JP2017115176A - Hot rolling wire material for wire drawing - Google Patents

Hot rolling wire material for wire drawing Download PDF

Info

Publication number
JP2017115176A
JP2017115176A JP2015248964A JP2015248964A JP2017115176A JP 2017115176 A JP2017115176 A JP 2017115176A JP 2015248964 A JP2015248964 A JP 2015248964A JP 2015248964 A JP2015248964 A JP 2015248964A JP 2017115176 A JP2017115176 A JP 2017115176A
Authority
JP
Japan
Prior art keywords
wire
wire drawing
less
hot
pearlite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015248964A
Other languages
Japanese (ja)
Other versions
JP6648516B2 (en
Inventor
大藤 善弘
Yoshihiro Ofuji
善弘 大藤
大輔 平上
Daisuke Hiragami
大輔 平上
昌 坂本
Akira Sakamoto
昌 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015248964A priority Critical patent/JP6648516B2/en
Publication of JP2017115176A publication Critical patent/JP2017115176A/en
Application granted granted Critical
Publication of JP6648516B2 publication Critical patent/JP6648516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hot rolling wire material for wire drawing suitable for applications capable of manufacturing an ultra fine steel wire excellent in strength and durability without conducting a patenting treatment by using a hot rolled wire material as a raw material.SOLUTION: There is provided a hot rolling wire material for wire drawing containing, by mass%, C:0.3 to 0.5%, Si:0.1 to 1.0%, Mn:0.3 to 1.0%, Cr:0.25 to 0.7%, Mn+2Cr:0.90 to 1.8% and the balance Fe with inevitable impurities with Al, N, P and S in the impurities limited to predetermined ranges, 70% of which consists a pearlite structure and having average cementite thickness t in the pearlite structure calculated by the formula (1) of 15 to 40 nm, maximum particle diameter of TiN in measurement area of 125 mmof less than 15 μm and diameter of 4.0 to 6.0 mm. t=average pearlite lamellar spacing×{100/(100-volume fraction of proeutectoid ferrite)}×C content×0.153 Formula (1).SELECTED DRAWING: None

Description

本発明は、熱間圧延線材を素材として、強度、延性に優れた極細鋼線を製造する際に、パテンティング処理を施すこと無しに製造できる用途に好適な伸線加工用熱間圧延線材に関するものである。   The present invention relates to a hot-rolled wire for wire drawing suitable for applications that can be produced without performing a patenting process when producing an ultrafine steel wire excellent in strength and ductility using a hot-rolled wire as a raw material. Is.

自動車のラジアルタイヤや各種のベルト、ホースの補強材として用いられるスチールコードあるいはソーイングワイヤ等として用いられる細径高強度鋼線は、一般に、熱間圧延後に調整冷却した線径(直径)が5〜6mmの鋼線材(以降「鋼線材」を単に「線材」と称する)を一次伸線加工して線径を3〜4mmとなし、続いて、1次パテンティング処理を施してから二次伸線加工により線径を1〜2mmとし、更に2次パテンティング処理とブラスメッキとを施してから最終湿式伸線加工によって線径を0.1〜0.4mmとする工程を経て製造されている。そして、このようにして製造された細径高強度鋼線(極細鋼線)は、例えば撚り加工により複数本が撚り合わされて“撚り鋼線”とされ、スチールコード等となる。   In general, a thin high-strength steel wire used as a steel cord or sewing wire used as a reinforcing material for a radial tire, various belts, or a hose of an automobile has a wire diameter (diameter) of 5 to 5 adjusted and cooled after hot rolling. 6 mm steel wire (hereinafter referred to as “steel wire” is simply referred to as “wire”) is subjected to primary wire drawing to a wire diameter of 3 to 4 mm, followed by primary patenting and then secondary wire drawing. It is manufactured through a process in which the wire diameter is set to 1 to 2 mm by processing, further subjected to secondary patenting treatment and brass plating, and then the wire diameter is set to 0.1 to 0.4 mm by final wet drawing. The thin high-strength steel wire (extra fine steel wire) manufactured in this way is twisted into a “twisted steel wire” by, for example, twisting to form a steel cord or the like.

なおここで、パテンティング処理とは、良く知られているように、オーステナイト温度領域に加熱して組織全体をオーステナイト組織とした後、A変態点以下の温度に保持された鉛浴、流動層などの中に浸漬することによって、パーライト組織が主体となる温度域まで急冷し、その温度域で所定の時間、保定する処理である。 Incidentally, where as the patenting process is well known, after the entire organization is heated to the austenite temperature region and austenite structure, lead bath maintained at a temperature below the A 1 transformation point, the fluidized bed In such a process, the substrate is rapidly cooled to a temperature range mainly composed of a pearlite structure, and maintained for a predetermined time in the temperature range.

製造コストの低減、およびCO削減の観点から、このパテンティング処理の回数を減らす要望が強く、従来2回行われていたパテンティング処理を1回に減らす技術は、既に広く実施されている。 From the viewpoint of reducing manufacturing costs and CO 2 reduction, there is a strong demand for reducing the number of patenting processes, and a technique for reducing the patenting process that has been performed twice in the past to one time has already been widely implemented.

近年、このパテンティング処理を0回にする要望が産業界から出されている。しかしながら、直径5〜6mmの鋼線材を途中に熱処理を行うことなしに、直径0.1〜0.4mmまで伸線すると、途中で断線が頻発したり、たとえ伸線できたとしても、延性不足のために、その後の撚り線時に断線が頻発する場合が多い。   In recent years, there has been a demand from the industry to make this patenting process zero. However, if a steel wire having a diameter of 5 to 6 mm is drawn to a diameter of 0.1 to 0.4 mm without performing heat treatment in the middle, even if breakage occurs frequently or even if the wire can be drawn, the ductility is insufficient. For this reason, breakage often occurs during the subsequent stranded wire.

そのため、熱間圧延線材にパテンティング処理を含めた熱処理を施すことなく、スチールコードが製造できる伸線加工用熱間圧延線材が強く望まれるようになった。   Therefore, there has been a strong demand for a hot-rolled wire for wire drawing that can produce a steel cord without subjecting the hot-rolled wire to heat treatment including patenting.

上記要望に応えるべく、例えば以下に示す特許文献1,2に記載の技術が提案されている。   In order to meet the above demand, for example, techniques described in Patent Documents 1 and 2 shown below have been proposed.

特許文献1には、C:0.2〜0.6%、B:0.0003〜0.01%、などを含み、パーライト面積率、初析フェライト量、ラメラセメンタイトの形態を特徴とする高強度鋼線用線材が開示されている。しかしながら、ラメラセメンタイトの厚さについて配慮していないために、伸線時や撚り線時の断線を、安定して抑制する手段としては満足できるものではなかった。   Patent Document 1 includes C: 0.2 to 0.6%, B: 0.0003 to 0.01%, and the like, and is characterized by a pearlite area ratio, proeutectoid ferrite content, and lamellar cementite morphology. A wire rod for a strength steel wire is disclosed. However, since the thickness of the lamellar cementite is not taken into consideration, it was not satisfactory as a means for stably suppressing disconnection during wire drawing or stranded wire.

また特許文献2には、C:0.35〜0.9%、などを含み、初析フェライトの面積率、および伸線後の引張強さを特徴とするゴム補強用鋼線の製造方法が開示されている。しかしながら、特許文献2の実施例をみると、伸線途中にブルーイングと呼ばれる熱処理を行っており、伸線されて形成された伸長ラメラ組織が分断されるため、伸線後に所定の強度を得にくく、延性も劣化するという問題があった。   Patent Document 2 includes a method for producing a steel wire for rubber reinforcement including C: 0.35 to 0.9%, etc., characterized by the area ratio of pro-eutectoid ferrite and the tensile strength after wire drawing. It is disclosed. However, in the example of Patent Document 2, a heat treatment called bluing is performed in the middle of wire drawing, and the stretched lamella structure formed by drawing is divided, so that a predetermined strength is obtained after wire drawing. There was a problem that it was difficult and the ductility deteriorated.

