KR100833112B1 - Roughing Path Generation Method for Impeller Manufacturing - Google Patents
Roughing Path Generation Method for Impeller Manufacturing Download PDFInfo
- Publication number
- KR100833112B1 KR100833112B1 KR1020070041784A KR20070041784A KR100833112B1 KR 100833112 B1 KR100833112 B1 KR 100833112B1 KR 1020070041784 A KR1020070041784 A KR 1020070041784A KR 20070041784 A KR20070041784 A KR 20070041784A KR 100833112 B1 KR100833112 B1 KR 100833112B1
- Authority
- KR
- South Korea
- Prior art keywords
- curve
- machining
- shroud
- impeller
- hub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/20—Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
- B23Q15/22—Control or regulation of position of tool or workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/02—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine or like blades from one piece
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/41—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
- G05B19/4103—Digital interpolation
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Numerical Control (AREA)
Abstract
본 발명은 임펠러제작을 위한 황삭가공경로 생성방법에 관한 것으로써, 더욱 상세하게는 임펠러의 블레이드에 관한 형상데이터로부터 임펠러의 허브곡선, 쉬라우드곡선 및 블레이드의 룰링벡터를 구하는 단계와; 상기 쉬라우드곡선의 첫번째(P1)점을 절삭공구 축과 일치시킨 후 룰링벡터의 Z축 방향의 투영을 위해 X축과 Y축을 각각 α 및 β각도로 회전변환하는 단계와; 상기 허브곡선 및 상기 쉬라우드곡선을 XY평면에 투영한 후 상기 허브곡선과 상기 쉬라우드곡선 사이의 교점(P1) 및 인접 허브곡선과 인접 쉬라우드곡선 사이의 교점(P2)을 계산하는 단계와; 상기 교점들(P1, P2)을 포함하는 가공영역을 저장하는 단계와; 상기 쉬라우드곡선의 다음번째(P2)점이 블레이드의 마지막 룰링벡터에 속하는 경우 루프를 종료하고, 분할된 가공영역 및 공작기계 테이블의 셋업정보(α 및 β각도)를 저장한 후 가공영역별 황삭가공경로를 생성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 임펠러제작을 위한 황삭가공경로 생성방법에 관한 것이다.The present invention relates to a method for generating a rough machining path for fabricating an impeller, and more particularly, to obtain a hub curve, a shroud curve, and a ruling vector of the blade from the shape data of the blade of the impeller; Matching the first (P 1 ) point of the shroud curve with the cutting tool axis and rotating the X and Y axes at α and β angles respectively for projection in the Z-axis direction of the ruling vector; Projecting the hub curve and the shroud curve on an XY plane and calculating an intersection point P1 between the hub curve and the shroud curve and an intersection point P2 between an adjacent hub curve and an adjacent shroud curve; Storing a machining area including the intersections (P1, P2); When the next (P 2 ) point of the shroud curve belongs to the last ruling vector of the blade, the loop is terminated, and after the divided machining area and the setup information (α and β angles) of the machine tool table are stored, roughing by machining area is performed. It relates to a roughing machining path generation method for producing an impeller comprising the step of generating a machining path.
이와 같이 구성된 본 발명은 종래의 5축 동시가공에 의한 황삭가공에 비하여 가공시간이 대폭 단축되어 생산성이 매우 향상된 효과를 제공한다.The present invention configured as described above provides a greatly improved productivity due to a significantly shorter machining time compared to the roughing process by the conventional 5-axis simultaneous machining.
Description
도 1은 황삭 가공영역을 개략적으로 나타내는 도면이고,1 is a view schematically showing a rough machining area,
도 2는 본 발명의 임펠러제작을 위한 황삭가공경로 생성방법을 순차적으로 나타내는 순서도이고, 2 is a flowchart sequentially showing a method for generating a rough machining path for fabricating an impeller of the present invention;
도 3은 룰링벡터, 허브곡선 및 쉬라우드곡선을 나타내는 도면이고,3 is a diagram illustrating a ruling vector, a hub curve, and a shroud curve,
도 4 룰링벡터를 나타내는 도면이고, 4 is a diagram illustrating a ruling vector,
도 5는 룰링벡터를 X축방향으로 α각도만큼 회전변환한 상태를 나타내는 도면이며, FIG. 5 is a diagram illustrating a state in which a rubbing vector is rotated by an angle in the X axis direction.
