JP2017115224A - Aluminum alloy hard foil - Google Patents
Aluminum alloy hard foil Download PDFInfo
- Publication number
- JP2017115224A JP2017115224A JP2015254779A JP2015254779A JP2017115224A JP 2017115224 A JP2017115224 A JP 2017115224A JP 2015254779 A JP2015254779 A JP 2015254779A JP 2015254779 A JP2015254779 A JP 2015254779A JP 2017115224 A JP2017115224 A JP 2017115224A
- Authority
- JP
- Japan
- Prior art keywords
- foil
- rolling
- crystal grains
- aluminum alloy
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011888 foil Substances 0.000 title claims abstract description 99
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 24
- 239000013078 crystal Substances 0.000 claims abstract description 103
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 238000005096 rolling process Methods 0.000 abstract description 55
- 239000002245 particle Substances 0.000 abstract description 6
- 238000011156 evaluation Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 26
- 239000000463 material Substances 0.000 description 20
- 238000006116 polymerization reaction Methods 0.000 description 20
- 238000012360 testing method Methods 0.000 description 18
- 230000003746 surface roughness Effects 0.000 description 16
- 238000005097 cold rolling Methods 0.000 description 13
- 238000005098 hot rolling Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 11
- 238000000265 homogenisation Methods 0.000 description 9
- 238000002791 soaking Methods 0.000 description 9
- 238000000137 annealing Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000005482 strain hardening Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 229910000765 intermetallic Inorganic materials 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910018084 Al-Fe Inorganic materials 0.000 description 3
- 229910018192 Al—Fe Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000001887 electron backscatter diffraction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241001422033 Thestylus Species 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 239000013070 direct material Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Metal Rolling (AREA)
Abstract
Description
本発明は、アルミニウム合金硬質箔(以下、適宜「硬質箔」という)に関するものであり、詳細には、圧延性に優れたアルミニウム合金硬質箔に関するものである。 The present invention relates to an aluminum alloy hard foil (hereinafter referred to as “hard foil” as appropriate), and in particular, to an aluminum alloy hard foil excellent in rollability.
アルミニウム箔及びアルミニウム合金箔は、日用品、食料品、薬品等の包装用途、建築材、車両、船舶等の断熱用途、コンデンサ、基板等の電気機器用途といった非常に広い用途に使用されている。また、これらの用途に使用するアルミニウム箔及びアルミニウム合金箔は、通常、5〜100μm程度の厚みを呈する。 Aluminum foil and aluminum alloy foil are used in a very wide range of applications such as packaging for daily necessities, foodstuffs, medicines, etc., insulation for buildings, vehicles, ships, etc., and electrical equipment such as capacitors and substrates. Moreover, the aluminum foil and aluminum alloy foil used for these uses usually exhibit a thickness of about 5 to 100 μm.
そして、このようなアルミニウム箔及びアルミニウム合金箔について、引張強さや伸びといった機械的性質、成形性等を良好なものとするため、材料のサブグレイン組織に着目した技術が提案されている。 In order to improve the mechanical properties such as tensile strength and elongation, and formability of such aluminum foils and aluminum alloy foils, a technique that focuses on the subgrain structure of the material has been proposed.
例えば、特許文献1には、化学成分が、質量%で、Si:0.1%以上0.6%以下、Fe:0.2%以上1.0%以下を含有し、残部がAlおよび不可避的不純物からなり、箔厚が20μm以下であり、隣接する結晶方位測定点間の方位差が5°±0.2°である境界を結晶粒界と規定した場合、結晶粒径2μm以下のサブグレインの面積率が40%以上であり、引張強さが210MPa以上であり、液体窒素中で測定した比抵抗が0.45μΩ・cm以上0.7μΩ・cm以下であることを特徴とするアルミニウム合金箔が提案されている。 For example, Patent Document 1 contains, in terms of mass%, Si: 0.1% to 0.6%, Fe: 0.2% to 1.0%, with the balance being Al and inevitable. When a boundary having a foil thickness of 20 μm or less and an orientation difference between adjacent crystal orientation measurement points of 5 ° ± 0.2 ° is defined as a crystal grain boundary, a sub-grain having a crystal grain size of 2 μm or less An aluminum alloy having a grain area ratio of 40% or more, a tensile strength of 210 MPa or more, and a specific resistance measured in liquid nitrogen of 0.45 μΩ · cm to 0.7 μΩ · cm A foil has been proposed.
また、特許文献2には、Si:0.04〜0.2重量%、Fe:1.0〜2.0重量%、Cu:0.01重量%以下、Mg:0.01重量%以下、残りがAl及びその他不可避不純物からなり、平均結晶粒径が5〜20μmで且つサブグレインの平均粒径が0.5〜3.0μmであると共に、粒径が0.1〜2.0μmのAl−Fe化合物の分散密度が3×105〜20×105個/mm2で且つ粒径が2.0μmを超えるAl−Fe化合物の分散密度が1×104〜10×104個/mm2であることを特徴とするアルミニウム合金箔が提案されている。 Patent Document 2 includes Si: 0.04 to 0.2% by weight, Fe: 1.0 to 2.0% by weight, Cu: 0.01% by weight or less, Mg: 0.01% by weight or less, The remainder is made of Al and other inevitable impurities, the average crystal grain size is 5 to 20 μm, the average grain size of subgrains is 0.5 to 3.0 μm, and the grain size is 0.1 to 2.0 μm. The dispersion density of the Al—Fe compound having a dispersion density of −Fe compound of 3 × 10 5 to 20 × 10 5 particles / mm 2 and a particle diameter exceeding 2.0 μm is 1 × 10 4 to 10 × 10 4 particles / mm. An aluminum alloy foil characterized by 2 is proposed.
特許文献1、2に提案された技術は、隣接する結晶粒同士の傾角が15°以下の組織ある亜結晶粒(subgrain)組織に着目し、加工硬化特性の制御やピンホールの発生の抑制等を図る技術である。そして、特許文献1、2には、各技術によると一定の効果が得られると記載されている。 The techniques proposed in Patent Documents 1 and 2 pay attention to a subgrain structure having a structure in which the inclination angle between adjacent crystal grains is 15 ° or less, control of work hardening characteristics, suppression of occurrence of pinholes, etc. It is a technology to plan. Patent Documents 1 and 2 describe that a certain effect can be obtained according to each technique.
ところで、箔は、前記のとおり5〜100μm程度の薄い製品であることから、薄くするために高い冷間圧延率で圧延する必要がある。しかし、箔は高い圧延率の圧延によって加工硬化し伸びが減少する結果、重合圧延時に、箔にピンホールが発生してしまう、箔のマット面の粗度が大きくなってしまう、といった事態が起こり易い。
このような事態の発生を考慮し、箔の圧延性に対する要求は高い。
By the way, since foil is a thin product of about 5-100 micrometers as above-mentioned, in order to make it thin, it is necessary to roll at a high cold rolling rate. However, the foil is hardened and reduced in elongation by rolling at a high rolling rate. As a result, pinholes occur in the foil during polymerization rolling, and the roughness of the mat surface of the foil increases. easy.
Considering the occurrence of such a situation, the demand for the rollability of the foil is high.
そこで、本発明は、圧延性に優れたアルミニウム合金硬質箔を提供することを課題とする。 Then, this invention makes it a subject to provide the aluminum alloy hard foil excellent in rolling property.