特開2014−55316号公報JP 2014-55316 A 特開平9−49018号公報JP-A-9-49018

本発明は以上の事情を背景としてなされたもので、スチールコードやソーイングワイヤ等の製造素材として好適で、且つこれらを製造する際にパテンティング処理を施すこと無しに製造できる用途に好適で、引張強さが例えば3000MPa以上の高強度を有しかつ延性に優れ、しかも安定して製造し得る伸線加工用熱間圧延線材を提供することを課題としている。   The present invention has been made against the background of the above circumstances, and is suitable as a production material for steel cords, sawing wires, etc., and suitable for applications that can be produced without performing patenting treatment when producing them. An object of the present invention is to provide a hot-rolled wire rod for wire drawing that has a high strength of, for example, 3000 MPa or more, is excellent in ductility, and can be stably manufactured.

本発明者らは、上記課題を解決すべく、まず鋼線の化学組成、ミクロ組織、介在物が、伸線加工時の断線、および伸線加工後の引張強さと延性に及ぼす影響について調査・研究を重ね、その結果を仔細に解析して検討したところ、次のような知見を得ることができた。   In order to solve the above problems, the present inventors first investigated the influence of the chemical composition, microstructure, and inclusions of the steel wire on wire breakage during wire drawing, and tensile strength and ductility after wire drawing. After repeated research and careful analysis of the results, the following findings were obtained.

a)伸線加工後の延性を向上させるためには、C量を低減し、Crを添加することが有効である。
b)熱間圧延線材段階でのパーライト組織中のセメンタイトが厚いと、伸線加工中に断線しやすく、また伸線加工後の延性が低下する。パーライト組織中のセメンタイトが薄すぎると、結果的にパーライトラメラ間隔が小さくなり過ぎて、引張強さが過度に上昇するため、伸線加工中に断線しやすくなる。
c)熱間圧延線材で、安定して適切なセメンタイト厚さのパーライト組織を得るためには、仕上げ圧延後の相変態が狙いの温度域で安定して生じる必要があり、そのためにはMn量とCr量を適切に含有する必要があり、Crの影響度合いはMnの2倍程度あること。
d)不可避不純物としてのAl量を適切に管理した場合、断線時の起点となる介在物はTiNであること。そのため、TiNの最大粒径を小さくすれば、断線を防止できること。
a) In order to improve the ductility after wire drawing, it is effective to reduce the amount of C and add Cr.
b) When the cementite in the pearlite structure in the hot-rolled wire rod stage is thick, wire breakage tends to occur during wire drawing, and ductility after wire drawing decreases. If the cementite in the pearlite structure is too thin, the pearlite lamella spacing will be too small as a result, and the tensile strength will increase excessively, so that the wire will be easily broken during wire drawing.
c) In order to obtain a pearlite structure having an appropriate cementite thickness stably with a hot-rolled wire, it is necessary that the phase transformation after finish rolling occurs stably in the target temperature range, and for that purpose, the amount of Mn It is necessary to contain the Cr content appropriately, and the degree of influence of Cr should be about twice that of Mn.
d) When the amount of Al as an inevitable impurity is appropriately controlled, the inclusion that becomes the starting point at the time of disconnection is TiN. Therefore, if the maximum particle size of TiN is reduced, disconnection can be prevented.

これらのa)〜d)の知見に基づいてさらに詳細な実験・研究を重ねた結果、鋼の合金元素及び不純物元素の量を適切に調整もしくは規制すると同時に、パーライトを主体とする金属組織の条件、とりわけ、パーライト中のセメンタイトの平均厚さ、及びTiNの最大粒径を、それぞれ適切な範囲内に調整することによって、前記課題を解決して、パテンティング処理を施すこと無しに、伸線後の引張強さが例えば3000MPa以上の高強度を有しかつ延性に優れた、しかもそのような優れた性能を確保しながら量産工程でも安定して製造し得ることを見出し、本発明をなすに至った。   As a result of further detailed experiments and research based on the findings of a) to d), the amount of alloying elements and impurity elements of steel is appropriately adjusted or regulated, and at the same time, the conditions of the metal structure mainly composed of pearlite. In particular, by adjusting the average thickness of cementite in pearlite and the maximum particle size of TiN within appropriate ranges, the above-mentioned problems can be solved without applying a patenting treatment. Has been found to have a high tensile strength of, for example, 3000 MPa or more and excellent ductility, and can be stably manufactured even in a mass production process while ensuring such excellent performance. It was.

(1) 質量%で、
C:0.3〜0.5%,
Si:0.1〜1.0%,
Mn:0.3〜1.0%,
Cr:0.25〜0.70%,
Mn+2Cr:0.90〜1.8%
を含有すると共に残部がFe及び不可避不純物から成り、かつ不純物中のAl,Ti,N,P,S及びOがそれぞれ
Al:0.002%以下,
Ti:0.002%以下,
N:0.005%以下,
P:0.02%以下,
S:0.01%以下,
O:0.003%以下
であり、
また金属組織として、体積率で70%以上がパーライト組織から成り、式(1)から求まる前記パーライト組織中の平均セメンタイト厚さtが15〜40nmであり、さらに測定面積125mm中でのTiNの最大粒径が15μm未満であることを特徴とする直径4.0〜6.0mmの伸線加工用熱間圧延線材。
t=平均パーライトラメラ間隔(nm)×{100/(100−初析フェライトの体積率(%))}×C含有量(%)×0.153 ・・・式(1)
(2) 更に、質量%で、
Mo:0.02〜0.20%、B:0.0003〜0.0030%のいずれか一方または両方を含有することを特徴とする、(1)に記載の伸線加工用熱間圧延線材。
(1) In mass%,
C: 0.3 to 0.5%,
Si: 0.1 to 1.0%,
Mn: 0.3 to 1.0%,
Cr: 0.25 to 0.70%,
Mn + 2Cr: 0.90 to 1.8%
And the balance consists of Fe and inevitable impurities, and Al, Ti, N, P, S and O in the impurities are each Al: 0.002% or less,
Ti: 0.002% or less,
N: 0.005% or less,
P: 0.02% or less,
S: 0.01% or less,
O: 0.003% or less,
In addition, as a metal structure, 70% or more by volume ratio is composed of a pearlite structure, the average cementite thickness t in the pearlite structure obtained from the formula (1) is 15 to 40 nm, and TiN in a measurement area of 125 mm 2 A hot rolled wire rod for wire drawing having a diameter of 4.0 to 6.0 mm, wherein the maximum particle size is less than 15 μm.
t = average pearlite lamella spacing (nm) × {100 / (100-volume fraction of pro-eutectoid ferrite (%))} × C content (%) × 0.153 (1)
(2) Furthermore, in mass%,
The hot-rolled wire rod for wire drawing according to (1), characterized by containing any one or both of Mo: 0.02 to 0.20% and B: 0.0003 to 0.0030% .

本発明によれば、パテンティング処理を施すこと無しに、引張強さが例えば3000MPa以上の高強度を有しかつ延性に優れたスチールコード用やソーイングワイヤ用等を、高い生産性の下で安定して製造することも可能になるなど、産業上極めて有用な効果がもたらされる。   According to the present invention, it is possible to stably use steel cords and sawing wires having high tensile strength of, for example, 3000 MPa or more and excellent ductility without high patentability. Thus, it is possible to produce the same, which brings about extremely useful effects in the industry.

本発明による伸線加工用熱間圧延線材の化学成分組成及び金属組織の条件についてより詳細に説明する。   The chemical composition of the hot-rolled wire rod for wire drawing according to the present invention and the conditions of the metal structure will be described in more detail.

