to cut the woodworking material W turning around the C-axis, the disk-type rotary tool 20 is configured to be movable in the Z-axis direction on the extension line of the C-axis and the X-axis direction orthogonal to the Z-axis. Has been. In the present embodiment, the X axis is substantially parallel to the surface of the base plate.

球状回転工具31は、先端が球状ないしは半球状のカッタを備えた球状型の回転工具である。また、前記C軸回りに旋回する木工材料Wを切削するために、Z軸方向およびX軸方向に移動可能で、かつXZ平面に直交するB軸回りに旋回可能に構成されている。球状回転工具31は、本実施形態では、先端が球状の木工用ボールビットを使用しているが、先端が半球状の木工用ルータビットあるいは他の形態であってもよい。   The spherical rotary tool 31 is a spherical rotary tool provided with a spherical or hemispherical cutter at the tip. Further, in order to cut the woodworking material W that turns around the C axis, the woodworking material W can be moved in the Z axis direction and the X axis direction, and can be turned around the B axis perpendicular to the XZ plane. In the present embodiment, the spherical rotary tool 31 uses a spherical woodworking ball bit with a spherical tip, but it may be a hemispherical woodworking router bit with a tip or other forms.

本実施形態では、B軸は、図1に示すようにXZ平面に直交するY軸方向であり、機械的な回転機構によって支持された回転軸である。   In the present embodiment, the B-axis is a Y-axis direction orthogonal to the XZ plane as shown in FIG. 1 and is a rotation axis supported by a mechanical rotation mechanism.

本実施形態では、C軸にチャッキングして旋回中の木工材料Wに対して、上記の円盤型回転工具20および球状回転工具31を用いて三次元形状の製品に切削加工する。そのために、予め円盤型回転工具20の工具経路および球状回転工具31の工具経路を生成し、コンピュータにプログラミングしておく。   In the present embodiment, the woodworking material W chucked on the C axis and turning is cut into a three-dimensional product using the disk-type rotary tool 20 and the spherical rotary tool 31 described above. For this purpose, a tool path of the disk-type rotary tool 20 and a tool path of the spherical rotary tool 31 are generated in advance and programmed in the computer.

本実施形態の工具経路生成方法は、円盤型回転工具20を用いた三次元加工に必要な第一の工具経路生成方法と、球状回転工具31を用いた三次元加工に必要な第二の工具経路生成方法と、を組み合わせたものである。   The tool path generation method of the present embodiment includes a first tool path generation method necessary for three-dimensional machining using the disk-type rotary tool 20 and a second tool required for three-dimensional machining using the spherical rotary tool 31. And a route generation method.

まず、製品の三次元形状の表面が三角形で分割された三次元形状モデル2をコンピュータに入力する。本実施形態では、三次元形状モデル2としてSTLファイル形式の3Dモデルを使用する。次いで、コンピュータに入力されている製品の三次元形状モデル2を、4軸NC木工旋盤10のC軸にチャッキングしたと仮定する。なお、このときの三次元形状モデル2は、図2(a)に示すように例えば人形の鼻や耳などの突起部を有している。   First, a three-dimensional shape model 2 in which the surface of the three-dimensional shape of a product is divided into triangles is input to a computer. In the present embodiment, a 3D model in the STL file format is used as the three-dimensional shape model 2. Next, it is assumed that the three-dimensional shape model 2 of the product input to the computer is chucked on the C-axis of the 4-axis NC woodworking lathe 10. Note that the three-dimensional shape model 2 at this time has protrusions such as a doll's nose and ears as shown in FIG.

第一の工具経路生成方法、すなわち円盤型回転工具20の工具経路生成方法について図面を参照して説明する。
図2(a)は、三次元形状モデル2が仮想的にC軸にチャッキングされている状態と、円盤型回転工具20と同じ形状を有する仮想の薄肉円盤21を示している。図2(a)における仮想の薄肉円盤21は、円盤型回転工具20の厚みと直径が同一な薄肉の円盤としている。
A first tool path generation method, that is, a tool path generation method of the disk-type rotary tool 20 will be described with reference to the drawings.
FIG. 2A shows a state in which the three-dimensional shape model 2 is virtually chucked on the C axis and a virtual thin disk 21 having the same shape as the disk-type rotary tool 20. The virtual thin disk 21 in FIG. 2A is a thin disk having the same diameter and diameter as the disk-type rotary tool 20.

第一の工具経路生成方法において、円盤型回転工具20の工具経路を求めるには、まず、仮想の薄肉円盤21のチャック11側の側面が三次元形状モデル2の図2(a)において左側先端のZ座標上にある。さらに、仮想の薄肉円盤21の外周面がC軸の延長線上にあるZ軸に接する位置にある。この状態を開始点として、旋回中の三次元形状モデル2に対して接した状態を維持しながら、図2(a)において右斜め上方の−Z軸方向に移動する。   In the first tool path generation method, in order to obtain the tool path of the disk-type rotary tool 20, first, the side surface on the chuck 11 side of the virtual thin disk 21 is the left end in FIG. On the Z coordinate. Furthermore, the outer peripheral surface of the virtual thin disk 21 is in a position in contact with the Z axis on the extension line of the C axis. With this state as a starting point, the robot moves in the −Z-axis direction obliquely upward to the right in FIG. 2A while maintaining a state in contact with the turning three-dimensional shape model 2.

仮想の薄肉円盤21と三次元形状モデル2との接触点の軌跡は、仮想の三次元形状モデル2の表面にスパイラル状に描かれる。そのとき、仮想の薄肉円盤21は三次元形状モデル2の凹凸によってX軸方向に移動する。この移動動作において、C軸の任意の旋回角度θと仮想の薄肉円盤21の外周の任意のZ座標に応じて仮想の薄肉円盤21の回転中心のX座標を求めることで、円盤型回転工具20の工具経路となる。   The locus of the contact point between the virtual thin disk 21 and the three-dimensional shape model 2 is drawn spirally on the surface of the virtual three-dimensional shape model 2. At this time, the virtual thin disk 21 moves in the X-axis direction due to the unevenness of the three-dimensional shape model 2. In this moving operation, the disk-type rotary tool 20 is obtained by obtaining the X coordinate of the rotation center of the virtual thin disk 21 according to the arbitrary turning angle θ of the C axis and the arbitrary Z coordinate of the outer periphery of the virtual thin disk 21. This is the tool path.

より詳しく説明すると、図3は、仮想の薄肉円盤21と、その両側面を含む平面の間にある仮想の薄肉円盤21の空間領域22に位置する三次元形状モデル2の表面の三角形との幾何学的位置関係を示している。本来、仮想の薄肉円盤21と接触する候補としては、仮想の薄肉円盤21の空間領域22に存在する三角形すべてを図示する必要があるが、説明を分かりやすくするために任意の隣り合う二つの三角形を想定する。   More specifically, FIG. 3 shows the geometry of the virtual thin disk 21 and the triangles on the surface of the three-dimensional shape model 2 located in the space region 22 of the virtual thin disk 21 between the planes including both side surfaces thereof. It shows the physical relationship. Originally, it is necessary to illustrate all the triangles existing in the space region 22 of the virtual thin disk 21 as candidates for contact with the virtual thin disk 21, but in order to make the explanation easy to understand, any two adjacent triangles Is assumed.

一般に、図4に示すように、X軸と、XZ平面と直交するY軸でなすXY平面内において、X軸上に中心を持つ半径Rcの円のうち任意の点Aを通る円の中心のX座標は、点Aを中心とする半径Rcの円とX軸との交点として求められる。この考え方で、図2(a)において左斜め下側からチャック11側を視た図2(b)で示すように、三次元形状モデル2の表面と仮想の薄肉円盤21との接触点Aに対する仮想の薄肉円盤21の中心のX座標を求めることができる。   In general, as shown in FIG. 4, in the XY plane formed by the X axis and the Y axis perpendicular to the XZ plane, the center of a circle passing through an arbitrary point A among circles having a radius Rc centered on the X axis. The X coordinate is obtained as an intersection of a circle having a radius Rc centered on the point A and the X axis. With this concept, as shown in FIG. 2B when the chuck 11 side is viewed from the diagonally lower left side in FIG. 2A, with respect to the contact point A between the surface of the three-dimensional shape model 2 and the virtual thin disk 21 The X coordinate of the center of the virtual thin disk 21 can be obtained.

上記の手法によって、C軸回りに旋回する三次元形状モデル2に対して接しているときの仮想の薄肉円盤21の中心のX座標を求めることで、円盤型回転工具20の工具経路を得る。   The tool path of the disk-type rotary tool 20 is obtained by obtaining the X coordinate of the center of the virtual thin disk 21 when in contact with the three-dimensional shape model 2 turning around the C axis by the above method.

図3において左側の側面21aを含む平面である第一の平面22aと三角形の辺との交点C1,C2,C5を中心として仮想の薄肉円盤21の半径と同じ半径の円を第一の平面22a上に描く。これらの円がX軸と交わる交点のうち、旋回軸のC軸から最も遠い交点のX座標を第一の工具中心のX座標とする。   In FIG. 3, a circle having the same radius as the radius of the imaginary thin disk 21 around the intersection C1, C2, C5 of the first plane 22a, which is a plane including the left side surface 21a, and the sides of the triangle is defined as the first plane 22a. Draw on top. Of the intersections where these circles intersect the X axis, the X coordinate of the intersection farthest from the C axis of the turning axis is taken as the X coordinate of the first tool center.

次に、図3において右側の側面21bを含む平面である第二の平面22bと三角形の辺との交点C3,C4,C6を中心として仮想の薄肉円盤21の半径と同じ半径の円を第二の平面22b上に描く。これらの円がX軸と交わる交点のうち、旋回軸のC軸から最も遠い交点のX座標を第二の工具中心のX座標とする。   Next, a second circle having the same radius as that of the virtual thin disk 21 is centered on the intersections C3, C4 and C6 of the second plane 22b, which is a plane including the right side surface 21b in FIG. Draw on the plane 22b. Of the intersections where these circles intersect the X axis, the X coordinate of the intersection farthest from the C axis of the turning axis is taken as the X coordinate of the second tool center.

さらに、図3において三角形の頂点に関し、仮想の薄肉円盤21と接する可能性のある頂点は、第一の平面22aと第二の平面22bの間にある仮想の薄肉円盤21の空間領域22に位置する頂点P2,P4である。そこで、頂点P2,P4を中心として仮想の薄肉円盤21の半径と同じ半径の円を第一の平面22aおよび第二の平面22bと平行に描く。これらの円がX軸と交わる交点のうち、旋回軸のC軸から最も遠い交点のX座標を第三の工具中心のX座標とする。   Further, with respect to the apex of the triangle in FIG. 3, the apex that may contact the virtual thin disk 21 is located in the space region 22 of the virtual thin disk 21 between the first plane 22a and the second plane 22b. Vertices P2 and P4. Therefore, a circle having the same radius as that of the virtual thin disk 21 is drawn in parallel with the first plane 22a and the second plane 22b with the vertices P2 and P4 as the center. Of the intersections where these circles intersect the X axis, the X coordinate of the intersection farthest from the C axis of the turning axis is taken as the X coordinate of the third tool center.

以上のようにして求めた第一の工具中心,第二の工具中心,第三の工具中心の各X座標のうち、旋回軸のC軸から最も遠い交点のX座標が、求める仮想の薄肉円盤21の中心のX座標であり、円盤型回転工具20の工具経路となる。   Of the X coordinates of the first tool center, the second tool center, and the third tool center obtained as described above, the X coordinate of the intersection farthest from the C axis of the turning axis is the virtual thin disk to be obtained. 21 is the X coordinate of the center of 21 and becomes the tool path of the disk-type rotary tool 20.

上記の仮想の薄肉円盤21の工具経路の計算は、三次元形状モデル2の先端から加工終端にわたって、旋回角θごとに、またZ軸方向の送り毎に行い、仮想の薄肉円盤21の外周が三次元形状モデル2に外接するときの仮想の薄肉円盤21の中心のX座標を求める。その結果をGコードとともにコンピュータに保存することで、円盤型回転工具20の工具経路を得る。   The calculation of the tool path of the virtual thin disk 21 is performed from the tip of the three-dimensional shape model 2 to the end of machining for each turning angle θ and for each feed in the Z-axis direction. The X coordinate of the center of the virtual thin disk 21 when circumscribing the three-dimensional shape model 2 is obtained. The tool path of the disk-type rotary tool 20 is obtained by storing the result together with the G code in a computer.

次に、第二の工具経路生成方法、すなわち球状回転工具31の工具経路生成方法について図面を参照して説明する。
図2(a)では、球状回転工具31の先端の球体と同じ直径の仮想の球体32を示している。仮想の球体32は、球状回転工具31の回転軸と同じ軸心を有する。
Next, a second tool path generation method, that is, a tool path generation method of the spherical rotary tool 31 will be described with reference to the drawings.
FIG. 2A shows a virtual sphere 32 having the same diameter as the sphere at the tip of the spherical rotary tool 31. The virtual sphere 32 has the same axis as the rotation axis of the spherical rotary tool 31.

第二の工具経路生成方法において、球状回転工具31の工具経路を求めるには、まず、仮想の球体32の表面が、三次元形状モデル2の図2(a)において左側先端のZ座標上にある。さらに、球状回転工具31の軸心がZ軸に一致する。この状態を開始点として、旋回中の三次元形状モデル2に対して接した状態を維持しながら、Z軸上の任意の点Zhに常に向くように維持しながら、XZ平面内を移動しかつXZ平面に直交するB軸回りに旋回する。さらに、図2(a)において−Z軸方向に移動する。   In the second tool path generation method, in order to obtain the tool path of the spherical rotary tool 31, first, the surface of the virtual sphere 32 is on the Z coordinate of the left end in FIG. 2A of the three-dimensional shape model 2. is there. Further, the axis of the spherical rotary tool 31 coincides with the Z axis. Starting from this state, moving in the XZ plane while maintaining a state of being in contact with the turning three-dimensional shape model 2 while always facing an arbitrary point Zh on the Z axis, It turns around the B axis orthogonal to the XZ plane. Furthermore, in FIG. 2 (a), it moves in the −Z-axis direction.

仮想の球体32と三次元形状モデル2との接触点の軌跡は、三次元形状モデル2の表面にスパイラル状に描かれる。そのとき、上記のように球状回転工具31がB軸回りに旋回(スイング)しながら三次元形状モデル2の凹凸に応じて移動する。この移動動作において、C軸の任意の旋回角度θと、球状回転工具31の回転軸のZ軸に対する任意の旋回角度αに対して仮想の球体32の中心のX座標とZ座標を求めることで、球状回転工具31の工具経路となる。   The locus of the contact point between the virtual sphere 32 and the three-dimensional shape model 2 is drawn spirally on the surface of the three-dimensional shape model 2. At that time, the spherical rotary tool 31 moves according to the unevenness of the three-dimensional shape model 2 while turning (swinging) around the B axis as described above. In this moving operation, the X and Z coordinates of the center of the virtual sphere 32 are obtained with respect to an arbitrary turning angle θ of the C axis and an arbitrary turning angle α of the rotation axis of the spherical rotary tool 31 with respect to the Z axis. It becomes the tool path of the spherical rotary tool 31.

