JP2017116317A - Sensor device - Google Patents

Sensor device Download PDF

Info

Publication number
JP2017116317A
JP2017116317A JP2015249684A JP2015249684A JP2017116317A JP 2017116317 A JP2017116317 A JP 2017116317A JP 2015249684 A JP2015249684 A JP 2015249684A JP 2015249684 A JP2015249684 A JP 2015249684A JP 2017116317 A JP2017116317 A JP 2017116317A
Authority
JP
Japan
Prior art keywords
sensor
substrate
signal processing
integrated circuit
processing integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015249684A
Other languages
Japanese (ja)
Other versions
JP6491087B2 (en
Inventor
良幸 畑
Yoshiyuki Hata
良幸 畑
基弘 藤吉
Motohiro Fujiyoshi
基弘 藤吉
裕 野々村
Yutaka Nonomura
裕 野々村
貴裕 中山
Takahiro Nakayama
貴裕 中山
浩司 尾藤
Koji Bito
浩司 尾藤
江刺 正喜
Masaki Esashi
正喜 江刺
真徳 室山
Masanori Muroyama
真徳 室山
田中 秀治
Shuji Tanaka
秀治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Tohoku University NUC
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Tohoku University NUC
Priority to JP2015249684A priority Critical patent/JP6491087B2/en
Publication of JP2017116317A publication Critical patent/JP2017116317A/en
Application granted granted Critical
Publication of JP6491087B2 publication Critical patent/JP6491087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce partial losses and faults in a sensor structure unit and a signal processing integrated circuit without being directly subjected to an external force from a side face as seen from a contact sensing side.SOLUTION: A sensor device of the present invention comprises: a sensor structure unit having, on one face exposed to the outside, a contact sensing face that is directly in contact with a detection object, and outputting a sensor signal in response to a change of the contact sensing face; a substrate having one face of which is formed a first concave-shaped part and having the other face of which, opposite the one face, is formed a second concave-shaped part; and a signal processing integrated circuit for processing a sensor signal outputted by the sensor structure unit. The sensor structure unit is disposed inside the first concave-shaped part of the substrate. The signal processing integrated circuit is disposed in the second concave-shaped part of the substrate.SELECTED DRAWING: Figure 1

Description

本発明は、力を検出するセンサ装置に関する。   The present invention relates to a sensor device that detects force.

接触センシング面の変位に感応してアナログセンサ信号を出力するセンサ構造部と、内部にセンサ構造部が出力するアナログセンサ信号を処理する信号処理用集積回路を有する基板と、を備えるセンサ装置が知られている(特許文献1参照)。   A sensor device comprising a sensor structure that outputs an analog sensor signal in response to a displacement of a contact sensing surface and a substrate having an integrated circuit for signal processing that processes an analog sensor signal output from the sensor structure is known. (See Patent Document 1).

特許第5328924号公報Japanese Patent No. 5328924

上記センサ装置においては、センサ構造部及び信号処理用集積回路が接触センシング面から見て側面部から直接、外力を受けることがある。また、力を検出するセンサ装置では接触センシング面が受ける力と同等の力が信号処理回路に加わることがある。このため、センサ構造部及び信号処理用集積回路の欠損あるいは故障が起きる虞がある。   In the sensor device, the sensor structure and the signal processing integrated circuit may receive an external force directly from the side as viewed from the contact sensing surface. In the sensor device that detects force, a force equivalent to the force received by the contact sensing surface may be applied to the signal processing circuit. For this reason, there is a possibility that the sensor structure and the signal processing integrated circuit may be lost or broken.

本発明は、このような問題点を解決するためになされたものであり、接触センシング面から見て側面部から直接、外力を受けることなく、センサ構造部及び信号処理用集積回路の欠損及び故障を低減でき、信号処理回路に接触センシング面と同等の力が加わるのを防ぎ信号処理用集積回路の欠損を防ぐことができ、これらを達成しながら、フットプリントが小さく、ノイズ等の影響が小さい力センサ装置を提供することを主たる目的とする。   The present invention has been made to solve such a problem, and the defect and failure of the sensor structure part and the signal processing integrated circuit without receiving external force directly from the side face part when viewed from the contact sensing surface. This can prevent the signal processing circuit from being applied with the same force as the contact sensing surface and prevent the signal processing integrated circuit from being lost. While achieving these, the footprint is small and the influence of noise, etc. is small. The main object is to provide a force sensor device.

上記目的を達成するための本発明の一態様は、
検出対象物と直接に接触する接触センシング面を外部に露出する一面に有するとともに、前記接触センシング面の変化に感応してセンサ信号を出力するセンサ構造部と、
一方の面に第1凹状部が形成され、該一方の面の反対側の面に第2凹状部が形成されたた基板と、
前記センサ構造部が出力するセンサ信号を処理する信号処理用集積回路と、
を備え、
前記センサ構造部は、前記基板の第1凹状部内に配置され、
前記信号処理用集積回路は、前記基板の第2凹状部内に配置されている、
ことを特徴とするセンサ装置
である。
この一態様によれば、センサ構造部は、基板の第1凹状部内に配置され、信号処理用集積回路は、基板の第2凹状部内に配置されている。したがって、センサ構造部の側方は、基板の第1凹状部によって守られ、接触センシング面から見て側面側から直接、外力を受けない。また、信号処理用集積回路の側方は、基板の第2凹状部によって守られ、接触センシング面から見て側面側から直接、外力を受けない。これにより、センサ構造部及び信号処理用集積回路の欠損及び故障を低減できる。
この一態様において、前記センサ構造部は、MEMS(Micro Electro Mechanical Systems)センサとして構成されおり、前記接触センシング面に対する力の印加に応じて変位してもよい。これにより、信号処理集積回路と同様に、半導体プロセスで作製できるため、信号処理集積回路と同様に小型かつ一度に大量にセンサ構造部を作製できる。
この一態様において、前記信号処理用集積回路の表面は、前記基板の第2凹状部外側の外縁部表面以下に位置していてもよい。これにより、信号処理集積回路に接触センシング面と同等の力が加わるのを防ぎ、信号処理用集積回路の欠損を防ぐことができる。
この一態様において、前記センサ構造部と前記信号処理用集積回路とは、前記基板の第1及び第2凹状部を介して近接して重ねるように配置されていてもよい。これにより、フットプリントを小さくでき、電気的ノイズを低減できる。
In order to achieve the above object, one embodiment of the present invention provides:
A sensor structure part that has a contact sensing surface that directly contacts a detection object on one surface exposed to the outside and outputs a sensor signal in response to a change in the contact sensing surface;
A substrate in which a first concave portion is formed on one surface and a second concave portion is formed on a surface opposite to the one surface;
A signal processing integrated circuit for processing a sensor signal output from the sensor structure;
With
The sensor structure is disposed in a first concave portion of the substrate;
The signal processing integrated circuit is disposed in a second concave portion of the substrate.
This is a sensor device.
According to this aspect, the sensor structure is disposed in the first concave portion of the substrate, and the signal processing integrated circuit is disposed in the second concave portion of the substrate. Therefore, the side of the sensor structure is protected by the first concave portion of the substrate, and does not receive external force directly from the side as viewed from the contact sensing surface. Further, the side of the signal processing integrated circuit is protected by the second concave portion of the substrate, and does not receive external force directly from the side as viewed from the contact sensing surface. Thereby, the defect | deletion and failure of a sensor structure part and an integrated circuit for signal processing can be reduced.
In this aspect, the sensor structure portion is configured as a MEMS (Micro Electro Mechanical Systems) sensor, and may be displaced in accordance with application of force to the contact sensing surface. Thereby, since it can be manufactured by a semiconductor process as in the case of the signal processing integrated circuit, it is possible to manufacture a large number of sensor structures at the same time as in the case of the signal processing integrated circuit.
In this aspect, the surface of the signal processing integrated circuit may be located below the surface of the outer edge portion outside the second concave portion of the substrate. As a result, it is possible to prevent the signal processing integrated circuit from being applied with the same force as that of the contact sensing surface, and to prevent the signal processing integrated circuit from being damaged.
In this aspect, the sensor structure portion and the signal processing integrated circuit may be disposed so as to overlap each other via the first and second concave portions of the substrate. Thereby, a footprint can be made small and an electrical noise can be reduced.