<成分組成>
C: Cは鋼材の引張強度を高めるために有効な成分である。しかし、その含有量が0.3%未満の場合には、例えば引張強さで3000MPaといった高い強度を安定して最終製品に付与させることが困難である。さらに、高強度の最終製品を安定して得るためにはC含有量を高めることが有効であり、3200MPa以上を得るためにはC含有量を0.35%以上にすることが望ましい。一方、C含有量が多すぎれば、鋼材が硬質化して伸線時の断線や延性の低下を招く。特に、C含有量が0.5%を超えれば、その影響が顕著になり、安定した量産が工業的に困難になる。そこで、C含有量は0.3〜0.5%の範囲内と定めた。望ましくは、0.35%以上、0.45%以下とする。
<Ingredient composition>
C: C is an effective component for increasing the tensile strength of steel. However, when the content is less than 0.3%, it is difficult to stably impart a high strength such as a tensile strength of 3000 MPa to the final product. Furthermore, it is effective to increase the C content in order to stably obtain a high-strength final product, and in order to obtain 3200 MPa or more, the C content is preferably set to 0.35% or more. On the other hand, if the C content is too large, the steel material is hardened, leading to wire breakage and ductility reduction during wire drawing. In particular, if the C content exceeds 0.5%, the influence becomes remarkable, and stable mass production becomes industrially difficult. Therefore, the C content is determined to be within a range of 0.3 to 0.5%. Desirably, it is 0.35% or more and 0.45% or less.

Si: Siも鋼材の強度を高めるのに有効な成分であり、また脱酸剤としても必要な成分である。しかし、Siの含有量が0.1%未満ではSiの添加効果が十分でなく、一方、1.0%を超えて含有させれば伸線後の延性が低下する。そこで、Siの含有量は0.1〜1.0%の範囲内と定めた。Siは鋼材の焼入れ性や初析セメンタイトの生成にも影響する元素であることから、鋼線材に安定して所望のミクロ組織を確保するとの観点から、Si含有量は0.2〜0.5%の範囲内に調整することがより望ましい。   Si: Si is also an effective component for increasing the strength of the steel material, and is also a necessary component as a deoxidizer. However, if the Si content is less than 0.1%, the effect of adding Si is not sufficient. On the other hand, if the Si content exceeds 1.0%, ductility after wire drawing decreases. Therefore, the Si content is determined to be in the range of 0.1 to 1.0%. Since Si is an element that also affects the hardenability of the steel material and the formation of proeutectoid cementite, the Si content is 0.2 to 0.5 from the viewpoint of ensuring a desired microstructure stably in the steel wire material. It is more desirable to adjust within the range of%.

Mn: Mnは、オーステナイトからの相変態時間に影響し、熱間圧延線材で安定したパーライト組織を得るために有効な成分である。しかし、Mn含有量が0.3%未満では前記作用による効果が十分でない。一方、Mnは偏析しやすい元素であり、1.0%を超えて含有させれば、線材の特に中心部にMnが偏析し、その偏析部にマルテンサイトが生成されて、伸線時に断線しやすくなってしまう。そこで、Mn含有量は0.3〜1.0%の範囲内と定めた。   Mn: Mn affects the phase transformation time from austenite and is an effective component for obtaining a stable pearlite structure with a hot-rolled wire. However, if the Mn content is less than 0.3%, the effect by the above action is not sufficient. On the other hand, Mn is an element that is easily segregated. If it is contained in an amount exceeding 1.0%, Mn is segregated particularly in the central portion of the wire, martensite is generated in the segregated portion, and breaks during wire drawing. It becomes easy. Therefore, the Mn content is determined to be in the range of 0.3 to 1.0%.

Cr: Crはオーステナイトからの相変態時間に大きく影響し、熱間圧延線材で安定したパーライト組織を得るために有効であると同時に、パーライトのラメラ間隔を小さくして最終製品の強度と延性を高める作用がある。そして、最終製品の引張強さで3000MPa以上で優れた延性を安定して得るためには、0.25%以上のCr含有量が必要である。しかし、Cr含有量が0.70%を超えて含有させれば、線材の特に中心部にCrが偏析し、その偏析部にマルテンサイトが生成されて、伸線時に断線しやすくなってしまう。そこで、Cr含有量は0.25〜0.70%の範囲内と定めた。望ましくは、Cr含有量は0.50%以下とする。   Cr: Cr greatly affects the phase transformation time from austenite and is effective for obtaining a stable pearlite structure with hot-rolled wire, and at the same time reduces the lamella spacing of pearlite and increases the strength and ductility of the final product. There is an effect. In order to stably obtain excellent ductility when the final product has a tensile strength of 3000 MPa or more, a Cr content of 0.25% or more is required. However, if the Cr content exceeds 0.70%, Cr is segregated particularly in the central portion of the wire, martensite is generated in the segregated portion, and breakage is likely to occur during wire drawing. Therefore, the Cr content is determined to be in the range of 0.25 to 0.70%. Desirably, the Cr content is 0.50% or less.

Mn+2Cr:上述したように、MnとCrはオーステナイトからの相変態時間に大きく影響し、熱間圧延線材で安定したパーライト組織を得るために有効なため、パーライト組織中のセメンタイト厚さを制御することにも有効である。またCrの効果はMnの2倍程度ある。Mn+2Crが0.90%を下回ると、熱間圧延線材でのパーライト組織中のセメンタイトが厚くなり、本発明で規定する範囲に安定して量産することができない。より安定して量産するためには、1.00%以上が好ましい。一方、上述したように、Mn,Crともに線材の特に中心部に偏析しやすく、その偏析部にマルテンサイトが生成されて、伸線時に断線しやすくなってしまう。そこで、Mn+2Crは0.90〜1.8%の範囲内と定めた。望ましくは、1.00%以上であり、より望ましくは1.10%以上である。   Mn + 2Cr: As described above, Mn and Cr greatly affect the phase transformation time from austenite, and are effective in obtaining a stable pearlite structure with a hot-rolled wire, so control the cementite thickness in the pearlite structure. Also effective. The effect of Cr is about twice that of Mn. When Mn + 2Cr is less than 0.90%, the cementite in the pearlite structure in the hot-rolled wire becomes thick and cannot be stably mass-produced within the range specified in the present invention. In order to mass-produce more stably, 1.00% or more is preferable. On the other hand, as described above, both Mn and Cr are likely to segregate particularly in the central portion of the wire, and martensite is generated in the segregated portion, and breakage is likely to occur during wire drawing. Therefore, Mn + 2Cr is determined to be in the range of 0.90 to 1.8%. Desirably, it is 1.00% or more, and more desirably 1.10% or more.

以上の各元素に対する残部は、基本的には不可避的不純物及びFeとすればよいが、本発明においては、更に、不純物であるAl、Ti、N、P、S、Oの含有量を下記の通りに規制する。   The balance with respect to each of the above elements may basically be inevitable impurities and Fe. However, in the present invention, the contents of impurities Al, Ti, N, P, S, and O are further set as follows. Regulate on the street.

Al: AlはAlを主成分とする酸化物系介在物を形成して伸線加工性を低下させる元素である。特に、Al含有量が0.002%を超えれば、前記酸化物系介在物が粗大化して伸線加工中に断線が多発し、伸線加工性の低下が著しくなる。そこで、Al含有量は0.002%以下に規制することとした。 Al: Al is an element that forms oxide inclusions containing Al 2 O 3 as a main component and reduces wire drawing workability. In particular, if the Al content exceeds 0.002%, the oxide inclusions are coarsened, and breakage occurs frequently during wire drawing, resulting in a significant reduction in wire drawing workability. Therefore, the Al content is restricted to 0.002% or less.