実験室レベルにおいては、HPT(High‐Pressure Torsion)加工、ARB(Accumulative Roll Bonding)加工等といった加工法を用いて、巨大なひずみを純アルミニウムに導入することにより、転位が蓄積し、結晶粒界の高角化が進むことになる結果、組織が亜結晶粒組織になり、さらには傾角が大きく微細な結晶粒組織の状態になること、また、その結果として高強度となることが知られている。加えて、HPT加工による1GPa(1000N/mm2)程度の極めて高い圧力負荷状態において、純アルミニウムに強加工を施すと、高い強度で定常状態となることが知られている。
しかしながら、これらの事実は、あくまで実験室レベルの特殊加工に関するものであり、工業的には適用することが困難であると考えられていた。
At the laboratory level, dislocations accumulate by introducing large strains into pure aluminum using processing methods such as HPT (High-Pressure Torsion) processing, ARB (Accumulative Roll Bonding) processing, and so on. As a result of increasing the angle of steel, it is known that the structure becomes a sub-grain structure, and further, it becomes a state of a fine grain structure with a large tilt angle and, as a result, high strength. . In addition, it is known that when a strong process is performed on pure aluminum in an extremely high pressure load state of about 1 GPa (1000 N / mm 2 ) by HPT processing, a steady state is obtained with high strength.
However, these facts are only related to special processing at the laboratory level, and are considered to be difficult to apply industrially.
一方、箔については、前記のとおり、材料組織を亜結晶粒組織とすることにより、優れた圧延性を得るという技術が提案されていたが、箔の薄肉化の進展により、更なる技術の改善が望まれてきた。
本発明者は、合金成分や箔に付与する塑性ひずみの量を制御することにより、従来の亜結晶粒組織を、傾角が15°を超える微細な結晶粒組織(以下、適宜「分断結晶粒(grain subdivision)」という)とすることができ、その結果、重合圧延における圧延性を更に向上できることを見出し、本発明を完成した。
On the other hand, as described above, a technology for obtaining excellent rollability by using a sub-grain structure as a material structure has been proposed for the foil. Has been desired.
By controlling the amount of plastic strain imparted to the alloy components and the foil, the present inventor can convert a conventional subgrain structure to a fine grain structure with an inclination angle exceeding 15 ° (hereinafter referred to as “divided crystal grains” as appropriate). As a result, it was found that the rollability in polymerization rolling could be further improved, and the present invention was completed.
すなわち、本発明に係るアルミニウム合金硬質箔は、Fe:0.70〜1.40質量%を含有し、残部がAl及び不可避的不純物であり、表面において、傾角が15°を超える結晶粒の個数存在率は0.60以上であるとともに、前記結晶粒の平均結晶粒径は2.1μm以下であることを特徴とする。 That is, the aluminum alloy hard foil according to the present invention contains Fe: 0.70 to 1.40% by mass, the balance is Al and inevitable impurities, and the number of crystal grains whose inclination angle exceeds 15 ° on the surface. The abundance ratio is 0.60 or more, and the average crystal grain size of the crystal grains is 2.1 μm or less.
このアルミニウム合金硬質箔によれば、所定量のFeを含有し、傾角が15°を超える結晶粒の個数存在率を所定値以上とするとともに、前記結晶粒の平均結晶粒径を所定値以下としていることから、優れた圧延性を発揮することができる。 According to this aluminum alloy hard foil, the number of crystal grains containing a predetermined amount of Fe and having an inclination angle exceeding 15 ° is set to a predetermined value or more, and the average crystal grain size of the crystal grains is set to a predetermined value or less. Therefore, excellent rollability can be exhibited.
本発明に係るアルミニウム合金硬質箔は、合金成分の含有量を所定範囲とし、傾角が15°を超える結晶粒の個数存在率を所定値以上とし、さらに、前記結晶粒の平均結晶粒径を所定値以下とすることによって、優れた圧延性を発揮することができる。 In the aluminum alloy hard foil according to the present invention, the content of the alloy component is set within a predetermined range, the number of crystal grains having an inclination angle exceeding 15 ° is set to a predetermined value or more, and the average crystal grain size of the crystal grains is set to a predetermined value. By making it below the value, excellent rollability can be exhibited.
以下、本発明に係るアルミニウム合金硬質箔を実施するための形態について、詳細に説明する。 Hereinafter, the form for implementing the aluminum alloy hard foil which concerns on this invention is demonstrated in detail.
[アルミニウム合金硬質箔]
本実施形態に係る硬質箔は、所定量のFeを含有し、残部がAl及び不可避的不純物であり、表面において、傾角が15°を超える結晶粒の個数存在率が所定値以上であるとともに、分断結晶粒の平均結晶粒径が所定値以下となる。
なお、本実施形態に係る硬質箔の厚さは特に限定されないものの、例えば、5〜100μmであり、好ましくは80μm以下であり、さらに好ましくは50μm以下である。また、本実施形態に係る硬質箔は、後記のとおり中間焼鈍を行わずに製造する直通材である。
以下、本実施形態に係る硬質箔の合金成分の含有量、分断結晶粒の個数存在率、分断結晶粒の平均結晶粒径について、数値限定した理由を説明する。
[Aluminum alloy hard foil]
The hard foil according to the present embodiment contains a predetermined amount of Fe, the balance is Al and inevitable impurities, and the number of crystal grains having an inclination angle of more than 15 ° on the surface is a predetermined value or more, The average crystal grain size of the divided crystal grains becomes a predetermined value or less.
In addition, although the thickness of the hard foil which concerns on this embodiment is not specifically limited, For example, it is 5-100 micrometers, Preferably it is 80 micrometers or less, More preferably, it is 50 micrometers or less. Moreover, the hard foil which concerns on this embodiment is a direct material manufactured without performing intermediate annealing as it mentions later.
Hereinafter, the reason why the content of the alloy component of the hard foil according to the present embodiment, the number existence ratio of the divided crystal grains, and the average crystal grain diameter of the divided crystal grains are limited numerically will be described.
(Fe:0.70〜1.40質量%)
Feは、硬質箔の強度及び加工硬化挙動を制御するための成分であって、Al−Fe系金属間化合物を形成させるとともに、分断結晶粒を形成させ、且つ微細にするために添加する。Feの含有量が0.70質量%未満では、分断結晶粒の個数存在率が小さくなったり、分断結晶粒の平均結晶粒径が大きくなったりしてしまい、十分な圧延性が得られない。一方、Feの含有量が1.40質量%を超えると、加工硬化が停滞したとしても、強度の絶対値が高くなりすぎて重合圧延が困難になる可能性が高くなったり、Al−Fe系金属間化合物が粗大となり、圧延割れの原因になったりしてしまう。
したがって、Feの含有量は0.70〜1.40質量%である。
なお、Feの含有量は、分断結晶粒の個数存在率をより大きくする観点から、好ましくは0.80質量%以上であり、より好ましくは0.90質量%以上である。また、Feの含有量は、箔圧延をより行い易くする観点から、好ましくは1.30質量%以下である。
(Fe: 0.70 to 1.40 mass%)
Fe is a component for controlling the strength and work hardening behavior of the hard foil, and is added to form an Al—Fe-based intermetallic compound, to form divided crystal grains, and to make them fine. When the Fe content is less than 0.70% by mass, the number existence ratio of the divided crystal grains becomes small or the average crystal grain size of the divided crystal grains becomes large, and sufficient rollability cannot be obtained. On the other hand, if the Fe content exceeds 1.40% by mass, even if work hardening is stagnant, the absolute value of the strength becomes too high, and there is a high possibility that polymerization rolling becomes difficult, or Al-Fe type The intermetallic compound becomes coarse and causes rolling cracks.