도 6은 룰링벡터를 Y축방향으로 β각도 만큼 회전변환한 상태를 나타내는 도면이고,FIG. 6 is a diagram illustrating a state in which a ruling vector is rotated by β angle in the Y axis direction.
도 7은 허브곡선 및 쉬라우드곡선을 XY평면에 투영한 상태를 나타내는 도면이다.7 is a diagram illustrating a state in which the hub curve and the shroud curve are projected on the XY plane.
*** 도면의 주요부분에 대한 부호의 설명****** Explanation of symbols for main parts of drawing ***
110; 허브곡면, 112; 허브곡선,110; Hub curved, 112; Herb Curve,
130; 쉬라우드 곡면, 132; 쉬라우드 곡선,130; Shroud curved surface, 132; Shroud Curve,
150; 압축면, 170; 흡입면,150; Compression side, 170; Suction side,
190; 룰링벡터.190; Ruling vector.
본 발명은 종래의 5축 동시가공에 의한 황삭가공에 비하여 가공시간이 대폭 단축되어 생산성이 매우 향상된 임펠러제작을 위한 황삭가공경로 생성방법에 관한 것이다.The present invention relates to a roughing machining path generation method for producing an impeller with a significantly improved productivity compared to the conventional roughing by 5-axis simultaneous machining.
일반적으로, 임펠러는 항공기 및 자동차의 터보엔진 압축기등에 활용되는 핵심부품으로 블레이드 가공시 3축 가공으로는 공구와 공작물의 간섭이 발생하여 가공이 불가능하므로 반드시 5축 가공으로 가공되어져야하는 제품이다. In general, the impeller is a core part that is used in turbo engine compressors of aircrafts and automobiles, and it is a product that must be processed by 5-axis machining because the machining of the blade and the machining cannot be performed due to the interference of the tool and the workpiece by 3-axis machining.
5축 가공은 최근 활발히 각광 받고 있는 가공기술로써, 가장 큰 특징이자 장점은 한번 세팅으로 모든 가공 공정을 마무리 할 수 있다는 점이다. 5-axis machining is an active technology in recent years, and the biggest feature and advantage is that it can finish all machining processes with one setting.
그러나, 이러한 5축 가공에 있어서의 황삭 효율은 잦은 로테이트와 틸팅으로 떨어진다. 따라서, 블레이드의 간섭이 없는 영역에서의 선별 축 사용에 의한 황삭가공을 통하여 임펠러가공에 효율을 높일 수 있다.However, the roughing efficiency in such 5-axis machining is reduced by frequent rotation and tilting. Therefore, it is possible to increase the efficiency in the impeller processing through roughing by using the sorting shaft in the region where there is no interference of the blades.
한편, 임펠러의 기계가공 단계는 크게 보아 황삭(Rough cut machining or roughing)과 정삭(Finish cut machining or finishing)으로 구분된다. 상기 황삭은 초기 단계의 원소재(Raw stock)에서 최종 제품(혹은 부품)에 필요하지 않는 대부분의 재료를 가능한 한 빠르게 제거하는 작업으로 설명되고, 상기 정삭은 상기 황삭 이 이루어진후, 제품의 최종형상에 필요한 부분을 제외한 모든 소재를 제거하는 작업을 가리킨다. 그런데, 대부분의 기계가공의 경우, 약 60%이상의 가공시간이 상기 황상 단계에서 발생한다. 따라서 NC가공이 포함된 전체 작업공정의 공수를 줄이고 작업장의 생산성을 늘이기 위해서는 경제적인 황삭가공 공정계획이 대단히 중요하다고 하겠다.On the other hand, the machining stage of the impeller is roughly divided into rough cut machining or roughing and finish cut machining or finishing. The roughing is described as the removal of most of the material from the initial raw material (Raw stock) that is not necessary for the final product (or part) as quickly as possible, and the finishing is the final shape of the product after the roughing Refers to the removal of all materials except those required for. By the way, for most machining, the processing time of about 60% or more occurs in the yellow phase step. Therefore, economic roughing process planning is very important to reduce the man-hour of the whole work process including NC machining and increase the productivity of the workplace.
