JP2017113674A - Blower control method - Google Patents

Blower control method Download PDF

Info

Publication number
JP2017113674A
JP2017113674A JP2015249664A JP2015249664A JP2017113674A JP 2017113674 A JP2017113674 A JP 2017113674A JP 2015249664 A JP2015249664 A JP 2015249664A JP 2015249664 A JP2015249664 A JP 2015249664A JP 2017113674 A JP2017113674 A JP 2017113674A
Authority
JP
Japan
Prior art keywords
air supply
blower
supply pipe
air
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015249664A
Other languages
Japanese (ja)
Other versions
JP6316270B2 (en
Inventor
章生 橋本
Akio Hashimoto
章生 橋本
佳久 藤本
Yoshihisa Fujimoto
佳久 藤本
健一郎 森
Kenichiro Mori
健一郎 森
佑太郎 永井
Yutaro Nagai
佑太郎 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2015249664A priority Critical patent/JP6316270B2/en
Publication of JP2017113674A publication Critical patent/JP2017113674A/en
Application granted granted Critical
Publication of JP6316270B2 publication Critical patent/JP6316270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blower control method enabling power consumption of a blower to be reduced.SOLUTION: The blower control method is provided for controlling at least one blower that supplies air to a plurality of reaction tanks via a manifold in a sewage treatment plant. One admission pipe among a plurality of admission pipes each connecting a plurality of the reaction tanks to the manifold is selected as a reference admission pipe. An actual pressure loss of an air flow control valve provided in the reference admission pipe is calculated based on an opening of the air flow control valve and a measured air flow rate in the reference admission pipe. A set pressure of the manifold is determined by PID control so that the calculated actual pressure loss agrees with a target pressure loss. At least one blower is controlled by PID control so that the measured pressure of the manifold agrees with the set pressure.SELECTED DRAWING: Figure 1

Description

本発明は、下水処理場における送風機の制御方法に関する。   The present invention relates to a blower control method in a sewage treatment plant.

下水処理場では、複数の送風機から集合管を介して複数の反応タンクに空気が供給される(例えば、特許文献1参照)。集合管と複数の反応タンクとは複数の給気管によってそれぞれ接続され、各給気管には風量制御弁が設けられる。一般的に、各風量制御弁は、対応する反応タンク内の汚水の溶存酸素濃度に基づいて制御される。一方、送風機は、集合管の測定圧力が設定圧力となるようにPID制御される。   In a sewage treatment plant, air is supplied from a plurality of blowers to a plurality of reaction tanks via a collecting pipe (see, for example, Patent Document 1). The collecting pipe and the plurality of reaction tanks are respectively connected by a plurality of air supply pipes, and each air supply pipe is provided with an air volume control valve. Generally, each air volume control valve is controlled based on the dissolved oxygen concentration of the sewage in the corresponding reaction tank. On the other hand, the blower is PID controlled so that the measurement pressure of the collecting pipe becomes the set pressure.

実公平4−958号公報No. 4-958

ところで、下水処理場では、送風機の運転に要する電力が総消費電力のうちでかなり高い割合を占める。従って、送風機の運転に要する電力を削減することが望まれる。   By the way, in the sewage treatment plant, the electric power required for the operation of the blower accounts for a considerably high proportion of the total power consumption. Therefore, it is desired to reduce the power required for operating the blower.

そこで、本発明は、送風機の運転に要する電力を低減することができる送風機の制御方法を提供することを目的とする。   Then, an object of this invention is to provide the control method of the air blower which can reduce the electric power which driving | operation of an air blower requires.

前記課題を解決するために、本発明の発明者らは、鋭意研究の結果、従来の送風機の制御方法では、集合管の設定圧力が高く設定されて給気管の風量制御弁で大きな圧損が生じていることに着目し、これを改善することを考案した。本発明は、このような観点からなされたものである。   In order to solve the above-mentioned problems, the inventors of the present invention, as a result of earnest research, in the conventional blower control method, the set pressure of the collecting pipe is set high and a large pressure loss occurs in the air volume control valve of the supply pipe I devised to improve this. The present invention has been made from such a viewpoint.