Ti: Tiは、Nを含有しているとTiNを形成しやすく、TiNは非常に硬質で、熱間圧延や伸線加工で変形しないため、伸線加工中の断線起点となりやすい。製造方法に配慮しても、Ti含有量が0.002%を超えれば、測定面積125mm中での最大のTiN粒径が15μm未満にすることが難しく、伸線加工中に断線しやすくなる。そこで、Ti含有量は0.002%以下に規制することとした。好ましくは、0.001%以下である。 Ti: When Ti contains N, TiN is easily formed, and TiN is very hard and is not deformed by hot rolling or wire drawing, so it is likely to become a disconnection starting point during wire drawing. Even if the manufacturing method is taken into consideration, if the Ti content exceeds 0.002%, it is difficult to make the maximum TiN particle size in the measurement area 125 mm 2 less than 15 μm, and breakage is likely to occur during wire drawing. . Therefore, the Ti content is limited to 0.002% or less. Preferably, it is 0.001% or less.

N: Nは、Tiを含有しているとTiNを形成しやすく、TiNは非常に硬質で、熱間圧延や伸線加工で変形しないため、伸線加工中の断線起点となりやすい。製造方法に配慮しても、N含有量が0.005%を超えれば、測定面積125mm中での最大のTiN粒径が15μm未満にすることが難しく、伸線加工中に断線しやすくなる。そこで、N含有量は0.005%以下に規制することとした。好ましくは、0.004%以下である。 N: If N contains Ti, TiN is likely to be formed, and TiN is very hard and is not deformed by hot rolling or wire drawing, so it is likely to be a disconnection starting point during wire drawing. Even if the manufacturing method is taken into consideration, if the N content exceeds 0.005%, it is difficult to make the maximum TiN particle size in the measurement area 125 mm 2 less than 15 μm, and breakage is likely to occur during wire drawing. . Therefore, the N content is regulated to 0.005% or less. Preferably, it is 0.004% or less.

P: Pは、粒界に偏析して伸線加工性を低下させてしまう元素である。特に、P含有量が0.02%を超えれば伸線加工性の低下が著しくなる。そこで、P含有量は0.02%以下に規制することとした。   P: P is an element that segregates at the grain boundary and lowers the wire drawing workability. In particular, if the P content exceeds 0.02%, the wire drawing workability is significantly lowered. Therefore, the P content is restricted to 0.02% or less.

S: Sも伸線加工性を低下させてしまう元素である。そして、S含有量が特に0.01%を超えれば伸線加工性の低下が著しくなることから、S含有量は0.01%以下に規制することとした。   S: S is also an element that reduces wire drawing workability. And when S content exceeds 0.01% especially, since the fall of wire drawing workability will become remarkably, we decided to regulate S content to 0.01% or less.

O: Oは酸化物を形成しやすい元素であり、Alが存在とすると、硬質なAlを主成分とする酸化物系介在物を形成して伸線加工性を低下させる元素である。特に、O含有量が0.003%を超えれば、Al含有量を本発明の範囲内にしても前記酸化物系介在物が粗大化して伸線加工中に断線が多発し、伸線加工性の低下が著しくなる。そこで、O含有量は0.003%以下に規制することとした。 O: O is an element that easily forms an oxide, and when Al is present, it is an element that forms a hard oxide-based inclusion mainly composed of Al 2 O 3 and reduces wire drawing workability. . In particular, if the O content exceeds 0.003%, even if the Al content is within the range of the present invention, the oxide inclusions are coarsened and wire breakage occurs frequently during wire drawing, and wire drawing workability is increased. The reduction of the becomes remarkable. Therefore, the O content is limited to 0.003% or less.

更に、本発明においては、上記で説明した成分に加え、Mo:0.02〜0.20%またはB:0.0003〜0.0030%のいずれか一方または両方を含有させてもよい。   Furthermore, in this invention, in addition to the component demonstrated above, you may contain any one or both of Mo: 0.02-0.20% or B: 0.0003-0.0030%.

Mo: Moの添加は任意であるが、Moを添加すれば、伸線後の引張強さと延性のバランスを高める効果を、より安定して発揮することができる。この効果を得るには、Moの含有量を0.02%以上にすることが好ましい。しかし、Moの含有量が0.20%を超えれば、マルテンサイト組織が生成しやすくなり、伸線加工性が低下する場合がある。したがって、Moを積極的に添加する場合のMo含有量は0.02〜0.20%の範囲内が好ましい。より好ましくはMo含有量は0.10%以下であり、一方伸線材の引張強さと延性のバランスを得る観点からは、Mo含有量を0.04%以上とすることがより好ましい。   Mo: The addition of Mo is optional, but if Mo is added, the effect of increasing the balance between tensile strength and ductility after wire drawing can be more stably exhibited. In order to obtain this effect, the Mo content is preferably 0.02% or more. However, if the Mo content exceeds 0.20%, a martensite structure is likely to be generated, and the wire drawing workability may be reduced. Therefore, the Mo content when Mo is positively added is preferably in the range of 0.02 to 0.20%. More preferably, the Mo content is 0.10% or less. On the other hand, from the viewpoint of obtaining a balance between the tensile strength and ductility of the wire drawing material, the Mo content is more preferably 0.04% or more.

B: Bの添加は任意であるが、Bを添加すれば、伸線後の引張強さと延性のバランスを高める効果を、より安定して発揮することができる。この効果を得るには、Bの含有量を0.0003%以上にすることが好ましい。しかし、Bの含有量が0.0030%を超えれば、粗大なBNが生成しやすくなり、伸線加工性が低下する場合がある。したがって、Bを積極的に添加する場合のB含有量は0.0003〜0.0030%の範囲内が好ましい。より好ましくはB含有量は0.0020%以下であり、一方伸線材の引張強さと延性のバランスを得る観点からは、B含有量を0.0005%以上とすることがより好ましい。   B: Addition of B is optional, but if B is added, the effect of increasing the balance between tensile strength and ductility after wire drawing can be more stably exhibited. In order to obtain this effect, the B content is preferably 0.0003% or more. However, if the B content exceeds 0.0030%, coarse BN is likely to be generated, and the wire drawing workability may be lowered. Therefore, the B content when B is positively added is preferably in the range of 0.0003 to 0.0030%. More preferably, the B content is 0.0020% or less. On the other hand, from the viewpoint of obtaining a balance between the tensile strength and ductility of the wire drawing material, the B content is more preferably 0.0005% or more.

<パーライト組織の体積率>
パテンティング処理を行うことなく、最終製品の引張強さで3000MPa以上の高強度、および優れた延性を安定して確保するためには、熱間圧延線材のパーライト組織の体積率を70%以上にする必要がある。残部の組織は初析フェライト、ベイナイトのいずれか1種、又は2種以上である。パーライト組織の体積率は80%以上にすることがより好ましい。
<Volume ratio of pearlite structure>
In order to stably secure a high tensile strength of 3000 MPa or more and excellent ductility without performing a patenting treatment, the volume ratio of the pearlite structure of the hot-rolled wire rod is set to 70% or more. There is a need to. The remaining structure is one or more of pro-eutectoid ferrite and bainite. The volume ratio of the pearlite structure is more preferably 80% or more.

<パーライト組織中のセメンタイトの平均厚さ>
パテンティング処理を行うことなく、最終製品の引張強さで3000MPa以上の高強度を安定して確保し、しかも優れた延性を得て、さらに伸線中の断線を防止するためには、熱間圧延線材のパーライト組織中のセメンタイトの平均厚さを40nm以下にする必要がある。一方、パーライト組織中のセメンタイトの平均厚さが15nm未満になれば、伸線加工後の強度が高くなり過ぎるために、延性が低下し、また伸線中の断線が生じやすくなる。そこで、パーライト組織中のセメンタイトの平均厚さを15〜40nmの範囲内とした。なおパーライト組織中のセメンタイトの平均厚さは、好ましくは15〜35nmの範囲内、さらに好ましくは20〜35nmの範囲とする。
<Average thickness of cementite in pearlite structure>
In order to stably secure a high strength of 3000 MPa or higher in the final product without performing a patenting process, to obtain excellent ductility, and to prevent disconnection during wire drawing, The average thickness of cementite in the pearlite structure of the rolled wire must be 40 nm or less. On the other hand, if the average thickness of cementite in the pearlite structure is less than 15 nm, the strength after wire drawing becomes too high, so that the ductility is lowered and breakage during wire drawing tends to occur. Therefore, the average thickness of cementite in the pearlite structure was set in the range of 15 to 40 nm. The average thickness of cementite in the pearlite structure is preferably in the range of 15 to 35 nm, more preferably in the range of 20 to 35 nm.