加工中の動作のイメージは、図5(a)に示すように、木工材料WがC軸回りに旋回中に、先端半径rの球体32を有する球状回転工具31がZ軸上の任意の点Zhを向きながらB軸回りに旋回(スイング)する。例えば、旋回角度αは0〜90°の範囲とする。このとき、球状回転工具31は、仮想の三次元形状モデル2の表面の凹凸に応じて、X軸方向とZ軸方向との合成によるr方向へ往復運動を繰り返す。図5(a)において左方向の−Z軸方向へ平行移動しながら三次元形状モデル2の表面の凹凸を加工する動作となる。
なお、Z軸上の任意の点Zhは、図5(a)に示すように、製品形状の先端部を半球体に近似したときの底面の中心のZ座標である。製品形状の後端部は前記の先端部の半球体に連なる円筒体となる。
Image behavior during processing, as shown in FIG. 5 (a), during turning woodworking material W is in the C-axis, the spherical rotary tool 31 having a spherical 32 tip radius r b is any on the Z-axis Turn (swing) around the B axis while facing the point Zh. For example, the turning angle α is in the range of 0 to 90 °. At this time, the spherical rotary tool 31 repeats reciprocating motion in the r direction by combining the X axis direction and the Z axis direction according to the unevenness of the surface of the virtual three-dimensional shape model 2. In FIG. 5A, the surface of the three-dimensional shape model 2 is processed to be uneven while being translated in the leftward -Z-axis direction.
The arbitrary point Zh on the Z axis is the Z coordinate of the center of the bottom surface when the tip of the product shape is approximated to a hemisphere as shown in FIG. The rear end of the product shape is a cylindrical body connected to the hemisphere of the tip.

上記の加工動作を前提とするCAMソフトウエアの計算方式は、C軸回りに旋回角度θだけ旋回した仮想の三次元形状モデル2に対して、球状回転工具31がB軸回りに旋回角度αだけ旋回した状態におけるr方向の距離Zcを求める。この計算を繰り返すこととなる。このとき、球状回転工具31の仮想の球体32の中心座標を簡単に求めるために座標変換を用いる。   The calculation method of the CAM software on the premise of the above machining operation is that the spherical rotary tool 31 is rotated only by the turning angle α around the B axis with respect to the virtual three-dimensional shape model 2 turned around the C axis by the turning angle θ. The distance Zc in the r direction in the turning state is obtained. This calculation will be repeated. At this time, coordinate conversion is used to easily obtain the center coordinates of the virtual sphere 32 of the spherical rotary tool 31.

すなわち、三次元形状モデル2をC軸回りに前記旋回角度θと同じ旋回角度だけ回転変換する。さらに、三次元形状モデル2と球状回転工具31を同時に、Z軸上で−Zhだけ平行移動し、Y軸回りに前記旋回角度αと同じ旋回角度だけ逆方向に旋回して回転変換する。
その結果、図5(b)に示すように、三次元形状モデル2の表面の三角形と接する位置を単にZ軸上に中心を持つ半径rの仮想の球体32の中心位置を求める状態に簡略化することができる。
That is, the three-dimensional shape model 2 is rotationally converted around the C axis by the same turning angle as the turning angle θ. Further, the three-dimensional shape model 2 and the spherical rotary tool 31 are simultaneously translated by −Zh on the Z axis, and rotated and converted in the opposite direction around the Y axis by the same turning angle as the turning angle α.
As a result, as shown in FIG. 5 (b), schematically in a state for obtaining the just center position of the virtual sphere 32 of radius r b having a center on the Z-axis position in contact with the triangle of the three-dimensional shape model 2 of the surface Can be

図6は、三次元形状モデル2と、球状回転工具31の回転軸を、前記回転軸がZ軸上に一致するよう回転変換した状態を示し、仮想の球体32と、その半径rの外周円をZ軸方向に延長した円筒内の空間領域33と、この空間領域33内に位置する三次元形状モデル2の表面の三角形との幾何学的位置関係を示している。仮想の球体32と接触する候補としては、前記空間領域33内に存在する三角形である。これらの三角形に対して、仮想の球体32の表面が接触すると考えられる全部の候補を抽出し、それらの候補の中から実際に加工に寄与すべき加工点を一つだけ選ぶ。 Figure 6 is a three-dimensional shape model 2, the rotation axis of the spherical rotary tool 31 shows a state where the rotary shaft is rotated converted to match on the Z axis, and the virtual sphere 32, the outer circumference of the radius r b The geometrical positional relationship between a space region 33 in a cylinder obtained by extending a circle in the Z-axis direction and a triangle on the surface of the three-dimensional shape model 2 located in the space region 33 is shown. Candidates that come into contact with the virtual sphere 32 are triangles that exist in the space region 33. All candidates that the surface of the virtual sphere 32 is considered to contact with these triangles are extracted, and only one processing point that should actually contribute to the processing is selected from these candidates.

考えられる全部の候補としては、該当する各三角形において、仮想の球体32の表面と、三次元形状モデル2を構成する三角形の頂点とが接するときの第一加工点を抽出する。次に、仮想の球体32の表面と、三次元形状モデル2を構成する三角形の辺とが接するときの第二加工点を抽出する。さらに、仮想の球体32の表面と、三次元形状モデル2を構成する三角形平面とが接するときの第三加工点を抽出する。   As all possible candidates, the first processing point when the surface of the virtual sphere 32 and the vertexes of the triangles constituting the three-dimensional shape model 2 are in contact with each corresponding triangle is extracted. Next, a second processing point is extracted when the surface of the virtual sphere 32 is in contact with the triangle sides constituting the three-dimensional shape model 2. Further, a third processing point is extracted when the surface of the virtual sphere 32 and the triangular plane constituting the three-dimensional shape model 2 are in contact with each other.

以上のようにして求めた全部の三角形の3通りの第一の加工点,第二の加工点,第三の加工点の候補の中から実際の加工に寄与すべき加工点を一つだけ抽出することで、仮想の球体32の中心のX座標とZ座標を得る。   Extract only one machining point that should contribute to actual machining from the three first machining points, second machining points, and third machining point candidates for all triangles obtained as described above. As a result, the X coordinate and Z coordinate of the center of the virtual sphere 32 are obtained.

次に、上記の第一の加工点,第二の加工点,第三の加工点における仮想の球体32の中心のX座標とZ座標を得るための基礎方程式による計算方法を説明する。   Next, a calculation method using a basic equation for obtaining the X coordinate and Z coordinate of the center of the virtual sphere 32 at the first machining point, the second machining point, and the third machining point will be described.

まず、図5(a)に基づいて、本実施形態における座標系の定義を説明する。
チャック11によってC軸回りに旋回する三次元形状モデル2の回転軸をZ軸とし、チャック11から遠のく方向を+Zとする。Z軸およびZ軸に直交するX軸でなすXZ平面において仮想の薄肉円盤21が遠のく方向を+Xとする。XZ平面に垂直な軸をY軸とし、+Z軸から+X軸へと右ねじを回した時にねじが進む方向を+Yとする。すなわち、図5(a)における紙面上のX軸とZ軸の交点に直交するY軸において紙面の手前側が+Yとなる。また、Z軸と球状回転工具31の回転軸rとのなす旋回角度をαとする。三次元形状モデル2のC軸回りの旋回角度をθとし、三次元形状モデル2をチャック11に向かって右回りに旋回する方向を+θとする。
First, the definition of the coordinate system in the present embodiment will be described with reference to FIG.
The rotation axis of the three-dimensional shape model 2 that turns around the C axis by the chuck 11 is defined as the Z axis, and the direction away from the chuck 11 is defined as + Z. In the XZ plane formed by the Z axis and the X axis orthogonal to the Z axis, the direction in which the virtual thin disk 21 is far away is defined as + X. The axis perpendicular to the XZ plane is defined as the Y axis, and the direction in which the screw advances when the right screw is rotated from the + Z axis to the + X axis is defined as + Y. That is, the front side of the paper surface is + Y on the Y axis perpendicular to the intersection of the X axis and the Z axis on the paper surface in FIG. In addition, a turning angle between the Z axis and the rotation axis r of the spherical rotary tool 31 is α. The turning angle around the C axis of the three-dimensional shape model 2 is θ, and the direction in which the three-dimensional shape model 2 is turned clockwise toward the chuck 11 is + θ.

上記の第一の加工点における仮想の球体32の中心座標を求める計算方法を説明する。すなわち、Z軸上に中心を持つ仮想の球体32の表面と、三次元形状モデル2を構成する三角形の頂点とが接するときの前記球体32の中心座標である。
三角形の頂点は、図7に示すように、空間における任意の点P(x,y,z)とする。球体32の半径はrとする。球体32の中心のZ座標ZCは、式(1)で求められる。

Figure 2017117459
A calculation method for obtaining the center coordinates of the virtual sphere 32 at the first processing point will be described. That is, the center coordinates of the sphere 32 when the surface of the virtual sphere 32 having the center on the Z axis and the apex of the triangle constituting the three-dimensional shape model 2 contact each other.
As shown in FIG. 7, the vertices of the triangle are arbitrary points P (x p , y p , z p ) in the space. The radius of the sphere 32 is set to r b. The Z coordinate Z C of the center of the sphere 32 can be obtained by Expression (1).

Figure 2017117459

上記の第二の加工点における仮想の球体32の中心座標を求める計算方法を説明する。すなわち、Z軸上に中心を持つ仮想の球体32の表面と、三次元形状モデル2を構成する三角形の辺とが接するときの前記球体32の中心座標である。
三角形の辺は、図8に示すように、点A(x,y,z)を通り、方向余弦が(l,m,n)の直線gとする。球体32の半径はrとする。球体32の中心のZ座標ZCは、式(2)で求められる。

Figure 2017117459
A calculation method for obtaining the center coordinates of the virtual sphere 32 at the second processing point will be described. That is, the center coordinates of the sphere 32 when the surface of the virtual sphere 32 having the center on the Z axis and the sides of the triangle constituting the three-dimensional shape model 2 contact each other.
As shown in FIG. 8, the side of the triangle passes through the point A (x 1 , y 1 , z 1 ) and is a straight line g having a direction cosine of (l, m, n). The radius of the sphere 32 is set to r b. The Z coordinate Z C of the center of the sphere 32 can be obtained by Expression (2).

Figure 2017117459

上記の第三の加工点における仮想の球体32の中心座標を求める計算方法を説明する。すなわち、Z軸上に中心を持つ仮想の球体32の表面と、三次元形状モデル2を構成する三角形平面とが接するときの前記球体32の中心座標である。
三角形平面は、図9に示すように、点P(x,y,z),点P(x,y,z),点P(x,y,z),を通る平面πとする。球体32の半径はrとする。球体32の中心のZ座標ZCは、式(3)で求められる。

Figure 2017117459
A calculation method for obtaining the center coordinates of the virtual sphere 32 at the third processing point will be described. That is, the center coordinates of the sphere 32 when the surface of the virtual sphere 32 having the center on the Z axis and the triangular plane constituting the three-dimensional shape model 2 are in contact with each other.
As shown in FIG. 9, the triangular plane has a point P 1 (x 1 , y 1 , z 1 ), a point P 2 (x 2 , y 2 , z 2 ), a point P 3 (x 3 , y 3 , z 3 ), π is a plane passing through. The radius of the sphere 32 is set to r b. The Z coordinate Z C of the center of the sphere 32 can be obtained by Expression (3).

Figure 2017117459

以上のような式(1)、式(2)、式(3)では、±の2通りの解(ZC1,ZC2)が得られる。例えば、図7では、頂点Pに接する2つの球体32,32の解が得られる。図8では、直線g上の点Pと点Qに接する2つの球体32,32の解が得られる。図9では、三角形平面πの点Qと点Qに接する2つの球体32,32の解が得られる。しかし、実際にはいずれか一方だけを採用する。 In the equations (1), (2), and (3) as described above, two solutions (Z C1 and Z C2 ) of ± are obtained. For example, in FIG. 7, a solution of two spheres 32 and 32 in contact with the vertex P is obtained. In FIG. 8, the solutions of the two spheres 32 and 32 in contact with the point P 0 and the point Q 0 on the straight line g are obtained. In Figure 9, the solution of the two spheres 32, 32 in contact with the point of the triangular planes [pi Q 1 and point Q 2 is obtained. However, only one of them is actually used.

したがって、第一の加工点としては、仮想の球体32の表面と、三次元形状モデル2を構成する三角形の頂点とが接するときの前記球体32の中心のZ座標群が得られる。また、第二の加工点としては、仮想の球体32の表面と、三次元形状モデル2を構成する三角形の辺とが接するときの前記球体32の中心のZ座標群が得られる。さらに、第三の加工点としては、仮想の球体32の表面と、三次元形状モデル2を構成する三角形平面とが接するときの前記球体32の中心のZ座標が得られる。
これらの全部のZ座標群のうちで、Z=Zhから最も遠いZ座標を球状回転工具31のZ軸上における工具経路として採用する。
この採用したZ軸上のZ座標は、点Z=Zh回りに前記旋回角度αだけ正方向に旋回して回転座標変換することでX座標とZ座標が得られ、球状回転工具31の工具経路となる。
Therefore, as the first processing point, a Z coordinate group of the center of the sphere 32 when the surface of the virtual sphere 32 and the apex of the triangle constituting the three-dimensional shape model 2 are in contact with each other is obtained. As the second processing point, a Z coordinate group of the center of the sphere 32 when the surface of the virtual sphere 32 and the sides of the triangle constituting the three-dimensional shape model 2 are in contact is obtained. Furthermore, as a third processing point, a Z coordinate group of the center of the sphere 32 when the surface of the virtual sphere 32 and the triangular plane constituting the three-dimensional shape model 2 are in contact with each other is obtained.
Among these all Z coordinate groups, the Z coordinate farthest from Z = Zh is adopted as the tool path on the Z axis of the spherical rotary tool 31.
The adopted Z coordinate on the Z-axis is obtained by turning in the positive direction by the turning angle α around the point Z = Zh and converting the rotational coordinate to obtain the X coordinate and the Z coordinate. It becomes.

上記の球状回転工具31の工具経路の計算は、三次元形状モデル2の先端から加工終端にわたって、旋回角θごとに、またZ軸方向の送り毎に行われ、仮想の球体32の表面が三次元形状モデル2に外接するときの仮想の球体32の中心のX座標とZ座標を求める。その結果をGコードとともにコンピュータに保存することで、球状回転工具31の工具経路を得る。   The calculation of the tool path of the spherical rotary tool 31 is performed from the tip of the three-dimensional shape model 2 to the end of machining at every turning angle θ and every feed in the Z-axis direction, and the surface of the virtual sphere 32 is tertiary. The X coordinate and Z coordinate of the center of the virtual sphere 32 when circumscribing the original shape model 2 are obtained. The tool path of the spherical rotary tool 31 is obtained by storing the result together with the G code in the computer.

以上説明したように、本発明の実施形態の多軸NC木工旋盤システム1は、C軸にチャッキングして旋回中の、表面が三角形で分割されコンピュータに入力した製品の三次元形状モデル2に接する仮想の薄肉円盤21によって、予め円盤型回転工具20の工具経路を生成することができる。この工具経路によって、実際の円盤型回転工具20にて、木工材料Wから三次元形状の製品を時間的に効率よく一度の送り動作内で粗切削加工することができる。   As described above, the multi-axis NC woodworking lathe system 1 according to the embodiment of the present invention has a three-dimensional shape model 2 of a product that is chucked on the C-axis and is turning and divided into triangles and input to a computer. The tool path of the disk-type rotary tool 20 can be generated in advance by the virtual thin disk 21 in contact therewith. With this tool path, the actual disk-type rotary tool 20 can roughly cut a three-dimensional product from the woodworking material W within one feed operation in a time efficient manner.