すなわち、本発明の一つの側面からの送風機の制御方法は、下水処理場において集合管を介して複数の反応タンクに空気を供給する少なくとも1つの送風機の制御方法であって、前記集合管と前記複数の反応タンクとをそれぞれ接続する複数の給気管のうちの1つを基準給気管として選択し、前記基準給気管に設けられた風量制御弁の開度および前記基準給気管の測定風量に基づいて前記風量制御弁の実圧損を算出し、算出された実圧損が目標圧損となるようにPID制御により前記集合管の設定圧力を決定し、前記集合管の測定圧力が前記設定圧力となるように前記少なくとも1つの送風機をPID制御により制御する、ことを特徴とする。   That is, the method for controlling a blower according to one aspect of the present invention is a method for controlling at least one blower that supplies air to a plurality of reaction tanks via a collection pipe in a sewage treatment plant, the method comprising: One of a plurality of air supply pipes respectively connected to the plurality of reaction tanks is selected as a reference air supply pipe, and based on the opening degree of the air volume control valve provided in the reference air supply pipe and the measured air volume of the reference air supply pipe The actual pressure loss of the air flow control valve is calculated, the set pressure of the collecting pipe is determined by PID control so that the calculated actual pressure loss becomes the target pressure drop, and the measured pressure of the collecting pipe becomes the set pressure. The at least one blower is controlled by PID control.

上記の構成によれば、送風機の吐出圧力の目標値である集合管の設定圧力を、基準給気管に設けられた風量制御弁での実圧損が目標圧損となる程度に低く抑えることができる。従って、送風機の運転に要する電力を低減することができる。   According to the above configuration, the set pressure of the collecting pipe, which is the target value of the discharge pressure of the blower, can be suppressed to such an extent that the actual pressure loss at the air volume control valve provided in the reference air supply pipe becomes the target pressure loss. Therefore, the electric power required for the operation of the blower can be reduced.

前記複数の給気管のそれぞれについて、当該給気管に設けられた風量制御弁のCV値を当該給気管の測定風量で割って選択参照値を算出し、算出された選択参照値のうちで最も高い選択参照値の給気管を前記基準給気管として選択してもよい。この構成によれば、風量制御弁の実圧損が最も低い給気管を基準給気管として選択することができる。   For each of the plurality of supply pipes, the selected reference value is calculated by dividing the CV value of the air volume control valve provided in the supply pipe by the measured air volume of the supply pipe, and is the highest of the calculated selection reference values An air supply pipe having a selected reference value may be selected as the standard air supply pipe. According to this configuration, the air supply pipe with the lowest actual pressure loss of the air volume control valve can be selected as the reference air supply pipe.

また、本発明の別の側面からの送風機の制御方法は、下水処理場において集合管を介して複数の反応タンクに空気を供給する少なくとも1つの送風機の制御方法であって、前記集合管と前記複数の反応タンクとをそれぞれ接続する複数の給気管のうちの1つを基準給気管として選択し、前記基準給気管に設けられた風量制御弁の開度が予め定められた目標開度となるようにPID制御により前記集合管の設定圧力を決定し、前記集合管の測定圧力が前記設定圧力となるように前記少なくとも1つの送風機をPID制御により制御する、ことを特徴とする。   A blower control method according to another aspect of the present invention is a control method for at least one blower that supplies air to a plurality of reaction tanks via a collection pipe in a sewage treatment plant, the collection pipe and the One of the plurality of air supply pipes respectively connecting the plurality of reaction tanks is selected as a reference air supply pipe, and the opening degree of the air volume control valve provided in the reference air supply pipe becomes a predetermined target opening degree. Thus, the set pressure of the collecting pipe is determined by PID control, and the at least one blower is controlled by PID control so that the measured pressure of the collecting pipe becomes the set pressure.

上記の構成によれば、送風機の吐出圧力の目標値である集合管の設定圧力を、基準給気管に設けられた風量制御弁での実圧損が目標圧損となる程度に低く抑えることができる。従って、送風機の運転に要する電力を低減することができる。   According to the above configuration, the set pressure of the collecting pipe, which is the target value of the discharge pressure of the blower, can be suppressed to such an extent that the actual pressure loss at the air volume control valve provided in the reference air supply pipe becomes the target pressure loss. Therefore, the electric power required for the operation of the blower can be reduced.