Therefore, the Fe content is 0.70 to 1.40 mass%.
The Fe content is preferably 0.80% by mass or more, more preferably 0.90% by mass or more, from the viewpoint of increasing the number existence ratio of the divided crystal grains. Further, the content of Fe is preferably 1.30% by mass or less from the viewpoint of facilitating foil rolling.
(残部:Al及び不可避的不純物)
本実施形態に係る硬質箔は、JISH4000:2014の合金番号8079や8021に規定される範囲内で、Fe以外の元素を不可避的不純物として含んでもよい。この不可避的不純物の元素として、具体的には、Si、Cu、Mn、Mg、Cr、Zn、Ti、Zr、V、Ni、Sn、In、Ga等が挙げられる。これらの元素の含有量は個々に、Si:0.2質量%以下、Cu:0.03質量%以下、Mg:0.01質量%以下(好ましくはMg:0.005質量%以下)、前記Si、Cu、Mg以外の元素の含有量は個々に0.05質量%以下、それら合計で0.15質量%以下に規制されることが好ましく、この範囲内であれば、不可避的不純物として含有される場合だけではなく、積極的に添加された場合であっても、本発明の効果を妨げない。
(Balance: Al and inevitable impurities)
The hard foil according to the present embodiment may contain an element other than Fe as an inevitable impurity within a range defined by alloy numbers 8079 and 8021 of JISH4000: 2014. Specific examples of the inevitable impurity element include Si, Cu, Mn, Mg, Cr, Zn, Ti, Zr, V, Ni, Sn, In, and Ga. The content of these elements is individually Si: 0.2% by mass or less, Cu: 0.03% by mass or less, Mg: 0.01% by mass or less (preferably Mg: 0.005% by mass or less), The content of elements other than Si, Cu, and Mg is preferably individually controlled to 0.05% by mass or less, and in total, 0.15% by mass or less, and if within this range, contained as an unavoidable impurity The effect of the present invention is not hindered not only when it is added, but also when it is positively added.
(傾角が15°を超える結晶粒の個数存在率:0.60以上)
本実施形態に係る硬質箔の重合圧延時における圧延性を優れたものとするためには、箔の表面における分断結晶粒の個数存在率を大きくする必要がある。ここで、箔の表面における分断結晶粒の個数存在率が0.60未満であると、箔のピンホール数が増加したり、箔のマット面の粗度を大きくしてしまったりする。
したがって、本実施形態に係る硬質箔は、表面における分断結晶粒の個数存在率が0.60以上である。
(Number of crystal grains with an inclination angle exceeding 15 °: 0.60 or more)
In order to make the hard foil according to the present embodiment excellent in rollability during polymerization rolling, it is necessary to increase the number existence ratio of the divided crystal grains on the surface of the foil. Here, if the number existence ratio of the divided crystal grains on the surface of the foil is less than 0.60, the number of pinholes in the foil increases or the roughness of the matte surface of the foil increases.
Therefore, in the hard foil according to the present embodiment, the number existence ratio of the divided crystal grains on the surface is 0.60 or more.
なお、分断結晶粒の個数存在率とは、箔の表面において、傾角(隣接する結晶粒同士の結晶方位差)が15°を超える粒界で囲まれた結晶粒の個数の比率(単位面積あたりに存在する全結晶粒の個数に占める分断結晶粒の個数の割合、分断結晶粒の個数/全結晶粒の個数)である。
そして、分断結晶粒の個数存在率の測定は、硬質箔の表面を研磨仕上げやエッチングにより処理した後、走査型電子顕微鏡を用いて硬質箔の表面を確認し、EBSD法(Electron Back Scatter Diffraction)によって算出することができる。
また、分断結晶粒の個数存在率は、前記したように、合金成分の含有量を所定範囲とするとともに、後記するように、冷間圧延工程、箔圧延工程において、大きな塑性ひずみを箔に付与することによって制御することができる。
Note that the number abundance of the divided crystal grains is the ratio of the number of crystal grains surrounded by a grain boundary whose tilt angle (crystal orientation difference between adjacent crystal grains) exceeds 15 ° on the surface of the foil (per unit area). The ratio of the number of divided crystal grains to the total number of crystal grains existing in the above, the number of divided crystal grains / the number of all crystal grains).
The number of fractional crystal grains is measured by polishing the surface of the hard foil by polishing or etching, and then confirming the surface of the hard foil using a scanning electron microscope. EBSD method (Electron Back Scatter Diffraction) Can be calculated.
In addition, as described above, the number abundance of the divided crystal grains is within a predetermined range of the alloy component content, and as described later, a large plastic strain is imparted to the foil in the cold rolling process and the foil rolling process. Can be controlled.
(傾角が15°を超える結晶粒の平均結晶粒径:2.1μm以下)
本実施形態に係る硬質箔の重合圧延時における圧延性を優れたものとするためには、箔の表面に存在する分断結晶粒の平均結晶粒径を小さくする必要がある。ここで、分断結晶粒の平均結晶粒径が2.1μmを超えると、重合圧延時の変形挙動が十分に均一なものとならず、箔のピンホール数が増加したり、箔のマット面の粗度を大きくしてしまったりする。
したがって、本実施形態に係る硬質箔は、表面における分断結晶粒の平均結晶粒径が2.1μm以下である。
(Average crystal grain size of crystal grains with an inclination angle exceeding 15 °: 2.1 μm or less)
In order to make the rollability at the time of polymerization rolling of the hard foil according to the present embodiment excellent, it is necessary to reduce the average crystal grain size of the divided crystal grains present on the surface of the foil. Here, if the average crystal grain size of the divided crystal grains exceeds 2.1 μm, the deformation behavior during polymerization rolling is not sufficiently uniform, and the number of pinholes in the foil increases or the mat surface of the foil The roughness is increased.
Therefore, in the hard foil according to the present embodiment, the average crystal grain size of the divided crystal grains on the surface is 2.1 μm or less.
なお、分断結晶粒の平均結晶粒径とは、箔の表面における各分断結晶粒の面積の平方根を結晶粒径とした場合の各結晶粒径の平均値である。
そして、分断結晶粒の平均結晶粒径の測定は、分断結晶粒の個数存在率と同一の方法で算出することができる。具体的には、硬質箔の表面を処理し、EBSD法により各分断結晶粒の面積を算出するとともに、その面積の平均値を算出し、その平均値の平方根をとることで算出することができる。よって、分断結晶粒の平均結晶粒径は、分断結晶粒の平均面積の平方根の値と言い換えることもできる。
なお、分断結晶粒の平均結晶粒径は、前記したように、合金成分の含有量を所定範囲とするとともに、後記するように、冷間圧延工程、箔圧延工程において、大きな塑性ひずみを箔に付与することによって制御することができる。
The average crystal grain size of the divided crystal grains is an average value of the crystal grain diameters when the square root of the area of each divided crystal grain on the surface of the foil is taken as the crystal grain size.