임펠러 가공의 경우 허브축 상에 많은 수의 날개(블레이드)를 달고 있다. 회전형의 허브축은 먼저 선삭(Turning)을 거쳐 임펠러 외형윤곽을 갖춘 뒤에 블레이드 면(Blade surface)의 가공을 위해 밀링(Milling)기계로 이동한다. 날개 블레레이드는 기하학적인 측면으로 볼때, 룰드곡면(Ruled surface)으로 이루어져 있으나 휘어져 있고(Twisted) 중간 부분에 변곡이 발생한다.In the case of impeller processing, a large number of blades (blades) are attached to the hub shaft. The rotatable hub axle is first turned, rounded up with an impeller contour and then moved to a milling machine for the machining of the blade surface. Wing blades are geometrically flanked, but composed of a curved surface, but twisted and inflected in the middle.
또한, 블레이드와 블레이드 사이의 간격이 상당히 좁아 경우에 따라서는 몇 개의 공구를 사용하여 5축가공을 하여야 한다.In addition, the blade-to-blade spacing is so narrow that in some cases, five-axis machining must be done with several tools.
지금까지의 블레이드 황삭은 블레이드의 가공 층(layer)을 구별하여 가공되어 왔으나, 이렇게 하기 위해서는 5축 동시가공이 필요하게 되어 공작기계 테이블의 회전 및 틸팅이 필요하게 되고 결과적으로 많은 가공시간이 필요하게 된다.Until now, blade roughing has been processed by distinguishing the processing layer of the blade, but this requires 5-axis simultaneous machining, which requires rotation and tilting of the machine tool table, and consequently requires a lot of machining time. do.
상기 종래의 문제점을 해결하기 위한 본 발명은, 종래의 5축 동시가공에 의한 황삭가공에 비하여 가공시간이 대폭 단축되어 생산성이 매우 향상되는 황삭가공경로를 제공하는 임펠러제작을 위한 황삭가공경로 생성방법을 제공함에 그 목적이 있다.The present invention for solving the above-described problems, the roughing machining path generation method for the impeller fabrication to provide a roughing machining path which is greatly improved in productivity compared to the roughing process by the conventional 5-axis simultaneous machining, the productivity is very improved The purpose is to provide.
상기와 같은 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,
a) 임펠러의 블레이드에 관한 형상데이터로부터 임펠러의 허브곡선, 쉬라우드곡선 및 블레이드의 룰링벡터를 구하는 단계와;a) obtaining a hub curve, a shroud curve and a ruling vector of the blade from the shape data of the blade of the impeller;
b) 상기 쉬라우드곡선의 첫번째(P1)점을 절삭공구 축과 일치시킨 후 룰링벡터의 Z축 방향의 투영을 위해 X축과 Y축을 각각 α 및 β각도로 회전변환하는 단계와;b) matching the first (P 1 ) point of the shroud curve with the cutting tool axis and rotating the X and Y axes at α and β angles respectively for projection in the Z-axis direction of the ruling vector;
c) 상기 허브곡선 및 상기 쉬라우드곡선을 XY평면에 투영한 후 상기 허브곡선과 상기 쉬라우드곡선 사이의 교점(P1) 및 인접 허브곡선과 인접 쉬라우드곡선 사이의 교점(P2)을 계산하는 단계와;c) calculating the intersection point P1 between the hub curve and the shroud curve and the intersection point P2 between the adjacent hub curve and the adjacent shroud curve after projecting the hub curve and the shroud curve onto an XY plane. Wow;
d) 상기 교점들(P1, P2)을 포함하는 가공영역을 저장하는 단계와;d) storing a processing area including the intersections (P1, P2);
e) 상기 쉬라우드곡선의 다음번째(P2)점이 블레이드의 마지막 룰링벡터에 속하는 경우 루프를 종료하고, 분할된 가공영역 및 공작기계 테이블의 셋업정보(α 및 β각도)를 저장한 후 가공영역별 황삭가공경로를 생성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 임펠러제작을 위한 황삭가공경로 생성방법을 제공한다. e) If the next (P 2 ) point of the shroud curve belongs to the last ruling vector of the blade, the loop is terminated and the machining area is stored after storing the divided machining area and setup information (α and β angles) of the machine tool table. It provides a roughing machining path generation method for producing an impeller comprising the step of generating a star roughing machining path.