<TiNの最大粒径>
Alが0.002%以下、Oが0.003%以下の場合には、断線の起点にTiN以外の介在物、すなわち硫化物や酸化物は観察されなかった。そして測定面積125mm中での最大のTiN粒径が15μm以上の場合には、他の要件を満たしていても、伸線中に断線が発生した。そこで、測定面積125mm中での最大のTiN粒径が15μm未満とした。なお測定面積125mm中での最大のTiN粒径は、好ましくは、12μm以下、より好ましくは10μm以下とする。
<Maximum particle size of TiN>
When Al was 0.002% or less and O was 0.003% or less, inclusions other than TiN, that is, sulfides and oxides were not observed at the starting point of the disconnection. When the maximum TiN particle size in the measurement area of 125 mm 2 was 15 μm or more, disconnection occurred during wire drawing even when other requirements were satisfied. Therefore, the maximum TiN particle size in the measurement area of 125 mm 2 was set to less than 15 μm. The maximum TiN particle size in the measurement area of 125 mm 2 is preferably 12 μm or less, more preferably 10 μm or less.

<伸線加工用熱間圧延線材の直径>
伸線加工用熱間圧延線材の直径が6.0mmを超えると、本発明の他の要件を満たしていても、本発明の目標である直径0.32mmまで伸線できないか、あるいは伸線できた場合でも本発明の目標の延性が得られない。一方、熱間圧延線材の直径を4.0mm未満にすると、熱間圧延での生産効率が大きく低下し、コストがかさむことで、パテンティング処理をなくすメリットがなくなってしまう。そこで、伸線加工用熱間圧延線材の直径を4.0〜6.0mmの範囲内とした。好ましくは4.5〜6.0mmの範囲内、さらに好ましくは4.5〜5.5mmの範囲とする。
<Diameter of hot rolled wire rod for wire drawing>
If the diameter of the hot-rolled wire rod for wire drawing exceeds 6.0 mm, even if the other requirements of the present invention are satisfied, the wire cannot be drawn to the target diameter of 0.32 mm or can be drawn. Even in this case, the target ductility of the present invention cannot be obtained. On the other hand, if the diameter of the hot-rolled wire is less than 4.0 mm, the production efficiency in hot rolling is greatly reduced and the cost is increased, and the merit of eliminating the patenting process is lost. Therefore, the diameter of the hot-rolled wire rod for wire drawing is set within a range of 4.0 to 6.0 mm. The thickness is preferably in the range of 4.5 to 6.0 mm, more preferably in the range of 4.5 to 5.5 mm.

<金属組織条件測定方法>
次に本発明において規定している金属組織の各条件についての測定方法を説明する。
<Metallic structure measurement method>
Next, a measurement method for each condition of the metal structure defined in the present invention will be described.

パーライト組織の体積率は次の方法によって測定したものである。まず、熱間圧延線材の横断面(すなわち長さ方向に直角な切断面)を鏡面研磨した後、ピクラールで腐食し、電界放射型走査型電子顕微鏡(FE−SEM)を用いて任意な位置において倍率3000倍で10箇所を写真撮影する。なお1視野あたりの面積は、5.0×10−4mm(縦20μm、横25μm)である。次いで、その写真を用いて通常の画像解析によりパーライト組織以外の組織の面積率を求める。この面積率は体積率と同じであるため、100からパーライト組織以外の面積率を除いた値をパーライト組織の体積率とする。またこの際、初析フェライト組織の体積率も同様の方法によって求めた。 The volume ratio of the pearlite structure is measured by the following method. First, the cross section of the hot-rolled wire rod (that is, the cut surface perpendicular to the length direction) is mirror-polished, then corroded with picral, and at any position using a field emission scanning electron microscope (FE-SEM). Take 10 photos at a magnification of 3000x. The area per field of view is 5.0 × 10 −4 mm 2 (vertical 20 μm, horizontal 25 μm). Next, the area ratio of the tissue other than the pearlite tissue is obtained by normal image analysis using the photograph. Since this area ratio is the same as the volume ratio, the value obtained by removing the area ratio other than the pearlite structure from 100 is defined as the volume ratio of the pearlite structure. At this time, the volume ratio of the pro-eutectoid ferrite structure was also determined by the same method.

またパーライト組織中のセメンタイトの平均厚さは、次の方法によって算出したものである。まず熱間圧延線材の横断面を鏡面研磨した後、ピクラールで腐食し、電界放射型走査型電子顕微鏡(FE−SEM)を用いて、倍率5000倍で任意の箇所を10視野撮影した。なお1視野あたりの面積は1.8×10−4mm(縦12μm、横15μm)である。次に、各視野の写真内のパーライトラメラの向きが揃っている範囲において、ラメラ5間隔分が測定可能で、かつ最もラメラ間隔が小さい場所及び2番目にラメラ間隔が小さい場所について、ラメラが伸びる方向に対して垂直に直線を引いてラメラ5間隔分の長さを求め、それを5で割ることによって各箇所のパーライトラメラ間隔を求めた。このように求めた10視野分(合計20箇所)のラメラ間隔の平均値をその熱間圧延線材の平均パーライトラメラ間隔とした。
上記した方法で求め平均パーライトラメラ間隔と初析フェライトの体積率を用いて、下式によってパーライト組織中のセメンタイトの平均厚さtを算出した。
The average thickness of cementite in the pearlite structure is calculated by the following method. First, the cross section of the hot-rolled wire rod was mirror-polished and then corroded with picral. Using a field emission scanning electron microscope (FE-SEM), 10 fields of interest were photographed at a magnification of 5000 times. The area per field of view is 1.8 × 10 −4 mm 2 (vertical 12 μm, horizontal 15 μm). Next, in the range where the direction of the pearlite lamella in the field of view is aligned, the lamella extends at the place where the lamella interval is measurable and the lamella interval is the smallest and the second smallest lamella interval. A length perpendicular to the direction was drawn by drawing a straight line with respect to the direction, and a length corresponding to 5 lamellas was obtained and divided by 5 to obtain a pearlite lamella spacing at each location. The average value of the lamella spacing for the 10 visual fields thus obtained (total of 20 locations) was taken as the average pearlite lamella spacing of the hot-rolled wire rod.
The average thickness t of cementite in the pearlite structure was calculated by the following formula using the average pearlite lamella spacing determined by the above method and the volume fraction of pro-eutectoid ferrite.

t(nm)=平均パーライトラメラ間隔(nm)×{100/(100−初析フェライトの体積率(%))}×C含有量(%)×0.153 ・・・式(1)   t (nm) = average pearlite lamella spacing (nm) × {100 / (100-volume fraction of pro-eutectoid ferrite (%))} × C content (%) × 0.153 Formula (1)

ここで定数0.153は、C含有量が1.00%の鋼材において、このCがすべてセメンタイトになった時の体積分率が0.153であることから用いた。熱間圧延線材から圧延方向に垂直な断面を切り出し、圧延方向に垂直な断面を鏡面研磨し、光学顕微鏡を用いて介在物の測定を行った。なお、上記の光学顕微鏡による観察は、2.5mm×2.5mmの範囲毎に行い、この範囲内での最大のTiNについて長径と短径を測定した。各試料についてこの測定を20視野ずつ実施し、測定面積125mm中での最大のTiNの粒径を求めた。なお粒径は以下の式から算出した。 Here, the constant 0.153 was used because the volume fraction when all the C became cementite was 0.153 in a steel material having a C content of 1.00%. A cross section perpendicular to the rolling direction was cut out from the hot-rolled wire rod, the cross section perpendicular to the rolling direction was mirror-polished, and inclusions were measured using an optical microscope. In addition, observation with said optical microscope was performed for every range of 2.5 mm x 2.5 mm, and the long diameter and the short diameter were measured about the largest TiN in this range. This measurement was performed on each sample for 20 fields of view, and the maximum TiN particle size in a measurement area of 125 mm 2 was determined. The particle size was calculated from the following formula.