The measurement of the average crystal grain size of the divided crystal grains can be calculated by the same method as the number existence ratio of the divided crystal grains. Specifically, it can be calculated by treating the surface of the hard foil, calculating the area of each divided crystal grain by the EBSD method, calculating the average value of the area, and taking the square root of the average value. . Therefore, the average crystal grain size of the divided crystal grains can be paraphrased as the value of the square root of the average area of the divided crystal grains.
As described above, the average crystal grain size of the divided crystal grains is within a predetermined range of the alloy component content, and as described later, a large plastic strain is applied to the foil in the cold rolling process and the foil rolling process. It can be controlled by giving.
本実施形態に係る硬質箔は、以上説明したとおりであるが、その他の明示していない特性等については、従来公知のものであればよく、前記特性によって得られる効果を奏する限りにおいて、限定されないことは言うまでもない。 The hard foil according to the present embodiment is as described above, but the other characteristics that are not clearly specified are not particularly limited as long as they are conventionally known and exhibit the effects obtained by the characteristics. Needless to say.
[アルミニウム合金硬質箔の製造方法]
次に、本実施形態に係る硬質箔の製造方法を説明する。
本実施形態に係る硬質箔は、鋳造工程と、均質化熱処理工程と、熱間圧延工程と、冷間圧延工程と、箔圧延工程と、を含み、この順に行う。ただし、中間焼鈍は行わない。
以下、各工程について説明する。
[Method for producing aluminum alloy hard foil]
Next, the manufacturing method of the hard foil which concerns on this embodiment is demonstrated.
The hard foil according to the present embodiment includes a casting process, a homogenization heat treatment process, a hot rolling process, a cold rolling process, and a foil rolling process, and is performed in this order. However, intermediate annealing is not performed.
Hereinafter, each step will be described.
(鋳造工程)
鋳造工程は、前記の成分組成であるアルミニウム合金を定法により溶解、鋳造して、アルミニウム合金鋳塊を作製する工程である。
(Casting process)
The casting step is a step of producing an aluminum alloy ingot by melting and casting the aluminum alloy having the above-described component composition by a conventional method.
(均質化熱処理工程)
均質化熱処理工程は、アルミニウム合金鋳塊を均質化熱処理する工程である。均質化熱処理は、鋳塊に熱間圧延を実施するために施されるものである。
均質化熱処理の均熱温度が400℃未満では、熱間圧延が困難となるとともに、微細な金属間化合物が形成され難く適正な密度となり難い。一方、均熱温度が500℃を超えると、冷間圧延工程にて亜結晶粒組織の状態に留まり分断結晶粒が形成され難く、且つ分断結晶粒の平均結晶粒径が小さくならないため、500℃以下が好ましい。
(Homogenization heat treatment process)
The homogenization heat treatment step is a step of homogenizing heat treatment of the aluminum alloy ingot. The homogenization heat treatment is performed in order to perform hot rolling on the ingot.
When the soaking temperature of the homogenization heat treatment is less than 400 ° C., hot rolling becomes difficult, and it is difficult to form a fine intermetallic compound, and it is difficult to obtain an appropriate density. On the other hand, if the soaking temperature exceeds 500 ° C., it remains in the state of the subgrain structure in the cold rolling process, and it is difficult for the divided crystal grains to be formed, and the average crystal grain size of the divided crystal grains is not reduced. The following is preferred.
均質化熱処理の保持時間は短い方が好ましい。しかし、保持時間が2時間末満では、鋳塊の幅方向及び長さ方向の組織の均一性に欠けるとともに、微細な金属間化合物が形成され難く適正な密度となり難い。一方、保持時間が24時間を超えると、経済性の観点から好ましくないとともに、微細な金属間化合物が成長し、サイズが大きく且つ密度が減少してしまう。
したがって、均質化熱処理は、400〜500℃の均熱温度で2〜24時間保特することが好ましい。
なお、均質化熱処理の保持時間は、経済性の観点から20時間以下とするのが好ましく、鋳塊の幅方向及び長さ方向の組織の均一性をより向上させる観点から、4時間以上とするのが好ましい。
A shorter holding time of the homogenization heat treatment is preferable. However, if the holding time is less than 2 hours, the structure in the width direction and the length direction of the ingot is not uniform, and a fine intermetallic compound is hardly formed, and it is difficult to obtain an appropriate density. On the other hand, if the holding time exceeds 24 hours, it is not preferable from the viewpoint of economy, and a fine intermetallic compound grows, resulting in a large size and a reduced density.
Therefore, the homogenization heat treatment is preferably maintained at a soaking temperature of 400 to 500 ° C. for 2 to 24 hours.
The holding time of the homogenizing heat treatment is preferably 20 hours or less from the viewpoint of economy, and is 4 hours or more from the viewpoint of further improving the uniformity of the structure in the width direction and the length direction of the ingot. Is preferred.
(熱間圧延工程)
熱間圧延工程は、均質化熱処理したアルミニウム鋳塊を熱間圧延して熱間圧延板とする工程であり、熱間粗圧延及び熱間仕上げ圧延を含む。
熱間圧延の条件は特に限定されないが、例えば、開始温度が400〜500℃とし、終了温度を390〜440℃とする熱間粗圧延と、終了温度が300℃以上であって、板厚を3mm以下(好ましくは2.5mm以下)とする熱間仕上げ圧延と、を施すという条件とすればよい。
(Hot rolling process)
The hot rolling step is a step of hot rolling an aluminum ingot subjected to homogenization heat treatment to form a hot rolled plate, and includes hot rough rolling and hot finish rolling.
The conditions for hot rolling are not particularly limited. For example, hot rough rolling in which the start temperature is 400 to 500 ° C. and the end temperature is 390 to 440 ° C., the end temperature is 300 ° C. or more, and the plate thickness is What is necessary is just to make it the conditions of performing hot finish rolling which is 3 mm or less (preferably 2.5 mm or less).
(冷間圧延工程、箔圧延工程)
冷間圧延工程、及び箔圧延工程は、熱間圧延板を焼鈍することなく、冷間圧延、及び箔圧延を施して硬質箔とする工程である。そして、この冷間圧延工程、及び箔圧延工程では、熱間圧延板に大きな塑性ひずみを付与することによって、結晶粒界の高角化を促進し、分断結晶粒を増加させる。冷間圧延工程、及び箔圧延工程において施す圧延処理について、熱間圧延後の板厚をt0mmとし、箔圧延後(言い換えると重合圧延前)の箔厚をtmmとした場合、ln(t0/t)の値が4.0未満であると、材料中に十分な塑性ひずみを付与することができず、箔表面において所望の分断結晶の組織とすることができない。
したがって、冷間圧延工程、及び箔圧延工程において施す圧延処理は、熱間圧延後の板厚をt0mmとし、箔圧延後の箔厚をtmmとした場合、ln(t0/t)の値が4.0以上となる条件で行うのが好ましい。
(Cold rolling process, foil rolling process)
A cold rolling process and a foil rolling process are processes which give a cold rolling and foil rolling to hard foil, without annealing a hot rolled sheet. And in this cold rolling process and foil rolling process, by imparting a large plastic strain to the hot-rolled sheet, an increase in the angle of the crystal grain boundary is promoted and the divided crystal grains are increased. For the rolling process performed in the cold rolling process and the foil rolling process, when the sheet thickness after hot rolling is t 0 mm and the foil thickness after foil rolling (in other words, before polymerization rolling) is tmm, ln (t If the value of ( 0 / t) is less than 4.0, sufficient plastic strain cannot be imparted to the material, and the desired fractured crystal structure cannot be obtained on the foil surface.