특히, 상기 d)단계는 다른 가공영역과 간섭이 일어나지 않는 상기 교점들을 포함하는 가공영역을 저장하는 단계인 것이 바람직하다.In particular, step d) is preferably a step of storing a machining area including the intersections does not interfere with other machining areas.
이하 본 발명의 임펠러제작을 위한 황삭가공경로 생성방법에 대해 실시예를 들어 더욱 상세히 설명하면 다음과 같다.Hereinafter, the roughing path generation method for manufacturing the impeller of the present invention will be described in more detail with reference to Examples.
본 발명의 임펠러제작을 위한 황삭가공경로 생성방법은 종래의 5축을 모두 사용하는 기존의 층별 황삭에서 벗어나, 2축(rotating and tilting)으로 구성된 테이블과, 3축으로 구성된 공구를 이용하여 신속하게 임펠러의 황삭가공이 가능한 황삭가공경로를 생성하기 위한 방법에 관한 것이다.The roughing path generation method for manufacturing the impeller of the present invention is a step away from the conventional roughing by using all five axes, using a table consisting of two axes (rotating and tilting) and a three-axis tool to quickly impeller The present invention relates to a method for generating a roughing path capable of roughing.
도 1은 황삭 가공영역을 개략적으로 나타내는 도면이고, 도 2는 본 발명의 임펠러제작을 위한 황삭가공경로 생성방법을 순차적으로 나타내는 순서도이며, 도 3은 룰링벡터(190), 허브곡선(112) 및 쉬라우드곡선(132)을 나타내는 도면이다.1 is a view schematically showing a rough machining area, FIG. 2 is a flowchart sequentially illustrating a method of generating a rough machining path for fabricating an impeller of the present invention, and FIG. 3 is a ruling vector 190, a
먼저, 제작하고자 하는 임펠러의 블레이드에 관한 룰드라인을 포함한 형상데이터로부터 임펠러의 허브곡선(112), 쉬라우드곡선(132) 및 블레이드의 롤링벡터(190)를 구한다.(S1, S2)First, the
상기 허브곡선(112)은 가공영역 중 허브곡면(110)과 접하는 곡선이고, 상기 쉬라우드곡선(132)은 가공영역 중 쉬라우드곡면(130)과 접하는 곡선이며, 그리고 상기 허브곡선(112)과 상기 쉬라우드곡선(132) 사이의 룰링라인으로 이루어진 면을 룰링곡면이라 정의한다.The
도 4 롤링벡터(190)를 나타내는 도면이고, 도 5는 룰링벡터(190)를 X축방향으로 α각도만큼 회전변환한 상태를 나타내는 도면이며, 도 6은 룰링벡터(190)를 Y축방향으로 β각도 만큼 회전변환한 상태를 나타내는 도면이다.4 is a diagram illustrating a rolling vector 190, and FIG. 5 is a diagram illustrating a state in which the rubbing vector 190 is rotated by an angle in the X-axis direction, and FIG. 6 is a diagram of the rolling vector 190 in the Y-axis direction. It is a figure which shows the state which rotated by (beta) angle.