本発明によれば、接触センシング面から見て側面部から直接、外力を受けることなく、センサ構造部及び信号処理用集積回路の欠損及び故障を低減でき、信号処理回路に接触センシング面と同等の力が加わるのを防ぎ信号処理用集積回路の欠損を防ぐことができ、これらを達成しながら、フットプリントが小さく、ノイズ等の影響が小さい力センサ装置を提供することができる。   According to the present invention, the loss and failure of the sensor structure and the signal processing integrated circuit can be reduced without receiving external force directly from the side surface as viewed from the contact sensing surface, and the signal processing circuit is equivalent to the contact sensing surface. It is possible to provide a force sensor device that can prevent the force from being applied and prevent the signal processing integrated circuit from being lost.

本発明の実施形態1に係るセンサ装置の概略的構成を示す断面図である。It is sectional drawing which shows schematic structure of the sensor apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係るセンサ装置の概略的構成を示す断面図である。It is sectional drawing which shows schematic structure of the sensor apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係るセンサ装置の概略的構成を示す断面図である。It is sectional drawing which shows schematic structure of the sensor apparatus which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係るセンサ装置の概略的構成を示す断面図である。It is sectional drawing which shows schematic structure of the sensor apparatus which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係るセンサ装置の概略的構成を示す断面図である。It is sectional drawing which shows schematic structure of the sensor apparatus which concerns on Embodiment 5 of this invention. (a)センサ構造部の力伝達部に荷重を掛けた状態を示す図である。(b)センサ構造部の力伝達部に荷重を掛けた状態を示す図である。(A) It is a figure which shows the state which applied the load to the force transmission part of a sensor structure part. (B) It is a figure which shows the state which applied the load to the force transmission part of a sensor structure part. センサ構造部の力伝達部の荷重とセンサ装置のセンサ値との関係を示す図である。It is a figure which shows the relationship between the load of the force transmission part of a sensor structure part, and the sensor value of a sensor apparatus. 本発明の実施形態6に係るセンサ装置の概略的構成を示す断面図である。It is sectional drawing which shows schematic structure of the sensor apparatus which concerns on Embodiment 6 of this invention. (a)センサ構造部の力伝達部に荷重を掛けた状態を示す図である。(b)センサ構造部の力伝達部に荷重を掛けた状態を示す図である。(A) It is a figure which shows the state which applied the load to the force transmission part of a sensor structure part. (B) It is a figure which shows the state which applied the load to the force transmission part of a sensor structure part. センサ構造部の力伝達部の荷重とセンサ装置のセンサ値との関係を示す図である。It is a figure which shows the relationship between the load of the force transmission part of a sensor structure part, and the sensor value of a sensor apparatus. 構造本体部を側面接合部を介して第1凹状部の側面に接合した構成を示す図である。It is a figure which shows the structure which joined the structure main-body part to the side surface of the 1st recessed part via the side surface junction part. 本発明の実施形態7に係るセンサ装置の概略的構成を示す断面図である。It is sectional drawing which shows schematic structure of the sensor apparatus which concerns on Embodiment 7 of this invention. 基板を上方から見た上面図である。It is the top view which looked at the board | substrate from upper direction. 半溝構造を示す断面図である。It is sectional drawing which shows a half-groove structure. 半溝構造を示す上面図である。It is a top view which shows a half-groove structure. 本発明の実施形態8に係るセンサ装置の概略的構成を示す下面図である。It is a bottom view which shows schematic structure of the sensor apparatus which concerns on Embodiment 8 of this invention. 回路基板上のバス配線の一例を示す図である。It is a figure which shows an example of the bus wiring on a circuit board.

実施形態1
以下、図面を参照して本発明の実施の形態について説明する。
図1は、本発明の実施形態1に係るセンサ装置の概略的構成を示す断面図である。 本発明の実施形態1に係るセンサ装置1は、力を検出するセンサであり、例えば、ロボットのハンドあるいはロボットの体表面全体に複数配置され、バスを介して相互に接続されており、全体として触覚センサシステムを構成するためのものである。
Embodiment 1
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing a schematic configuration of a sensor device according to Embodiment 1 of the present invention. The sensor device 1 according to the first embodiment of the present invention is a sensor that detects force. For example, a plurality of sensors are arranged on a robot hand or the entire body surface of the robot and are connected to each other via a bus. This is for configuring a tactile sensor system.

人と協調が必要なロボットは、このような触覚センサシステムを用いて対象物の形状把握、掴む、接触を行い、視聴覚を補って、その対象物や周囲の状況を把握し、人と触れ合うことが可能となる。このため、違和感の無い触れ合いやロボットの実装自由度を向上させる必要がある。本実施形態1に係るセンサ装置1は、後述の如く、センサ構造部2、基板3、及び信号処理用集積回路4を積層して小型一体化したセンサ構造となっている。このため、フットプリントが小さく、小型センサを構成でき、さらに、曲面実装が可能となっている。   Robots that need to collaborate with people use this tactile sensor system to grasp, grasp, and touch the shape of the object, supplement the audiovisual sense, grasp the object and surrounding conditions, and touch the person Is possible. For this reason, it is necessary to improve the degree of freedom of touching and mounting of the robot without a sense of incongruity. As will be described later, the sensor device 1 according to the first embodiment has a sensor structure in which the sensor structure 2, the substrate 3, and the signal processing integrated circuit 4 are stacked and integrated in a small size. For this reason, a footprint is small, a small sensor can be comprised, and also curved surface mounting is possible.

本実施形態1に係るセンサ装置1は、検出対象物と直接に接触する接触センシング面を外部に露出する一面に有するセンサ構造部2と、一方の面に第1凹状部31が形成され、該一方の面の反対側の面に第2凹状部32が形成された基板3と、センサ構造部2が出力するアナログセンサ信号を処理する信号処理用集積回路4と、を備える。   The sensor device 1 according to the first embodiment includes a sensor structure 2 having a contact sensing surface that directly contacts a detection object on one surface exposed to the outside, and a first concave portion 31 formed on one surface, A substrate 3 having a second concave portion 32 formed on the surface opposite to the one surface, and a signal processing integrated circuit 4 for processing an analog sensor signal output from the sensor structure portion 2 are provided.