次いで、前記の三次元形状モデル2に接する仮想の球体32によって、予め球状回転工具31の工具経路を生成することができる。この工具経路によって、材料を取り外さず直ちに、円盤型回転工具20と同じステージ上にある実際の球状回転工具31を用いて、前記の三次元形状の製品における微細部分を短い時間で効率よく切削加工することができる。
なお、球状回転工具31は、円盤型回転工具20と同じステージ上に設けたとしても、単にX軸方向とZ軸方向に移動するだけであれば、微細な凹凸加工を行うことができないが、本実施形態では球状回転工具31をB軸回りに旋回(スイング)させるようにしていることから、材料の端面から側面に至る方向まで、連続的に微細な凹凸加工を効果的に行うことが可能になっている。
Next, the tool path of the spherical rotary tool 31 can be generated in advance by the virtual sphere 32 in contact with the three-dimensional shape model 2. By using this tool path, a fine portion in the three-dimensional product can be efficiently cut in a short time using an actual spherical rotary tool 31 on the same stage as the disk-type rotary tool 20 immediately without removing the material. can do.
Even if the spherical rotary tool 31 is provided on the same stage as the disk-type rotary tool 20, if the spherical rotary tool 31 simply moves in the X-axis direction and the Z-axis direction, it cannot perform fine unevenness processing. In this embodiment, since the spherical rotary tool 31 is swung around the B axis, it is possible to effectively perform fine uneven processing continuously from the end face to the side face of the material. It has become.

以上説明したように、本実施形態によれば、複雑で高価なハードウエアやソフトウエアを必要とせずに安価で、しかも微細な凹凸加工も含め、短時間で効率よく旋盤による三次元加工を行うことが可能となっている。   As described above, according to the present embodiment, it is inexpensive and does not require complicated and expensive hardware and software, and three-dimensional processing with a lathe is efficiently performed in a short time including fine uneven processing. It is possible.

前述の実施形態の多軸NC木工旋盤システム1では、三次元形状モデル2は、表面が三角形で分割された三次元形状の製品を用いて説明した。その一例として、STLファイル形式の3Dモデルを使用した。しかし、三次元形状モデル2は、これに限定されず、例えば、表面が三次元曲面の多角形ポリゴンに分割された製品の三次元形状モデル2にも適用される。すなわち、表面が全体または部分的に曲面の関数で表される製品の三次元形状モデル2である。例えば、自動車や金型などのように、一般的なCAMソフトで用いられているNURBSなどの自由曲面の関数表現形式も包括することができる。   In the multi-axis NC woodworking lathe system 1 of the above-described embodiment, the three-dimensional shape model 2 has been described using a three-dimensional product whose surface is divided by a triangle. As an example, a 3D model in the STL file format was used. However, the three-dimensional shape model 2 is not limited to this, and can be applied to, for example, the three-dimensional shape model 2 of a product whose surface is divided into polygon polygons having a three-dimensional curved surface. That is, it is a three-dimensional shape model 2 of a product whose surface is represented entirely or partially by a curved surface function. For example, a function expression form of a free-form surface such as NURBS used in general CAM software such as an automobile or a mold can be included.

この場合の三次元形状モデル2の表面は、前記多角形ポリゴンの曲面上の頂点同士を直線で結ばれた三角形に分割したと仮定することができる。例えば、図10(a)に示すように、三次元形状モデル2の任意のZ座標において、チップソー20(円盤型回転工具)の両側面の延長上でスライスすると仮定すると、図10(b)に示すようなスライス片2aが取り出される。このスライス片2aの三次元曲面の表面は、三次元曲面の多角形ポリゴンに分割される。各多角形ポリゴンは曲面上に頂点を持っているので、隣り合う多角形ポリゴンの頂点同士を直線で結ぶと、図10(c)に示すように、表面を三角形に分割したと仮定することができる。すなわち、前述の実施形態のように、表面が三角形で分割された製品の三次元形状モデル2と同様の形態となる。
したがって、表面が三次元曲面の多角形ポリゴンに分割された製品の三次元形状モデル2に対しても、上記の分割された三角形に対して、前述の実施形態と同様に加工点を得ることができる。
It can be assumed that the surface of the three-dimensional shape model 2 in this case is divided into triangles in which the vertices on the curved surface of the polygon polygon are connected by a straight line. For example, as shown in FIG. 10 (a), assuming that an arbitrary Z coordinate of the three-dimensional shape model 2 is sliced on the extension of both side surfaces of the tip saw 20 (disk-shaped rotary tool), FIG. The slice piece 2a as shown is taken out. The three-dimensional curved surface of the slice piece 2a is divided into three-dimensional curved polygons. Since each polygon polygon has a vertex on the curved surface, if the vertices of adjacent polygon polygons are connected by a straight line, it can be assumed that the surface is divided into triangles as shown in FIG. it can. That is, as in the above-described embodiment, the form is the same as the three-dimensional shape model 2 of the product whose surface is divided into triangles.
Therefore, a processing point can be obtained for the above-described divided triangles in the same manner as in the above-described embodiment even for the product three-dimensional shape model 2 whose surface is divided into polygon polygons having a three-dimensional curved surface. it can.

この場合の三次元形状モデル2の表面は、前記多角形ポリゴンの曲面上の頂点同士を直線で結ばれた三角形に分割したと仮定することができる。例えば、図10(a)に示すように、三次元形状モデル2の任意のZ座標において、チップソー20(円盤型回転工具)の両側面の延長上でスライスすると仮定すると、図10(b)に示すようなスライス片2aが取り出される。このスライス片2aの三次元曲面の表面は、全体が一つの関数で表されている曲面の場合もあり、あるいは部分的に関数で表現された多角形ポリゴンの場合もある。曲面上に頂点を持ち、前記頂点同士を直線で結ぶと、曲面は図10(c)に示すように、表面を三角形に分割したと仮定することができる。すなわち、前述の実施形態のように、表面が三角形で分割された製品の三次元形状モデル2と同様の形態となる。ただし、三角形平面と三次元モデル2を表現する曲面の関数との偏差は実用上問題にならない程度に存在すると仮定する。
したがって、表面が三次元曲面の多角形ポリゴンに分割された製品の三次元形状モデル2に対しても、上記の分割された三角形に対して、前述の実施形態と同様に加工点を得ることができる。
It can be assumed that the surface of the three-dimensional shape model 2 in this case is divided into triangles in which the vertices on the curved surface of the polygon polygon are connected by a straight line. For example, as shown in FIG. 10 (a), assuming that an arbitrary Z coordinate of the three-dimensional shape model 2 is sliced on the extension of both side surfaces of the tip saw 20 (disk-shaped rotary tool), FIG. The slice piece 2a as shown is taken out. The surface of the three-dimensional curved surface of the slice piece 2a may be a curved surface that is entirely represented by a single function, or may be a polygon that is partially represented by a function. If there are vertices on the curved surface and the vertices are connected by a straight line, it can be assumed that the curved surface is divided into triangles as shown in FIG. That is, as in the above-described embodiment, the form is the same as the three-dimensional shape model 2 of the product whose surface is divided into triangles. However, it is assumed that the deviation between the triangular plane and the function of the curved surface representing the three-dimensional model 2 exists to the extent that does not cause a problem in practice.
Therefore, a processing point can be obtained for the above-described divided triangles in the same manner as in the above-described embodiment even for the product three-dimensional shape model 2 whose surface is divided into polygon polygons having a three-dimensional curved surface. it can.

次に、前述の実施形態の多軸NC木工旋盤システム1に、さらに追加可能な加工システムについて説明する。
円盤型回転工具20は、外周の鋸刃23が常に旋回中の三次元形状モデル2に接した状態を維持しながらZ軸方向に移動するが、これに新たな機能を備える。すなわち、円盤型回転工具20が三次元形状モデル2の表面に対して垂直方向、つまり法線方向に向けるように制御される。
円盤型回転工具20は、図10(a),図11及び図12において、Z軸方向およびZ軸に直交するX軸方向に移動可能である。さらに、円盤型回転工具20の回転中心を通過し、かつ、XZ平面に垂直なD軸回りに旋回可能である。
Next, a machining system that can be further added to the multi-axis NC woodworking lathe system 1 of the above-described embodiment will be described.
The disk-type rotary tool 20 moves in the Z-axis direction while maintaining the state in which the outer peripheral saw blade 23 is always in contact with the turning three-dimensional shape model 2, and has a new function. That is, the disk-type rotary tool 20 is controlled so as to be directed in a direction perpendicular to the surface of the three-dimensional shape model 2, that is, a normal direction.
The disc-shaped rotary tool 20 is movable in the Z-axis direction and the X-axis direction orthogonal to the Z-axis in FIGS. 10 (a), 11 and 12. Further, it can pass around the center of rotation of the disk-type rotary tool 20 and can turn around the D axis perpendicular to the XZ plane.

上記の円盤型回転工具20の工具経路を得るには、仮想の薄肉円盤21の外周が、旋回中の三次元形状モデル2に対して接した状態を維持しながらZ軸方向に移動するとともに、仮想の薄肉円盤21の向きを三次元形状モデル2の表面に対して垂直(法線方向)に向けることを前提とする。
図12、図13及び図14に示すように、任意のZ座標Ziと、C軸の旋回角度θiにおいて、XZ平面内のZ軸に垂直でX軸と平行な直線と、三次元形状モデル2の表面との交点をP(Xi,θi,Zi)とする。交点Pは仮想の薄肉円盤21の外周が三次元形状モデル2の表面に対して垂直に接触する予定の点である。
交点Pから法線方向に向けて、長さが仮想の薄肉円盤21の半径Rcの法線ベクトルPOcを計算する。法線ベクトルPOcの先端位置OcからZ軸におろした垂線の足(つまりZ軸との交点)をHとし、HOcの長さをXcとする。このとき、HOcがXZ平面と一致するまで三次元形状モデル2をZ軸周りに回転させた回転角をγとする。このときの法線ベクトルPOcのXZ平面への投影成分POc’がX軸とのなす角度をβとし、仮想の薄肉円盤21の中心のX座標がXcとなる。
In order to obtain the tool path of the disk-type rotary tool 20, the outer periphery of the virtual thin disk 21 moves in the Z-axis direction while maintaining the state in contact with the three-dimensional shape model 2 that is turning, It is assumed that the direction of the virtual thin disk 21 is directed perpendicular (normal direction) to the surface of the three-dimensional shape model 2.
As shown in FIGS. 12, 13, and 14, at an arbitrary Z coordinate Zi, and a turning angle θi of the C axis, a straight line perpendicular to the Z axis in the XZ plane and parallel to the X axis, and the three-dimensional shape model 2 Let P (Xi, θi, Zi) be the intersection with the surface. The intersection point P is a point where the outer periphery of the virtual thin disk 21 is scheduled to come into contact with the surface of the three-dimensional shape model 2 perpendicularly.
A normal vector POc of radius Rc of the thin disk 21 whose length is virtual is calculated from the intersection point P in the normal direction. Let H be the foot of a perpendicular line (ie, the intersection with the Z axis) from the tip position Oc of the normal vector POc to the Z axis, and let Xc be the length of HOc. At this time, a rotation angle obtained by rotating the three-dimensional shape model 2 around the Z axis until HOc coincides with the XZ plane is denoted by γ. At this time, the angle formed by the projection vector POc ′ of the normal vector POc on the XZ plane and the X axis is β, and the X coordinate of the center of the virtual thin disk 21 is Xc.

したがって、交点P(Xi,θi,Zi)に対して、法線方向から仮想の薄肉円盤21によって加工するために必要な、仮想の薄肉円盤21の中心位置のX座標Xcと、X軸とのなす角度βと、三次元形状モデル2の回転角度γを得ることができる。
なお、仮想の薄肉円盤21の中心21cのZ座標Zcは、ベクトルHOcと角度γから回転の座標変換により計算することができる。
Therefore, with respect to the intersection P (Xi, θi, Zi), the X coordinate Xc of the center position of the virtual thin disk 21 and the X axis, which are necessary for processing by the virtual thin disk 21 from the normal direction. The formed angle β and the rotation angle γ of the three-dimensional shape model 2 can be obtained.
The Z coordinate Zc of the center 21c of the virtual thin disk 21 can be calculated from the vector HOc and the angle γ by rotational coordinate conversion.

上記の交点Pにおける法線ベクトルは、三次元形状モデル2の形状がNURBSなどの自由曲面の関数で表されているとき、例えば参考文献1〔樋野、社本、森脇:直接オフセット法による工具経路生成(第1報)、精密工学会、Vol.69、No.6、2003〕の方法によって、交点Pの座標値から得ることができる。   When the shape of the three-dimensional shape model 2 is expressed by a function of a free-form surface such as NURBS, the normal vector at the intersection point P is, for example, Reference 1 [Hagano, Shamoto, Moriwaki: Tool path by the direct offset method. It can be obtained from the coordinate value of the intersection P by the method of generation (first report), Japan Society for Precision Engineering, Vol.69, No.6, 2003].

なお、この実施形態の円盤型回転工具20では、三次元形状モデル2が、表面が三角形で分割された三次元形状の製品の場合でも、あるいは、表面が三次元曲面の多角形ポリゴンに分割された製品の場合も、前述の実施形態と同様に、表面が分割された三角形に対して加工点を求めることができる。   In the disk-type rotary tool 20 of this embodiment, even when the three-dimensional shape model 2 is a three-dimensional product whose surface is divided into triangles, or the surface is divided into polygonal polygons with a three-dimensional curved surface. Also in the case of a product, a processing point can be obtained for a triangle whose surface is divided as in the above-described embodiment.

以上のことから、例えば、三次元形状モデル2の回転角度をΔθとし、三次元形状モデル2の一回転当たりの交点Pの−Z方向の移動量をΔZとすると、三次元形状モデル2の表面とX軸との交点Pは、図12に示すように螺旋状に決まる。この螺旋状の加工点に対して円盤型回転工具20がスイングしながら常に法線方向に向きながら切削することができる。その結果、円盤型回転工具20のエッジによる螺旋状のカッターマークによる表面粗さが小さくなる。すなわち、加工面の粗さが小さくなり、研磨面に相当する加工面が得られるので、研磨工程の時間短縮を図ることができる。   From the above, for example, assuming that the rotation angle of the three-dimensional shape model 2 is Δθ and the amount of movement in the −Z direction of the intersection P per one rotation of the three-dimensional shape model 2 is ΔZ, the surface of the three-dimensional shape model 2 And the intersection P of the X axis is determined in a spiral shape as shown in FIG. The disk-type rotary tool 20 can be cut while always facing the normal direction while swinging with respect to the spiral machining point. As a result, the surface roughness due to the spiral cutter mark by the edge of the disk-type rotary tool 20 is reduced. That is, the roughness of the processed surface is reduced and a processed surface corresponding to the polished surface is obtained, so that the time for the polishing process can be shortened.

次に、上記の実施形態において、さらに追加可能な加工システムについて説明する。
上記の実施形態では、円盤型回転工具20が三次元形状モデル2の表面に対して法線方向に向くように制御される。しかし、三次元形状モデル2が、例えば、図15に示すように凹み2bが大きい形状の場合は、図16の斜線で示すように、円盤型回転工具20と三次元形状モデル2が干渉するという問題が生じる。
Next, processing systems that can be further added in the above embodiment will be described.
In the above embodiment, the disk-type rotary tool 20 is controlled so as to face the normal direction with respect to the surface of the three-dimensional shape model 2. However, when the three-dimensional shape model 2 has a shape with a large dent 2b as shown in FIG. 15, for example, the disk-type rotary tool 20 and the three-dimensional shape model 2 interfere with each other as shown by the oblique lines in FIG. Problems arise.

そこで、上記の問題を解消するために、仮想の薄肉円盤21は、その表面の周囲に多数の点からなる工具座標系で定義する。次いで、仮想の薄肉円盤21の向きを三次元形状モデル2の表面に対して垂直方向、つまり法線方向に向けるために、角度βだけスイングさせたと仮定する。この時、前記の工具座標系で定義した多数の点のうちの少なくとも1点が、三次元形状モデル2の内側にあれば、仮想の薄肉円盤21が三次元形状モデル2に干渉したと判断することができる。   Therefore, in order to solve the above problem, the virtual thin disk 21 is defined by a tool coordinate system including a large number of points around the surface. Next, it is assumed that the virtual thin disk 21 is swung by an angle β in order to orient the virtual thin disk 21 in a direction perpendicular to the surface of the three-dimensional shape model 2, that is, a normal direction. At this time, if at least one of the many points defined in the tool coordinate system is inside the three-dimensional shape model 2, it is determined that the virtual thin disk 21 has interfered with the three-dimensional shape model 2. be able to.