粒径=(長径+短径1/2 Particle size = (major axis 2 + minor axis 2 ) 1/2

また、光学顕微鏡による観察では、TiNは金色を呈するため、他の介在物と容易に区別することができる。   Moreover, since TiN exhibits a gold color when observed with an optical microscope, it can be easily distinguished from other inclusions.

<製造方法>
次に本発明の伸線加工用熱間圧延線材を製造する方法の一例について説明する。但し、本発明の伸線加工用熱間圧延線材を製造する方法は、次に説明する方法に限られないことはもちろんである。
<Manufacturing method>
Next, an example of a method for producing the hot-rolled wire rod for wire drawing according to the present invention will be described. However, it goes without saying that the method for producing the hot-rolled wire rod for wire drawing according to the present invention is not limited to the method described below.

本発明の伸線加工用熱間圧延線材を製造する場合、パーライトの体積率、パーライト組織中のセメンタイトの平均厚さ、及びTiNの最大粒径が、既に述べた各条件を確実に満たし得るように、鋼成分組成や目標性能、線径等に応じて、工程及び各プロセス条件を設定すれば良いが、ここでは、0.3〜0.5%のC、0.1〜1.0%のSi、0.3〜1.0%のMn、0.25%〜0.70%のCr、及び0.90〜1.8%のMn+2Cr、不可避不純物としてAl:0.002%以下、Ti:0.002%以下、N:0.005%以下を含有する鋼を用いた場合の製造方法の一例について示す。   When manufacturing the hot-rolled wire rod for wire drawing according to the present invention, the volume ratio of pearlite, the average thickness of cementite in the pearlite structure, and the maximum particle size of TiN can surely satisfy the above-mentioned conditions. In addition, the process and each process condition may be set according to the steel component composition, target performance, wire diameter, etc., but here 0.3 to 0.5% C, 0.1 to 1.0% Si, 0.3 to 1.0% Mn, 0.25% to 0.70% Cr, and 0.90 to 1.8% Mn + 2Cr, Al as an inevitable impurity: 0.002% or less, Ti : An example of a production method when steel containing 0.002% or less and N: 0.005% or less is shown.

少量実験のための溶解の場合、鋼が50kg以下であれば、原料を溶解後に20分以上真空排気すること、材質が鋳鉄で内部の平均断面積が120cm以下の鋳型で鋳造すること、鋳造後のインゴットの両端から体積で15%の部分は使用しないこととする。 In the case of melting for small-scale experiments, if the steel is 50 kg or less, the raw material is evacuated for 20 minutes or more after melting, the material is cast iron, and the casting is cast in a mold having an inner average cross-sectional area of 120 cm 2 or less. A portion of 15% by volume from both ends of the later ingot is not used.

また連続鋳造の場合には、溶鋼の電磁攪拌を十分に行い、凝固開始から凝固終了までの平均冷却速度を5℃/分以上とし、さらに凝固途中で圧下を行うとよい。   Further, in the case of continuous casting, it is preferable to sufficiently carry out electromagnetic stirring of the molten steel, set the average cooling rate from the start of solidification to the end of solidification to 5 ° C./min or more, and further reduce during the solidification.

以上の方法で鋳造した小型インゴットの場合は1200〜1250℃に加熱後に熱間鍛造で、連続鋳造で製造した鋳片の場合は1200〜1250℃に加熱後の分塊圧延によって、鋼片を得る。   In the case of a small ingot cast by the above method, a steel piece is obtained by hot forging after heating to 1200 to 1250 ° C., and in the case of a slab manufactured by continuous casting, by piece rolling after heating to 1200 to 1250 ° C. .

以上の方法で製造した鋼片を1050〜1150℃になるように加熱し、仕上げ温度を900〜1000℃としてφ4.0〜6.0mmに熱間圧延する。仕上げ圧延後は水冷、及び大気による風冷を組み合わせて平均冷却速度を50℃/秒以上で680〜730℃の温度範囲に入るまで冷却し、その後、大気による風冷によって平均冷却速度を10〜20℃/秒で630〜590℃の温度範囲に入るまで冷却した後、500℃以下になるまで放冷する。   The steel slab manufactured by the above method is heated so that it may become 1050-1150 degreeC, a finishing temperature shall be 900-1000 degreeC, and it hot-rolls to (phi) 4.0-6.0mm. After finish rolling, water cooling and air cooling by air are combined to cool an average cooling rate of 50 ° C./second or more until it enters a temperature range of 680 to 730 ° C., and then the air cooling by air is used to reduce the average cooling rate to 10 to 10 It cools until it enters into the temperature range of 630-590 degreeC at 20 degreeC / sec, and it cools until it becomes below 500 degreeC.

なお、本明細書における鋼片の加熱温度とは、鋼片の表面温度を指し、圧延仕上げ温度とは、仕上げ圧延直後の鋼線材の表面温度を指し、更に、仕上げ圧延後の冷却速度も、鋼線材の表面冷却速度を指す。   In addition, the heating temperature of the steel slab in the present specification refers to the surface temperature of the steel slab, the rolling finish temperature refers to the surface temperature of the steel wire immediately after the finish rolling, and the cooling rate after the finish rolling, Refers to the surface cooling rate of steel wire.

次に本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. It is not something. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

まず、表1に示す化学組成の鋼A〜Uを50kg、または150kgのインゴットに鋳造した。この際の鋳造条件も表1に示した。表1の条件で製造したインゴットの場合は1230℃に加熱後、熱間鍛造によって、直径80mmの鋼片にした後に室温まで放冷した。   First, steels A to U having chemical compositions shown in Table 1 were cast into 50 kg or 150 kg ingots. The casting conditions at this time are also shown in Table 1. In the case of an ingot manufactured under the conditions shown in Table 1, after heating to 1230 ° C., a steel piece having a diameter of 80 mm was formed by hot forging and then allowed to cool to room temperature.

また表2に示す化学組成の鋼V〜Xを転炉によって溶製した後、連続鋳造した。鋳造の際、溶鋼の電磁攪拌を十分に行い、凝固開始から凝固終了までの平均冷却速度を6℃/分とし、さらに凝固途中で圧下を行った。表2に示す成分の鋳片は、700℃以下まで放冷した後、1250℃に加熱後、分塊圧延によって、122mm角の鋼片を得た。
以上の方法で製造した鋼片を表3の条件で熱間圧延した。
Further, steels V to X having chemical compositions shown in Table 2 were melted by a converter and then continuously cast. During casting, the molten steel was sufficiently agitated, the average cooling rate from the start of solidification to the end of solidification was 6 ° C./min, and further reduced during the solidification. The slabs having the components shown in Table 2 were cooled to 700 ° C. or lower, heated to 1250 ° C., and then subjected to block rolling to obtain 122 mm square steel slabs.
The steel slab manufactured by the above method was hot-rolled on the conditions of Table 3.

このようにして得た熱間圧延線材について、以下に示す方法で、パーライト組織の体積率、初析フェライトの体積率、パーライト組織中のセメンタイトの平均厚さ、および測定面積125mm中での最大のTiN粒径を測定した。 About the hot-rolled wire thus obtained, the volume ratio of the pearlite structure, the volume ratio of pro-eutectoid ferrite, the average thickness of cementite in the pearlite structure, and the maximum in the measurement area of 125 mm 2 by the following method The TiN particle size was measured.