センサ構造部2は、例えば、導電性を有するシリコンからなるMEMS(Micro Electro Mechanical Systems)センサとして構成されている。これにより、信号処理集積回路4と同様に半導体プロセスで作製できるため、小型かつ一度に大量にセンサ構造部2を作製できる。センサ構造部2は、検出対象物と直接に接触する接触センシング面に対する力の印加に応じて変位する。センサ構造部2には、表側からみて、その構造本体部21の中心部には検出対象物と接触する凸状の力伝達部22が設けられ、力伝達部22の周囲は凹状の薄肉部23となっている。薄肉部23の周囲にある周縁部24が、この薄肉部23を支持している。   The sensor structure unit 2 is configured as, for example, a MEMS (Micro Electro Mechanical Systems) sensor made of conductive silicon. Thereby, since it can be manufactured by a semiconductor process in the same manner as the signal processing integrated circuit 4, the sensor structure unit 2 can be manufactured in a small size and in large quantities at a time. The sensor structure 2 is displaced in response to application of force to the contact sensing surface that is in direct contact with the detection target. The sensor structure portion 2 is provided with a convex force transmission portion 22 in contact with the detection target at the center of the structure main body portion 21 when viewed from the front side, and the periphery of the force transmission portion 22 is a concave thin portion 23. It has become. A peripheral edge 24 around the thin portion 23 supports the thin portion 23.

薄肉部23が弾性を有することにより、構造本体部21が作動膜として機能するようになる。すなわち、力伝達部22に力がかかると薄肉部23が弾性変形し、構造本体部21が撓むようになっている。   Since the thin wall portion 23 has elasticity, the structure main body portion 21 functions as an operation film. That is, when a force is applied to the force transmitting portion 22, the thin-walled portion 23 is elastically deformed, and the structural main body portion 21 is bent.

ここに、力伝達部22により接触センシング面が構成されている。このように、構造本体部21は、力伝達部22と薄肉部23とからなるダイヤフラム構造となっている。これにより、力伝達部22に印加された力が正確に構造本体部21の変形に反映され、検出対象物を高精度に検出できる。   Here, a contact sensing surface is constituted by the force transmission unit 22. As described above, the structure main body portion 21 has a diaphragm structure including the force transmission portion 22 and the thin portion 23. Thereby, the force applied to the force transmission part 22 is correctly reflected in the deformation | transformation of the structure main-body part 21, and a detection target object can be detected with high precision.

センサ構造部2には、接触センシング面の変位に感応してアナログセンサ信号を出力し、力−電気変換を行う第1センサ電極25が接触センシング面とは反対側である構造本体部21の裏面に複数設けられている。   The sensor structure 2 outputs an analog sensor signal in response to the displacement of the contact sensing surface, and the back surface of the structure main body 21 where the first sensor electrode 25 that performs force-electric conversion is opposite to the contact sensing surface. Are provided in plurality.

基板3は、例えば、セラミック、PCB等からなる多層基板として構成されている。基板3の表面には、第1凹状部31が形成されている。第1凹状部31の底面には、センサ構造部2の構造本体部21を第1凹状部31に接合するための接合部(接着層)5が設けられている。構造本体部21は、この接合部5を介して、第1凹状部31の底面に配置されている。なお、第1凹状部31の側面に側面接合部6が設けられ、構造本体部21の側面を側面接合部6を介して第1凹状部31の側面に接合していてもよい。これら接合部5、6は、センサ構造部2に電位を印加するため、導電性を持った金属材料である。   The substrate 3 is configured as a multilayer substrate made of, for example, ceramic, PCB or the like. A first concave portion 31 is formed on the surface of the substrate 3. A joint portion (adhesive layer) 5 for joining the structure main body portion 21 of the sensor structure portion 2 to the first concave portion 31 is provided on the bottom surface of the first concave portion 31. The structure main body 21 is disposed on the bottom surface of the first concave portion 31 via the joint 5. Note that the side surface joint portion 6 may be provided on the side surface of the first concave portion 31, and the side surface of the structure main body portion 21 may be joined to the side surface of the first concave portion 31 via the side surface joint portion 6. These junctions 5 and 6 are metal materials having conductivity in order to apply a potential to the sensor structure 2.

例えば、基板3の第1凹状部31外側の外縁部36表面と、センサ構造部2の構造本体部21の接触センシング面(力伝達部22の受力面)と、が同一平面上にある。このように、センサ構造部2の構造本体部21は、基板3の第1凹状部31内に配置されている。これにより、センサ構造部2の構造本体部21の側方は、基板3の第1凹状部31によって守られ、接触センシング面から見て側面側から直接、外力を受けない。   For example, the surface of the outer edge portion 36 outside the first concave portion 31 of the substrate 3 and the contact sensing surface of the structure main body portion 21 of the sensor structure portion 2 (the force receiving surface of the force transmission portion 22) are on the same plane. As described above, the structure main body 21 of the sensor structure 2 is disposed in the first concave portion 31 of the substrate 3. Thereby, the side of the structure main body 21 of the sensor structure 2 is protected by the first concave portion 31 of the substrate 3 and does not receive external force directly from the side as viewed from the contact sensing surface.

基板3の第1凹状部31の底面には、複数の第2センサ電極33が設けられている。基板3の第1凹状部31の各第2センサ電極33は、センサ構造部2の構造本体部21の第1センサ電極25と、対向しキャパシタを形成している。基板3の下面側には、例えば、触覚センサシステムのバスと接続するための外部端子が設けられておりバス配線に実装される。基板3には立体配線が設けられており、この立体配線を通して、配線取り回しが容易となる。   A plurality of second sensor electrodes 33 are provided on the bottom surface of the first concave portion 31 of the substrate 3. Each second sensor electrode 33 of the first concave portion 31 of the substrate 3 faces the first sensor electrode 25 of the structure main body portion 21 of the sensor structure portion 2 to form a capacitor. On the lower surface side of the substrate 3, for example, an external terminal for connecting to a bus of the tactile sensor system is provided and mounted on the bus wiring. The substrate 3 is provided with a three-dimensional wiring, and the wiring can be easily routed through the three-dimensional wiring.

信号処理用集積回路4は、基板3内のビアと、接合部5もしくは側面接合部6を介して、センサ構造部2の第1センサ電極25と電気的に接続されている。また、信号処理集積回路4は、基板3内のビアを介して第2センサ電極33に電気的に接続される。信号処理集積回路4内の容量変換回路(不図示)は、センサ電極25と33間のキャパシタ変化を処理する。この容量変換回路(不図示)には、C−V変化回路としてスイッチトキャパシタ、C−F変換回路としてCR発振回路がある。また、信号処理用集積回路4は、このアナログセンサ信号に基づいて、検出対象物を検出する検出処理、他のセンサ装置1とのデータ通信を行う通信処理などを行う。   The signal processing integrated circuit 4 is electrically connected to the first sensor electrode 25 of the sensor structure 2 via the via in the substrate 3 and the joint 5 or the side joint 6. The signal processing integrated circuit 4 is electrically connected to the second sensor electrode 33 through a via in the substrate 3. A capacitance conversion circuit (not shown) in the signal processing integrated circuit 4 processes a capacitor change between the sensor electrodes 25 and 33. This capacitance conversion circuit (not shown) includes a switched capacitor as a CV change circuit and a CR oscillation circuit as a C-F conversion circuit. Further, the signal processing integrated circuit 4 performs detection processing for detecting a detection target, communication processing for performing data communication with other sensor devices 1, and the like based on the analog sensor signal.