このように工具と材料が干渉するか否かの判断方法としては、参考文献2〔竹内:ソリッドモデルに基づく5軸制御加工、精密工学会誌、56、11、(1990)、2063〕の方法で実施することができる。この方法は、工具の表面を点の集合に変換し、工具経路を計算する過程において、全点において加工形状の内側にあるか否かを判断する手法である。   As described above, as a method for determining whether or not the tool and the material interfere with each other, the method described in Reference 2 [Takeuchi: 5-axis control machining based on solid model, Journal of Precision Engineering, 56, 11, (1990), 2063] is used. Can be implemented. This method is a method for determining whether or not all points are inside the machining shape in the process of converting the tool surface into a set of points and calculating the tool path.

仮想の薄肉円盤21が三次元形状モデル2に干渉したと判断した時、図16に示すように、仮想の薄肉円盤21の向きを角度β−90°スイングさせる。その結果、仮想の薄肉円盤21が三次元形状モデル2の表面に対して接線方向に向くことになる。
次いで、仮想の薄肉円盤21の先端を三次元形状モデル2の加工点に接触するよう位置決めする。円盤型回転工具20としては、例えばバチ状のチップ20a(切断刃)を備えたチップソー20を使用している。チップ20aの側面の長さの範囲内の位置、例えばチップ長さの中間点で加工点に接触するように、チップソー20の位置を決める。
When it is determined that the virtual thin disk 21 has interfered with the three-dimensional shape model 2, the orientation of the virtual thin disk 21 is swung by an angle β-90 ° as shown in FIG. As a result, the virtual thin disk 21 is directed tangential to the surface of the three-dimensional shape model 2.
Next, the tip of the virtual thin disk 21 is positioned so as to contact the processing point of the three-dimensional shape model 2. As the disk-type rotary tool 20, for example, a tip saw 20 provided with a bee-shaped tip 20a (cutting blade) is used. The position of the tip saw 20 is determined so as to come into contact with the processing point at a position within the range of the length of the side surface of the chip 20a, for example, at an intermediate point of the chip length.

以上のことから、円盤型回転工具20が三次元形状モデル2に干渉しないように接線方向に向いて切削するので、円盤型回転工具20のエッジによる螺旋状のカッターマークによる表面粗さが小さくなる。すなわち、加工面の粗さが小さくなり、研磨面に相当する加工面が得られるので、研磨工程の時間短縮を図ることができる。   From the above, since the disk-type rotary tool 20 is cut in the tangential direction so as not to interfere with the three-dimensional shape model 2, the surface roughness due to the spiral cutter mark by the edge of the disk-type rotary tool 20 is reduced. . That is, the roughness of the processed surface is reduced and a processed surface corresponding to the polished surface is obtained, so that the time for the polishing process can be shortened.

なお、木工材料Wを切削加工中に、木工材料WをC軸方向に回転するごとに、円盤型回転工具20が法線方向と接線方向に切り替わる場合は、円盤型回転工具20のスイングや加工点への位置決めが頻繁に行われるために、加工時間が無駄に消費する。これを解消するために、法線方向の加工ができる領域と、接線方向の加工ができる領域を分けて、別々に加工することができる。   In addition, when the disk-type rotary tool 20 is switched between the normal direction and the tangential direction every time the wood-work material W is rotated in the C-axis direction during the cutting of the woodwork material W, the swing or processing of the disk-type rotary tool 20 is performed. Since positioning to a point is frequently performed, processing time is wasted. In order to solve this problem, an area that can be processed in the normal direction and an area that can be processed in the tangential direction can be divided and processed separately.

次に、前述の実施形態の多軸NC木工旋盤システム1に、さらに追加可能な加工システムについて説明する。
この加工システムは、基本的に、例えば正角材の木工材料Wから三次元形状を削り出す際に、木工材料Wの正方形の外形と三次元形状の輪郭との間の削り代を、予め帯鋸刃23を用いて塊として切り落とすことで、少ないエネルギーで、かつ、短時間で除去することを目的とする。
Next, a machining system that can be further added to the multi-axis NC woodworking lathe system 1 of the above-described embodiment will be described.
This machining system basically uses a band saw blade in advance for the cutting allowance between the square outer shape of the woodworking material W and the contour of the 3D shape, for example, when a 3D shape is cut out from the woodworking material W of a square. It is intended to remove in a short time with less energy by cutting off as a lump using No. 23.

本実施形態の4軸NC木工旋盤10は、図17に示すように、C軸に直交する方向と平行に走行する帯鋸刃41を有する帯鋸盤40をさらに備える。帯鋸刃41は2つの駆動ホイール42と従動ホイール43の間にエンドレスに巻き回され、駆動ホイール42によって旋回駆動される。2つのホイール42,43は、4軸NC木工旋盤10のベッドやチャック11に干渉することを避けるために、木工材料Wの上側に配置している。さらに、帯鋸盤40は、2つのホイール42,43の回転中心を結ぶA軸周り方向に回動可能に構成されている。   As shown in FIG. 17, the four-axis NC woodworking lathe 10 of the present embodiment further includes a band saw 40 having a band saw blade 41 that travels in parallel with a direction orthogonal to the C axis. The band saw blade 41 is wound endlessly between the two drive wheels 42 and the driven wheel 43, and is rotated by the drive wheel 42. The two wheels 42 and 43 are arranged on the upper side of the woodworking material W in order to avoid interference with the bed and chuck 11 of the 4-axis NC woodworking lathe 10. Further, the band saw 40 is configured to be rotatable in the direction around the A axis connecting the rotation centers of the two wheels 42 and 43.

また、本実施形態では、帯鋸刃41が、全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記帯鋸刃41の向きをZ軸方向に対して傾斜するように変向可能である。この変向は、2つのホイール42,43をA軸周り方向に回動することで実施される。
なお、F方向としては、本実施形態では、図17に示すようにY方向が該当しているが、このY方向に限定されない。すなわち、帯鋸刃41が、全体としてZ軸方向と、Z軸に直交するX方向に移動可能であってもよく、あるいはZ軸に直交する方向であればその他の方向であってもよい。つまり、帯鋸盤40の設置状態は、帯鋸刃41が全体としてZ軸方向に移動しながら、Z軸に対して接近・離反する方向が一つに限定されず、任意に設定できる。
Further, in the present embodiment, the band saw blade 41 is movable as a whole in the Z-axis direction parallel to the Z-axis and the F-direction orthogonal to the Z-axis, and the direction of the band saw blade 41 is changed with respect to the Z-axis direction. Can be changed to be inclined. This turning is performed by rotating the two wheels 42 and 43 in the direction around the A axis.
In this embodiment, the F direction corresponds to the Y direction as shown in FIG. 17, but is not limited to this Y direction. That is, the band saw blade 41 may be movable as a whole in the Z-axis direction and the X direction orthogonal to the Z axis, or may be in any other direction as long as the direction is orthogonal to the Z axis. That is, the installation state of the band saw machine 40 is not limited to one direction in which the band saw blade 41 moves in the Z-axis direction as a whole and moves toward and away from the Z-axis, and can be arbitrarily set.

上記帯鋸盤40の帯鋸刃41の工具経路を得るには、C軸にチャッキングした三次元形状モデル2のC軸の旋回角度θをゼロ度(0°)とする。つまり、帯鋸刃41と同じ形状を有する仮想の帯鋸工具44が、C軸周りの旋回を停止した状態で三次元形状モデル2をZ軸に平行なZ軸方向でスライスする時に、Z軸方向とZ軸に直交するF方向に移動することを前提とする。   In order to obtain the tool path of the band saw blade 41 of the band saw machine 40, the turning angle θ of the C axis of the three-dimensional shape model 2 chucked on the C axis is set to zero degree (0 °). That is, when the virtual band saw tool 44 having the same shape as the band saw blade 41 slices the three-dimensional shape model 2 in the Z axis direction parallel to the Z axis in a state where the turning around the C axis is stopped, It is assumed to move in the F direction perpendicular to the Z axis.

さらに、図18に示すように、三次元形状モデル2をZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面2cを形成し、各仮想スライス断面2cにおいて+F方向の最大点Fmaxと最小点Fminを計算する。本実施形態では、各仮想スライス断面2cにおいて+Y方向の最大点Ymaxと最小点Yminを計算している。   Furthermore, as shown in FIG. 18, a large number of virtual slice sections 2c parallel to the XY plane are formed at appropriate intervals in the three-dimensional shape model 2 in the Z-axis direction, and the maximum points in the + F direction in each virtual slice section 2c Fmax and minimum point Fmin are calculated. In the present embodiment, the maximum point Ymax and the minimum point Ymin in the + Y direction are calculated in each virtual slice section 2c.

次に、前記各Ymax(Fmax)同士を結んだ最大部輪郭線3と、前記各Ymin(Fmin)同士を結んだ最小部輪郭線4とを計算する。例えば、図19に示すように、0.1mm間隔にスライスした仮想スライス断面2c,2c,・・・において、最大部輪郭線3は、各Ymax(Fmax)同士をNURBSのような自由曲線で結んだ曲線からなる。一方、最小部輪郭線4は、各Ymin(Fmin)同士をNURBSのような自由曲線で結んだ曲線からなる。   Next, the maximum contour 3 connecting the Ymax (Fmax) and the minimum contour 4 connecting the Ymin (Fmin) are calculated. For example, as shown in FIG. 19, in the virtual slice sections 2c, 2c,... Sliced at intervals of 0.1 mm, the maximum contour 3 connects each Ymax (Fmax) with a free curve such as NURBS. It consists of a curve. On the other hand, the minimum part outline 4 is composed of a curve obtained by connecting each Ymin (Fmin) with a free curve such as NURBS.

次に、最大部輪郭線3に対する最大部オフセット線5と、最小部輪郭線4に対する最小部オフセット線6を計算する。
最大部オフセット線5の計算方法としては、図20に示すように、まず、最大部輪郭線3に対してNURBSなどのスプライン関数で、各仮想スライス断面2cにおける各Fmaxの全点を補間する。この補間された最大部輪郭線3に対して一定距離にある最大部オフセット線5を計算する。前記の一定距離としては、例えばチップソー20のチップ20aの長さ(例えば2〜3mm)以下の距離とすることができる。
次に、前記の最大部オフセット線5と、スライスした仮想スライス断面2cとの交点を求め、最大部オフセット線5の線上の点の離散データを求める。
なお、最小部オフセット線6の計算方法は、基本的に、最大部オフセット線5の計算方法と同様であるので、詳しい説明は省略する。
Next, the maximum part offset line 5 for the maximum part outline 3 and the minimum part offset line 6 for the minimum part outline 4 are calculated.
As a calculation method of the maximum part offset line 5, first, all points of each Fmax in each virtual slice section 2c are interpolated with respect to the maximum part outline 3 by a spline function such as NURBS. A maximum part offset line 5 that is a fixed distance from the interpolated maximum part outline 3 is calculated. The fixed distance can be a distance equal to or less than the length (for example, 2 to 3 mm) of the tip 20a of the tip saw 20, for example.
Next, the intersection of the maximum offset line 5 and the sliced virtual slice section 2c is obtained, and discrete data of points on the maximum offset line 5 is obtained.
The calculation method of the minimum part offset line 6 is basically the same as the calculation method of the maximum part offset line 5, and thus detailed description thereof is omitted.

以上のように求めた最大部オフセット線5と最小部オフセット線6のうちの少なくとも一方を、仮想の帯鋸工具44の工具経路として得ることができる。つまり、もし設備的に可能であれば、木工材料WをC軸方向に旋回せずに、例えば最大部オフセット線5を仮想の帯鋸工具44の工具経路とし、その後に最小部オフセット線6を仮想の帯鋸工具44の工具経路とすることができる。この場合、切削加工効率が向上する。   At least one of the maximum part offset line 5 and the minimum part offset line 6 obtained as described above can be obtained as a tool path of the virtual band saw tool 44. That is, if it is possible in terms of equipment, without turning the woodworking material W in the C-axis direction, for example, the maximum offset line 5 is used as the tool path of the virtual band saw tool 44, and then the minimum offset line 6 is virtually set. The tool path of the band saw tool 44 can be used. In this case, the cutting efficiency is improved.

上記の操作は、三次元形状モデル2をC軸の旋回角度θのピッチごとに旋回停止して、最大部輪郭線3と最小部輪郭線4を求め、それぞれに対応する最大部オフセット線5と最小部オフセット線6を求めることができる。例えばC軸の回転角度30°のピッチにて実施し、それぞれの旋回角度θに対する最大部輪郭線3と最小部輪郭線4を求める。次いで、それぞれに対応する最大部オフセット線5と最小部オフセット線6を求める。   In the above operation, the three-dimensional shape model 2 is turned and stopped at every pitch of the turning angle θ of the C axis, the maximum part contour line 3 and the minimum part contour line 4 are obtained, and the corresponding maximum part offset line 5 and The minimum offset line 6 can be obtained. For example, the rotation is performed at a pitch of 30 ° of the rotation angle of the C axis, and the maximum portion contour line 3 and the minimum portion contour line 4 with respect to each turning angle θ are obtained. Next, the maximum offset line 5 and the minimum offset line 6 corresponding to each are obtained.

本実施形態では、帯鋸盤40は、前述の図17に示すように、帯鋸刃41がC軸に直交する方向と平行に走行するように配置している。
帯鋸刃41は、三次元形状モデル2をC軸の旋回角度θごとに旋回して得た2つの最大部オフセット線5及び最小部オフセット線6のうち、最大部オフセット線5に沿って切断する。帯鋸刃41の先端が最大部オフセット線5の線上の点間を移動し、帯鋸刃41はオフセット線の接線方向を向きながら木工材料Wを切断する。
In the present embodiment, the band saw machine 40 is arranged so that the band saw blade 41 travels in parallel with the direction orthogonal to the C axis, as shown in FIG. 17 described above.
The band saw blade 41 cuts along the maximum part offset line 5 among the two maximum part offset lines 5 and minimum part offset lines 6 obtained by turning the three-dimensional shape model 2 for each turning angle θ of the C axis. . The tip of the band saw blade 41 moves between points on the maximum offset line 5, and the band saw blade 41 cuts the woodworking material W while facing the tangential direction of the offset line.

なお、帯鋸刃41は、木工材料Wを曲線状に切断するため、図21に示すように幅が狭いもの、例えば5mmのものを用いる。このとき、刃先先端41cの厚さAが1mmで、台金41bの厚さBが0.5mmのものを使用することになる。ただし、曲率半径Rが小さい曲線にて木工材料Wを切断する際は、木工材料Wの切断溝45と帯鋸刃41が干渉する恐れがある。例えば、図21に示すように、上記の寸法で作図して計測した結果、上記の帯鋸刃41を用いて最大部オフセット線5の曲線に沿って切断する際に、限界となる曲率半径Rは約49mmである。したがって、この例では、曲率半径Rが49mm以上の最大部オフセット線5及び最小部オフセット線6を対象とする。   Note that the band saw blade 41 has a narrow width, for example, 5 mm as shown in FIG. 21, in order to cut the woodworking material W into a curved shape. At this time, the blade tip 41c having a thickness A of 1 mm and a base metal 41b having a thickness B of 0.5 mm is used. However, when cutting the woodworking material W with a curve having a small radius of curvature R, the cutting groove 45 of the woodworking material W and the band saw blade 41 may interfere with each other. For example, as shown in FIG. 21, as a result of drawing and measuring with the above dimensions, when cutting along the curve of the maximum offset line 5 using the band saw blade 41, the curvature radius R that becomes a limit is It is about 49 mm. Therefore, in this example, the maximum part offset line 5 and the minimum part offset line 6 having a radius of curvature R of 49 mm or more are targeted.