例えば、前記複数の給気管のそれぞれには風量制御弁が設けられており、前記複数の給気管のうちで風量制御弁の開度が最も大きい給気管を前記基準給気管として選択してもよい。   For example, each of the plurality of air supply pipes may be provided with an air flow control valve, and the air supply pipe with the largest opening of the air flow control valve may be selected as the reference air supply pipe among the plurality of air supply pipes. .

本発明によれば、送風機の運転に要する電力を低減することができる。   According to the present invention, it is possible to reduce the power required for operating the blower.

本発明の一実施形態に係る送風機の制御方法を実行する送風システムの概略構成図である。It is a schematic block diagram of the ventilation system which performs the control method of the air blower which concerns on one Embodiment of this invention. 風量制御弁の開度とCV値の関係を示すグラフである。It is a graph which shows the relationship between the opening degree of a flow volume control valve, and CV value.

図1に、本発明の一実施形態に係る送風機の制御方法を実行する、下水処理場における送風システム1を示す。下水処理場は、汚水を貯留する複数の反応タンク11を含み、送風システム1は、それらの反応タンク11に集合管3を介して空気を供給する複数の送風機2を含む。ただし、送風機2は必ずしも複数設けられている必要はなく、1つだけ設けられていてもよい。   FIG. 1 shows a blower system 1 in a sewage treatment plant that executes a blower control method according to an embodiment of the present invention. The sewage treatment plant includes a plurality of reaction tanks 11 that store sewage, and the blower system 1 includes a plurality of blowers 2 that supply air to the reaction tanks 11 through a collecting pipe 3. However, a plurality of blowers 2 are not necessarily provided, and only one blower 2 may be provided.

本実施形態では、送風システム1が反応タンク11と同数の溶存酸素制御装置51および風量制御装置52を含むとともに、1つの圧力制御装置53を含む。ただし、全ての溶存酸素制御装置51および風量制御装置52が1つのユニットとして構成されていてもよいし、全ての風量制御装置52および圧力制御装置53が1つのユニットとして構成されていてもよい。   In the present embodiment, the air blowing system 1 includes the same number of dissolved oxygen control devices 51 and air volume control devices 52 as the reaction tank 11 and one pressure control device 53. However, all the dissolved oxygen control devices 51 and the air volume control devices 52 may be configured as one unit, or all the air volume control devices 52 and the pressure control devices 53 may be configured as one unit.

具体的に、各送風機2は、吐出管21により集合管3と接続されている。集合管3には、全ての送風機2から当該集合管3に集められた空気の圧力を測定する圧力計31と、当該集合管3内の空気の温度を測定する温度計32が設けられている。なお、温度計32は、各吐出管21に設けられていてもよい。   Specifically, each blower 2 is connected to the collecting pipe 3 by a discharge pipe 21. The collecting pipe 3 is provided with a pressure gauge 31 that measures the pressure of the air collected in the collecting pipe 3 from all the fans 2 and a thermometer 32 that measures the temperature of the air in the collecting pipe 3. . The thermometer 32 may be provided in each discharge pipe 21.

各送風機2は、圧力制御装置53により制御される。圧力制御装置53には、圧力計31からの測定圧力Pnと温度計32からの測定温度Tが入力される。圧力制御装置53は、集合管3の測定圧力Pnに基づいて送風機2の運転台数を決定するとともに、運転される送風機2を、集合管3の測定圧力Pnが設定圧力Psとなるように各送風機2の風量設定を変えることでPID制御する。   Each blower 2 is controlled by a pressure control device 53. The pressure control device 53 receives the measured pressure Pn from the pressure gauge 31 and the measured temperature T from the thermometer 32. The pressure control device 53 determines the number of fans 2 to be operated based on the measured pressure Pn of the collecting pipe 3, and sets each of the blowers 2 to be operated so that the measured pressure Pn of the collecting pipe 3 becomes the set pressure Ps. PID control is performed by changing the air volume setting of 2.