Therefore, the rolling process performed in the cold rolling process and the foil rolling process is ln (t 0 / t) when the sheet thickness after hot rolling is t 0 mm and the foil thickness after foil rolling is tmm. It is preferable to carry out under the condition that the value is 4.0 or more.
(その他の工程)
本実施形態に係る硬質箔の製造方法は、以上に説明したとおりであるが、通常、箔圧延工程の後に重合圧延工程を設ける。
重合圧延工程は、箔圧延後の硬質箔を重合圧延する工程である。そして、重合圧延とは、箔圧延の最終パスにおいて箔を2枚重ねてロールに供給し、圧延するものである。
重合圧延の条件は特に規定されるものでなく、硬質箔が所望の箔厚になるまで圧延を行えばよい。重合圧延は、一例として、圧延率が30〜60%となる条件で行う。また、重合圧延後の箔厚は、一例として、5〜40μmである。
(Other processes)
Although the manufacturing method of the hard foil which concerns on this embodiment is as having demonstrated above, a superposition | polymerization rolling process is normally provided after a foil rolling process.
The polymerization rolling step is a step of polymerizing and rolling the hard foil after foil rolling. The superposition rolling is a method in which two foils are stacked and supplied to a roll and rolled in the final pass of the foil rolling.
The conditions for the polymerization rolling are not particularly limited, and the rolling may be performed until the hard foil has a desired foil thickness. For example, the polymerization rolling is performed under a condition that the rolling rate is 30 to 60%. Moreover, the foil thickness after superposition | polymerization rolling is 5-40 micrometers as an example.
さらに、本実施形態に係る硬質箔の製造を行うにあたり、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、他の工程を含めてもよい。例えば、鋳塊を面削する表面平滑化工程や、板や箔の表面の異物を除去する異物除去工程や、各工程で発生した不良品を除去する不良品除去工程等を含めてもよい。 Furthermore, when manufacturing the hard foil which concerns on this embodiment, in the range which does not have a bad influence on each said process, you may include another process between each process, or before and after. For example, a surface smoothing step for chamfering the ingot, a foreign matter removing step for removing foreign matter on the surface of the plate or foil, a defective product removing step for removing defective products generated in each step, and the like may be included.
また、前記各工程において、明示していない条件については、従来公知の条件を用いればよく、前記各工程での処理によって得られる効果を奏する限りにおいて、その条件を適宜変更できることは言うまでもない。 In addition, as for conditions that are not clearly shown in the respective steps, it is sufficient to use conventionally known conditions, and it is needless to say that the conditions can be appropriately changed as long as the effects obtained by the processing in the respective steps are exhibited.
次に、本発明に係る硬質箔について、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを比較して具体的に説明する。 Next, the hard foil according to the present invention will be specifically described by comparing an example satisfying the requirements of the present invention with a comparative example not satisfying the requirements of the present invention.
[供試材作製]
表1に示す組成のアルミニウム合金を溶解し、500mm厚に半連続鋳造にて鋳造して表1に示す組成の鋳塊とした。この鋳塊に面削を施した後、均質化熱処理(温度:表1に示す、時間:4hr)を施し、表1に示す厚さまで熱間圧延を実施した。その後、表1に示す加工率となるように冷間圧延、及び箔圧延を施し、供試材(硬質箔)を製造した。
なお、表1に「直通」と示しているものは中間焼鈍を施しておらず、これらの熱間圧延の終了温度は300〜330℃であった。一方、表1に「中鈍」と示しているものは冷間圧延の途中で中間焼鈍(420℃×4hr)を施しており、これらの熱間圧延の終了温度は270℃であった。そして、表1のln(t0/t)の「t0」については、「直通」と示しているものは熱間圧延終了時の板厚であり、「中鈍」と示しているものは中間焼鈍時の板厚であった。
[Sample material preparation]
An aluminum alloy having the composition shown in Table 1 was melted and cast into a 500 mm thickness by semi-continuous casting to obtain an ingot having the composition shown in Table 1. After chamfering the ingot, homogenization heat treatment (temperature: time shown in Table 1, time: 4 hr) was applied, and hot rolling was performed to the thickness shown in Table 1. Thereafter, cold rolling and foil rolling were performed so that the processing rates shown in Table 1 were obtained, and a test material (hard foil) was manufactured.
In addition, what was shown as "directly communicating" in Table 1 was not subjected to intermediate annealing, and the end temperature of these hot rolling was 300 to 330 ° C. On the other hand, what is indicated as “medium dull” in Table 1 was subjected to intermediate annealing (420 ° C. × 4 hr) during the cold rolling, and the end temperature of these hot rolling was 270 ° C. And for “t 0 ” of ln (t 0 / t) in Table 1, what is indicated as “directly” is the thickness at the end of hot rolling, and what is indicated as “medium blunt” It was the thickness at the time of intermediate annealing.
[測定項目、評価項目]
(傾角が15°を超える結晶粒の個数存在率)
傾角が15°を超える結晶粒の個数存在率の測定は、以下の手順で行った。
(1)供試材である箔を有機溶剤に浸漬することにより表面の油分を軽く除去した。
(2)日本電子株式会社製、ESCA(Electron Spectroscopy for Chemical Analysis、型式JPS−9010MC)を用い、加速電圧600V、電流13mAにて500秒間のイオンエッチングを箔の表面に施した。
(3)日本電子株式会社製、FESEM(Field Emission Scanning Electron Microscope、型式JSM−700F)を用い、加速電圧20KVの条件の下、株式会社TSLソリューションズ製の測定ソフトであるTSL−OIM(Orientation Imaging Microscope)−Data Collectionバージョン5にて箔表面を測定した。測定は、2000倍(0.1μmステップ、40μm×40μm)で行った。
(4)測定データを、株式会社TSLソリューションズ製の解析ソフトであるTSL−OIM(Orientation Imaging Microscope)−Analysisバージョン6.2にて解析を行った。
(5)まず、結晶粒の定義として、Grain Tolerance Angle:2°、ピクセル(ステップ):5と規定し、5ピクセル間で方位差が2°以下の場合は、それらのピクセルは同一結晶粒であるとした(4ピクセル以下はノイズと認識し、連続して5ピクセル以上が同一方位の場合、結晶粒と認識した)。
(6)MisorientationAngleのNumber Fractionの解析に当たっては、“Use only boundary between identified grains”モードにより、前記にて定義した結晶粒につき、傾角が2°を超え65°(Al結晶では65°が最大)以下までカウントし、傾角が15°を超える分断結晶粒の個数存在率(=分断結晶粒の個数/傾角が2°を超える全結晶粒の個数)を算出した。
[Measurement items and evaluation items]
(Number of crystal grains with an inclination angle exceeding 15 °)
The number of crystal grains having an inclination angle exceeding 15 ° was measured by the following procedure.
(1) The oil on the surface was lightly removed by immersing the foil as the test material in an organic solvent.
(2) The surface of the foil was subjected to ion etching for 500 seconds at an acceleration voltage of 600 V and a current of 13 mA using ESCA (Electron Spectroscopy for Chemical Analysis, model JPS-9010MC) manufactured by JEOL Ltd.