次に、上述の帯鋸盤40を加えた多軸NC木工旋盤システム1の作用について、木工材料Wから三次元形状を削り出す一連の動作を説明する。
まず、図22(a)では、正角材の木工材料WをC軸にチャッキングし、C軸を旋回しながら、帯鋸刃41による切断端の位置に、予め円盤型回転工具20にて切れ目24を入れておく。
Next, a series of operations for cutting a three-dimensional shape from the woodworking material W will be described with respect to the action of the multi-axis NC woodworking lathe system 1 to which the band saw 40 described above is added.
First, in FIG. 22 (a), a square-shaped woodworking material W is chucked on the C-axis, and the slit 24 is cut in advance by the disk-type rotary tool 20 at the position of the cutting end by the band saw blade 41 while turning the C-axis. Put in.

次に、図22(b)では、帯鋸盤40の帯鋸刃41の工具経路は、予め帯鋸刃41と同じ形状を有する仮想の帯鋸工具44によって得ている。C軸の旋回角度θがゼロ度(0°)の状態で、帯鋸刃41が前記工具経路に基づいて移動し、木工材料Wの正方形の外形と三次元形状の輪郭との間の削り代を切り落とす。   Next, in FIG. 22B, the tool path of the band saw blade 41 of the band saw machine 40 is obtained in advance by a virtual band saw tool 44 having the same shape as the band saw blade 41. With the swivel angle θ of the C axis being zero degrees (0 °), the band saw blade 41 moves based on the tool path, and the cutting allowance between the square outline of the woodworking material W and the outline of the three-dimensional shape is reduced. Cut off.

次に、図22(c)では、木工材料WがC軸の旋回角度θのピッチごとに旋回停止し、帯鋸刃41が前記工具経路に基づいて移動し、木工材料Wの外形と三次元形状の輪郭との間の削り代を切り落とす。その結果、木工材料Wの外形と三次元形状の輪郭との間の大部分の削り代が、少ないエネルギーで、かつ、短時間で切り落とされる。   Next, in FIG.22 (c), the woodworking material W stops turning for every pitch of the turning angle (theta) of C axis | shaft, The band saw blade 41 moves based on the said tool path | route, and the external shape and three-dimensional shape of the woodworking material W are shown. Cut off the cutting allowance between the contours of. As a result, most of the cutting allowance between the outer shape of the woodworking material W and the contour of the three-dimensional shape is cut off in a short time with less energy.

次に、図22(d)では、円盤型回転工具20の工具経路は、予め仮想の薄肉円盤21によって得ている。円盤型回転工具20は前記工具経路に基づいて移動し、三次元形状の輪郭の残った部分を切削する。この時、円盤型回転工具20は、三次元形状モデル2の表面に対して法線方向に向くように制御されるので、スイングしながら切削する。また、円盤型回転工具20が木工材料Wに干渉しないように、三次元形状の輪郭に対して接線方向に向くように制御される。その結果、三次元形状の輪郭は、研磨面に相当する加工面となるので、研磨工程の時間短縮となる。
なお、図示していないが、球状回転工具31の工具経路は、予め球状回転工具31と同じ直径の球体の先端形状を有する仮想の球体32によって得ている。球状回転工具31は、前記工具経路に基づいて移動し、三次元形状の輪郭の残った部分を切削する。
Next, in FIG. 22 (d), the tool path of the disk-type rotary tool 20 is obtained in advance by a virtual thin disk 21. The disk-type rotary tool 20 moves based on the tool path, and cuts the remaining three-dimensional contour. At this time, the disk-type rotary tool 20 is controlled so as to be oriented in the normal direction with respect to the surface of the three-dimensional shape model 2, so that it is cut while swinging. Further, the disc-shaped rotary tool 20 is controlled so as to be directed in the tangential direction with respect to the contour of the three-dimensional shape so as not to interfere with the woodworking material W. As a result, the contour of the three-dimensional shape becomes a processed surface corresponding to the polished surface, and thus the time for the polishing process is shortened.
Although not shown, the tool path of the spherical rotary tool 31 is obtained in advance by a virtual sphere 32 having the tip shape of a sphere having the same diameter as the spherical rotary tool 31. The spherical rotary tool 31 moves based on the tool path and cuts the remaining portion of the three-dimensional contour.

次に、前述の実施形態の多軸NC木工旋盤システム1に、さらに追加可能な加工システムについて説明する。
この加工システムは、円盤型回転工具20や球状回転工具31を用いて、木工材料Wから三次元形状を削り出した後に、前記三次元形状の輪郭を研磨ベルト51にて自動的に研磨することで、研磨工程の時間短縮と省力化を図ることを目的とする。
Next, a machining system that can be further added to the multi-axis NC woodworking lathe system 1 of the above-described embodiment will be described.
This processing system automatically grinds the contour of the three-dimensional shape with the polishing belt 51 after cutting out the three-dimensional shape from the woodworking material W using the disk-type rotary tool 20 or the spherical rotary tool 31. Therefore, the purpose is to shorten the time of the polishing process and to save labor.

本実施形態の4軸NC木工旋盤10は、図23に示すように、C軸に直交する方向と平行に走行する研磨ベルト51を有するベルトサンダー50をさらに備える。研磨ベルト51は2つの駆動ホイール52と従動ホイール53の間にエンドレスに巻き回され、駆動ホイール52によって旋回駆動される。ベルトサンダー50は、2つのホイール52,53の回転中心を結ぶB軸周り方向に回動可能に構成されている。   As shown in FIG. 23, the four-axis NC woodworking lathe 10 of this embodiment further includes a belt sander 50 having a polishing belt 51 that travels in parallel with a direction orthogonal to the C-axis. The polishing belt 51 is wound endlessly between the two drive wheels 52 and the driven wheel 53, and is rotated by the drive wheel 52. The belt sander 50 is configured to be rotatable in the direction around the B axis connecting the rotation centers of the two wheels 52 and 53.

また、本実施形態では、研磨ベルト51が、全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記研磨ベルト51の向きをZ軸方向に対して傾斜するように変向可能である。この変向は、2つのホイール52,53をB軸周り方向に回動することで実施される。
なお、F方向としては、前述の帯鋸刃41で説明したように、本実施形態では、図23に示すようにX方向が該当しているが、このX方向に限定されない。すなわち、研磨ベルト51が、全体としてZ軸方向と、Z軸に直交するY方向に移動可能であってもよく、あるいはZ軸に直交する方向であればその他の方向であってもよい。つまり、ベルトサンダー50の設置状態は、研磨ベルト51が全体としてZ軸方向に移動しながら、Z軸に対して接近・離反する方向が一つに限定されず、任意に設定できる。
In this embodiment, the polishing belt 51 is movable as a whole in the Z-axis direction parallel to the Z-axis and the F-direction orthogonal to the Z-axis, and the direction of the polishing belt 51 is relative to the Z-axis direction. Can be changed to be inclined. This turning is performed by rotating the two wheels 52 and 53 around the B axis.
The F direction corresponds to the X direction as shown in FIG. 23 in the present embodiment as described in the band saw blade 41 described above, but is not limited to this X direction. That is, the polishing belt 51 as a whole may be movable in the Z-axis direction and the Y-direction orthogonal to the Z-axis, or may be in any other direction as long as the direction is orthogonal to the Z-axis. That is, the installation state of the belt sander 50 is not limited to one direction in which the polishing belt 51 moves in the Z-axis direction as a whole and moves toward and away from the Z-axis, and can be arbitrarily set.

上記ベルトサンダー50の研磨ベルト51の工具経路を得るには、C軸にチャッキングした三次元形状モデル2のC軸の旋回角度θをゼロ度(0°)とする。つまり、磨ベルト51と同じ形状を有する仮想の研磨工具54が、C軸周りの旋回を停止した状態で三次元形状モデル2を研磨する時に、Z軸方向とZ軸に直交するF方向に移動することを前提とする。   In order to obtain the tool path of the polishing belt 51 of the belt sander 50, the turning angle θ of the C axis of the three-dimensional shape model 2 chucked on the C axis is set to zero degree (0 °). That is, the virtual polishing tool 54 having the same shape as the polishing belt 51 moves in the Z-axis direction and the F-direction orthogonal to the Z-axis when polishing the three-dimensional shape model 2 with the rotation around the C-axis stopped. Assuming that

さらに、前述の帯鋸盤40で、図18に示したのと同様に、三次元形状モデル2をZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面2cを形成し、各仮想スライス断面2cにおいて+F方向の最大点Fmaxと最小点Fminを計算する。本実施形態では、各仮想スライス断面2cにおいて+X方向の最大点Xmaxと最小点Xminを計算している。
次に、前記各Xmax(Fmax)同士を結んだ最大部輪郭線と、前記各Xmin(Fmin)同士を結んだ最小部輪郭線とを計算する。
Further, in the band saw machine 40 described above, as shown in FIG. 18, a large number of virtual slice sections 2 c parallel to the XY plane are formed at appropriate intervals with the three-dimensional shape model 2 directed in the Z-axis direction, In the virtual slice section 2c, the maximum point Fmax and the minimum point Fmin in the + F direction are calculated. In the present embodiment, the maximum point Xmax and the minimum point Xmin in the + X direction are calculated in each virtual slice section 2c.
Next, the maximum contour line connecting the respective Xmax (Fmax) and the minimum contour line connecting the respective Xmin (Fmin) are calculated.

以上のように求めた最大部輪郭線と最小部輪郭線のうちの少なくとも一方を仮想の研磨工具54の工具経路として得ることができる。つまり、もし設備的に可能であれば、C軸方向に回転せずに、例えば最大部輪郭線を仮想の研磨工具54の工具経路とし、その後に最小部輪郭線を仮想の研磨工具54の工具経路とすることができる。この場合、研磨効率が向上する。
なお、上記の仮想の研磨工具54の研磨する位置は、前述の帯鋸刃41による削り代の切断の際に求めた工具経路を活用することができる。
At least one of the maximum contour and the minimum contour determined as described above can be obtained as the tool path of the virtual polishing tool 54. In other words, if it is possible in terms of equipment, without rotating in the C-axis direction, for example, the maximum contour is used as the tool path of the virtual polishing tool 54, and then the minimum contour is used as the tool of the virtual polishing tool 54. It can be a route. In this case, the polishing efficiency is improved.
Note that the polishing position of the virtual polishing tool 54 can use the tool path obtained when cutting the cutting allowance by the band saw blade 41 described above.

上記の操作は、三次元形状モデル2をC軸の旋回角度θのピッチごとに旋回停止して、最大部輪郭線と最小部輪郭線を求めることができる。例えばC軸の回転角度5°のように細かいピッチにて実施し、それぞれの旋回角度θに対する最大部輪郭線と最小部輪郭線を求める。   In the above operation, the three-dimensional shape model 2 can be turned and stopped at every pitch of the turning angle θ of the C axis, and the maximum part outline and the minimum part outline can be obtained. For example, the rotation is performed at a fine pitch such as the rotation angle of the C-axis of 5 °, and the maximum part outline and the minimum part outline for each turning angle θ are obtained.

本実施形態では、ベルトサンダー50は、図23及び図24に示すように、研磨ベルト51がC軸に直交する方向と平行に走行するように配置している。
研磨ベルト51は、三次元形状モデル2をC軸の旋回角度θごとに旋回して得た2つの最大部輪郭線及び最小部輪郭線のうち、最大部輪郭線に沿って研磨する。研磨ベルト51が最大部輪郭線上の点間を移動し、研磨ベルト51の研磨面は最大部輪郭線の接線方向と同じ面方向になるように研磨する。
In the present embodiment, the belt sander 50 is arranged so that the polishing belt 51 travels in parallel with the direction orthogonal to the C axis, as shown in FIGS.
The polishing belt 51 polishes the three-dimensional shape model 2 along the maximum part contour line among the two maximum part contour lines and minimum part contour lines obtained by turning the C-axis at every turning angle θ. The polishing belt 51 moves between points on the maximum contour line, and the polishing surface of the polishing belt 51 is polished so that the surface direction is the same as the tangential direction of the maximum contour line.

したがって、木工材料Wは、C軸の旋回角度θを小さくすることで、研磨ベルト51は、旋回する木工材料Wの三次元形状に対して螺旋状の工具経路を進んでゆく。研磨ベルト51は、木工材料Wの加工点に応じて、X方向に往復動を繰り返しながら、しかも、木工材料Wの表面の傾斜に応じてB軸周りにスイングしながら研磨する。   Accordingly, the woodworking material W reduces the swivel angle θ of the C axis so that the polishing belt 51 travels along a spiral tool path with respect to the three-dimensional shape of the woodworking material W that turns. The polishing belt 51 polishes while reciprocating in the X direction according to the processing point of the woodworking material W, and swinging around the B axis according to the inclination of the surface of the woodworking material W.

なお、ベルトサンダー50は、図24に示すように、木工材料Wの表面に対して研磨ベルト51の押し付け力を発生させることができる。例えば、駆動ホイール52の回転支軸52aと従動ホイール53の回転支軸52aとの間を、例えばエアシリシンダなどの押圧装置55によって押し広げる。これにより、無負荷のときの研磨ベルト51の位置より、加工点がΔXだけ木工材料Wの内側へ移動するように押し付けられる。つまり、研磨ベルト51の張力を利用した押し付け力が発生する。
以上のことから、本実施形態の多軸NC木工旋盤システム1は、三次元形状の加工品の仕上げとして、加工品の輪郭に対して研磨ベルト51にて自動的に研磨することで、研磨工程の時間短縮と省力化を図ることができる。
Note that the belt sander 50 can generate a pressing force of the polishing belt 51 against the surface of the woodworking material W as shown in FIG. For example, the space between the rotation support shaft 52a of the drive wheel 52 and the rotation support shaft 52a of the driven wheel 53 is expanded by a pressing device 55 such as an air silicinda. Thus, the machining point is pressed from the position of the polishing belt 51 when there is no load so that the machining point moves to the inside of the woodworking material W by ΔX. That is, a pressing force using the tension of the polishing belt 51 is generated.
From the above, the multi-axis NC woodworking lathe system 1 of the present embodiment automatically polishes the contour of the processed product with the polishing belt 51 as the finish of the processed product having a three-dimensional shape. Time saving and labor saving.

本発明は、家具やクラフト製品関連の製造業および販売業、インテリア関連業務などにおいて、利用可能性を有する。   The present invention has applicability in the manufacturing and sales industries related to furniture and craft products, interior-related operations, and the like.