그리고, 상기 쉬라우드곡선(132) 중 첫번째 점을 절삭공구의 축과 일치시킨 후 도 4 내지 도 5와 같이 룰링벡터(190)의 Z축 방향의 투영을 위하여 X축과 Y축을 각각 α 및 β각도로 회전변환한다.(S3)Then, after matching the first point of the
상기 쉬라우드곡선(132) 의 첫번째 점은 룰링곡면에 대해서 룰링라인이 쉬라우드곡선(132)과 만나는 점 중 첫번째 점을 일컫는다.The first point of the
상기 쉬라우드곡선(132)의 첫번째 점을 3축 동시 밀링이 가능한 절삭공구의 축과 일치시킨 후 로테이팅 및 틸팅이 가능한 테이블의 축과 대응되는 X축 및 Y축을 각각 α 및 β각도로 회전변환한다.Matching the first point of the
도 7은 허브곡선(112) 및 쉬라우드곡선(132)을 XY평면에 투영한 상태를 나타내는 도면이다.7 is a diagram illustrating a state in which the
다음으로, 상기 허브곡선(112) 및 상기 쉬라우드곡선(132)을 XY평면에 투영한 후 상기 허브곡선(112)과 상기 쉬라우드곡선(132) 사이의 교점(P1) 및 인접 허브곡선(112a, 112b)과 인접 쉬라우드곡선(132a, 132b)의 교점(P2)을 계산한다.Next, after projecting the
상기 허브곡선(112)과 상기 쉬라우드곡선(132) 사이의 교점이란, 블레이드의 압축면(150)을 이루는 허브곡선(112)과 쉬라우드곡선(132) 사이의 교점을 말하고 상기 인접 허브곡선(112a, 112b)과 인접 쉬라우드 곡선(132a, 132b)의 교점이란, 블레이드의 흡입면(170)을 이루는 허브곡선(112)과 쉬라우드곡선(132) 사이의 교점을 말한다.An intersection point between the
이와 같이 계산된 상기 교점들을 포함하는 가공영역을 저장한다.The machining area including the intersections calculated as described above is stored.
특히, 상기 가공영역이 불필요한 절삭가공을 제거하기 위하여 다른 가공영역과 간섭이 일어나지 않는 교점들로 이루어지도록 저장하는 것이 바람직하다.In particular, it is desirable to store the processing area so that the processing area is made up of intersections that do not interfere with other processing areas in order to eliminate unnecessary cutting.
그리고, 상기 쉬라우드곡선의 다음 점이 블레이드의 마지막 룰드라인에 속하는 경우 루프를 종료하고, 분할된 가공영역 및 공작기계 테이블의 셋업정보인 α 및 β각도를 저장하여 가공영역별 황삭가공경로를 생성한다.When the next point of the shroud curve belongs to the last rule line of the blade, the loop is terminated, and the rough machining paths for each machining area are generated by storing angles α and β, which are setup information of the divided machining area and the machine tool table. do.
이상에서 살펴본 바와 같이 본 발명의 임펠러제작을 위한 황삭가공경로 생성방법은 로테이팅 및 틸팅되는 테이블과, 3축 동시가공이 가능한 절삭공구를 이용하여 선삭가공된 임펠러모재를 황삭가공함으로써, 종래의 5축 동시가공에 의한 황삭가공에 비하여 가공시간이 대폭 단축되어 생산성이 매우 향상된 효과가 있다.As described above, the roughing machining path generation method for manufacturing the impeller of the present invention is performed by roughing the impeller base material that has been turned by using a rotary tool and a tilting table and a cutting tool capable of simultaneous 3-axis machining. Compared to roughing by simultaneous shaft machining, the machining time is greatly shortened and productivity is greatly improved.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070041784A KR100833112B1 (en) | 2007-04-30 | 2007-04-30 | Roughing Path Generation Method for Impeller Manufacturing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070041784A KR100833112B1 (en) | 2007-04-30 | 2007-04-30 | Roughing Path Generation Method for Impeller Manufacturing |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100833112B1 true KR100833112B1 (en) | 2008-05-28 |
Family
ID=39665479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070041784A Active KR100833112B1 (en) | 2007-04-30 | 2007-04-30 | Roughing Path Generation Method for Impeller Manufacturing |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100833112B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100902863B1 (en) | 2008-04-28 | 2009-06-16 | 전북대학교산학협력단 | Tool combination selection method for roughing impeller |
KR101482963B1 (en) | 2013-06-21 | 2015-01-15 | (주)엠프로텍 | A method for manufacturing turbo charger impeller for automobile |
KR101570359B1 (en) | 2014-11-28 | 2015-11-19 | 한국델켐 (주) | system and method for generating flank milling tool path |
CN110253066A (en) * | 2019-04-29 | 2019-09-20 | 大连理工大学 | Top cutter identification and elimination method for five-axis plunge milling of integral impeller |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0594207A (en) * | 1991-10-03 | 1993-04-16 | Nec Software Ltd | Generation system for cutter path for rough cutting |
JP2005182437A (en) | 2003-12-19 | 2005-07-07 | Fanuc Ltd | Numerical control device and numerical control method |
-
2007
- 2007-04-30 KR KR1020070041784A patent/KR100833112B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0594207A (en) * | 1991-10-03 | 1993-04-16 | Nec Software Ltd | Generation system for cutter path for rough cutting |
JP2005182437A (en) | 2003-12-19 | 2005-07-07 | Fanuc Ltd | Numerical control device and numerical control method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100902863B1 (en) | 2008-04-28 | 2009-06-16 | 전북대학교산학협력단 | Tool combination selection method for roughing impeller |
KR101482963B1 (en) | 2013-06-21 | 2015-01-15 | (주)엠프로텍 | A method for manufacturing turbo charger impeller for automobile |