信号処理用集積回路4は、基板3の裏面に形成された第2凹状部32内に配置されている。これにより、信号処理用集積回路4の側方は、基板3の第2凹状部32によって守られ、接触センシング面から見て側面側から直接、外力を受けない。例えば、信号処理用集積回路4の面は、基板3の第2凹状部32外側の外縁部34表面以下に位置している。これにより、センサ構造部2の接触センシング面に力が印加されても外縁部34によって力を受ける。このため、信号処理集積回路4に接触センシング面と同等の力が加わるのを防ぎ、信号処理用集積回路4の欠損を防ぐことができる。   The signal processing integrated circuit 4 is disposed in a second concave portion 32 formed on the back surface of the substrate 3. Thereby, the side of the signal processing integrated circuit 4 is protected by the second concave portion 32 of the substrate 3 and does not receive external force directly from the side as viewed from the contact sensing surface. For example, the surface of the signal processing integrated circuit 4 is positioned below the surface of the outer edge portion 34 outside the second concave portion 32 of the substrate 3. Thereby, even if a force is applied to the contact sensing surface of the sensor structure portion 2, the force is received by the outer edge portion 34. For this reason, it is possible to prevent the signal processing integrated circuit 4 from being applied with the same force as the contact sensing surface, and to prevent the signal processing integrated circuit 4 from being lost.

また、力−電気変換を行うセンサ構造部2とその信号処理を行う信号処理用集積回路4とが、基板3の第1及び第2凹状部31、32を介して近接して重ねる様に配置されている。これにより、フットプリントが小さくしつつ、電気的ノイズを低減できる。
信号処理用集積回路4は、例えば、半田リフロー(樹脂モールド)、ワイヤボンディング(ベアチップ)、フリップチップボンディング(ベアチップ)などを用いて、基板3の第2凹状部32に実装される。なお、信号処理用集積回路4と共に、例えば、複数の回路やRLCなどのパッシブ回路(電源安定化回路、フィルタ回路等)、力センサに関係ないセンサを設置し多機能化し、基板3の第2凹状部32に実装し、これらを保護することができる。
In addition, the sensor structure unit 2 that performs force-electrical conversion and the signal processing integrated circuit 4 that performs signal processing thereof are arranged so as to overlap each other via the first and second concave portions 31 and 32 of the substrate 3. Has been. Thereby, electrical noise can be reduced while the footprint is reduced.
The signal processing integrated circuit 4 is mounted on the second concave portion 32 of the substrate 3 by using, for example, solder reflow (resin molding), wire bonding (bare chip), flip chip bonding (bare chip), or the like. In addition to the signal processing integrated circuit 4, for example, a plurality of circuits, passive circuits such as RLC (power supply stabilization circuit, filter circuit, etc.), sensors not related to the force sensor are installed and multifunctionalized, and the second circuit board 3 These can be mounted on the concave portion 32 to protect them.

以上、本実施形態1に係るセンサ装置1において、基板3の表裏面には第1及び第2凹状部31、32が夫々形成され、センサ構造部2は基板3の第1凹状部31内に配置され、信号処理用集積回路4は基板3の第2凹状部32内に配置されている。これにより、接触センシング面から見て側面側から直接、外力を受けることなく、センサ構造部2及び信号処理用集積回路4の欠損及び故障を低減できる。   As described above, in the sensor device 1 according to the first embodiment, the first and second concave portions 31 and 32 are respectively formed on the front and back surfaces of the substrate 3, and the sensor structure portion 2 is in the first concave portion 31 of the substrate 3. The signal processing integrated circuit 4 is disposed in the second concave portion 32 of the substrate 3. Thereby, the loss and failure of the sensor structure 2 and the signal processing integrated circuit 4 can be reduced without receiving external force directly from the side as viewed from the contact sensing surface.

実施形態2
図2は、本発明の実施形態2に係るセンサ装置の概略的構成を示す断面図である。
本発明の実施形態2に係るセンサ装置20において、上記実施形態1の構成に加えて、センサ構造部26は、構造本体部27の裏面に凹状部28が形成され、凹状部28に第1センサ電極25が設けられていてもよい。構造本体部27には、この凹状部28を塞ぐ板状部材29が一体的に設けられている。板状部材29は図示しない立体配線を内部に有する。板状部材29には、凹状部28の第1センサ電極25に対向した状態で所定距離だけ離間して、第2センサ電極33が設けられている。
Embodiment 2
FIG. 2 is a cross-sectional view showing a schematic configuration of a sensor device according to Embodiment 2 of the present invention.
In the sensor device 20 according to the second embodiment of the present invention, in addition to the configuration of the first embodiment, the sensor structure portion 26 includes a concave portion 28 formed on the back surface of the structure main body portion 27, and the concave portion 28 has a first sensor. An electrode 25 may be provided. The structure main body 27 is integrally provided with a plate member 29 that closes the concave portion 28. The plate-like member 29 has a three-dimensional wiring (not shown) inside. The plate-like member 29 is provided with a second sensor electrode 33 that is separated from the first sensor electrode 25 of the concave portion 28 by a predetermined distance.

板状部材29は、接合部5を介して、基板3の第1凹状部31の底面に接合されている。この第1センサ電極25が設けられた構造本体部27と、第2センサ電極33が設けられた板状部材29とを有するセンサ構造部26単体で、力センサとしての機能を有している。
第1センサ電極25は構造本体部27、接合部5、板状部材29内の立体配線、および、基板3内のビアを介して、信号処理集積回路4に電気的に接続されている。第2センサ電極33は、板状部材29内の立体配線、接合部5、および基板3内のビアを介して信号処理集積回路4に電気的に接続されている。なお、本実施形態2において、上記実施形態1と同一部分には同一符号を付して、詳細な説明は省略する。
The plate-shaped member 29 is bonded to the bottom surface of the first concave portion 31 of the substrate 3 through the bonding portion 5. The sensor structure 26 alone having the structure main body 27 provided with the first sensor electrode 25 and the plate-like member 29 provided with the second sensor electrode 33 has a function as a force sensor.
The first sensor electrode 25 is electrically connected to the signal processing integrated circuit 4 via the structure main body 27, the joint 5, the three-dimensional wiring in the plate-like member 29, and the via in the substrate 3. The second sensor electrode 33 is electrically connected to the signal processing integrated circuit 4 through the three-dimensional wiring in the plate-like member 29, the joint portion 5, and the via in the substrate 3. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態2によれば、上記実施形態1の効果に加えて、さらに、センサ構造部26に応じた専用の信号処理用集積回路4が必要ないため、様々なセンサ構造部26と信号処理用集積回路4との組み合わせが可能となるという効果を奏する。   According to the second embodiment, in addition to the effects of the first embodiment, a dedicated signal processing integrated circuit 4 corresponding to the sensor structure 26 is not required. There is an effect that the combination with the integrated circuit 4 becomes possible.