1; 多軸NC木工旋盤システム 2; 三次元形状モデル
2a; スライス片 2b; 凹み
2c; 仮想スライス断面 3; 最大部輪郭線
4; 最小部輪郭線 5; 最大部オフセット線
6; 最小部オフセット線
10; 4軸NC木工旋盤 11; チャック
20; 円盤型回転工具 20a; チップ
21; 仮想の薄肉円盤
21a; 側面 21b; 側面
21c; 中心(仮想の薄肉円盤の)
22; 空間領域(仮想の薄肉円盤21の)
22a; 第一の平面 22b; 第二の平面
23; 鋸刃 24; 切れ目
31; 球状回転工具 32; 仮想の球体
33; 空間領域(球状回転工具31の)
40; 帯鋸盤 41; 帯鋸刃
41b; 台金 42; 駆動ホイール
43; 従動ホイール 44; 仮想の帯鋸工具
45; 切断溝
50; ベルトサンダー 51; 研磨ベルト
52; 駆動ホイール 53; 従動ホイール
54; 仮想の研磨工具
W; 木工材料

1; multi-axis NC woodworking lathe system 2; three-dimensional shape model 2a; slice piece 2b; dent 2c; virtual slice section 3; maximum contour 4; minimum contour 5; maximum offset 6; minimum offset 10; Four-axis NC woodworking lathe 11; Chuck 20; Disk-type rotary tool 20a; Tip 21; Virtual thin disk 21a; Side surface 21b; Side surface 21c;
22; Spatial region (of the virtual thin disk 21)
22a; first plane 22b; second plane 23; saw blade 24; cut 31; spherical rotary tool 32; virtual sphere 33; spatial region (of the spherical rotary tool 31)
40; Band saw machine 41; Band saw blade 41b; Base metal 42; Drive wheel
43; driven wheel 44; virtual band saw tool 45; cutting groove 50; belt sander 51; grinding belt 52; drive wheel 53; driven wheel 54; virtual grinding tool W;

Claims (23)