(3) TSL-OIM (Orientation Imaging Microscope), a measurement software made by TSL Solutions Inc., under the condition of an acceleration voltage of 20 KV using FESEM (Field Emission Scanning Electron Microscope, Model JSM-700F) manufactured by JEOL Ltd. ) -Foil surface was measured with Data Collection version 5. The measurement was performed at 2000 times (0.1 μm step, 40 μm × 40 μm).
(4) The measurement data was analyzed with TSL-OIM (Orientation Imaging Microscope) -Analysis version 6.2, which is analysis software manufactured by TSL Solutions.
(5) First, the definition of crystal grain is defined as Grain Tolerance Angle: 2 °, Pixel (Step): 5, and if the orientation difference between 5 pixels is 2 ° or less, these pixels are the same crystal grain. It was assumed that 4 pixels or less was recognized as noise, and when 5 pixels or more were consecutively in the same orientation, they were recognized as crystal grains.
(6) In the analysis of the Number Fraction of the Missientation Angle, in the “Use only boundary between identified grains” mode, the tilt angle exceeds 2 ° and is less than 65 ° (65 ° is the maximum for Al crystals) or less. The number existence ratio of the divided crystal grains having an inclination angle exceeding 15 ° (= number of divided crystal grains / number of all crystal grains having an inclination angle exceeding 2 °) was calculated.
(傾角が15°を超える結晶粒の平均結晶粒径)
前記の分断結晶粒の個数存在率の測定方法の(5)において、Grain Tolerance Angle: 15°として、傾角が15°以下である亜結晶粒組織を除外し、結晶粒解析ソフトにて、分断結晶粒の平均結晶粒面積(μm2)を求め、その平方根を平均結晶粒径(μm)とした。
(Average crystal grain size of crystal grains with an inclination angle exceeding 15 °)
In (5) of the method for measuring the number abundance of the divided crystal grains, Grain Tolerance Angle: 15 °, excluding the subgrain structure with an inclination angle of 15 ° or less, and using the crystal grain analysis software, The average crystal grain area (μm 2 ) of the grains was determined, and the square root was defined as the average crystal grain size (μm).
(引張強さ、及び伸び)
引張強さ、及び伸びの測定は、軽金属協会規格LIS AT5に準じてB型試験片を用いて実施した。すなわち、硬質箔である供試材から、引張方向が圧延方向と平行になるように15mm幅×約200mm長さの短冊型試験片を切り出し、チャック間距離100mmを標点距離として実施した。試験には、Instron社製 5965 デュアルコラム卓上型試験システム(荷重容量5kN)を用い1kNレンジにて試験を行い、付属ソフトであるBluehillにて測定・解析を行った。
(Tensile strength and elongation)
Tensile strength and elongation were measured using a B-type test piece in accordance with the Light Metal Association Standard LIS AT5. That is, a strip-shaped test piece having a width of about 15 mm and a length of about 200 mm was cut out from a test material that was a hard foil so that the tensile direction was parallel to the rolling direction, and the distance between chucks was set to 100 mm. In the test, a 5965 dual column tabletop test system (load capacity 5 kN) manufactured by Instron was used to perform the test in the 1 kN range, and the measurement and analysis were performed using Bluehill, which is included software.
(重合圧延:条件)
硬質箔である供試材を2枚重ねた状態で、表1の厚さになるように重合圧延を施した。
(Polymerization rolling: conditions)
In a state where two test materials that are hard foils were stacked, polymerization rolling was performed so that the thicknesses in Table 1 were obtained.
(重合圧延の圧延性:マット面粗度の評価)
前記した条件で重合圧延を施して得られた箔につき、幅方向のほぼ中央部から試験片をマット面粗度測定用に切出し、マット面粗度を圧延方向に平行に測定した。マット面粗度の測定は、株式会社小坂研究所製の表面粗さ測定機(サーフコーダSE−30D)を用い、触針装置部にPU−DJ2Sを用い、箔をシートサンプル台DA−41に貼り付けて行った。
なお、マット面粗度(JISB0601:1982に準拠した中心線平均粗さRa)の評価としては、0.30μm未満を合格とした。
(Rollability of polymerization rolling: mat surface roughness evaluation)
About the foil obtained by carrying out the polymerization rolling under the above-described conditions, a test piece was cut out from a substantially central portion in the width direction for measuring the mat surface roughness, and the mat surface roughness was measured in parallel with the rolling direction. The mat surface roughness was measured using a surface roughness measuring machine (Surfcoder SE-30D) manufactured by Kosaka Laboratory Ltd., PU-DJ2S was used for the stylus device, and the foil was placed on the sheet sample table DA-41. I pasted it.
In addition, as evaluation of mat surface roughness (centerline average roughness Ra based on JISB0601: 1982), less than 0.30 micrometer was set as the pass.
詳細な表面粗さ測定機の条件は以下のとおりである。なお、先端スキッドをワークに触れないように針のみで測定した。
送り速さ:0.1mm/s
カットオフ値λc:0.25mm
基準長さ(測定長さ):0.8mm
The conditions of the detailed surface roughness measuring machine are as follows. The tip skid was measured only with a needle so as not to touch the workpiece.
Feeding speed: 0.1mm / s
Cut-off value λc: 0.25 mm
Reference length (measured length): 0.8mm
(重合圧延の圧延性:ピンホール評価)
前記した条件で重合圧延を施して得られた箔を、暗室にてライトボックスのガラス板上に置き、ガラスの下から800ルクス以上の光を当て、目視にて、1m2当たりのピンホール数をカウントした。また、ピンホール数が100個/m2を超える場合は、0.316m角(0.1m2)当たりのピンホール数をカウントし10倍とした。
なお、ピンホール評価としては、50個/m2以下を合格とした。
(Rollability of superposition rolling: pinhole evaluation)
The foil obtained by performing the polymerization rolling under the above-mentioned conditions is placed on a glass plate of a light box in a dark room, irradiated with light of 800 lux or more from the bottom of the glass, and the number of pinholes per 1 m 2 visually. Counted. Further, when the number of pinholes exceeded 100 / m 2 , the number of pinholes per 0.316 m square (0.1 m 2 ) was counted and made 10 times.
In addition, as pinhole evaluation, 50 piece / m < 2 > or less was set as the pass.
(重合圧延の圧延性:総合評価)
前記した「マット面粗度の評価」、「ピンホール評価」の両方の項目について、合格基準に達したものを「○」と評価し、1つでも合格基準に達しなかったものを「×」と評価した。
(Rollability of polymerization rolling: comprehensive evaluation)
About both items of "evaluation of mat surface roughness" and "pinhole evaluation" described above, those that reached the acceptance criteria were evaluated as "○", and even those that did not meet the acceptance criteria even "x" It was evaluated.
アルミニウム合金の成分、及び、測定項目、評価項目の結果を表1に示す。 Table 1 shows the components of the aluminum alloy, the measurement items, and the results of the evaluation items.
[結果の検討]
供試材1〜4については、本発明の規定する要件を満たしていることから、マット面粗度の評価、ピンホール評価のいずれもが合格基準に到達した。
[Examination of results]
About the test materials 1-4, since the requirements which this invention prescribes | regulates are satisfied, all of evaluation of mat surface roughness and pinhole evaluation reached the acceptance standard.