実施形態3
図3は、本発明の実施形態3に係るセンサ装置の概略的構成を示す断面図である。
本発明の実施形態3に係るセンサ装置30において、上記実施形態1の構成に加えて、センサ構造部2は、構造本体部21の力伝達部22及び薄肉部23及び周縁部24を樹脂35で覆い封止してもよい。これにより、構造本体部21の力伝達部22及び薄肉部23が受ける荷重を樹脂35や周縁部24が吸収するため、荷重レンジが向上する。
Embodiment 3
FIG. 3 is a cross-sectional view showing a schematic configuration of a sensor device according to Embodiment 3 of the present invention.
In the sensor device 30 according to the third embodiment of the present invention, in addition to the configuration of the first embodiment, the sensor structure unit 2 includes the force transmission unit 22, the thin-walled portion 23, and the peripheral portion 24 of the structure main body 21 with a resin 35. It may be covered and sealed. Thereby, since the resin 35 and the peripheral part 24 absorb the load which the force transmission part 22 and the thin part 23 of the structure main-body part 21 receive, a load range improves.

本実施形態3によれば、上記実施形態1に係る効果に加えて、さらに、構造本体部21の力伝達部22及び薄肉部23に掛かる過荷重印加を低減する効果を奏する。なお、本実施形態3において、上記実施形態1と同一部分には同一符号を付して、詳細な説明は省略する。   According to the third embodiment, in addition to the effect according to the first embodiment, the effect of reducing the overload applied to the force transmitting portion 22 and the thin portion 23 of the structure main body portion 21 is further achieved. Note that in the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

実施形態4
図4は、本発明の実施形態4に係るセンサ装置の概略的構成を示す断面図である。
本発明の実施形態4に係るセンサ装置40において、固定面に上記実施形態1に係る第1のセンサ装置1のセンサ構造部2側を固定し、その第1のセンサ装置1の信号処理用集積回路4側に上記実施形態1に係る第2のセンサ装置1の信号処理用集積回路4側を固定してもよい。
Embodiment 4
FIG. 4 is a cross-sectional view showing a schematic configuration of a sensor device according to Embodiment 4 of the present invention.
In the sensor device 40 according to the fourth embodiment of the present invention, the sensor structure 2 side of the first sensor device 1 according to the first embodiment is fixed to a fixed surface, and the signal processing integration of the first sensor device 1 is performed. The signal processing integrated circuit 4 side of the second sensor device 1 according to the first embodiment may be fixed to the circuit 4 side.

下側に位置する第1のセンサ装置1は、逆さに向けられ、基板3の第1凹状部31外側の外縁部36とセンサ構造部2の周縁部24は、樹脂などの弾性部材41を介して、固定面に固定されている。弾性部材41の剛性は薄肉部23の剛性より十分に小さいことが望ましい。一方、センサ構造部2の力伝達部22は、剛性部材42で固定面に固定されている。この逆さまに固定された第1のセンサ装置1の上に第2のセンサ装置1を載せて両者を接合する。   The first sensor device 1 located on the lower side is turned upside down, and the outer edge portion 36 outside the first concave portion 31 of the substrate 3 and the peripheral edge portion 24 of the sensor structure portion 2 are interposed via an elastic member 41 such as resin. And fixed to the fixed surface. The rigidity of the elastic member 41 is desirably sufficiently smaller than the rigidity of the thin portion 23. On the other hand, the force transmission part 22 of the sensor structure part 2 is fixed to a fixed surface by a rigid member 42. The second sensor device 1 is placed on the first sensor device 1 fixed upside down and joined together.

第1のセンサ装置1の基板3の第2凹状部32外側の外縁部34と、第2のセンサ装置1の基板3の第2凹状部32外側の外縁部34と、が接合される。第1のセンサ装置1のセンサ構造部2の力伝達部22と、第2のセンサ装置1のセンサ構造部2の力伝達部22とは、同一軸(力検知軸)線上に配置されている。
上記構成により、第2のセンサ装置1のセンサ構造部2に荷重が掛かったときに、第1のセンサ装置1のセンサ構造部2の構造本体部21と、第2のセンサ装置1のセンサ構造部2の構造本体部21とが、略同量だけ撓むこととなる。このため、正常であれば第1及び第2のセンサ装置1は、略同一のセンサ値を出力する。したがって、第1のセンサ装置1のセンサ値と、第2のセンサ装置1のセンサ値とを比較することで、これらセンサ装置1の故障(オープン故障やショート故障など)を検出することができる。
The outer edge portion 34 outside the second concave portion 32 of the substrate 3 of the first sensor device 1 and the outer edge portion 34 outside the second concave portion 32 of the substrate 3 of the second sensor device 1 are joined. The force transmission unit 22 of the sensor structure unit 2 of the first sensor device 1 and the force transmission unit 22 of the sensor structure unit 2 of the second sensor device 1 are arranged on the same axis (force detection axis) line. .
With the above configuration, when a load is applied to the sensor structure 2 of the second sensor device 1, the structure main body 21 of the sensor structure 2 of the first sensor device 1 and the sensor structure of the second sensor device 1. The structure main body 21 of the part 2 is bent by substantially the same amount. For this reason, if it is normal, the 1st and 2nd sensor apparatus 1 will output substantially the same sensor value. Therefore, by comparing the sensor value of the first sensor device 1 with the sensor value of the second sensor device 1, a failure (such as an open failure or a short failure) of these sensor devices 1 can be detected.

以上、本実施形態4によれば、上記実施形態1に係る効果に加えて、センサ装置1の故障を検出できる。なお、本実施形態4において、上記実施形態1と同一部分には同一符号を付して、詳細な説明は省略する。   As described above, according to the fourth embodiment, in addition to the effects according to the first embodiment, a failure of the sensor device 1 can be detected. In the fourth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

実施形態5
図5は、本発明の実施形態5に係るセンサ装置の概略的構成を示す断面図である。
本発明の実施形態5に係るセンサ装置50において、上記実施形態1の構成に加えて、センサ構造部2の力伝達部22の端面(受力面)に、該力伝達部22の変位量に相当する高さの突起部51を設けてもよい。
Embodiment 5
FIG. 5 is a cross-sectional view showing a schematic configuration of a sensor device according to Embodiment 5 of the present invention.
In the sensor device 50 according to the fifth embodiment of the present invention, in addition to the configuration of the first embodiment, the displacement amount of the force transmission unit 22 is set on the end surface (power receiving surface) of the force transmission unit 22 of the sensor structure unit 2. A protrusion 51 having a corresponding height may be provided.