パーライト組織の体積率は、熱間圧延線材の横断面(すなわち長さ方向に直角な切断面)を鏡面研磨した後、ピクラールで腐食し、電界放射型走査型電子顕微鏡(FE−SEM)を用いて任意な位置において倍率3000倍で10箇所を写真撮影する。なお1視野あたりの面積は、5.0×10−4mm(縦20μm、横25μm)である。次いで、その写真を用いて通常の画像解析によりパーライト組織以外の組織の面積率を求める。この面積率は体積率と同じであるため、100からパーライト組織以外の面積率を除いた値をパーライト組織の体積率とする。またこの際、初析フェライト組織の体積率も同様の方法によって求めた。 The volume ratio of the pearlite structure is determined by mirror-polishing the cross section of the hot-rolled wire rod (that is, the cut surface perpendicular to the length direction) and then corroding with picral, using a field emission scanning electron microscope (FE-SEM). Then, take 10 pictures at an arbitrary position at a magnification of 3000 times. The area per field of view is 5.0 × 10 −4 mm 2 (vertical 20 μm, horizontal 25 μm). Next, the area ratio of the tissue other than the pearlite tissue is obtained by normal image analysis using the photograph. Since this area ratio is the same as the volume ratio, the value obtained by removing the area ratio other than the pearlite structure from 100 is defined as the volume ratio of the pearlite structure. At this time, the volume ratio of the pro-eutectoid ferrite structure was also determined by the same method.

次にパーライト組織中のセメンタイトの平均厚さは、次の方法によって算出したものである。まず熱間圧延線材の横断面を鏡面研磨した後、ピクラールで腐食し、電界放射型走査型電子顕微鏡(FE−SEM)を用いて、倍率5000倍で任意の箇所を10視野撮影した。なお1視野あたりの面積は1.8×10−4mm(縦12μm、横15μm)である。次に、各視野の写真内のパーライトラメラの向きが揃っている範囲において、ラメラ5間隔分が測定可能で、かつ最もラメラ間隔が小さい場所及び2番目にラメラ間隔が小さい場所について、ラメラが伸びる方向に対して垂直に直線を引いてラメラ5間隔分の長さを求め、それを5で割ることによって各箇所のパーライトラメラ間隔を求めた。このように求めた10視野分(合計20箇所)のラメラ間隔の平均値をその熱間圧延線材の平均パーライトラメラ間隔とした。 Next, the average thickness of cementite in the pearlite structure is calculated by the following method. First, the cross section of the hot-rolled wire rod was mirror-polished and then corroded with picral. Using a field emission scanning electron microscope (FE-SEM), 10 fields of interest were photographed at a magnification of 5000 times. The area per field of view is 1.8 × 10 −4 mm 2 (vertical 12 μm, horizontal 15 μm). Next, in the range where the direction of the pearlite lamella in the field of view is aligned, the lamella extends at the place where the lamella interval is measurable and the lamella interval is the smallest and the second smallest lamella interval. A length perpendicular to the direction was drawn by drawing a straight line with respect to the direction, and a length corresponding to 5 lamellas was obtained and divided by 5 to obtain a pearlite lamella spacing at each location. The average value of the lamella spacing for the 10 visual fields thus obtained (total of 20 locations) was taken as the average pearlite lamella spacing of the hot-rolled wire rod.

上記した方法で求め平均パーライトラメラ間隔と初析フェライトの体積率を用いて、下式(1)によってパーライト組織中のセメンタイトの平均厚さtを算出した。   The average thickness t of cementite in the pearlite structure was calculated by the following equation (1) using the average pearlite lamella spacing determined by the above method and the volume fraction of pro-eutectoid ferrite.

t(nm)=平均パーライトラメラ間隔(nm)×{100/(100−初析フェライトの体積率(%))}×C含有量(%)×0.153 ・・・式(1)   t (nm) = average pearlite lamella spacing (nm) × {100 / (100-volume fraction of pro-eutectoid ferrite (%))} × C content (%) × 0.153 Formula (1)

また測定面積125mm中での最大のTiNの粒径は、熱間圧延線材から圧延方向に垂直な断面を切り出し、圧延方向に垂直な断面を鏡面研磨し、光学顕微鏡を用いて介在物の測定を行った。なお、上記の光学顕微鏡による観察は、2.5mm×2.5mmの範囲毎に行い、この範囲内での最大のTiNについて長径と短径を測定した。各試料についてこの測定を20視野ずつ実施し、測定面積125mm中での最大のTiNの粒径を求めた。なお粒径は以下の式から算出した。 The maximum TiN particle size in a measuring area of 125 mm 2 is obtained by cutting a section perpendicular to the rolling direction from a hot-rolled wire, mirror-polishing the section perpendicular to the rolling direction, and measuring inclusions using an optical microscope. Went. In addition, observation with said optical microscope was performed for every range of 2.5 mm x 2.5 mm, and the long diameter and the short diameter were measured about the largest TiN in this range. This measurement was performed on each sample for 20 fields of view, and the maximum TiN particle size in a measurement area of 125 mm 2 was determined. The particle size was calculated from the following formula.

粒径=(長径+短径1/2 Particle size = (major axis 2 + minor axis 2 ) 1/2

また、光学顕微鏡による観察では、TiNは金色を呈するため、他の介在物と区別できた。   In addition, when observed with an optical microscope, TiN exhibited a gold color and thus could be distinguished from other inclusions.

熱間圧延線材について表面スケールの除去、ブラスめっき、伸線を行って、直径0.32mmの鋼線を得た。なお直径2.0mmまでの伸線は、通常の方法で潤滑剤を付けた線材に、各ダイスの減面率が平均18%となるパルススケジュールで行った。引き続き、直径2.0mmまで伸線加工を行った線材に、各ダイスでの減面率が平均で15%となるパルススケジュールで、直径0.32mmまで湿式伸線加工(最終伸線加工)を行った。そしてこの湿式伸線加工(最終伸線加工)においては、伸線加工性を評価し、その結果を表4中に示した。すなわち最終伸線加工を、各鋼線毎に20kg行い、その際の断線回数を記録した。また断線回数が2回になった時点で、直径0.32mmまでの伸線、およびそれ以降の評価を中止した。なお、直径0.32mmまで20kg湿式伸線した際の断線回数が0回以内の場合に、伸線加工性が良好と評価し、断線回数が1回以上の場合には、伸線加工性が悪いと評価した。   The hot rolled wire rod was subjected to surface scale removal, brass plating, and wire drawing to obtain a steel wire having a diameter of 0.32 mm. In addition, the wire drawing to a diameter of 2.0 mm was performed by a pulse schedule in which the area reduction rate of each die was 18% on average on a wire rod provided with a lubricant by a normal method. Subsequently, wet wire drawing (final wire drawing) to a diameter of 0.32 mm is applied to the wire rod that has been drawn to a diameter of 2.0 mm, with a pulse schedule in which the area reduction rate of each die is 15% on average. went. In this wet wire drawing (final wire drawing), wire drawing workability was evaluated, and the results are shown in Table 4. That is, the final wire drawing was performed for 20 kg for each steel wire, and the number of wire breaks at that time was recorded. Further, when the number of wire breaks was 2, the wire drawing up to a diameter of 0.32 mm and evaluation thereafter were stopped. In addition, when the number of wire breaks when 20 kg wet drawing to a diameter of 0.32 mm is 0 or less, the wire drawing workability is evaluated as good. When the number of wire breaks is 1 or more, the wire drawing workability is Rated bad.