一方、供試材5〜13については、本発明の規定する要件を満たしていないことから、以下の結果となった。
供試材5については、Feの含有量が少なく、且つ、均熱温度が高かったことから、分断結晶粒の個数存在率が少なくなるとともに、平均結晶粒径が大きくなってしまった。その結果、マット面粗度の評価、及びピンホール評価が合格基準に達せず、圧延性が「×」との結果となった。
供試材6については、Feの含有量が少なかったことから、分断結晶粒の平均結晶粒径が大きくなってしまった。その結果、マット面粗度の評価、及びピンホール評価が合格基準に達せず、圧延性が「×」との結果となった。
供試材7については、均熱温度が高く、且つ、冷間加工率(ln(t0/t))が小さかったために材料に大きなひずみを与えることができなかったことから、亜結晶粒組織が多く、分断結晶粒の個数存在率が少ない組織状態となるとともに、平均結晶粒径が大きくなってしまった。その結果、マット面粗度の評価、及びピンホール評価が合格基準に達せず、圧延性が「×」との結果となった。
On the other hand, about the test materials 5-13, since the requirements which this invention prescribes | regulates are not satisfy | filled, the following results were obtained.
Regarding the test material 5, since the Fe content was low and the soaking temperature was high, the number of fractional crystal grains existing decreased, and the average crystal grain size increased. As a result, the mat surface roughness evaluation and the pinhole evaluation did not reach the acceptance standard, and the rollability was “x”.
About the test material 6, since there was little content of Fe, the average crystal grain size of the parting crystal grain became large. As a result, the mat surface roughness evaluation and the pinhole evaluation did not reach the acceptance standard, and the rollability was “x”.
Since the soaking temperature was high and the cold working rate (ln (t 0 / t)) was small, the specimen 7 could not give a large strain to the material. As a result, the number of fractional crystal grains present in a small number, and the average crystal grain size was increased. As a result, the mat surface roughness evaluation and the pinhole evaluation did not reach the acceptance standard, and the rollability was “x”.
供試材8については、冷間加工率(ln(t0/t))が小さかったために材料に大きなひずみを与えることができなかったことから、分断結晶粒の個数存在率が少なくなるとともに、平均結晶粒径が大きくなってしまった。その結果、マット面粗度の評価、及びピンホール評価が合格基準に達せず、圧延性が「×」との結果となった。
供試材9については、均熱温度が高かったことから、分断結晶粒の個数存在率が少なくなるとともに、平均結晶粒径が大きくなってしまった。その結果、マット面粗度の評価、及びピンホール評価が合格基準に達せず、圧延性が「×」との結果となった。
供試材10については、均熱温度が高く、且つ、冷間加工率(ln(t0/t))が小さかったために材料に大きなひずみを与えることができなかったことから、亜結晶粒組織を主体とした組織状態となり、分断結晶粒の個数存在率は少なく、平均結晶粒径が大きくなってしまった。その結果、マット面粗度の評価、及びピンホール評価が合格基準に達せず、圧延性が「×」との結果となった。
供試材11については、均熱温度が高く、且つ、冷間加工率(ln(t0/t))が小さかったために材料に大きなひずみを与えることができなかったことから、亜結晶粒組織が多く、分断結晶粒の個数存在率が少ない組織状態となるとともに、平均結晶粒径が大きくなってしまった。その結果、マット面粗度の評価、及びピンホール評価が合格基準に達せず、圧延性が「×」との結果となった。
About the test material 8, since the cold working rate (ln (t 0 / t)) was small, it was not possible to give a large strain to the material. The average crystal grain size has increased. As a result, the mat surface roughness evaluation and the pinhole evaluation did not reach the acceptance standard, and the rollability was “x”.
As for the test material 9, since the soaking temperature was high, the number of fractional crystal grains was decreased, and the average crystal grain size was increased. As a result, the mat surface roughness evaluation and the pinhole evaluation did not reach the acceptance standard, and the rollability was “x”.
For the specimen 10, since the soaking temperature was high and the cold work rate (ln (t 0 / t)) was small, a large strain could not be given to the material. The number of fractional crystal grains is small and the average crystal grain size is large. As a result, the mat surface roughness evaluation and the pinhole evaluation did not reach the acceptance standard, and the rollability was “x”.
For the specimen 11, since the soaking temperature was high and the cold working rate (ln (t 0 / t)) was small, it was not possible to give a large strain to the material. As a result, the number of fractional crystal grains present in a small number, and the average crystal grain size was increased. As a result, the mat surface roughness evaluation and the pinhole evaluation did not reach the acceptance standard, and the rollability was “x”.
供試材12については、Feの含有量が多かったが、中間焼鈍を施したために、重合圧延を施すことはできた。しかしながら、均熱温度が高く、且つ、冷間加工率(ln(t0/t))が小さかったために材料に大きなひずみを与えることができなかったことから、分断結晶粒の個数存在率が少なくなってしまった。その結果、ピンホール評価が合格基準に達せず、圧延性が「×」との結果となった。
供試材13については、Feの含有量が多かったために、圧延割れが発生してしまい、各評価を実施できなかった。
About the test material 12, although there was much content of Fe, since intermediate annealing was given, superposition | polymerization rolling could be performed. However, since the soaking temperature was high and the cold working rate (ln (t 0 / t)) was small, the material could not be subjected to large strain, so the number of fractional crystal grains present was small. It is had. As a result, the pinhole evaluation did not reach the acceptance standard, and the rollability was “x”.
About the test material 13, since there was much content of Fe, the rolling crack generate | occur | produced and each evaluation was not able to be implemented.
以上の結果より、本発明に係るアルミニウム合金硬質箔は、重合圧延時において、箔にピンホールが発生してしまう、箔のマット面の粗度が大きくなってしまう、といった事態の発生を抑制可能な圧延性に優れた硬質箔であることが確認できた。 From the above results, the aluminum alloy hard foil according to the present invention can suppress the occurrence of a situation in which pinholes are generated in the foil and the roughness of the mat surface of the foil is increased during the polymerization rolling. It was confirmed that it was a hard foil excellent in rollability.