例えば、図6(a)に示す如く、検出対象物Xによってセンサ構造部2の力伝達部22の突起部51に荷重を掛けると、構造本体部21が徐々に撓む。この場合、図7のAのように、センサ装置50が出力するセンサ値は、徐々に増加する。この傾きは薄肉部23のバネ定数によって決まる。そして、構造本体部21が一定量撓むと、図6(b)に示す如く、検出対象物Xが構造本体部21の周縁部24に当たる。このため、構造本体部21は、これ以上撓わなくなる。この場合、図7のBのように、センサ装置50が出力するセンサ値は、一定となる。このように、構造本体部21の力伝達部22及び薄肉部23に掛かる過荷重を周縁部24で吸収できる。   For example, as shown in FIG. 6A, when a load is applied to the projection 51 of the force transmission unit 22 of the sensor structure 2 by the detection target X, the structure main body 21 is gradually bent. In this case, as shown in FIG. 7A, the sensor value output from the sensor device 50 gradually increases. This inclination is determined by the spring constant of the thin portion 23. When the structural body 21 is bent by a certain amount, the detection object X hits the peripheral edge 24 of the structural body 21 as shown in FIG. For this reason, the structure main-body part 21 will not bend any more. In this case, as shown in FIG. 7B, the sensor value output by the sensor device 50 is constant. As described above, the peripheral portion 24 can absorb the overload applied to the force transmitting portion 22 and the thin portion 23 of the structure main body portion 21.

以上、本実施形態5によれば、上記実施形態1に係る効果に加えて、構造本体部21の力伝達部22及び薄肉部23に掛かる過荷重印加を低減できる。なお、本実施形態5において、上記実施形態1と同一部分には同一符号を付して、詳細な説明は省略する。   As described above, according to the fifth embodiment, in addition to the effects according to the first embodiment, it is possible to reduce overload applied to the force transmitting portion 22 and the thin portion 23 of the structure main body portion 21. In the fifth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

実施形態6
図8は、本発明の実施形態6に係るセンサ装置の概略的構成を示す断面図である。
本発明の実施形態6に係るセンサ装置60において、上記実施形態2の構成に加えて、基板3の第1凹状部31とセンサ構造部26の板状部材29とを接合する接合部61が導電性の弾性部材で形成されていてもよい。基板3の第1凹状部31外側の外縁部36表面に対し、センサ構造部26の構造本体部27の接触センシング面(力伝達部22)は、例えば、距離dだけ突出している。
Embodiment 6
FIG. 8 is a cross-sectional view showing a schematic configuration of a sensor device according to Embodiment 6 of the present invention.
In the sensor device 60 according to the sixth embodiment of the present invention, in addition to the configuration of the second embodiment, the joint portion 61 that joins the first concave portion 31 of the substrate 3 and the plate-like member 29 of the sensor structure portion 26 is electrically conductive. May be formed of a flexible elastic member. For example, the contact sensing surface (force transmission unit 22) of the structure main body 27 of the sensor structure 26 protrudes from the surface of the outer edge 36 outside the first concave portion 31 of the substrate 3 by a distance d.

なお、本実施形態6においては、検出対象物は、センサ構造部26の構造本体部27よりも大きいものと想定している。また、第1凹状部31の側面には側面接合部が設けられていない。   In the sixth embodiment, it is assumed that the detection target is larger than the structure main body 27 of the sensor structure 26. Further, the side surface joining portion is not provided on the side surface of the first concave portion 31.

例えば、図9(a)に示す如く、検出対象物Xによってセンサ構造部26の力伝達部22に荷重を掛けると、接合部61が圧縮され徐々に縮みつつ、構造本体部27も徐々に撓む。この場合、図10のAのように、センサ装置60が出力するセンサ値は、徐々に増加する。なお、図10のAの傾きは、薄肉部23のバネ定数αによって決定される。   For example, as shown in FIG. 9A, when a load is applied to the force transmission portion 22 of the sensor structure portion 26 by the detection object X, the joint portion 61 is compressed and gradually contracted, and the structure main body portion 27 is also gradually bent. Mu In this case, as shown in FIG. 10A, the sensor value output by the sensor device 60 gradually increases. Note that the slope of A in FIG. 10 is determined by the spring constant α of the thin portion 23.

そして、接合部61が縮むと、図9(b)に示す如く、検出対象物Xが基板3の外縁部36表面に当たる。このため、構造本体部27は、これ以上撓わなくなる。この場合、図10のBのように、センサ装置60が出力するセンサ値は、一定となる。なお、センサ装置60のセンサ値が一定となるときの荷重は、接合部61の弾性部材のバネ定数β及び距離dによって決まる。このように、構造本体部67の力伝達部22及び薄肉部23に掛かる過荷重を基板3の外縁部36で吸収できる。   When the joining portion 61 is contracted, the detection target X hits the surface of the outer edge portion 36 of the substrate 3 as shown in FIG. 9B. For this reason, the structure main body 27 does not bend any more. In this case, as shown in FIG. 10B, the sensor value output by the sensor device 60 is constant. Note that the load when the sensor value of the sensor device 60 becomes constant is determined by the spring constant β and the distance d of the elastic member of the joint portion 61. Thus, the overload applied to the force transmitting portion 22 and the thin portion 23 of the structure main body portion 67 can be absorbed by the outer edge portion 36 of the substrate 3.

以上、本実施形態6によれば、上記実施形態2に係る効果に加えて、構造本体部27の力伝達部22及び薄肉部23に掛かる過荷重印加を低減できる。なお、本実施形態6において、上記実施形態2と同一部分には同一符号を付して、詳細な説明は省略する。   As described above, according to the sixth embodiment, in addition to the effect according to the second embodiment, it is possible to reduce the overload applied to the force transmitting portion 22 and the thin portion 23 of the structure main body portion 27. In the sixth embodiment, the same parts as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

なお、上記実施形態6において、第1凹状部31の側面に側面接合部62が設けられ、構造本体部27の側面が側面接合部62を介して第1凹状部31の側面に接合していてもよい(図11)。側面接合部62は、導電性の弾性部材で形成されている。   In the sixth embodiment, the side surface joint portion 62 is provided on the side surface of the first concave portion 31, and the side surface of the structure main body portion 27 is joined to the side surface of the first concave portion 31 via the side surface joint portion 62. (FIG. 11). The side surface joining portion 62 is formed of a conductive elastic member.

実施形態7
図12は、本発明の実施形態7に係るセンサ装置の概略的構成を示す断面図である。本発明の実施形態7に係るセンサ装置70において、上記実施形態1の構成に加えて、基板71は、第2センサ電極33が配置された電極固定部72と、分離溝73を介して電極固定部72の外側に形成された基板周辺部74と、を有している。
Embodiment 7
FIG. 12 is a cross-sectional view showing a schematic configuration of a sensor device according to Embodiment 7 of the present invention. In the sensor device 70 according to the seventh embodiment of the present invention, in addition to the configuration of the first embodiment, the substrate 71 is fixed to the electrode via the electrode fixing portion 72 on which the second sensor electrode 33 is disposed and the separation groove 73. And a substrate peripheral portion 74 formed outside the portion 72.

図13は、基板を上方から見た上面図である。電極固定部72には、その各角部周辺に2つの第2センサ電極33が夫々設けられている。分離溝73は貫通しており、電極固定部72及び基板周辺部74は、この分離溝73により分断されている。   FIG. 13 is a top view of the substrate as viewed from above. The electrode fixing portion 72 is provided with two second sensor electrodes 33 around each corner. The separation groove 73 penetrates, and the electrode fixing portion 72 and the substrate peripheral portion 74 are divided by the separation groove 73.