集合管3は、複数の給気管4により反応タンク11とそれぞれ接続されている。各給気管4には、当該給気管4の風量を変更する風量制御弁42が設けられている。また、各給気管4には、当該給気管4の風量を測定する風量計41が設けられている。図例では、風量計41が風量制御弁42の上流側に位置しているが、風量制御弁42の下流側に位置していてもよい。各風量制御弁42は、風量制御装置52により制御される。風量制御装置52には、風量計41からの測定風量Qnが入力される。   The collecting pipe 3 is connected to the reaction tank 11 by a plurality of air supply pipes 4. Each air supply pipe 4 is provided with an air volume control valve 42 for changing the air volume of the air supply pipe 4. Each air supply pipe 4 is provided with an air flow meter 41 for measuring the air volume of the air supply pipe 4. In the illustrated example, the air flow meter 41 is located upstream of the air flow control valve 42, but may be located downstream of the air flow control valve 42. Each air volume control valve 42 is controlled by an air volume control device 52. The measured air volume Qn from the anemometer 41 is input to the air volume control device 52.

各給気管4は反応タンク11内まで延びており、給気管4の先端には散気パネル43が設けられている。各反応タンク11には、当該反応タンク11内の汚水の溶存酸素濃度DOを測定する溶存酸素濃度計12が設けられている。溶存酸素濃度計12で測定された溶存酸素濃度DOは、対応する溶存酸素制御装置51に入力される。   Each air supply pipe 4 extends into the reaction tank 11, and an air diffusion panel 43 is provided at the tip of the air supply pipe 4. Each reaction tank 11 is provided with a dissolved oxygen concentration meter 12 for measuring the dissolved oxygen concentration DO of sewage in the reaction tank 11. The dissolved oxygen concentration DO measured by the dissolved oxygen concentration meter 12 is input to the corresponding dissolved oxygen control device 51.

各溶存酸素制御装置51は、溶存酸素濃度DOに基づいて、対応する反応タンク11に対する要求風量Qsを決定する。要求風量Qsは、対応する風量制御装置52に送信される。   Each dissolved oxygen control device 51 determines the required air volume Qs for the corresponding reaction tank 11 based on the dissolved oxygen concentration DO. The requested air volume Qs is transmitted to the corresponding air volume control device 52.

各風量制御装置52は、風量計41からの測定風量Qnが要求風量Qsとなるように風量制御弁42の開度Xを調整する。各風量制御装置52から圧力制御装置53へは、風量制御弁42の開度Xと測定風量Qnが送信される。   Each air volume control device 52 adjusts the opening degree X of the air volume control valve 42 so that the measured air volume Qn from the air volume meter 41 becomes the required air volume Qs. The opening degree X of the air volume control valve 42 and the measured air volume Qn are transmitted from each air volume control device 52 to the pressure control device 53.

圧力制御装置53は、まず、給気管4のうちの1つを基準給気管として選択する。圧力制御装置53には、各給気管4に設けられた風量制御弁42のCV値に関する性能曲線が予め格納されている。CV値は、風量制御弁42の容量を示す数値であり、図2に示すように開度Xが大きくなると高くなる。   First, the pressure control device 53 selects one of the supply pipes 4 as a reference supply pipe. In the pressure control device 53, a performance curve related to the CV value of the air volume control valve 42 provided in each air supply pipe 4 is stored in advance. The CV value is a numerical value indicating the capacity of the air volume control valve 42 and increases as the opening degree X increases as shown in FIG.

圧力制御装置53は、各給気管4について、現在の開度Xでの風量制御弁42のCV値を当該給気管4の測定風量Qnで割って選択参照値(=CV/Qn)を算出する。その後、圧力制御装置53は、算出された選択参照値のうちで最も高い選択参照値の給気管4を基準給気管として選択する。   The pressure control device 53 calculates the selected reference value (= CV / Qn) for each air supply pipe 4 by dividing the CV value of the air volume control valve 42 at the current opening degree X by the measured air volume Qn of the air supply pipe 4. . Thereafter, the pressure control device 53 selects the supply pipe 4 having the highest selected reference value among the calculated selected reference values as the reference supply pipe.