旋回角度を制御可能な旋回軸であるC軸にチャッキングして前記C軸回りに旋回する木工材料を切削するために、
Z軸方向および前記Z軸に直交するX軸方向に移動可能な円盤型回転工具と、
前記円盤型回転工具と同じステージ上に設置され、XZ平面内を移動しかつXZ平面に直角なB軸回りに旋回可能な、先端が球状ないしは半球状の球状回転工具とを備えた多軸NC木工旋盤システムであって、
表面が三角形で分割されコンピュータに入力されている製品の三次元形状モデルを前記C軸にチャッキングしたと仮定し、
前記円盤型回転工具と同じ形状を有する仮想の薄肉円盤の外周が、旋回中の前記三次元形状モデルに対して接した状態を維持しながらZ軸方向に移動することを前提に、C軸の任意の旋回角度θと前記仮想の薄肉円盤の外周の任意のZ座標に対して前記仮想の薄肉円盤の回転中心のX座標を得るとともに、
前記球状回転工具と同じ直径の球体の先端形状を有する仮想の球体の表面が、前記C軸回りに旋回中の前記三次元形状モデルに対して接した状態を維持しながら、該球状回転工具の回転軸の向きを常にZ軸上の任意の点Zhに向き続けるようB軸回りに旋回することを前提に、
C軸の任意の旋回角度θと、前記球状回転工具における回転軸のZ軸とのなす任意の旋回角度αに対して前記球体の中心のX座標とZ座標を求める際、
前記球体の表面と前記三次元形状モデルを構成する三角形の頂点とが接するときの第一加工点と、前記球体の表面と前記三次元形状モデルを構成する三角形の辺とが接するときの第二加工点と、前記球体の表面と前記三次元形状モデルを構成する三角形平面とが接するときの第三加工点と、の3通りの加工点の候補の中から実際の加工に寄与すべき加工点を一つだけ抽出することで前記球体の中心のX座標とZ座標を得るようにしたことを特徴とする多軸NC木工旋盤システム。
In order to cut the woodworking material that is chucked on the C-axis that is the swivel axis that can control the swivel angle and swivels around the C-axis,
A disk-type rotary tool movable in the Z-axis direction and the X-axis direction orthogonal to the Z-axis;
Multi-axis NC equipped with a spherical or hemispherical spherical rotary tool installed on the same stage as the disk type rotary tool and capable of moving around the B axis perpendicular to the XZ plane and moving in the XZ plane A woodworking lathe system,
Suppose that the three-dimensional shape model of the product whose surface is divided into triangles and input to the computer is chucked on the C axis,
Assuming that the outer periphery of a virtual thin disk having the same shape as the disk-type rotary tool moves in the Z-axis direction while maintaining a state in contact with the rotating three-dimensional shape model, Obtaining the X coordinate of the center of rotation of the virtual thin disk for an arbitrary turning angle θ and an arbitrary Z coordinate of the outer periphery of the virtual thin disk,
While maintaining the state in which the surface of the virtual sphere having the tip shape of the sphere having the same diameter as the spherical rotary tool is in contact with the three-dimensional shape model turning around the C axis, Assuming that the rotation axis always turns to the arbitrary point Zh on the Z-axis so as to turn around the B-axis,
When obtaining the X and Z coordinates of the center of the sphere with respect to an arbitrary turning angle α formed by an arbitrary turning angle θ of the C axis and a Z axis of the rotating shaft of the spherical rotary tool,
A first processing point when the surface of the sphere and the vertex of the triangle constituting the three-dimensional shape model are in contact with each other, and a second processing point when the surface of the sphere and the side of the triangle constituting the three-dimensional shape model are in contact with each other Machining points that should contribute to actual machining from among the three machining point candidates: machining points and third machining points when the surface of the sphere touches the triangular plane that constitutes the three-dimensional shape model The multi-axis NC woodworking lathe system is characterized in that the X coordinate and Z coordinate of the center of the sphere are obtained by extracting only one of them.
前記三次元形状モデルは、表面が三次元曲面の多角形ポリゴンに分割された製品に対して、前記多角形ポリゴンの曲面上に頂点を持ち、頂点同士を直線で結ばれた三角形に分割したと仮定することを特徴とする請求項1に記載の多軸NC木工旋盤システム。   The three-dimensional shape model is a product whose surface is divided into polygon polygons having a three-dimensional curved surface, and has a vertex on the curved surface of the polygon polygon, and the vertex is divided into triangles connected by straight lines. The multi-axis NC woodworking lathe system according to claim 1, which is assumed. 前記円盤型回転工具は、Z軸方向および前記Z軸に直交するX軸方向に移動可能であるとともに、円盤型回転工具の回転中心を通過し、かつXZ平面に直角なD軸回りに旋回可能であり、
前記円盤型回転工具と同じ形状を有する仮想の薄肉円盤の外周が、旋回中の前記三次元形状モデルに対して接した状態を維持しながらZ軸方向に移動するとともに、前記仮想の薄肉円盤の向きを前記三次元形状モデルの表面に対して垂直に向けることを前提に、
前記仮想の薄肉円盤の外周と前記三次元形状モデルの表面との接触点から、法線方向に向けた長さが仮想の薄肉円盤の半径の法線ベクトルを計算し、前記法線ベクトルの先端位置からZ軸に垂直な直線がXZ平面と一致するまで前記三次元形状モデルをZ軸周りに回転させた回転角γと、前記法線ベクトルのXZ平面への投影成分がX軸とのなす角度βと、C軸の任意の旋回角度θとに対して前記仮想の薄肉円盤の中心のX座標とZ座標を得るようにしたことを特徴とする請求項1又は2に記載の多軸NC木工旋盤システム。
The disk-type rotary tool can move in the Z-axis direction and the X-axis direction orthogonal to the Z-axis, and can turn around the D-axis that passes through the center of rotation of the disk-type rotary tool and is perpendicular to the XZ plane. And
The outer circumference of a virtual thin disk having the same shape as the disk-type rotary tool moves in the Z-axis direction while maintaining a state in contact with the three-dimensional shape model that is turning, and the virtual thin disk Assuming that the direction is perpendicular to the surface of the three-dimensional shape model,
From the contact point between the outer periphery of the virtual thin disk and the surface of the three-dimensional shape model, a normal vector whose length in the normal direction is the radius of the virtual thin disk is calculated, and the tip of the normal vector A rotation angle γ obtained by rotating the three-dimensional shape model around the Z axis until a straight line perpendicular to the Z axis from the position coincides with the XZ plane, and a projection component of the normal vector onto the XZ plane forms an X axis. The multi-axis NC according to claim 1 or 2, wherein an X coordinate and a Z coordinate of the center of the virtual thin disk are obtained with respect to an angle β and an arbitrary turning angle θ of the C axis. Woodworking lathe system.
前記仮想の薄肉円盤は、その表面の周囲に多数の点からなる工具座標系で定義し、
前記仮想の薄肉円盤の向きを前記三次元形状モデルの表面に対して垂直に向けるために、前記角度βだけスイングさせたと仮定した時、前記工具座標系で定義した多数の点のうちの少なくとも1点が、前記三次元形状モデルの内側にあれば、前記仮想の薄肉円盤が前記三次元形状モデルに干渉したと判断し、
前記仮想の薄肉円盤の向きを角度β−90°スイングし、前記仮想の薄肉円盤の先端を前記三次元形状モデルの加工点に接触するよう位置決めすることを特徴とする請求項3に記載の多軸NC木工旋盤システム。
The virtual thin disk is defined by a tool coordinate system consisting of a number of points around its surface,
When it is assumed that the virtual thin disk is swung by the angle β in order to orient the perpendicular thin disk in a direction perpendicular to the surface of the three-dimensional shape model, at least one of a plurality of points defined in the tool coordinate system is used. If the point is inside the three-dimensional shape model, it is determined that the virtual thin disk has interfered with the three-dimensional shape model,
The orientation of the virtual thin disk is swung by an angle β-90 °, and the tip of the virtual thin disk is positioned so as to contact the machining point of the three-dimensional shape model. Axis NC woodworking lathe system.
前記Z軸上の任意の点Zhは、製品形状の先端部を半球体に近似したときの底面の中心のZ座標であることを特徴とする請求項1〜4のいずれかに記載の多軸NC木工旋盤システム。   The multi-axis according to any one of claims 1 to 4, wherein the arbitrary point Zh on the Z-axis is a Z coordinate of the center of the bottom surface when the tip of the product shape is approximated to a hemisphere. NC woodworking lathe system. 前記球状回転工具は、先端が球状ないしは半球状の木工用ボールビットあるいは木工用ルータビットであることを特徴とする請求項1〜5のいずれかに記載の多軸NC木工旋盤システム。   6. The multi-axis NC woodworking lathe system according to claim 1, wherein the spherical rotary tool is a ball bit for woodworking or a router bit for woodworking at a tip end. 請求項1、2又は3に記載の多軸NC木工旋盤システムにおいて、
C軸に直交する方向と平行に走行する帯鋸刃を備えるとともに、前記帯鋸刃が全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記帯鋸刃の向きをZ軸方向に対して傾斜するように変向可能である帯鋸盤を備え、
前記帯鋸盤の帯鋸刃と同じ形状を有する仮想の帯鋸工具が、C軸の旋回角度θがゼロ度における前記三次元形状モデルに対してZ軸に平行なZ軸方向でスライスする時に、Z軸方向とZ軸に直交するF方向に移動することを前提に、
前記三次元形状モデルをZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面を形成し、各仮想スライス断面において+F方向の最大点Fmaxと最小点Fminを計算し、前記各Fmax同士を結んだ最大部輪郭線と前記各Fmin同士を結んだ最小部輪郭線とを計算し、前記最大部輪郭線に対する最大部オフセット線と、前記最小部輪郭線に対する最小部オフセット線を計算し、前記最大部オフセット線と前記最小部オフセット線のうちの少なくとも一方を前記仮想の帯鋸工具の工具経路として得ることを特徴とする多軸NC木工旋盤システム。
In the multi-axis NC woodworking lathe system according to claim 1, 2, or 3,
A band saw blade that runs parallel to the direction perpendicular to the C axis, the band saw blade is movable in the Z axis direction parallel to the Z axis and the F direction perpendicular to the Z axis as a whole, and the band saw blade A band saw machine that can be turned to incline with respect to the Z-axis direction,
When the virtual band saw tool having the same shape as the band saw blade of the band saw machine slices in the Z-axis direction parallel to the Z-axis with respect to the three-dimensional shape model with the C-axis turning angle θ being zero degrees, the Z-axis Assuming movement in the F direction perpendicular to the direction and the Z axis,
A large number of virtual slice sections parallel to the XY plane are formed at appropriate intervals in the Z-axis direction with respect to the three-dimensional shape model, and a maximum point Fmax and a minimum point Fmin in the + F direction are calculated in each virtual slice section. The maximum contour line connecting Fmax and the minimum contour line connecting each Fmin are calculated, and the maximum offset line for the maximum contour line and the minimum offset line for the minimum contour line are calculated. A multi-axis NC woodworking lathe system, wherein at least one of the maximum part offset line and the minimum part offset line is obtained as a tool path of the virtual band saw tool.
前記最大部輪郭線と前記最小部輪郭線は、前記三次元形状モデルをC軸の適宜ピッチの旋回角度θで回転させるごとに停止して計算し、最大部輪郭線と最小部輪郭線のそれぞれに対応する最大部オフセット線と最小部オフセット線を計算して得ることを特徴とする請求項7に記載の多軸NC木工旋盤システム。   The maximum part outline and the minimum part outline are calculated by stopping each time the three-dimensional shape model is rotated at a turning angle θ of an appropriate pitch of the C axis, and each of the maximum part outline and the minimum part outline is calculated. The multi-axis NC woodworking lathe system according to claim 7, which is obtained by calculating a maximum part offset line and a minimum part offset line corresponding to. 請求項1、2、3又は7に記載の多軸NC木工旋盤システムにおいて、
C軸に直交する方向と平行に走行する研磨ベルトを備えるとともに、前記研磨ベルトが全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記研磨ベルトの向きをZ軸方向に対して傾斜するように変向可能であるベルトサンダーを備え、
前記ベルトサンダーの研磨ベルトと同じ形状を有する仮想の研磨工具が、C軸の旋回角度θがゼロ度における前記三次元形状モデルに対して研磨する時に、Z軸方向とZ軸に直交するF方向に移動することを前提に、
前記三次元形状モデルをZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面を形成し、各仮想スライス断面において+F方向の最大点Fmaxと最小点Fminを計算し、前記各Fmax同士を結んだ最大部輪郭線と前記各Fmin同士を結んだ最小部輪郭線とを計算し、前記最大部輪郭線と前記最小部輪郭線のうちの少なくとも一方を前記仮想の研磨工具の工具経路として得ることを特徴とする多軸NC木工旋盤システム。
In the multi-axis NC woodworking lathe system according to claim 1, 2, 3, or 7,
The polishing belt includes a polishing belt that runs parallel to a direction orthogonal to the C-axis, the polishing belt is movable in the Z-axis direction parallel to the Z-axis and the F-direction orthogonal to the Z-axis as a whole, and the polishing belt A belt sander that can be turned so as to be inclined with respect to the Z-axis direction,
When the virtual polishing tool having the same shape as the polishing belt of the belt sander polishes the three-dimensional shape model with the C-axis turning angle θ being zero degrees, the Z direction and the F direction perpendicular to the Z axis On the premise of moving to
A large number of virtual slice sections parallel to the XY plane are formed at appropriate intervals in the Z-axis direction with respect to the three-dimensional shape model, and a maximum point Fmax and a minimum point Fmin in the + F direction are calculated in each virtual slice section. The maximum contour line connecting Fmax and the minimum contour line connecting each Fmin are calculated, and at least one of the maximum contour line and the minimum contour line is used as a tool of the virtual polishing tool. A multi-axis NC woodworking lathe system characterized by being obtained as a path.
前記最大部輪郭線と前記最小部輪郭線は、前記三次元形状モデルをC軸の適宜ピッチの旋回角度θで回転させるごとに停止して計算して得ることを特徴とする請求項9に記載の多軸NC木工旋盤システム。   10. The maximum part outline and the minimum part outline are obtained by stopping and calculating each time the three-dimensional shape model is rotated at a turning angle θ of an appropriate pitch of the C axis. Multi-axis NC woodworking lathe system. 円盤型回転工具を用いた三次元加工に必要な第一の工具経路生成方法と、先端が球状ないしは半球状の回転工具である球状回転工具を用いた三次元加工に必要な第二の工具経路生成方法と、を組み合わせた工具経路生成方法であって、
表面が三角形で分割されコンピュータに入力されている製品の三次元形状モデルを、4軸NC木工旋盤上での旋回角度を制御可能な旋回軸であるC軸にチャッキングしたと仮定し、
第一の工具経路生成方法としては、前記円盤型回転工具と同じ形状を有する仮想の薄肉円盤の外周が、C軸回りに旋回中の前記三次元形状モデルに対して接した状態を維持しながらZ軸方向に移動することを前提に、C軸の任意の旋回角度θと前記仮想の薄肉円盤の外周の任意のZ座標に対して前記仮想の薄肉円盤の回転中心のX座標を求めて工具経路を生成し、
第二の工具経路生成方法としては、前記球状回転工具と同じ直径の球体の先端形状を有する仮想の球体の表面が、C軸回りに旋回中の前記三次元形状モデルに対して接した状態を維持しながら、球状回転工具の回転軸がZ軸上の任意の点Zhに常に向いたままXZ平面内を移動しかつXZ平面に直交するB軸回りに旋回することを前提に前記球体の中心のX座標とZ座標を求めるために、C軸の任意の旋回角度θと、前記球状回転工具における回転軸のZ軸とのなす任意の旋回角度αとした場合に、
前記三次元形状モデルと前記球状回転工具の両方を同時に、XZ平面に直角で前記Zhを通る直線回りに前記旋回角度αと同じ旋回角度だけ逆方向に旋回して回転座標変換することで前記球状回転工具の回転軸をZ軸に一致した状態とし、
前記球体の表面と前記三次元形状モデルを構成する三角形の頂点とが接するときの前記球体の中心のZ座標群と、前記球体の表面と前記三次元形状モデルを構成する三角形の辺とが接するときの前記球体の中心のZ座標群と、前記球体の表面と前記三次元形状モデルを構成する三角形平面とが接するときの前記球体の中心のZ座標群と、からなる全部のZ座標群のうちで、点Z=Zhから前記三次元形状モデルの外側に位置する+Z方向へ最も遠いZ座標を採用し、この採用したZ座標を、XZ平面に直角で前記Zhを通る直線回りに前記旋回角度αだけ正方向に旋回して回転座標変換して得られるX座標とZ座標とを工具経路にすることを特徴とする工具経路生成方法。
First tool path generation method required for three-dimensional machining using a disk-type rotary tool, and second tool path required for three-dimensional machining using a spherical rotary tool whose tip is a spherical or hemispherical rotary tool A tool path generation method combining the generation method,
Assuming that the three-dimensional shape model of the product whose surface is divided into triangles and input to the computer is chucked to the C axis, which is a pivot axis that can control the pivot angle on a 4-axis NC woodworking lathe,
As a first tool path generation method, an outer periphery of a virtual thin disk having the same shape as the disk-type rotary tool is maintained in contact with the three-dimensional shape model turning around the C axis. Assuming movement in the Z-axis direction, the X-coordinate of the rotation center of the virtual thin disk is obtained with respect to the arbitrary turning angle θ of the C-axis and the arbitrary Z coordinate of the outer periphery of the virtual thin disk. Generate a route,
As a second tool path generation method, a surface of a virtual sphere having a sphere tip shape having the same diameter as the spherical rotary tool is in contact with the three-dimensional shape model turning around the C axis. The center of the sphere is assumed on the premise that the rotary axis of the spherical rotary tool moves in the XZ plane while always turning to an arbitrary point Zh on the Z axis and turns around the B axis perpendicular to the XZ plane. In order to obtain the X coordinate and the Z coordinate, when the arbitrary turning angle θ of the C axis and the arbitrary turning angle α formed by the Z axis of the rotating shaft in the spherical rotary tool are as follows:
Both the three-dimensional shape model and the spherical rotating tool are simultaneously rotated in the opposite direction by the same turning angle as the turning angle α around the straight line passing through the Zh at a right angle to the XZ plane, thereby converting the spherical coordinates. Make the rotation axis of the rotary tool coincide with the Z axis,
The Z coordinate group of the center of the sphere when the surface of the sphere and the apex of the triangle constituting the three-dimensional shape model are in contact with the surface of the sphere and the sides of the triangle constituting the three-dimensional shape model Z coordinate group of the center of the sphere at the time, and the Z coordinate group of the center of the sphere when the surface of the sphere is in contact with the triangular plane constituting the three-dimensional shape model, Among them, the Z coordinate farthest in the + Z direction located outside the three-dimensional shape model from the point Z = Zh is adopted, and the adopted Z coordinate is rotated around the straight line passing through the Zh at right angles to the XZ plane. A tool path generation method characterized in that an X coordinate and a Z coordinate obtained by turning in the positive direction by an angle α and converting rotational coordinates are used as a tool path.
前記三次元形状モデルは、表面が三次元曲面の多角形ポリゴンに分割された製品に対して、前記多角形ポリゴンの曲面上に頂点を持ち、頂点同士を直線で結ばれた三角形に分割したと仮定することを特徴とする請求項11に記載の工具経路生成方法。   The three-dimensional shape model is a product whose surface is divided into polygon polygons having a three-dimensional curved surface, and has a vertex on the curved surface of the polygon polygon, and the vertex is divided into triangles connected by straight lines. The tool path generation method according to claim 11, which is assumed. 前記第一の工具経路生成方法としては、前記円盤型回転工具と同じ形状を有する仮想の薄肉円盤の外周が、C軸周りに旋回中の前記三次元形状モデルに対して接した状態を維持しながらZ軸方向に移動するとともに、前記仮想の薄肉円盤の向きを前記三次元形状モデルの表面に対して垂直に向けることを前提に、
前記仮想の薄肉円盤の外周と前記三次元形状モデルの表面との接触点から、法線方向に向けた長さが仮想の薄肉円盤の半径の法線ベクトルを計算し、前記法線ベクトルの先端位置からZ軸に垂直な直線がXZ平面と一致するまで前記三次元形状モデルをZ軸周りに回転させた回転角γと、前記法線ベクトルのXZ平面への投影成分がX軸とのなす角度βと、C軸の任意の旋回角度θとに対して前記仮想の薄肉円盤の中心のX座標とZ座標を得るようにしたことを特徴とする請求項11又は12に記載の工具経路生成方法。
As the first tool path generation method, an outer periphery of a virtual thin disk having the same shape as that of the disk-type rotary tool is maintained in contact with the three-dimensional shape model turning around the C axis. Assuming that the direction of the virtual thin disk is oriented perpendicular to the surface of the three-dimensional shape model while moving in the Z-axis direction,
From the contact point between the outer periphery of the virtual thin disk and the surface of the three-dimensional shape model, a normal vector whose length in the normal direction is the radius of the virtual thin disk is calculated, and the tip of the normal vector A rotation angle γ obtained by rotating the three-dimensional shape model around the Z axis until a straight line perpendicular to the Z axis from the position coincides with the XZ plane, and a projection component of the normal vector onto the XZ plane forms an X axis. The tool path generation according to claim 11 or 12, wherein an X coordinate and a Z coordinate of the center of the virtual thin disk are obtained with respect to an angle β and an arbitrary turning angle θ of the C axis. Method.
前記仮想の薄肉円盤は、その表面の周囲に多数の点からなる工具座標系で定義し、
前記仮想の薄肉円盤の向きを前記三次元形状モデルの表面に対して垂直に向けるために、前記角度βだけスイングさせたと仮定した時、前記工具座標系で定義した多数の点のうちの少なくとも1点が、前記三次元形状モデルの内側にあれば、前記仮想の薄肉円盤が前記三次元形状モデルに干渉したと判断し、
前記仮想の薄肉円盤の向きを角度β−90°スイングし、前記仮想の薄肉円盤の先端を前記三次元形状モデルの加工点に接触するよう位置決めすることを特徴とする請求項13に記載の工具経路生成方法。
The virtual thin disk is defined by a tool coordinate system consisting of a number of points around its surface,
When it is assumed that the virtual thin disk is swung by the angle β in order to orient the perpendicular thin disk in a direction perpendicular to the surface of the three-dimensional shape model, at least one of a plurality of points defined in the tool coordinate system is used. If the point is inside the three-dimensional shape model, it is determined that the virtual thin disk has interfered with the three-dimensional shape model,
The tool according to claim 13, wherein the direction of the virtual thin disk is swung by an angle β-90 °, and the tip of the virtual thin disk is positioned so as to contact the machining point of the three-dimensional shape model. Route generation method.
請求項11〜14のいずれかに記載の工具経路生成方法において、
C軸に直交する方向と平行に走行する帯鋸刃を備えるとともに、前記帯鋸刃が全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記帯鋸刃の向きをZ軸方向に対して傾斜するように変向可能である帯鋸盤を用いた三次元加工に必要な第三の工具経路生成方法を加え、
前記第三の工具経路生成方法としては、前記帯鋸盤の帯鋸刃と同じ形状を有する仮想の帯鋸工具が、C軸の旋回角度θがゼロ度における前記三次元形状モデルに対してZ軸に平行なZ軸方向でスライスする時に、Z軸方向とZ軸に直交するF方向に移動することを前提に、
前記三次元形状モデルをZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面を形成し、各仮想スライス断面において+F方向の最大点Fmaxと最小点Fminを計算し、前記各Fmax同士を結んだ最大部輪郭線と前記各Fmin同士を結んだ最小部輪郭線とを計算し、前記最大部輪郭線に対する最大部オフセット線と、前記最小部輪郭線に対する最小部オフセット線を計算し、前記最大部オフセット線と前記最小部オフセット線のうちの少なくとも一方を前記仮想の帯鋸工具の工具経路を生成することを特徴とする工具経路生成方法。
In the tool path generation method according to any one of claims 11 to 14,
A band saw blade that runs parallel to the direction perpendicular to the C axis, the band saw blade is movable in the Z axis direction parallel to the Z axis and the F direction perpendicular to the Z axis as a whole, and the band saw blade A third tool path generation method necessary for three-dimensional machining using a band saw machine capable of changing the direction of the blade so as to be inclined with respect to the Z-axis direction,
As the third tool path generation method, a virtual band saw tool having the same shape as the band saw blade of the band saw machine is parallel to the Z axis with respect to the three-dimensional shape model with the C axis turning angle θ being zero degrees. When slicing in the Z-axis direction, assuming that the Z-axis direction and the F-direction perpendicular to the Z-axis move,
A large number of virtual slice sections parallel to the XY plane are formed at appropriate intervals in the Z-axis direction with respect to the three-dimensional shape model, and a maximum point Fmax and a minimum point Fmin in the + F direction are calculated in each virtual slice section. The maximum contour line connecting Fmax and the minimum contour line connecting each Fmin are calculated, and the maximum offset line for the maximum contour line and the minimum offset line for the minimum contour line are calculated. And generating a tool path of the virtual band saw tool for at least one of the maximum part offset line and the minimum part offset line.
請求項11〜15のいずれかに記載の工具経路生成方法において、
C軸に直交する方向と平行に走行する研磨ベルトを備えるとともに、前記研磨ベルトが全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記研磨ベルトの向きをZ軸方向に対して傾斜するように変向可能であるベルトサンダーを用いた三次元加工に必要な第四の工具経路生成方法を加え、
前記第四の工具経路生成方法としては、前記ベルトサンダーの研磨ベルトと同じ形状を有する仮想の研磨工具が、C軸の旋回角度θがゼロ度における前記三次元形状モデルに対して研磨する時に、Z軸方向とZ軸に直交するF方向に移動することを前提に、
前記三次元形状モデルをZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面を形成し、各仮想スライス断面において+F方向の最大点Fmaxと最小点Fminを計算し、前記各Fmax同士を結んだ最大部輪郭線と前記各Fmin同士を結んだ最小部輪郭線とを計算し、前記最大部輪郭線と前記最小部輪郭線のうちの少なくとも一方を前記仮想の研磨工具の工具経路を生成することを特徴とする工具経路生成方法。
In the tool path generation method according to any one of claims 11 to 15,
The polishing belt includes a polishing belt that runs parallel to a direction orthogonal to the C-axis, the polishing belt is movable in the Z-axis direction parallel to the Z-axis and the F-direction orthogonal to the Z-axis as a whole, and the polishing belt A fourth tool path generation method necessary for three-dimensional machining using a belt sander that can be changed so as to incline the direction of the Z-axis with respect to the Z-axis direction,
As the fourth tool path generation method, when a virtual polishing tool having the same shape as the polishing belt of the belt sander is polished with respect to the three-dimensional shape model in which the turning angle θ of the C axis is zero degrees, On the premise of moving in the Z-axis direction and the F-direction orthogonal to the Z-axis,
A large number of virtual slice sections parallel to the XY plane are formed at appropriate intervals in the Z-axis direction with respect to the three-dimensional shape model, and a maximum point Fmax and a minimum point Fmin in the + F direction are calculated in each virtual slice section. The maximum contour line connecting Fmax and the minimum contour line connecting each Fmin are calculated, and at least one of the maximum contour line and the minimum contour line is used as a tool of the virtual polishing tool. A tool path generation method characterized by generating a path.
表面が三角形で分割されコンピュータに入力されている製品の三次元形状モデルを、4軸NC木工旋盤上での旋回角度を制御可能な旋回軸であるC軸にチャッキングしたと仮定し、円盤型回転工具を用いた三次元加工に必要な第一の工具経路生成プログラムと、先端が球状ないしは半球状の回転工具である球状回転工具を用いた三次元加工に必要な第二の工具経路生成プログラムと、を組み合わせた工具経路生成プログラムであって、
前記第一の工具経路生成プログラムは、
前記円盤型回転工具と同じ形状を有する仮想の薄肉円盤の外周が、C軸回りに旋回中の前記三次元形状モデルに対して接した状態を維持しながらZ軸方向に移動することを前提に、C軸の任意の旋回角度θと前記仮想の薄肉円盤の外周の任意のZ座標に対し、前記仮想の薄肉円盤の回転中心のX座標を求めることにより、前記円盤型回転工具の工具経路と
し、
前記第二の工具経路生成プログラムは、
前記球状回転工具と同じ直径の球体の先端形状を有する仮想の球体の表面が、C軸回りに旋回中の前記三次元形状モデルに対して接した状態を維持しながら、球状回転工具の回転軸がZ軸上の任意の点Zhに常に向いたままXZ平面内を移動しかつXZ平面に直交するB軸回りに旋回することを前提に前記球体の中心のX座標とZ座標を求めるために、
C軸の任意の旋回角度θと前記球状回転工具における回転軸のZ軸とのなす任意の旋回角度αとした場合、前記三次元形状モデルと前記球状回転工具の両方を同時に、XZ平面に直角で前記Zhを通る直線回りに前記旋回角度αと同じ旋回角度だけ逆方向に旋回して回転座標変換することで前記球状回転工具の回転軸をZ軸に一致した状態にし、
前記球体の表面と前記三次元形状モデルを構成する三角形の頂点とが接するときの前記球体の中心のZ座標群と、前記球体の表面と前記三次元形状モデルを構成する三角形の辺とが接するときの前記球体の中心のZ座標群と、前記球体の表面と前記三次元形状モデルを構成する三角形平面とが接するときの前記球体の中心のZ座標群と、からなる全部のZ座標群のうちで、点Z=Zhから前記三次元形状モデルの外側に位置する+Z方向へ最も遠いZ座標を採用し、
この採用したZ座標を、XZ平面に直角で前記Zhを通る直線回りに前記旋回角度αだけ正方向に旋回して回転座標変換して得られるX座標とZ座標とを工具経路にすることを特徴とする工具経路生成プログラム。
Assuming that the three-dimensional shape model of the product whose surface is divided into triangles and input to the computer is chucked to the C-axis, which is a turning axis capable of controlling the turning angle on a 4-axis NC woodworking lathe, First tool path generation program necessary for three-dimensional machining using a rotary tool and second tool path generation program necessary for three-dimensional machining using a spherical rotary tool whose tip is a spherical or hemispherical rotary tool And a tool path generation program that combines
The first tool path generation program is:
On the premise that the outer periphery of a virtual thin disk having the same shape as the disk-type rotary tool moves in the Z-axis direction while maintaining a state in contact with the three-dimensional shape model that is turning around the C-axis. The X-axis of the center of rotation of the virtual thin disk is obtained with respect to the arbitrary turning angle θ of the C axis and the arbitrary Z coordinate of the outer periphery of the virtual thin disk, thereby obtaining the tool path of the disk type rotary tool. ,
The second tool path generation program is
While maintaining the state in which the surface of the virtual sphere having the tip shape of the sphere having the same diameter as the spherical rotary tool is in contact with the three-dimensional shape model turning around the C axis, the rotational axis of the spherical rotary tool In order to obtain the X and Z coordinates of the center of the sphere on the assumption that the lens moves in the XZ plane while always facing an arbitrary point Zh on the Z axis and turns around the B axis perpendicular to the XZ plane ,
When an arbitrary swivel angle θ between the arbitrary swivel angle θ of the C axis and the Z axis of the rotation axis of the spherical rotating tool, both the three-dimensional shape model and the spherical rotating tool are simultaneously perpendicular to the XZ plane. The rotational axis of the spherical rotary tool is made to coincide with the Z axis by turning in the reverse direction by the same turning angle as the turning angle α around the straight line passing through the Zh,
The Z coordinate group of the center of the sphere when the surface of the sphere and the apex of the triangle constituting the three-dimensional shape model are in contact with the surface of the sphere and the sides of the triangle constituting the three-dimensional shape model Z coordinate group of the center of the sphere at the time, and the Z coordinate group of the center of the sphere when the surface of the sphere is in contact with the triangular plane constituting the three-dimensional shape model, Among them, the Z coordinate farthest from the point Z = Zh in the + Z direction located outside the three-dimensional shape model is adopted,
The X coordinate and the Z coordinate obtained by turning the adopted Z coordinate in the positive direction by the turning angle α around the straight line passing through the Zh at a right angle to the XZ plane are used as a tool path. Feature tool path generation program.
前記三次元形状モデルは、表面が三次元曲面の多角形ポリゴンに分割された製品に対して、前記多角ポリゴンの曲面上に頂点を持ち、頂点同士を直線で結ばれた三角形に分割したと仮定することを特徴とする請求項17に記載の工具経路生成プログラム。   Assuming that the three-dimensional shape model is a product whose surface is divided into polygon polygons having a three-dimensional curved surface, and has a vertex on the curved surface of the polygon polygon, and the vertex is divided into triangles connected by straight lines. The tool path generation program according to claim 17, wherein: 前記第一の工具経路生成プログラムは、
前記円盤型回転工具と同じ形状を有する仮想の薄肉円盤の外周が、C軸周りに旋回中の前記三次元形状モデルに対して接した状態を維持しながらZ軸方向に移動するとともに、前記仮想の薄肉円盤の向きを前記三次元形状モデルの表面に対して垂直に向けることを前提に、
前記仮想の薄肉円盤の外周と前記三次元形状モデルの表面との接触点から、法線方向に向けた長さが仮想の薄肉円盤の半径の法線ベクトルを計算し、前記法線ベクトルの先端位置からZ軸に垂直な直線がXZ平面と一致するまで前記三次元形状モデルをZ軸周りに回転させた回転角γと、前記法線ベクトルのXZ平面への投影成分がX軸とのなす角度βと、C軸の任意の旋回角度θとに対して前記仮想の薄肉円盤の中心のX座標とZ座標を得るようにしたことを特徴とする請求項17又は18に記載の工具経路生成プログラム。
The first tool path generation program is:
The outer periphery of a virtual thin disk having the same shape as that of the disk-type rotary tool moves in the Z-axis direction while maintaining a state in contact with the three-dimensional shape model that is turning around the C axis, and the virtual Assuming that the direction of the thin disk is oriented perpendicularly to the surface of the three-dimensional shape model,
From the contact point between the outer periphery of the virtual thin disk and the surface of the three-dimensional shape model, a normal vector whose length in the normal direction is the radius of the virtual thin disk is calculated, and the tip of the normal vector A rotation angle γ obtained by rotating the three-dimensional shape model around the Z axis until a straight line perpendicular to the Z axis from the position coincides with the XZ plane, and a projection component of the normal vector onto the XZ plane forms an X axis. 19. The tool path generation according to claim 17 or 18, wherein an X coordinate and a Z coordinate of the center of the virtual thin disk are obtained with respect to an angle β and an arbitrary turning angle θ of the C axis. program.
前記仮想の薄肉円盤は、その表面の周囲に多数の点からなる工具座標系で定義し、
前記仮想の薄肉円盤の向きを前記三次元形状モデルの表面に対して垂直に向けるために、前記角度βだけスイングさせたと仮定した時、前記工具座標系で定義した多数の点のうちの少なくとも1点が、前記三次元形状モデルの内側にあれば、前記仮想の薄肉円盤が前記三次元形状モデルに干渉したと判断し、
前記仮想の薄肉円盤の向きを角度β−90°スイングし、前記仮想の薄肉円盤の先端を前記三次元形状モデルの加工点に接触するよう位置決めすることを特徴とする請求項19に記載の工具経路生成プログラム。
The virtual thin disk is defined by a tool coordinate system consisting of a number of points around its surface,
When it is assumed that the virtual thin disk is swung by the angle β in order to orient the perpendicular thin disk in a direction perpendicular to the surface of the three-dimensional shape model, at least one of a plurality of points defined in the tool coordinate system is used. If the point is inside the three-dimensional shape model, it is determined that the virtual thin disk has interfered with the three-dimensional shape model,
The tool according to claim 19, wherein the direction of the virtual thin disk is swung by an angle β-90 °, and the tip of the virtual thin disk is positioned so as to contact the machining point of the three-dimensional shape model. Route generator.
請求項17〜20のいずれかに記載の工具経路生成プログラムにおいて、
C軸に直交する方向と平行に走行する帯鋸刃を備えるとともに、前記帯鋸刃が全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記帯鋸刃の向きをZ軸方向に対して傾斜するように変向可能である帯鋸盤を用いた三次元加工に必要な第三の工具経路生成プログラムを加え、
前記第三の工具経路生成プログラムは、前記帯鋸盤の帯鋸刃と同じ形状を有する仮想の帯鋸工具が、C軸の旋回角度θがゼロ度における前記三次元形状モデルに対してZ軸に平行なZ軸方向でスライスする時に、Z軸方向とZ軸に直交するF方向に移動することを前提に、
前記三次元形状モデルをZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面を形成し、各仮想スライス断面において+F方向の最大点Fmaxと最小点Fminを計算し、前記各Fmax同士を結んだ最大部輪郭線と前記各Fmin同士を結んだ最小部輪郭線とを計算し、前記最大部輪郭線に対する最大部オフセット線と、前記最小部輪郭線に対する最小部オフセット線を計算し、前記最大部オフセット線と前記最小部オフセット線のうちの少なくとも一方を前記仮想の帯鋸工具の工具経路にすることを特徴とする工具経路生成プログラム。
The tool path generation program according to any one of claims 17 to 20,
A band saw blade that runs parallel to the direction perpendicular to the C axis, the band saw blade is movable in the Z axis direction parallel to the Z axis and the F direction perpendicular to the Z axis as a whole, and the band saw blade Add a third tool path generation program necessary for three-dimensional machining using a band saw that can be turned so as to incline in the direction of the Z-axis,
In the third tool path generation program, a virtual band saw tool having the same shape as the band saw blade of the band saw machine is parallel to the Z axis with respect to the three-dimensional shape model in which the turning angle θ of the C axis is zero degrees. When slicing in the Z-axis direction, assuming that the Z-axis direction and the F-direction perpendicular to the Z-axis move,
A large number of virtual slice sections parallel to the XY plane are formed at appropriate intervals in the Z-axis direction with respect to the three-dimensional shape model, and a maximum point Fmax and a minimum point Fmin in the + F direction are calculated in each virtual slice section. The maximum contour line connecting Fmax and the minimum contour line connecting each Fmin are calculated, and the maximum offset line for the maximum contour line and the minimum offset line for the minimum contour line are calculated. A tool path generation program that uses at least one of the maximum part offset line and the minimum part offset line as a tool path of the virtual band saw tool.
請求項17〜21のいずれかに記載の工具経路生成プログラムにおいて、
C軸に直交する方向と平行に走行する研磨ベルトを備えるとともに、前記研磨ベルトが全体としてZ軸に平行なZ軸方向と、Z軸に直交するF方向に移動可能で、かつ、前記研磨ベルトの向きをZ軸方向に対して傾斜するように変向可能であるベルトサンダーを用いた三次元加工に必要な第四の工具経路生成プログラムを加え、
前記第四の工具経路生成プログラムとしては、前記ベルトサンダーの研磨ベルトと同じ形状を有する仮想の研磨工具が、C軸の旋回角度θがゼロ度における前記三次元形状モデルに対して研磨する時に、Z軸方向とZ軸に直交するF方向に移動することを前提に、
前記三次元形状モデルをZ軸方向に向けて適宜間隔でXY平面に平行な多数の仮想スライス断面を形成し、各仮想スライス断面において+F方向の最大点Fmaxと最小点Fminを計算し、前記各Fmax同士を結んだ最大部輪郭線と前記各Fmin同士を結んだ最小部輪郭線とを計算し、前記最大部輪郭線と前記最小部輪郭線のうちの少なくとも一方を前記仮想の研磨工具の工具経路を生成することを特徴とする工具経路生成プログラム。
In the tool path generation program according to any one of claims 17 to 21,
The polishing belt includes a polishing belt that runs parallel to a direction orthogonal to the C-axis, the polishing belt is movable in the Z-axis direction parallel to the Z-axis and the F-direction orthogonal to the Z-axis as a whole, and the polishing belt A fourth tool path generation program necessary for three-dimensional machining using a belt sander that can be turned so as to be inclined with respect to the Z-axis direction,
As the fourth tool path generation program, when a virtual polishing tool having the same shape as the polishing belt of the belt sander is polished with respect to the three-dimensional shape model in which the turning angle θ of the C axis is zero degrees, On the premise of moving in the Z-axis direction and the F-direction orthogonal to the Z-axis,
A large number of virtual slice sections parallel to the XY plane are formed at appropriate intervals in the Z-axis direction with respect to the three-dimensional shape model, and a maximum point Fmax and a minimum point Fmin in the + F direction are calculated in each virtual slice section. The maximum contour line connecting Fmax and the minimum contour line connecting each Fmin are calculated, and at least one of the maximum contour line and the minimum contour line is used as a tool of the virtual polishing tool. A tool path generation program for generating a path.
請求項17〜22のいずれかに記載の工具経路生成プログラムを記録したことを特徴とする記録媒体。