電極固定部72の各角度周辺は、2つの梁部75を介して基板周辺部74に夫々接続されている。梁部75は電極固定部72及び基板周辺部74を機械的かつ電気的に接続する。信号処理用集積回路4は、分離溝73外側の基板周辺部74にバンプなどで接続されている。
信号処理用集積回路4は、例えば金属を含む多層材料で構成され、その熱膨張係数は、セラミックの基板71およびセンサ構造部2の熱膨張係数と異なる。
The periphery of each angle of the electrode fixing portion 72 is connected to the substrate peripheral portion 74 via two beam portions 75, respectively. The beam portion 75 mechanically and electrically connects the electrode fixing portion 72 and the substrate peripheral portion 74. The signal processing integrated circuit 4 is connected to a substrate peripheral portion 74 outside the separation groove 73 by a bump or the like.
The signal processing integrated circuit 4 is made of, for example, a multilayer material containing metal, and has a thermal expansion coefficient different from that of the ceramic substrate 71 and the sensor structure 2.

したがって、温度変化により、従来、信号処理用集積回路の基板が撓みことから、センサ構造部の第1センサ電極と基板の第2センサ電極と間隙が変化し、温度特性が低下していた。例えば、信号処理用集積回路をバンプなどで基板に接続する際に応力が発生し、センサ構造部の第1センサ電極と基板の第2センサ電極と間隙が変化することで、実装時の応力の影響が問題となっていた。   Therefore, conventionally, the substrate of the signal processing integrated circuit is bent due to the temperature change, so that the gap between the first sensor electrode of the sensor structure and the second sensor electrode of the substrate is changed, and the temperature characteristic is lowered. For example, stress is generated when the signal processing integrated circuit is connected to the substrate by a bump or the like, and the gap between the first sensor electrode of the sensor structure and the second sensor electrode of the substrate changes, so that the stress at the time of mounting can be reduced. Impact was a problem.

これに対し、本実施形態7において、上述の如く、基板71は、第2センサ電極33が配置された電極固定部72と、基板周辺部74と、に分離溝73を介して分離されている。信号処理用集積回路4は、基板周辺部74に接続されている。このため、温度変化により、信号処理用集積回路4の基板が撓んだ場合でも、その影響は基板周辺部74のみに及び、電極固定部72には影響しない。従がって、温度変化によって、センサ構造部2の第1センサ電極25と基板71の第2センサ電極33との間隙が変化しないため、センサ構造部2の温度特性の向上に繋がる。さらに、信号処理用集積回路4をバンプなどで基板71に接続する際に発生する基板71の応力を、分離溝73により吸収できる。したがって、その実装応力を緩和でき、センサ構造部2への影響を低減できる。   On the other hand, in the seventh embodiment, as described above, the substrate 71 is separated into the electrode fixing portion 72 where the second sensor electrode 33 is disposed and the substrate peripheral portion 74 via the separation groove 73. . The signal processing integrated circuit 4 is connected to the substrate peripheral portion 74. For this reason, even when the substrate of the signal processing integrated circuit 4 is bent due to a temperature change, the influence only affects the peripheral portion 74 of the substrate and does not affect the electrode fixing portion 72. Accordingly, since the gap between the first sensor electrode 25 of the sensor structure 2 and the second sensor electrode 33 of the substrate 71 does not change due to the temperature change, the temperature characteristics of the sensor structure 2 are improved. Further, the stress on the substrate 71 generated when the signal processing integrated circuit 4 is connected to the substrate 71 by bumps or the like can be absorbed by the separation groove 73. Therefore, the mounting stress can be relieved and the influence on the sensor structure 2 can be reduced.

以上、本実施形態7によれば、上記実施形態1に係る効果に加えて、上記有利な効果を奏する。なお、本実施形態7において、上記実施形態1と同一部分には同一符号を付して、詳細な説明は省略する。   As mentioned above, according to this Embodiment 7, in addition to the effect which concerns on the said Embodiment 1, there exists the said advantageous effect. Note that in the seventh embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

なお、上記実施形態において、分離溝76を完全に貫通した溝ではなく、深さ方向の中間部に薄い底が形成された半溝構造としてもよい。図14及び図15は、半溝構造を示す断面図及び上面図である。分離溝76の底は電気配線層77が形成され、この電気配線層77を介して、電極固定部72とその外側の基板周辺部74とが電気的に接続されている。   In the above-described embodiment, a half-groove structure in which a thin bottom is formed in an intermediate portion in the depth direction may be used instead of a groove that completely penetrates the separation groove 76. 14 and 15 are a sectional view and a top view showing the half-groove structure. An electric wiring layer 77 is formed at the bottom of the separation groove 76, and the electrode fixing portion 72 and the substrate peripheral portion 74 outside thereof are electrically connected via the electric wiring layer 77.

分離溝76を半溝構造とすることで、上記センサ構造部2の温度特性を向上させ且つ実装応力を緩和できつつ、さらに、センサ構造部2の第1センサ電極25及び基板71の第2センサ電極33を、センサ構造部2及び基板71間に密封でき、その耐湿性を向上させることができる。   By making the separation groove 76 have a half-groove structure, the temperature characteristics of the sensor structure 2 can be improved and the mounting stress can be reduced, and further, the first sensor electrode 25 of the sensor structure 2 and the second sensor of the substrate 71 can be reduced. The electrode 33 can be sealed between the sensor structure 2 and the substrate 71, and its moisture resistance can be improved.

実施形態8
図16は、本発明の実施形態8に係るセンサ装置の概略的構成を示す下面図である。本発明の実施形態8に係るセンサ装置80において、基板3の裏面の第2凹状部32外側の外縁部34には、その外縁に沿って均等に実装パッド(外部端子)81が配置されている。実装パッド81は、基板3の裏面上で、例えば、5行で並んで配置されている。各行の少なくとも1つの実装パッド81が、基板3内部の配線に結線されている。同じ行内のその他のパッド81は、フローティング状態、あるいは、結線された実装パッド81と同電位・機能を有している。
Embodiment 8
FIG. 16 is a bottom view showing a schematic configuration of a sensor device according to Embodiment 8 of the present invention. In the sensor device 80 according to the eighth embodiment of the present invention, mounting pads (external terminals) 81 are evenly arranged along the outer edge of the outer edge 34 outside the second concave portion 32 on the back surface of the substrate 3. . The mounting pads 81 are arranged on the back surface of the substrate 3 in, for example, 5 rows. At least one mounting pad 81 in each row is connected to wiring inside the substrate 3. The other pads 81 in the same row have the same potential and function as the mounted pads 81 in a floating state or connected.