KR101570359B1 (en) | 2014-11-28 | 2015-11-19 | 한국델켐 (주) | system and method for generating flank milling tool path |
CN110253066A (en) * | 2019-04-29 | 2019-09-20 | 大连理工大学 | Top cutter identification and elimination method for five-axis plunge milling of integral impeller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8103375B2 (en) | Fillet machining system | |
CN107665271B (en) | A method of machining an aero-engine integral blisk annular cutter based on control lines | |
Chu et al. | An integrated framework of tool path planning in 5-axis machining of centrifugal impeller with split blades | |
JPH09502932A (en) | Milling method for turbine blade cross section extending along the main axis | |
JP6684977B1 (en) | Method for manufacturing integrated rotor and cutting program for the blade | |
JP6563133B2 (en) | Machining program generation device and machining method | |
EP4075216A1 (en) | Tool path generation method, tool path generation device, and machine tool control device | |
CN105880953A (en) | A kind of processing method of aviation blade | |
KR100833112B1 (en) | Roughing Path Generation Method for Impeller Manufacturing | |
US6449529B1 (en) | Process for contour machining of metal blocks | |
CN109304505A (en) | A kind of rough milling method of 3 d impeller | |
WO2014068709A1 (en) | Machine tool control device and machine tool | |
Wu et al. | Collision and interference correction for impeller machining with non-orthogonal four-axis machine tool | |
JP6623478B2 (en) | Multi-axis NC woodworking lathe system, tool path generation method, tool path generation program, and recording medium | |
CN108723725A (en) | A kind of processing method of aerial blade | |
JPH06206112A (en) | Working for large-sized runner vane blade surface | |
CN114929419B (en) | Method for producing machining program, method for machining workpiece, and control device for machine tool | |
CA2407002C (en) | A process for contour control machining of metal blocks | |
CN105798633A (en) | Turning and milling processing system and turning and milling processing technology | |
JPS6161924B2 (en) | ||
CN110125490B (en) | Method for finish milling of gear surface of Niemann worm gear by using full-edge side edge of flat-bottom taper milling cutter | |
JP2005028556A (en) | Machining method of free curved surface | |
CN108363890B (en) | Method for evaluating material residual height of open type blisk channel plunge milling rough machining | |
Inoue et al. | Rapid 5-axis control tool path Generation by Means of Interference-free Space Concept | |
RU2217290C1 (en) | Method for grinding blade of gas turbine by means of complex-profile tools |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20070430 |
|
PA0201 | Request for examination | ||
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20071213 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20080429 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20080522 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20080523 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20110519 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20120518 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20130516 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20130516 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140509 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20140509 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20150522 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20150522 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20160608 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20160608 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20170522 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20170522 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20180427 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20180427 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20190329 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20190329 Start annual number: 12 End annual number: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20200413 Start annual number: 13 End annual number: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20210325 Start annual number: 14 End annual number: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20220516 Start annual number: 15 End annual number: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20230509 Start annual number: 16 End annual number: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20250325 Start annual number: 18 End annual number: 18 |