A recording medium in which the tool path generation program according to any one of claims 17 to 22 is recorded.


JP2016244950A 2015-12-18 2016-12-17 Multi-axis NC woodworking lathe system, tool path generation method, tool path generation program, and recording medium Active JP6623478B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015246824 2015-12-18
JP2015246824 2015-12-18

Publications (2)

Publication Number Publication Date
JP2017117459A true JP2017117459A (en) 2017-06-29
JP6623478B2 JP6623478B2 (en) 2019-12-25

Family

ID=59234490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016244950A Active JP6623478B2 (en) 2015-12-18 2016-12-17 Multi-axis NC woodworking lathe system, tool path generation method, tool path generation program, and recording medium

Country Status (1)

Country Link
JP (1) JP6623478B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108582294A (en) * 2018-05-01 2018-09-28 禹荣跃 A kind of full-automatic inverting gyro production machine people's structure
WO2019198734A1 (en) * 2018-04-11 2019-10-17 国立大学法人千葉大学 Tool path creation method, tool path creation device, tool path creation program, and recording medium having program recorded thereon
CN116339242A (en) * 2023-05-30 2023-06-27 中科航迈数控软件(深圳)有限公司 Free-form surface cutter path generation method and related equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364109A (en) * 1986-09-04 1988-03-22 Sony Corp Processing information generating system for free curved surface removing tool interference
JPH0751989A (en) * 1993-08-06 1995-02-28 Yachiyoda Kogyo Kk Free-form surface machining device
JP2007152480A (en) * 2005-12-02 2007-06-21 Yamazaki Mazak Corp Nc machining program creation method of nc machining apparatus and nc machining program creating device
JP2008264985A (en) * 2007-04-16 2008-11-06 Hokkaido 3-axis nc wood lathe machine system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364109A (en) * 1986-09-04 1988-03-22 Sony Corp Processing information generating system for free curved surface removing tool interference
JPH0751989A (en) * 1993-08-06 1995-02-28 Yachiyoda Kogyo Kk Free-form surface machining device
JP2007152480A (en) * 2005-12-02 2007-06-21 Yamazaki Mazak Corp Nc machining program creation method of nc machining apparatus and nc machining program creating device
JP2008264985A (en) * 2007-04-16 2008-11-06 Hokkaido 3-axis nc wood lathe machine system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198734A1 (en) * 2018-04-11 2019-10-17 国立大学法人千葉大学 Tool path creation method, tool path creation device, tool path creation program, and recording medium having program recorded thereon
JP2019185445A (en) * 2018-04-11 2019-10-24 国立大学法人千葉大学 Tool path generation method, tool path generation device, program for generating tool path, and recording medium recording the program
JP7041891B2 (en) 2018-04-11 2022-03-25 国立大学法人千葉大学 Toolpath generation method, toolpath generation device, program to generate toolpath, and recording medium on which the program is recorded.
CN108582294A (en) * 2018-05-01 2018-09-28 禹荣跃 A kind of full-automatic inverting gyro production machine people's structure
CN108582294B (en) * 2018-05-01 2020-07-14 南通纤麦家纺科技有限公司 Full-automatic upset top production robot structure
CN116339242A (en) * 2023-05-30 2023-06-27 中科航迈数控软件(深圳)有限公司 Free-form surface cutter path generation method and related equipment
CN116339242B (en) * 2023-05-30 2023-08-18 中科航迈数控软件(深圳)有限公司 Free-form surface cutter path generation method and related equipment

Also Published As

Publication number Publication date
JP6623478B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
Morishige et al. Tool path generation using C-space for 5-axis control machining
JPH04504381A (en) Workpiece shaping method and device
US10108178B2 (en) Workpiece machining surface display method showing dimples to be formed on mashing surface, workpiece machining surface display device showing the dimples, and tool path generation device having the display
Warkentin et al. Five-axis milling of spherical surfaces
JPH09128028A (en) Method and apparatus for manufacture of three-dimensional product
CN103713576B (en) Multi-axis milling processing workpiece surface appearance modeling method
JP6623478B2 (en) Multi-axis NC woodworking lathe system, tool path generation method, tool path generation program, and recording medium
Lin et al. Non-singular tool path planning by translating tool orientations in C-space
US20230004140A1 (en) Tool path generation method, tool path generation device, and machine tool control device
JP2007018495A (en) Contour machining method by numerical control single cutting tool
JP5911595B2 (en) Machine tool control device and machine tool
US11577353B2 (en) Machining program generation device and machining method
TW201424926A (en) Machine tool control system
JP2010029947A (en) Compound end mill and processing method using compound end mill
KR100833112B1 (en) Impeller making for roughing work method of generating
JP4784767B2 (en) 3-axis NC woodworking lathe system, tool path generation method, tool path generation program and recording medium
JPH06206112A (en) Working for large-sized runner vane blade surface
JP2006289871A (en) Method for manufacturing ring zone optical element and method for manufacturing mold for ring zone optical element
JPH02303707A (en) Ball end mill
JP7029026B2 (en) Machining program creation method, workpiece machining method and machine tool control device
CN117206986B (en) Mirror surface processing method and device for plastic mold
CN114463421B (en) Method and system for calculating state parameters of ultra-precision cutting tool and application
JP2008242620A (en) Workpiece machining method and machining program
JP3605728B2 (en) Processing method of blade body of scissors by controlling method of 3-axis table, and scissors
NOMURA et al. Automated NC program generation for hole drilling and swarf machining by 5-axis indexing machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191107

R150 Certificate of patent or registration of utility model

Ref document number: 6623478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250