本実施形態8によれば、基板3の裏面の外縁に沿って均等に実装パッド81を配置することで、その基板3に掛かる荷重を均等に分散できる。さらに、上記のように同一行内の実装パッド81をフローティング状態あるいは結線された同一行内のパッド81と同電位にすることで、例えば、図17に示すような回路基板のバス配線上にその場所と問わず、自由にセンサ装置80を実装できる。   According to the eighth embodiment, by disposing the mounting pads 81 evenly along the outer edge of the back surface of the substrate 3, the load applied to the substrate 3 can be evenly distributed. Further, by setting the mounting pads 81 in the same row to the same potential as the pads 81 in the floating row or connected in the same row as described above, for example, the location on the bus wiring of the circuit board as shown in FIG. Regardless, the sensor device 80 can be freely mounted.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、上記実施形態1乃至8の構成を任意に組み合わせることが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention. For example, the configurations of the first to eighth embodiments can be arbitrarily combined.

1 センサ装置、2 センサ構造部、3 基板、4 信号処理用集積回路、5 接合部、6 側面接合部、21 構造本体部、22 力伝達部、23 薄肉部、24 周縁部、25 第1センサ電極、31 第1凹状部、32 第2凹状部、33 第2センサ電極、34 外縁部、35 樹脂、36 外縁部、41 弾性部材、42 剛性部材、51 突起部、61 接合部、62 側面接合部、72 電極固定部、73 分離溝、74 基板周辺部、75 梁部、76 分離溝、77 電気配線層、81 実装パッド   DESCRIPTION OF SYMBOLS 1 Sensor apparatus, 2 Sensor structure part, 3 Substrate, 4 Signal processing integrated circuit, 5 Joint part, 6 Side joint part, 21 Structure main body part, 22 Force transmission part, 23 Thin part, 24 Peripheral part, 25 1st sensor Electrode, 31 First concave portion, 32 Second concave portion, 33 Second sensor electrode, 34 Outer edge portion, 35 Resin, 36 Outer edge portion, 41 Elastic member, 42 Rigid member, 51 Protruding portion, 61 Joint portion, 62 Side joint Part, 72 electrode fixing part, 73 separation groove, 74 substrate peripheral part, 75 beam part, 76 separation groove, 77 electric wiring layer, 81 mounting pad

Claims (4)

検出対象物と直接に接触する接触センシング面を外部に露出する一面に有するとともに、前記接触センシング面の変化に感応してセンサ信号を出力するセンサ構造部と、
一方の面に第1凹状部が形成され、該一方の面の反対側の面に第2凹状部が形成されたた基板と、
前記センサ構造部が出力するセンサ信号を処理する信号処理用集積回路と、
を備え、
前記センサ構造部は、前記基板の第1凹状部内に配置され、
前記信号処理用集積回路は、前記基板の第2凹状部内に配置されている、
ことを特徴とするセンサ装置。
A sensor structure part that has a contact sensing surface that directly contacts a detection object on one surface exposed to the outside and outputs a sensor signal in response to a change in the contact sensing surface;
A substrate in which a first concave portion is formed on one surface and a second concave portion is formed on a surface opposite to the one surface;
A signal processing integrated circuit for processing a sensor signal output from the sensor structure;
With
The sensor structure is disposed in a first concave portion of the substrate;
The signal processing integrated circuit is disposed in a second concave portion of the substrate.
A sensor device.
請求項1記載のセンサ装置であって、
前記センサ構造部は、MEMS(Micro Electro Mechanical Systems)センサとして構成されおり、前記接触センシング面に対する力の印加に応じて変位する、ことを特徴とするセンサ装置。
The sensor device according to claim 1,
The sensor structure is configured as a MEMS (Micro Electro Mechanical Systems) sensor, and is displaced according to application of force to the contact sensing surface.
請求項2記載のセンサ装置であって、
前記信号処理用集積回路の表面は、前記基板の第2凹状部外側の外縁部表面以下に位置している、ことを特徴とするセンサ装置。
The sensor device according to claim 2,
The sensor device according to claim 1, wherein the surface of the signal processing integrated circuit is positioned below the outer peripheral surface of the second concave portion of the substrate.
請求項2又は3のうちいずれか1項記載のセンサ装置であって、
前記センサ構造部と前記信号処理用集積回路とは、前記基板の第1及び第2凹状部を介して近接して重ねるように配置されている、ことを特徴とするセンサ装置。
The sensor device according to any one of claims 2 and 3,
The sensor device, wherein the sensor structure and the signal processing integrated circuit are arranged so as to be closely stacked via the first and second concave portions of the substrate.
JP2015249684A 2015-12-22 2015-12-22 Sensor device Active JP6491087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015249684A JP6491087B2 (en) 2015-12-22 2015-12-22 Sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015249684A JP6491087B2 (en) 2015-12-22 2015-12-22 Sensor device

Publications (2)

Publication Number Publication Date
JP2017116317A true JP2017116317A (en) 2017-06-29
JP6491087B2 JP6491087B2 (en) 2019-03-27

Family

ID=59234308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015249684A Active JP6491087B2 (en) 2015-12-22 2015-12-22 Sensor device

Country Status (1)

Country Link
JP (1) JP6491087B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115209A (en) * 1993-10-18 1995-05-02 Omron Corp Semiconductor pressure sensor, its manufacture thereof and tactile sensation sensor
JP2003042875A (en) * 2001-07-26 2003-02-13 Kyocera Corp Package for pressure detecting apparatus
US20110057899A1 (en) * 2009-09-04 2011-03-10 Peter Sleeman Capacitive control panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115209A (en) * 1993-10-18 1995-05-02 Omron Corp Semiconductor pressure sensor, its manufacture thereof and tactile sensation sensor
JP2003042875A (en) * 2001-07-26 2003-02-13 Kyocera Corp Package for pressure detecting apparatus
US20110057899A1 (en) * 2009-09-04 2011-03-10 Peter Sleeman Capacitive control panel

Also Published As

Publication number Publication date
JP6491087B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
US20120133042A1 (en) Mounting structure of chip and module using the same
US9446944B2 (en) Sensor apparatus and method for producing a sensor apparatus
US20140090485A1 (en) MEMS Pressure Sensor Assembly
KR101953455B1 (en) Pressure sensor
JP2009103530A (en) Sensor device
JP2007035847A (en) Sensor package
JP4613958B2 (en) Electronic component manufacturing method and electronic component
JP2007043017A (en) Semiconductor sensor equipment
JP5668898B2 (en) Piezoelectric transformer device
JP2006078249A (en) Capacity type semiconductor sensor
JP2016070670A (en) Sensor device
JP6491087B2 (en) Sensor device
WO2018131404A1 (en) Sensor device and electronic apparatus
TWI557926B (en) Circuit board device and image sensor package structure using the same
JP5742170B2 (en) MEMS device, manufacturing method thereof, and semiconductor device having the same
US11105692B2 (en) Force sensor having first and second circuit board arrangements
JP2006220564A (en) Semiconductor force sensor
JP5033045B2 (en) Semiconductor element mounting structure
JP4706634B2 (en) Semiconductor sensor and manufacturing method thereof
JP6273189B2 (en) Sensor package
JP2011119723A (en) Sensor package
US9117871B2 (en) Multi-axial acceleration sensor and method of manufacturing the same
US20240116750A1 (en) Mems module
JP2016200467A (en) Multi-sensor device
TWI610068B (en) Force sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190228

R150 Certificate of patent or registration of utility model

Ref document number: 6491087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250