さらに、強度と延性をつぎのようにして調べた。すなわち、直径0.32mmまで伸線できた鋼線について、各3本ずつ引張試験を行い、引張強さと絞りを測定して、各3本の平均値を表3中に示した。なお撚り線時の断線の頻度は、引張試験での絞りと相関があり、絞りが30%以上であれば、撚り線時の断線がほとんど生じないため、絞りが30%以上であれば、延性が良好とした。   Further, the strength and ductility were examined as follows. That is, the steel wire that could be drawn to a diameter of 0.32 mm was subjected to a tensile test for each three wires, the tensile strength and the drawing were measured, and the average value of the three wires is shown in Table 3. The frequency of breakage at the time of stranded wire correlates with the drawing in the tensile test, and if the drawing is 30% or more, disconnection at the time of stranded wire hardly occurs. Therefore, if the drawing is 30% or more, ductility Was good.

なお本発明の伸線加工用熱間圧延線材における目標性能は、直径4.0〜6.0mmの熱間圧延線材を直径0.32mmまで20kg湿式伸線した際の断線回数が0回であること、直径0.32mmの引張強さが3000MPa以上、好ましくは3200MPa以上、より好ましくは3400MPa以上であること、及び引張試験での絞りが30%以上であることである。   The target performance of the hot-rolled wire rod for wire drawing according to the present invention is 0 when the hot-rolled wire rod having a diameter of 4.0 to 6.0 mm is wet-drawn to a diameter of 0.32 mm by 20 kg. That is, the tensile strength with a diameter of 0.32 mm is 3000 MPa or more, preferably 3200 MPa or more, more preferably 3400 MPa or more, and the drawing in the tensile test is 30% or more.

表4から、本発明で規定する条件から外れた試験番号では、前記した少なくとも1つの特性が目標とする値に達していないことが明らかである。
それに対し、本発明で規定する条件をすべて満たす試験番号は、前記したすべての特性が目標とする値に達していることが明らかである。
From Table 4, it is apparent that at least one characteristic described above does not reach the target value at a test number outside the conditions defined in the present invention.
On the other hand, it is clear that the test numbers satisfying all the conditions defined in the present invention reach the target values for all the above-described characteristics.

以上、本発明の好ましい実施形態および実施例について説明したが、これらの実施形態、実施例は、あくまで本発明の要旨の範囲内の一つの例に過ぎず、本発明の要旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。すなわち本発明は、前述した説明によって限定されることはなく、特許請求の範囲の記載によってのみ限定され、その範囲内で適宜変更可能であることはもちろんである。   The preferred embodiments and examples of the present invention have been described above. However, these embodiments and examples are merely examples within the scope of the present invention and do not depart from the spirit of the present invention. Thus, addition, omission, replacement, and other changes of the configuration are possible. That is, the present invention is not limited by the above description, is limited only by the description of the scope of claims, and can be changed as appropriate within the scope.

Figure 2017115176
Figure 2017115176

Figure 2017115176
Figure 2017115176

Figure 2017115176
Figure 2017115176

Figure 2017115176
Figure 2017115176

Claims (2)

質量%で、
C:0.3〜0.5%,
Si:0.1〜1.0%,
Mn:0.3〜1.0%,
Cr:0.25〜0.70%,
Mn+2Cr:0.90〜1.8%
を含有すると共に残部がFe及び不可避不純物から成り、かつ不純物中のAl,Ti,N,P,S及びOがそれぞれ
Al:0.002%以下,
Ti:0.002%以下,
N:0.005%以下,
P:0.02%以下,
S:0.01%以下,
O:0.003%以下
であり、
また金属組織として、体積率で70%以上がパーライト組織から成り、式(1)から求まる前記パーライト組織中の平均セメンタイト厚さtが15〜40nmであり、さらに測定面積125mm中でのTiNの最大粒径が15μm未満であることを特徴とする直径4.0〜6.0mmの伸線加工用熱間圧延線材。
t=平均パーライトラメラ間隔(nm)×{100/(100−初析フェライトの体積率(%))}×C含有量(%)×0.153 ・・・式(1)
% By mass
C: 0.3 to 0.5%,
Si: 0.1 to 1.0%,
Mn: 0.3 to 1.0%,
Cr: 0.25 to 0.70%,
Mn + 2Cr: 0.90 to 1.8%
And the balance consists of Fe and inevitable impurities, and Al, Ti, N, P, S and O in the impurities are each Al: 0.002% or less,
Ti: 0.002% or less,
N: 0.005% or less,
P: 0.02% or less,
S: 0.01% or less,
O: 0.003% or less,
In addition, as a metal structure, 70% or more by volume ratio is composed of a pearlite structure, the average cementite thickness t in the pearlite structure obtained from the formula (1) is 15 to 40 nm, and TiN in a measurement area of 125 mm 2 A hot rolled wire rod for wire drawing having a diameter of 4.0 to 6.0 mm, wherein the maximum particle size is less than 15 μm.
t = average pearlite lamella spacing (nm) × {100 / (100-volume fraction of pro-eutectoid ferrite (%))} × C content (%) × 0.153 (1)
更に、質量%で、
Mo:0.02〜0.20%、B:0.0003〜0.0030%のいずれか一方または両方を含有することを特徴とする、請求項1に記載の伸線加工用熱間圧延線材。
Furthermore, in mass%,
The hot-rolled wire rod for wire drawing according to claim 1, characterized by containing any one or both of Mo: 0.02 to 0.20% and B: 0.0003 to 0.0030%. .
JP2015248964A 2015-12-21 2015-12-21 Hot rolled wire for wire drawing Active JP6648516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015248964A JP6648516B2 (en) 2015-12-21 2015-12-21 Hot rolled wire for wire drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248964A JP6648516B2 (en) 2015-12-21 2015-12-21 Hot rolled wire for wire drawing

Publications (2)

Publication Number Publication Date
JP2017115176A true JP2017115176A (en) 2017-06-29
JP6648516B2 JP6648516B2 (en) 2020-02-14

Family

ID=59231427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248964A Active JP6648516B2 (en) 2015-12-21 2015-12-21 Hot rolled wire for wire drawing

Country Status (1)

Country Link
JP (1) JP6648516B2 (en)

Also Published As

Publication number Publication date
JP6648516B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
JP6264462B2 (en) Steel wire for wire drawing
JP5939359B2 (en) High carbon steel wire and method for producing the same
US10597748B2 (en) Steel wire rod for wire drawing
JPWO2008044356A1 (en) High strength steel wire with excellent ductility and method for producing the same
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
JP6394708B2 (en) High carbon steel wire rod with excellent wire drawing workability
JP4374356B2 (en) High-strength wire rod excellent in wire drawing characteristics, manufacturing method thereof, and high-strength steel wire excellent in wire drawing properties
JP2007039800A (en) High-strength wire rod having superior rod drawability, manufacturing method therefor, and high-strength steel wire having superior rod drawability
JP2007131945A (en) High strength steel wire having excellent ductility and its production method
JP6725007B2 (en) wire
JP6354481B2 (en) Steel wire and method for manufacturing steel wire
WO2016158901A1 (en) High-carbon steel wire material with excellent wire drawability, and steel wire
WO2016021556A1 (en) High carbon steel wire having excellent drawability
JP2010202954A (en) Wire rod for high-strength extra-fine steel wire, high-strength extra-fine steel wire, and method for manufacturing them
JP2010229469A (en) High-strength wire rod excellent in cold working characteristic and method of producing the same
JP5945196B2 (en) High strength steel wire
JP6828592B2 (en) Hot-rolled wire rod for wire drawing
KR102455453B1 (en) High-strength steel sheet with excellent ductility and hole expandability
JP7063394B2 (en) Hot rolled wire
JP6648516B2 (en) Hot rolled wire for wire drawing
JP4003450B2 (en) Steel wire rod, steel wire and manufacturing method thereof
JP2019112703A (en) Hot rolled wire
JP6536382B2 (en) Hot rolled wire for wire drawing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R151 Written notification of patent or utility model registration

Ref document number: 6648516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151