次に、圧力制御装置53は、基準給気管に設けられた風量制御弁42の開度Xおよび基準給気管の測定風量Qnに基づいて集合管3の設定圧力Psを決定する。まず、圧力制御装置53は、現在の開度Xでの風量制御弁42のCV値、測定風量Qnおよび測定温度Tを用いて、例えば、以下の式1により、風量制御弁42の実圧損ΔPnを算出する。   Next, the pressure control device 53 determines the set pressure Ps of the collecting pipe 3 based on the opening degree X of the air volume control valve 42 provided in the reference air supply pipe and the measured air volume Qn of the reference air supply pipe. First, the pressure control device 53 uses the CV value, the measured air volume Qn, and the measured temperature T of the air volume control valve 42 at the current opening degree X, for example, according to the following formula 1, the actual pressure loss ΔPn of the air volume control valve 42: Is calculated.

Figure 2017113674
各記号の単位 ΔPn:kg/cm2
Qn:m3/min
T:K
P1,P2:kg/cm2 abs
Figure 2017113674
Unit of each symbol ΔPn: kg / cm 2
Qn: m 3 / min
T: K
P1, P2: kg / cm 2 abs

式中のP1およびP2は、それぞれ風量制御弁42の入口および出口の圧力である。ただし、式1の計算結果に対するP1,P2の影響は小さいため、本実施形態では、P1,P2に固定値を採用している。   P1 and P2 in the equation are the pressures at the inlet and the outlet of the air volume control valve 42, respectively. However, since the influence of P1 and P2 on the calculation result of Expression 1 is small, in this embodiment, fixed values are adopted for P1 and P2.

ついで、圧力制御装置53は、算出された実圧損ΔPnが目標圧損ΔPs(例えば、2kPa)となるように、PID制御により集合管3の設定圧力Psを決定する。具体的には、実圧損ΔPnが目標圧損ΔPsよりも小さければ、それらの偏差(ΔPs−ΔPn)に応じて設定圧力Psを現在の値よりも大きくし、逆に実圧損ΔPnが目標圧損ΔPsよりも大きければ、それらの偏差(ΔPn−ΔPs)に応じて設定圧力Psを現在の値よりも小さくする。設定圧力Psを決定した後は、圧力制御装置53は、上述したように集合管3の測定圧力Pnが設定圧力Psとなるように各送風機2の風量設定を変えることで送風機2をPID制御する。なお、設定圧力Psを決定する演算およびPID制御は専用の演算器および制御装置で行い、決定された設定圧力Psを圧力制御装置53へ入力してもよい。   Next, the pressure control device 53 determines the set pressure Ps of the collecting pipe 3 by PID control so that the calculated actual pressure loss ΔPn becomes the target pressure loss ΔPs (for example, 2 kPa). Specifically, if the actual pressure loss ΔPn is smaller than the target pressure loss ΔPs, the set pressure Ps is made larger than the current value according to the deviation (ΔPs−ΔPn), and conversely, the actual pressure loss ΔPn is greater than the target pressure loss ΔPs. Is larger, the set pressure Ps is made smaller than the current value in accordance with the deviation (ΔPn−ΔPs). After determining the set pressure Ps, the pressure control device 53 performs PID control of the blower 2 by changing the air volume setting of each blower 2 so that the measured pressure Pn of the collecting pipe 3 becomes the set pressure Ps as described above. . The calculation and PID control for determining the set pressure Ps may be performed by a dedicated calculator and control device, and the determined set pressure Ps may be input to the pressure control device 53.

以上説明したように、本実施形態では、送風機2の吐出圧力の目標値である集合管3の設定圧力Psを、基準給気管に設けられた風量制御弁42での実圧損ΔPnが目標圧損ΔPsとなる程度に低く抑えることができる。従って、送風機2の運転に要する電力を低減することができる。   As described above, in the present embodiment, the set pressure Ps of the collecting pipe 3 that is the target value of the discharge pressure of the blower 2 is set to the target pressure loss ΔPs by the actual pressure loss ΔPn at the air volume control valve 42 provided in the reference air supply pipe. Can be kept low. Therefore, the electric power required for the operation of the blower 2 can be reduced.

また、本実施形態では、全ての給気管4について選択参照値が算出され、これらの選択参照値の比較により基準給気管が選択されるので、風量制御弁42の実圧損ΔPnが最も低い給気管4を基準給気管として選択することができる。   In the present embodiment, the selected reference value is calculated for all the supply pipes 4, and the reference supply pipe is selected by comparing these selection reference values. Therefore, the supply pipe with the lowest actual pressure loss ΔPn of the air volume control valve 42 is selected. 4 can be selected as the reference air supply pipe.

<変形例>
圧力制御装置53は、基準給気管の実圧損ΔPnを算出する代わりに、基準給気管に設けられた風量制御弁42の開度Xが予め定められた目標開度Xsとなるように、集合管3の設定圧力PsをPID制御により決定してもよい。具体的には、現在の開度Xが目標開度Xsよりも小さければ、それらの偏差(Xs−X)に応じて設定圧力Psを現在の値よりも小さくし、現在の開度Xが目標開度Xsよりも大きければ、それらの偏差(X−Xs)に応じて設定圧力Psを現在の値よりも大きくする。
<Modification>
Instead of calculating the actual pressure loss ΔPn of the reference air supply pipe, the pressure control device 53 collects the collecting pipe so that the opening X of the air volume control valve 42 provided in the reference air supply pipe becomes a predetermined target opening Xs. The set pressure Ps of 3 may be determined by PID control. Specifically, if the current opening degree X is smaller than the target opening degree Xs, the set pressure Ps is made smaller than the current value in accordance with the deviation (Xs−X), and the current opening degree X becomes the target. If it is larger than the opening degree Xs, the set pressure Ps is made larger than the current value in accordance with the deviation (X−Xs).

本変形例では、圧力制御装置53が、給気管4のうちで風量制御弁42の開度Xが最も大きい給気管4を基準給気管として選択する。ただし、前記実施形態と同様に、圧力制御装置53が、各給気管4について選択参照値を算出し、算出された選択参照値のうちで最も高い選択参照値の給気管4を基準給気管として選択してもよい。目標開度Xsは、例えば30〜60%の範囲内でオペレータにより任意に設定される。   In this modification, the pressure control device 53 selects the air supply pipe 4 having the largest opening degree X of the air volume control valve 42 among the air supply pipes 4 as the reference air supply pipe. However, as in the above-described embodiment, the pressure control device 53 calculates the selection reference value for each supply pipe 4, and the supply pipe 4 with the highest selected reference value among the calculated selection reference values is used as the reference supply pipe. You may choose. The target opening Xs is arbitrarily set by the operator within a range of 30 to 60%, for example.

本変形例では、前記実施形態に比べて送風機2の運転に要する電力の低減効果が小さくなるものの、前記実施形態と同様の効果を得ることができる。しかも、本変形例では、開度XのCV値への換算および実圧損ΔPnの算出が不要であるために、制御用のプログラムを簡易化することができる。   In this modification, although the effect of reducing the power required for the operation of the blower 2 is smaller than that in the embodiment, the same effect as in the embodiment can be obtained. In addition, in this modification, since the conversion of the opening degree X into the CV value and the calculation of the actual pressure loss ΔPn are unnecessary, the control program can be simplified.

(その他の実施形態)
本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

例えば、前記実施形態では、圧力制御装置53が各給気管4の選択参照値を算出しているが、各風量制御装置52に風量制御弁42のCV値に関する性能曲線が予め格納され、各風量制御装置52が対応する給気管4の選択参照値を算出してもよい。   For example, in the above-described embodiment, the pressure control device 53 calculates the selected reference value for each air supply pipe 4, but each air volume control device 52 stores in advance a performance curve related to the CV value of the air volume control valve 42, and each air volume. The control device 52 may calculate the selected reference value of the corresponding supply pipe 4.

また、前記実施形態において、基準給気管の選択は、必ずしも選択参照値の比較によって行われる必要はなく、例えば、給気管4のうちで風量制御弁42の開度Xが最も大きい給気管4が基準給気管として選択されてもよい。   In the above embodiment, the selection of the reference air supply pipe does not necessarily have to be performed by comparing the selection reference values. For example, among the air supply pipes 4, the air supply pipe 4 with the largest opening X of the air volume control valve 42 is selected. It may be selected as a reference air supply pipe.

また、各反応タンク11に対する要求風量Qsは、必ずしも溶存酸素濃度DOに基づいて決定される必要はなく、例えば、汚水中の硝酸濃度やアンモニア濃度に基づいて決定されてもよいし、反応タンク11への汚水流入量に係数を積算して算出されてもよい。   Further, the required air volume Qs for each reaction tank 11 is not necessarily determined based on the dissolved oxygen concentration DO, and may be determined based on, for example, the nitric acid concentration or ammonia concentration in the sewage. It may be calculated by adding a coefficient to the amount of inflow of sewage into the water.

1 送風システム
11 反応タンク
2 送風機
3 集合管
4 給気管
42 風量制御弁
43 散気パネル
DESCRIPTION OF SYMBOLS 1 Blower system 11 Reaction tank 2 Blower 3 Collecting pipe 4 Air supply pipe 42 Air flow control valve 43 Air diffuser panel

Claims (4)

下水処理場において集合管を介して複数の反応タンクに空気を供給する少なくとも1つの送風機の制御方法であって、
前記集合管と前記複数の反応タンクとをそれぞれ接続する複数の給気管のうちの1つを基準給気管として選択し、
前記基準給気管に設けられた風量制御弁の開度および前記基準給気管の測定風量に基づいて前記風量制御弁の実圧損を算出し、算出された実圧損が目標圧損となるようにPID制御により前記集合管の設定圧力を決定し、
前記集合管の測定圧力が前記設定圧力となるように前記少なくとも1つの送風機をPID制御により制御する、送風機の制御方法。
A control method for at least one blower for supplying air to a plurality of reaction tanks via a collecting pipe in a sewage treatment plant,
Selecting one of a plurality of air supply pipes respectively connecting the collecting pipe and the plurality of reaction tanks as a reference air supply pipe;
The actual pressure loss of the air volume control valve is calculated based on the opening degree of the air volume control valve provided in the reference air supply pipe and the measured air volume of the reference air supply pipe, and PID control is performed so that the calculated actual pressure loss becomes the target pressure loss. To determine the set pressure of the collecting pipe,
A blower control method, wherein the at least one blower is controlled by PID control so that a measured pressure of the collecting pipe becomes the set pressure.
前記複数の給気管のそれぞれについて、当該給気管に設けられた風量制御弁のCV値を当該給気管の測定風量で割って選択参照値を算出し、
算出された選択参照値のうちで最も高い選択参照値の給気管を前記基準給気管として選択する、請求項1に記載の送風機の制御方法。
For each of the plurality of air supply pipes, the selected reference value is calculated by dividing the CV value of the air volume control valve provided in the air supply pipe by the measured air volume of the air supply pipe,
The blower control method according to claim 1, wherein an air supply pipe having the highest selected reference value among the calculated selection reference values is selected as the reference air supply pipe.
下水処理場において集合管を介して複数の反応タンクに空気を供給する少なくとも1つの送風機の制御方法であって、
前記集合管と前記複数の反応タンクとをそれぞれ接続する複数の給気管のうちの1つを基準給気管として選択し、
前記基準給気管に設けられた風量制御弁の開度が予め定められた目標開度となるようにPID制御により前記集合管の設定圧力を決定し、
前記集合管の測定圧力が前記設定圧力となるように前記少なくとも1つの送風機をPID制御により制御する、送風機の制御方法。
A control method for at least one blower for supplying air to a plurality of reaction tanks via a collecting pipe in a sewage treatment plant,
Selecting one of a plurality of air supply pipes respectively connecting the collecting pipe and the plurality of reaction tanks as a reference air supply pipe;
The set pressure of the collecting pipe is determined by PID control so that the opening degree of the air volume control valve provided in the reference air supply pipe becomes a predetermined target opening degree,
A blower control method, wherein the at least one blower is controlled by PID control so that a measured pressure of the collecting pipe becomes the set pressure.
前記複数の給気管のそれぞれには風量制御弁が設けられており、
前記複数の給気管のうちで風量制御弁の開度が最も大きい給気管を前記基準給気管として選択する、請求項3に記載の送風機の制御方法。
Each of the plurality of supply pipes is provided with an air volume control valve,
The blower control method according to claim 3, wherein an air supply pipe having the largest opening of an air flow control valve is selected as the reference air supply pipe among the plurality of air supply pipes.
JP2015249664A 2015-12-22 2015-12-22 Blower control method Active JP6316270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015249664A JP6316270B2 (en) 2015-12-22 2015-12-22 Blower control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015249664A JP6316270B2 (en) 2015-12-22 2015-12-22 Blower control method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018011932A Division JP2018075573A (en) 2018-01-26 2018-01-26 Blower control method

Publications (2)

Publication Number Publication Date
JP2017113674A true JP2017113674A (en) 2017-06-29
JP6316270B2 JP6316270B2 (en) 2018-04-25

Family

ID=59231327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015249664A Active JP6316270B2 (en) 2015-12-22 2015-12-22 Blower control method

Country Status (1)

Country Link
JP (1) JP6316270B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020151627A (en) * 2019-03-18 2020-09-24 住友重機械エンバイロメント株式会社 Aeration system, method of operating aeration system, and method of replacing blower
CN113864224A (en) * 2021-11-30 2021-12-31 华电电力科学研究院有限公司 Double-fan control method, device and equipment and double-fan system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104697A (en) * 1979-02-07 1980-08-11 Hitachi Ltd Aerator
JPS56129088A (en) * 1980-03-13 1981-10-08 Ebara Corp Control of air blow in sewage disposal
JPS6198418A (en) * 1984-10-19 1986-05-16 Masahiro Masuda Ventilation pressure controller
JPH0735000U (en) * 1993-11-25 1995-06-27 日新電機株式会社 Sewage treatment equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104697A (en) * 1979-02-07 1980-08-11 Hitachi Ltd Aerator
JPS56129088A (en) * 1980-03-13 1981-10-08 Ebara Corp Control of air blow in sewage disposal
JPS6198418A (en) * 1984-10-19 1986-05-16 Masahiro Masuda Ventilation pressure controller
JPH0735000U (en) * 1993-11-25 1995-06-27 日新電機株式会社 Sewage treatment equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020151627A (en) * 2019-03-18 2020-09-24 住友重機械エンバイロメント株式会社 Aeration system, method of operating aeration system, and method of replacing blower
CN113864224A (en) * 2021-11-30 2021-12-31 华电电力科学研究院有限公司 Double-fan control method, device and equipment and double-fan system
CN113864224B (en) * 2021-11-30 2022-03-01 华电电力科学研究院有限公司 Double-fan control method, device and equipment and double-fan system

Also Published As

Publication number Publication date
JP6316270B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
CN102597648B (en) Method for controlling a parallel operation of a multi-water heater
WO2008126428A1 (en) Air conditioning system controller
JP6316270B2 (en) Blower control method
JP2018075573A (en) Blower control method
RU2013147825A (en) METHOD AND DEVICE FOR CONTROLLING, APPROPRIATELY, REGULATING A FLUID CONVEYOR FOR TRANSPORTING A FLUID MEDIA INSIDE A PIPELINE FOR A FLUID
CN109855245B (en) Multi-split air conditioning system and heat exchange amount calculation method thereof
JP2014159808A5 (en)
RU2014146203A (en) AIRCRAFT FUEL SUPPLY SYSTEMS
JP6198398B2 (en) Control method for determining the number of operating pumps in a two-pump heat source facility
CN105823282A (en) Discharge pressure control method used for optimized operation of carbon dioxide heat pump system
CN103097737A (en) Method for controlling a compressor
JP2006250443A (en) Operation control method in one pump-type heat source equipment
CN201059781Y (en) Constant temperature controller for heat pump water heater
RU2019122496A (en) ADVANCED METHOD FOR REGULATING THE POWER SUPPLY CIRCUIT
JP2011002180A (en) Local pump system in heating medium supplying facility
JP2008241326A (en) Flow measuring method in piping system facility
JP6746714B2 (en) Fluid supply equipment and control method thereof
CN100580256C (en) Energy-saving type constant pressure fluid conveying machine parallel arrangement
US10684025B2 (en) Method of controlling a fluid circulation system
KR101605206B1 (en) Appartus for controlling hot-air temperature in hot stove system
CN204556285U (en) A kind of water chiller performance test apparatus
JP5397992B2 (en) Vacuum degassing apparatus and operating method thereof
JP2009198123A (en) Heat source system and method of operating the same
CN203478623U (en) Fuel oil water heater cluster water temperature control system used for outdoor shower system
CN201935391U (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170802

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180327

R150 Certificate of patent or registration of utility model

Ref document number: 6316270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250