Claims (1)
表面において、傾角が15°を超える結晶粒の個数存在率は0.60以上であるとともに、前記結晶粒の平均結晶粒径は2.1μm以下であることを特徴とするアルミニウム合金硬質箔。 Fe: 0.70 to 1.40% by mass, the balance being Al and inevitable impurities,
An aluminum alloy hard foil characterized in that, on the surface, the number of crystal grains having an inclination angle of more than 15 ° is 0.60 or more, and the average crystal grain diameter of the crystal grains is 2.1 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015254779A JP6466316B2 (en) | 2015-12-25 | 2015-12-25 | Aluminum alloy hard foil and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015254779A JP6466316B2 (en) | 2015-12-25 | 2015-12-25 | Aluminum alloy hard foil and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017115224A true JP2017115224A (en) | 2017-06-29 |
JP6466316B2 JP6466316B2 (en) | 2019-02-06 |
Family
ID=59233446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015254779A Active JP6466316B2 (en) | 2015-12-25 | 2015-12-25 | Aluminum alloy hard foil and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6466316B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019008784A1 (en) * | 2017-07-06 | 2019-01-10 | 三菱アルミニウム株式会社 | Aluminium alloy foil and production method for aluminium alloy foil |
WO2019008783A1 (en) * | 2017-07-06 | 2019-01-10 | 三菱アルミニウム株式会社 | Aluminium alloy foil and production method for aluminium alloy foil |
CN115821177A (en) * | 2022-11-29 | 2023-03-21 | 武汉大学 | Strengthening and toughening method for precipitation strengthening type aluminum alloy and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002038233A (en) * | 2000-07-26 | 2002-02-06 | Kobe Steel Ltd | Material for aluminum alloy foil |
JP2002038234A (en) * | 2000-07-26 | 2002-02-06 | Kobe Steel Ltd | Material for aluminum alloy foil and production method of the same |
JP2013256700A (en) * | 2012-06-13 | 2013-12-26 | Uacj Corp | Aluminum alloy foil |
JP2017071855A (en) * | 2015-10-06 | 2017-04-13 | 株式会社神戸製鋼所 | Aluminum alloy foil and manufacturing method therefor |
-
2015
- 2015-12-25 JP JP2015254779A patent/JP6466316B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002038233A (en) * | 2000-07-26 | 2002-02-06 | Kobe Steel Ltd | Material for aluminum alloy foil |
JP2002038234A (en) * | 2000-07-26 | 2002-02-06 | Kobe Steel Ltd | Material for aluminum alloy foil and production method of the same |
JP2013256700A (en) * | 2012-06-13 | 2013-12-26 | Uacj Corp | Aluminum alloy foil |
JP2017071855A (en) * | 2015-10-06 | 2017-04-13 | 株式会社神戸製鋼所 | Aluminum alloy foil and manufacturing method therefor |
Non-Patent Citations (1)
Title |
---|
"リチウムイオン電池正極用高強度・高延性アルミニウム箔", 神戸製鋼技報, vol. 65, no. 2, JPN6018020072, September 2015 (2015-09-01), JP, pages 29 - 32, ISSN: 0003808314 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019008784A1 (en) * | 2017-07-06 | 2019-01-10 | 三菱アルミニウム株式会社 | Aluminium alloy foil and production method for aluminium alloy foil |
WO2019008783A1 (en) * | 2017-07-06 | 2019-01-10 | 三菱アルミニウム株式会社 | Aluminium alloy foil and production method for aluminium alloy foil |
JP2019014939A (en) * | 2017-07-06 | 2019-01-31 | 三菱アルミニウム株式会社 | Aluminum alloy foil and manufacturing method of aluminum alloy foil |
JP2019014940A (en) * | 2017-07-06 | 2019-01-31 | 三菱アルミニウム株式会社 | Aluminum alloy foil and manufacturing method of aluminum alloy foil |
CN110799658A (en) * | 2017-07-06 | 2020-02-14 | 三菱铝株式会社 | Aluminum alloy foil and method for producing aluminum alloy foil |
CN110832091A (en) * | 2017-07-06 | 2020-02-21 | 三菱铝株式会社 | Aluminum alloy foil and method for producing aluminum alloy foil |
KR20200027918A (en) * | 2017-07-06 | 2020-03-13 | 미츠비시 알루미늄 컴파니 리미티드 | Manufacturing method of aluminum alloy foil and aluminum alloy foil |
KR20200093436A (en) * | 2017-07-06 | 2020-08-05 | 미츠비시 알루미늄 컴파니 리미티드 | Manufacturing method of aluminum alloy foil and aluminum alloy foil |
CN110799658B (en) * | 2017-07-06 | 2022-01-11 | 三菱铝株式会社 | Aluminum alloy foil and method for producing aluminum alloy foil |
CN110832091B (en) * | 2017-07-06 | 2022-01-11 | 三菱铝株式会社 | Aluminum alloy foil and method for producing aluminum alloy foil |
US11268171B2 (en) | 2017-07-06 | 2022-03-08 | Mitsubishi Aluminum Co., Ltd. | Aluminum alloy foil, and method for producing aluminum alloy foil |
KR102454645B1 (en) | 2017-07-06 | 2022-10-14 | 엠에이 알루미늄 가부시키가이샤 | Aluminum alloy foil and manufacturing method of aluminum alloy foil |
KR102454648B1 (en) | 2017-07-06 | 2022-10-14 | 엠에이 알루미늄 가부시키가이샤 | Aluminum alloy foil and manufacturing method of aluminum alloy foil |
US11566311B2 (en) | 2017-07-06 | 2023-01-31 | Mitsubishi Aluminum Co., Ltd. | Aluminum alloy foil, and method for producing aluminum alloy foil |
CN115821177A (en) * | 2022-11-29 | 2023-03-21 | 武汉大学 | Strengthening and toughening method for precipitation strengthening type aluminum alloy and application thereof |
CN115821177B (en) * | 2022-11-29 | 2024-01-05 | 武汉大学 | Precipitation strengthening type aluminum alloy strengthening and toughening method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6466316B2 (en) | 2019-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111788320B (en) | Copper alloy for electronic and electrical equipment, copper alloy strip for electronic and electrical equipment, module for electronic and electrical equipment, terminal, and bus bar | |
JP6461248B2 (en) | Aluminum alloy foil and method for producing aluminum alloy foil | |
JP6461249B2 (en) | Aluminum alloy foil and method for producing aluminum alloy foil | |
WO2016161565A1 (en) | Formable magnesium based wrought alloys | |
JP6465338B2 (en) | Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy | |
KR20150046067A (en) | Aluminum alloy foil with excellent formability after laminating, process for producing same, and laminated foil obtained using said aluminum alloy foil | |
JP6119937B1 (en) | Aluminum alloy extruded material having anodized film with excellent appearance quality and method for producing the same | |
KR101943253B1 (en) | Titanium plates, plates for heat exchangers and separators for fuel cells | |
WO2008069049A1 (en) | Magnesium alloy material and process for production thereof | |
WO2019189534A1 (en) | Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar | |
CN114302975B (en) | Copper alloy for electronic and electrical equipment, copper alloy strip for electronic and electrical equipment, module for electronic and electrical equipment, terminal, and bus bar | |
EP4253583B1 (en) | Aluminum alloy foil | |
WO2012046768A1 (en) | Al-based alloy sputtering target and production method of same | |
JP6466316B2 (en) | Aluminum alloy hard foil and method for producing the same | |
WO2023181104A1 (en) | Titanium alloy material, titanium alloy wire material, titanium alloy powder material, and method for producing titanium alloy material | |
JP6792463B2 (en) | Aluminum alloy soft foil for molding | |
CN106795624A (en) | Aluminum sputtering target | |
JP2018168449A (en) | Aluminum alloy soft foil, manufacturing method therefor and jacket material for secondary battery | |
JP2007186747A (en) | Aluminum alloy material to be formed at high temperature and a high speed, manufacturing method therefor and method for manufacturing formed article from aluminum alloy | |
JP2017190480A (en) | Titanium sheet | |
Zimina et al. | The study of microstructure and mechanical properties of twin-roll cast AZ31 magnesium alloy after constrained groove pressing | |
KR20170045273A (en) | Cast titanium slab for use in hot rolling and unlikely to exhibit surface defects, and method for producing same | |
JP5315043B2 (en) | Magnesium alloy clad material and manufacturing method thereof | |
JP6592388B2 (en) | Aluminum alloy soft foil | |
KR20180004214A (en) | Al alloy sputtering target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190109 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6466316 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |