JP2017112389A - Driving electrolyte of electrolytic capacitor and electrolytic capacitor using the same - Google Patents

Driving electrolyte of electrolytic capacitor and electrolytic capacitor using the same Download PDF

Info

Publication number
JP2017112389A
JP2017112389A JP2017016586A JP2017016586A JP2017112389A JP 2017112389 A JP2017112389 A JP 2017112389A JP 2017016586 A JP2017016586 A JP 2017016586A JP 2017016586 A JP2017016586 A JP 2017016586A JP 2017112389 A JP2017112389 A JP 2017112389A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic capacitor
electrolytic solution
electrolytic
withstand voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017016586A
Other languages
Japanese (ja)
Other versions
JP6399466B2 (en
Inventor
清水 真
Makoto Shimizu
真 清水
功 溝田
Isao Mizota
功 溝田
万 横森
Yorozu Yokomori
万 横森
潤一 清澤
Junichi Kiyosawa
潤一 清澤
良夫 伊藤
Yoshio Ito
良夫 伊藤
田中 寛之
Hiroyuki Tanaka
寛之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
Nichicon Corp
Original Assignee
Mie University NUC
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University NUC, Nichicon Corp filed Critical Mie University NUC
Priority to JP2017016586A priority Critical patent/JP6399466B2/en
Publication of JP2017112389A publication Critical patent/JP2017112389A/en
Application granted granted Critical
Publication of JP6399466B2 publication Critical patent/JP6399466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte for aluminum electrolytic capacitor combining withstand voltage performance and heat resistance.SOLUTION: In this electrolyte, α,α'-substituted dibasic acid introduced a novel dioxa skeletal structure is dissolved, as an electrolyte, into substituted dibasic acid solvent. This compound has a hydrocarbon chain structure becoming a dioxa skeleton shown by following formula, where Ris selected from 4C-16C branch alkyl radical. Preferably, this electrolyte is an α,α'-dioxa-α,α'-substituted dibasic acid derivative, where a 1C-6C alkyl radical is coordinated to α,α' position of dicarboxylic acid.SELECTED DRAWING: None

Description

本発明は、電解コンデンサの駆動用電解液(以下、電解液と称する)の改良に係り、特に高耐電圧でかつ高温環境適応性の向上を可能とする電解コンデンサの駆動用電解液に関する。また、本発明は、このような電解液を用いた電解コンデンサに関するものでもある。   The present invention relates to an improvement in an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution), and more particularly, to an electrolytic solution for driving an electrolytic capacitor capable of improving a high withstand voltage and adapting to a high temperature environment. The present invention also relates to an electrolytic capacitor using such an electrolytic solution.

電解コンデンサは一般的な電子回路の主要部品の1つであり、様々な電子機器、電気製品においては不可欠な電気要素である。   An electrolytic capacitor is one of the main components of a general electronic circuit, and is an indispensable electrical element in various electronic devices and electrical products.

一般に、この電解コンデンサはセパレータを介した一対の薄層のアルミニウム金属箔に電解液を含浸せしめた構造を有し、片側のアルミニウム箔表面は酸化皮膜を形成した陽極電極(陽極電極として作用するアルミニウム箔を以下「陽極箔」という)として、対向するアルミニウム金属箔は電気化学的にエッチング処理された陰極電極(陰極電極として作用するアルミニウム箔を以下「陰極箔」という)として作用する。   Generally, this electrolytic capacitor has a structure in which an electrolyte solution is impregnated with a pair of thin aluminum metal foils with a separator interposed therebetween, and the surface of the aluminum foil on one side is an anode electrode (aluminum acting as an anode electrode). The opposing aluminum metal foil acts as an electrochemically etched cathode electrode (the aluminum foil acting as the cathode electrode is hereinafter referred to as “cathode foil”).

このような電解コンデンサにおいて、電解液はこの陽極箔表面に接し、陰極箔からの電子を伝達する実質的な陰極として機能する。この場合、電解液は製品としての電解コンデンサの耐電圧性能と耐熱寿命性能を支配する重要な役割を担っているため、当該電解液の性能を向上することがひいては電解コンデンサの性能改善に繋がる。   In such an electrolytic capacitor, the electrolytic solution is in contact with the surface of the anode foil and functions as a substantial cathode that transmits electrons from the cathode foil. In this case, since the electrolytic solution plays an important role in controlling the withstand voltage performance and the heat resistant life performance of the electrolytic capacitor as a product, improving the performance of the electrolytic solution leads to improvement of the performance of the electrolytic capacitor.

最近の機器の高電圧化や耐環境性に対する要求の高まりから、従来以上の高耐電圧化と長期の耐熱安定性を実現する電解コンデンサの開発が喫緊の課題となっている。   Due to the recent increasing demand for higher voltage and environmental resistance of equipment, the development of electrolytic capacitors that realize higher voltage resistance and long-term heat stability has become an urgent issue.

従来、高圧用の電解コンデンサには、エチレングリコールを主成分とする溶媒に、主骨格を直鎖のアルキル基とした高級二塩基酸もしくはその塩を溶解してなる電解液が用いられてきた(例えば、特許文献1及び特許文献2参照)。   Conventionally, an electrolytic solution in which a higher dibasic acid having a main chain as a linear alkyl group or a salt thereof is dissolved in a solvent mainly composed of ethylene glycol in an electrolytic capacitor for high voltage has been used ( For example, see Patent Literature 1 and Patent Literature 2).

さらには、α位に分岐鎖を有するジカルボン酸もしくはその塩を含んだ電解液の開発などが提案されている(例えば、特許文献3及び特許文献4参照)。   Furthermore, the development of an electrolytic solution containing a dicarboxylic acid having a branched chain at the α-position or a salt thereof has been proposed (see, for example, Patent Document 3 and Patent Document 4).

特開2000−315629号公報JP 2000-315629 A 特開2006−108158号公報JP 2006-108158 A 特開2009−272627号公報JP 2009-272627 A 特開2010−232630号公報JP 2010-232630 A

しかしながら、これらの提案にもかかわらず、最近のEV自動車やインバータ回路に適用するには、さらなる電解コンデンサの高耐電圧化、高温環境への適応性が求められていた。例えば高耐電圧化のための電解質濃度低減は、長期高温環境における電解液の化成機能の低下、ジカルボン酸構造の熱分解の促進などの欠点を有し、その克服にさらなる改良が必要であった。そこで、高耐電圧性と高温環境適応性の両者を確保できる電解コンデンサの駆動用電解液の開発が強く望まれていた。   However, in spite of these proposals, in order to be applied to recent EV automobiles and inverter circuits, further increase in the withstand voltage of electrolytic capacitors and adaptability to high temperature environments have been demanded. For example, reducing the electrolyte concentration to increase the withstand voltage has drawbacks such as lowering of the chemical conversion function of the electrolyte in a long-term high temperature environment and acceleration of thermal decomposition of the dicarboxylic acid structure, and further improvements are necessary to overcome it. . Therefore, development of an electrolytic solution for driving an electrolytic capacitor that can ensure both high voltage resistance and high temperature environment adaptability has been strongly desired.

本発明者らは、前記課題を解決するために、これまでのジカルボン酸基本構造に新たな化学構造を導入することにより、全く新たな発想に立脚した電解液を実現するに至った。すなわち本発明者らは、以下の化1式に示す「複数のエーテル構造」を導入したα,α’−ジオキサ−α,α’−置換二塩基酸構造を有する化合物を電解質とする電解液が、高耐電圧性と高温環境適応性の両者を同時に満たすことができることを見いだした。   In order to solve the above-mentioned problems, the present inventors have realized an electrolytic solution based on a completely new idea by introducing a new chemical structure into the conventional basic structure of dicarboxylic acid. That is, the present inventors have prepared an electrolytic solution using a compound having an α, α′-dioxa-α, α′-substituted dibasic acid structure into which an “multiple ether structure” represented by the following chemical formula 1 is introduced as an electrolyte. It was found that both high voltage resistance and high temperature environment adaptability can be satisfied at the same time.

本発明の電解コンデンサの駆動用電解液は、溶媒に電解質を溶解してなるものであって、前記電解質が、下記の一般式[化1]を有する化合物、および当該化合物の塩からなる群より選ばれたものであり、   The electrolytic solution for driving the electrolytic capacitor of the present invention is obtained by dissolving an electrolyte in a solvent, and the electrolyte is composed of a compound having the following general formula [Chemical Formula 1] and a salt of the compound. Is the one that was chosen

Figure 2017112389
Figure 2017112389

が、炭素数4〜16の分岐アルキル基であることを特徴とする。 R 0 is a branched alkyl group having 4 to 16 carbon atoms.

また、本発明は、上記の特徴を有する電解液において、前記Rが、下記の化学式7〜11で示される分岐アルキル基 Further, the present invention provides the electrolytic solution having the above-described features, wherein R 0 is a branched alkyl group represented by the following chemical formulas 7 to 11:

Figure 2017112389
Figure 2017112389

Figure 2017112389
Figure 2017112389

Figure 2017112389
Figure 2017112389

Figure 2017112389
Figure 2017112389

Figure 2017112389
からなる群より選ばれたものであることを特徴とする。
Figure 2017112389
It is selected from the group consisting of

さらに本発明は、上記の特徴を有する電解液を含浸させてなるコンデンサ素子を有することを特徴とする電解コンデンサである。   Furthermore, the present invention is an electrolytic capacitor characterized by having a capacitor element impregnated with the electrolytic solution having the above characteristics.

本発明では、電解質として、化1式のα,α’−ジオキサ−α,α’−置換骨格構造を有する化合物が溶解されることで、高い耐電圧を維持しながら電解質濃度も高めることができるばかりでなく、長期高温環境下における電解質の熱的劣化を遅延させることができるため、電解液の化成性をも長期にわたり維持することが可能になる。さらに、上記電解質を含む電解液は、高温で放置しても比抵抗が上昇しにくいという利点も有する。   In the present invention, as the electrolyte, the compound having the α, α′-dioxa-α, α′-substituted skeleton structure of the chemical formula 1 is dissolved, so that the electrolyte concentration can be increased while maintaining a high withstand voltage. In addition, since the thermal deterioration of the electrolyte in a long-term high-temperature environment can be delayed, the chemical conversion of the electrolytic solution can be maintained over a long period of time. Furthermore, the electrolytic solution containing the electrolyte has an advantage that the specific resistance hardly increases even when left at a high temperature.

本発明によれば、電解質として上記特定の物質を用いることにより、電解質濃度を高めても高い耐電圧を維持できるばかりでなく、高温環境条件下でも比抵抗変化率の小さい電解コンデンサの駆動用電解液とそれを用いた電解コンデンサを提供することができる。   According to the present invention, by using the specific substance as an electrolyte, not only can a high withstand voltage be maintained even when the electrolyte concentration is increased, but also an electrolytic capacitor for driving an electrolytic capacitor having a small specific resistance change rate even under high temperature environmental conditions. A liquid and an electrolytic capacitor using the same can be provided.

本発明に係る電解液は、前記の一般式[化1]を有する化合物、および当該化合物の塩からなる群より選ばれた電解質を含むものであれば良く、当該電解質を1種のみ含んでも、2種以上含んでいてもよい。
この際、一般式[化1]中のRが分岐アルキル基である場合には、当該基の炭素数が3以下の場合には耐電圧向上効果が低くなり、炭素数が16を超えると溶解性が低くなるので、当該基の炭素数は4〜16であるか、4〜12であることがより好ましい。炭素数4〜16の分岐アルキル基の具体例としては、前記化学式7〜11で示される分岐アルキル基が挙げられるが、これらに限定されるものではない。
The electrolyte solution according to the present invention only needs to include an electrolyte selected from the group consisting of the compound having the general formula [Chemical Formula 1] and a salt of the compound, and even if only one type of the electrolyte is included, Two or more kinds may be included.
At this time, when R 0 in the general formula [Chemical Formula 1] is a branched alkyl group, when the number of carbons in the group is 3 or less, the effect of improving the withstand voltage is lowered, and when the number of carbons exceeds 16, Since solubility becomes low, it is more preferable that the carbon number of the said group is 4-16 or 4-12. Specific examples of the branched alkyl group having 4 to 16 carbon atoms include the branched alkyl groups represented by the chemical formulas 7 to 11, but are not limited thereto.

尚、一般式[化1]中の置換基R、R、R、Rは、水素、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基などであり、これらのうち単独または、二種類以上を含んでも良く、R、R、R、Rの少なくとも1つはアルキル基であることがより好ましく、RとRの少なくとも1つ及びRとRの少なくとも1つがアルキル基であることが特に好ましい。カルボキシル基のα位にアルキル基がある場合は、アルキル基の嵩高さから立体障害が生じ、また、電子供与性基が隣接することにより、溶媒であるエチレングリコールのOH基とのエステル化反応が抑制されるメリットがある。 The substituents R 1 , R 2 , R 3 , and R 4 in the general formula [Chemical Formula 1] are hydrogen, methyl group, ethyl group, propyl group, butyl group, hexyl group, etc. 2 or more types, and at least one of R 1 , R 2 , R 3 and R 4 is more preferably an alkyl group, and at least one of R 1 and R 2 and R 3 and R 4 It is particularly preferred that at least one is an alkyl group. When there is an alkyl group at the α-position of the carboxyl group, steric hindrance occurs due to the bulkiness of the alkyl group, and due to the adjacent electron-donating group, the esterification reaction with the OH group of ethylene glycol, which is the solvent, occurs There is merit to be suppressed.

一方、電解コンデンサとする場合、漏れ電流の低減、耐電圧の向上、ガス吸収剤の目的で種々の添加剤を加えることが出来、それら添加剤として、リン酸化合物、ホウ酸化合物、多価アルコール類、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレン、ポリオキシプロピレングリコールのランダム共重合体及びブロック共重合体に代表される高分子化合物、ニトロ化合物等が挙げられる。   On the other hand, in the case of an electrolytic capacitor, various additives can be added for the purpose of reducing leakage current, improving withstand voltage, and gas absorbent, and as these additives, phosphoric acid compounds, boric acid compounds, polyhydric alcohols. And polymer compounds such as polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyoxyethylene, polyoxypropylene glycol random copolymers and block copolymers, and nitro compounds.

上記の一般式[化1]を有する化合物の好ましい塩としては、2アンモニウム塩の他、メチルアミン、エチルアミン、t−ブチルアミンなどの一級アミン塩、ジメチルアミン、エチルメチルアミン、ジエチルアミンなどの二級アミン塩、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミンなどの三級アミン塩、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウムなどの四級アンモニウム塩、イミダゾリニウム塩、イミダゾリウム塩等の溶融塩が挙げられ、特に好ましいのは2アンモニウム塩である。   Preferred salts of the compound having the general formula [Chemical Formula 1] include diammonium salts, primary amine salts such as methylamine, ethylamine, and t-butylamine, and secondary amines such as dimethylamine, ethylmethylamine, and diethylamine. Salts, tertiary amine salts such as trimethylamine, diethylmethylamine, ethyldimethylamine and triethylamine, quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium and tetraethylammonium, molten salts such as imidazolinium salts and imidazolium salts Particularly preferred are the diammonium salts.

従来の電解質は、電解質濃度を高めると耐電圧が低下しやすく、電解質濃度を低くする必要があったが、電解質濃度を低くすると、比抵抗が上昇するという問題や、長期高温放置時に電解液の化成性を長期間維持できないという問題があった。本発明に係る電解質は、電解質濃度を高めても耐電圧が低下しにくく、高い耐電圧及び化成性の長期維持を実現することが可能である。
本発明に係る電解液は、重量モル濃度に対する耐電圧が高い。好ましくは、前記電解質を0.030〜0.600mol/kg(1.0〜20.0重量%)とすることで、比抵抗の上昇を抑制しながら、高い耐電圧を実現できる。より好ましい電解質濃度は0.096〜0.298mol/kg(3.5〜10.0重量%)である。
With conventional electrolytes, the withstand voltage tends to decrease when the electrolyte concentration is increased, and it is necessary to lower the electrolyte concentration. However, when the electrolyte concentration is decreased, the specific resistance increases, and the electrolyte does not remain at high temperatures for long periods of time. There was a problem that the chemical conversion could not be maintained for a long time. In the electrolyte according to the present invention, the withstand voltage is unlikely to decrease even when the electrolyte concentration is increased, and it is possible to achieve high withstand voltage and long-term maintenance of chemical conversion.
The electrolytic solution according to the present invention has a high withstand voltage with respect to the molar concentration. Preferably, by setting the electrolyte to 0.030 to 0.600 mol / kg (1.0 to 20.0 wt%), a high withstand voltage can be realized while suppressing an increase in specific resistance. A more preferable electrolyte concentration is 0.096 to 0.298 mol / kg (3.5 to 10.0% by weight).

本発明に係る電解液は、溶媒としてエチレングリコール、プロピレングリコール等のグリコール類、γ‐ブチロラクトン等のラクトン類、ニトリル類、アルコール類、エーテル類、ケトン類、エステル類、カーボネート類、およびスルホラン、スルホラン誘導体、水、もしくは、これらの溶媒を二種以上混合することが可能である。   The electrolytic solution according to the present invention includes glycols such as ethylene glycol and propylene glycol, lactones such as γ-butyrolactone, nitriles, alcohols, ethers, ketones, esters, carbonates, and sulfolane and sulfolane as solvents. It is possible to mix two or more of derivatives, water, or these solvents.

本発明で用いる主溶媒としては、温度特性に優れた電解液が得られる溶媒であるエチレングリコールが好ましく、エチレングリコール単独で用いることもできるが、比抵抗を低減するため、水と混合することが好ましい。この際、全溶媒中のエチレングリコールの濃度は80〜97重量%が好ましく、90〜95重量%がより好ましく、水が併用される場合には、全溶媒中の水の濃度は0.5〜3.0重量%が好ましく、1.0〜2.5重量%がより好ましい。   The main solvent used in the present invention is preferably ethylene glycol, which is a solvent for obtaining an electrolyte solution having excellent temperature characteristics, and can be used alone, but may be mixed with water in order to reduce the specific resistance. preferable. At this time, the concentration of ethylene glycol in the total solvent is preferably 80 to 97% by weight, more preferably 90 to 95% by weight. When water is used in combination, the concentration of water in the total solvent is 0.5 to 3.0 weight% is preferable and 1.0 to 2.5 weight% is more preferable.

その他に使用可能な溶媒として、アルコール類、エーテル類、アミド類、オキサゾリジノン類、ラクトン類、ニトリル類、ケトン類、エステル類、カーボネート類、スルホン類、スルホラン類からなる群より選ばれる1種以上が挙げられ、その具体例は以下のとおりである。   Other usable solvents include one or more selected from the group consisting of alcohols, ethers, amides, oxazolidinones, lactones, nitriles, ketones, esters, carbonates, sulfones, and sulfolanes. Specific examples thereof are as follows.

アルコール類としては、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、ジアセトンアルコール、ベンジルアルコール、アミルアルコール、フルフリルアルコール、プロピレングリコール、ジエチレングリコール、ヘキシレングリコール、グリセリン、ヘキシトールなどが挙げられる。   Examples of alcohols include methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, diacetone alcohol, benzyl alcohol, amyl alcohol, furfuryl alcohol, propylene glycol, diethylene glycol, hexylene glycol, glycerin and hexitol.

さらに、アルコール類の高分子量体としては、ポリエチレングリコールやポリプロピレングリコールなどのポリアルキレングリコール及びその共重合体などが挙げられる。   Furthermore, examples of the high molecular weight substance of alcohols include polyalkylene glycols such as polyethylene glycol and polypropylene glycol, and copolymers thereof.

エーテル類としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールフェニルエーテル、テトラヒドロフラン、3−メチルテトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルなどが挙げられる。   Ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethylene glycol phenyl ether, tetrahydrofuran, 3-methyltetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol Examples include diethyl ether.

アミド類としては、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、ヘキサメチルポスホリックアミドなどが挙げられる。   Examples of amides include N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N- Examples include diethylacetamide and hexamethylphosphoric amide.

オキサゾリジノン類としては、N−メチル−2−オキサゾリジノン、3,5−ジメチル−2−オキサゾリジノンなどが挙げられる。   Examples of oxazolidinones include N-methyl-2-oxazolidinone and 3,5-dimethyl-2-oxazolidinone.

ラクトン類としては、γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン、β−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトンなどが挙げられる。   Examples of lactones include γ-butyrolactone, α-acetyl-γ-butyrolactone, β-butyrolactone, γ-valerolactone, and δ-valerolactone.

ニトリル類としては、アセトニトリル、アクリロニトリル、アジポニトリル、3−メトキシプロピオニトリルなどが挙げられる。   Examples of nitriles include acetonitrile, acrylonitrile, adiponitrile, 3-methoxypropionitrile and the like.

ケトン類としては、アセトン、メチルエチルケトンなどが挙げられる。   Examples of ketones include acetone and methyl ethyl ketone.

エステル類としては、酢酸メチル、酢酸エチル、酢酸ブチルなどが挙げられる。   Esters include methyl acetate, ethyl acetate, butyl acetate and the like.

カーボネート類としては、エチレンカーボネート、プロピレンカーボネートなどが挙げられる。   Examples of carbonates include ethylene carbonate and propylene carbonate.

スルホン類としては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホンなどが挙げられ、スルホラン類としては、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホランなどが挙げられる。   Examples of the sulfones include dimethyl sulfone, ethyl methyl sulfone, and diethyl sulfone. Examples of the sulfolane include sulfolane, 3-methyl sulfolane, and 2,4-dimethyl sulfolane.

その他の溶媒としては、N−メチル−2−ピロリドン、ジメチルスルホオキシド、1,3−ジメチル−2−イミダゾリジノン、トルエン、キシレン、パラフィン類などが挙げられる。   Examples of other solvents include N-methyl-2-pyrrolidone, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, toluene, xylene, paraffins and the like.

また、必要に応じて電解液に添加剤を含有させることもできる。添加剤としては、オルトリン酸、亜リン酸、次亜リン酸、ピロリン酸、ポリリン酸、リン酸メチル、リン酸エチル、リン酸ブチル、リン酸イソプロピル、リン酸ジブチル、リン酸ジオクチルなどのリン酸化合物、ホウ酸及びその錯化合物などのホウ酸化合物、マンニトール、ソルビトール、キシリトール、ペンタエリスリトール、ポリビニルアルコールなどの多価アルコール類、p−ニトロ安息香酸、m−ニトロアセトフェノンなどのニトロ化合物類、コロイダルシリカ、アルミノシリケートやシリコーン化合物(例えば、反応性シリコーンであるヒドロキシ変性シリコーン、アミノ変性シリコーン、カルボキシル変性シリコーン、アルコール変性シリコーン、エポキシ変性シリコーンなど)やシランカップリング剤(例えば、3−グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、エチルトリエトキシシランなど)などのケイ素化合物などが挙げられる。   Moreover, an additive can also be contained in electrolyte solution as needed. Additives include phosphoric acid such as orthophosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, polyphosphoric acid, methyl phosphate, ethyl phosphate, butyl phosphate, isopropyl phosphate, dibutyl phosphate, dioctyl phosphate Compounds, boric acid compounds such as boric acid and its complex compounds, polyhydric alcohols such as mannitol, sorbitol, xylitol, pentaerythritol, polyvinyl alcohol, nitro compounds such as p-nitrobenzoic acid and m-nitroacetophenone, colloidal silica , Aluminosilicates and silicone compounds (such as reactive silicones such as hydroxy-modified silicones, amino-modified silicones, carboxyl-modified silicones, alcohol-modified silicones, and epoxy-modified silicones) and silane coupling agents (such as 3-glycids) Shi trimethoxysilane, vinyltrimethoxysilane, ethyl triethoxysilane) and the like, silicon compounds such as.

さらに、必要に応じて電解液に高級二塩基酸であるアジピン酸、アゼライン酸、セバシン酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、7−ビニルヘキサデセン−1,16−ジカルボン酸などの脂肪族カルボン酸、安息香酸などの芳香族カルボン酸、またはその塩を含有させることもできる。   Further, if necessary, the electrolyte solution may be adipic acid, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, 7-vinylhexadecene-1,16-dicarboxylic acid, which are higher dibasic acids. An aliphatic carboxylic acid such as an acid, an aromatic carboxylic acid such as benzoic acid, or a salt thereof can also be contained.

本発明の電解液は、例えば巻回型のアルミニウム電解コンデンサに用いることができる。本発明に係る電解液を用いたコンデンサは、通常の方法で製造することができ、例えば、エッチング処理及び酸化皮膜形成処理をした陽極箔と、エッチング処理をした陰極箔とをセパレータを介して巻回してコンデンサ素子を形成し、該コンデンサ素子を電解液に含浸した後、有底筒状の外装ケースに収納する方法によって製造することができる。   The electrolytic solution of the present invention can be used for, for example, a wound aluminum electrolytic capacitor. The capacitor using the electrolytic solution according to the present invention can be manufactured by a usual method. For example, an anode foil subjected to etching treatment and oxide film formation treatment and a cathode foil subjected to etching treatment are wound through a separator. It can be manufactured by a method of turning to form a capacitor element, impregnating the capacitor element with an electrolytic solution, and then storing the capacitor element in a bottomed cylindrical outer case.

以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれら実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited by these Examples.

[電解液の調製]
溶媒として、エチレングリコール(EG)と水との混合液を使用し、電解質として、下記の化学式[化12]で表される化合物(R0が化学式[化9]の基であるジカルボン酸。以下、電解質Aと称する)を使用し、表1に記載される電解液組成を有した本発明による電解液を調製した(実施例1)。
更に、EGと水との混合液を溶媒とし、従来の電解質として、セバシン酸2アンモニウム(以下、電解質Cと称する)および、ジカルボン酸2アンモニウム(以下、電解質Dと称する)を使用し、表1に記載される電解液組成を有した電解液を調製した(従来例1および2)。
[Preparation of electrolyte]
A mixed solution of ethylene glycol (EG) and water is used as a solvent, and a compound represented by the following chemical formula [Chemical Formula 12] (R 0 is a group of the chemical formula [Chemical Formula 9] as an electrolyte. The electrolyte solution according to the present invention having the electrolyte solution composition described in Table 1 was prepared (Example 1).
Furthermore, a mixed solution of EG and water was used as a solvent, and diammonium sebacate (hereinafter referred to as electrolyte C) and diammonium dicarboxylate (hereinafter referred to as electrolyte D) were used as conventional electrolytes. An electrolytic solution having the electrolytic solution composition described in 1) was prepared (Conventional Examples 1 and 2).

Figure 2017112389
Figure 2017112389

[製品耐電圧の測定]
実施例1及び従来例1,2の各電解液についての製品耐電圧の評価は、電解コンデンサに2.5mAの定電流を105℃にて印加したときに時間-電圧の上昇カーブを測定し、はじめにスパークまたはシンチレーションが観測された電圧を測定し、これを製品耐電圧とした。使用した電解コンデンサは、ケースサイズφ16×25L(mm)、定格電圧500V(化成電圧940V)、静電容量は17μFを用いた。その結果を表1に示す。
[Measurement of product withstand voltage]
The evaluation of the product withstand voltage for each of the electrolytic solutions of Example 1 and Conventional Examples 1 and 2 was performed by measuring a time-voltage rise curve when a constant current of 2.5 mA was applied to the electrolytic capacitor at 105 ° C. First, the voltage at which spark or scintillation was observed was measured, and this was taken as the product withstand voltage. The electrolytic capacitor used was a case size φ16 × 25 L (mm), a rated voltage of 500 V (formation voltage 940 V), and a capacitance of 17 μF. The results are shown in Table 1.

Figure 2017112389
Figure 2017112389

上記表1の実験の結果、実施例1(電解質A)の電解液は、従来例1、2(電解質C、電解質D)に比較して高い製品耐電圧を示し、従来の電解液に比較して格段に高い耐電圧性能を有する電解液を実現することが可能であることを示した。   As a result of the experiment of Table 1 above, the electrolytic solution of Example 1 (electrolyte A) showed a higher product withstand voltage than the conventional examples 1 and 2 (electrolyte C, electrolyte D), and compared with the conventional electrolytic solution. It was shown that it is possible to realize an electrolytic solution having a remarkably high withstand voltage performance.

[高温放置試験における比抵抗変化率の測定]
次に、上記の実施例1及び従来例1,2の電解液をそれぞれアンプル管に封入して、105℃の雰囲気中に放置し、500時間後の比抵抗変化率を測定した。この際、各電解液についての熱安定性は、以下の式を用いて、初期比抵抗に対する高温放置後の比抵抗変化率により評価した。
比抵抗変化率(%)=(高温放置後の比抵抗値−初期比抵抗)/初期比抵抗
初期比抵抗は、調合後の電解液の比抵抗を測定した。
その結果を表2に示す。
[Measurement of resistivity change rate in high temperature storage test]
Next, the electrolyte solutions of Example 1 and Conventional Examples 1 and 2 were each enclosed in an ampule tube and left in an atmosphere of 105 ° C., and the specific resistance change rate after 500 hours was measured. At this time, the thermal stability of each electrolytic solution was evaluated by the specific resistance change rate after standing at high temperature with respect to the initial specific resistance, using the following formula.
Specific resistance change rate (%) = (specific resistance value after standing at high temperature−initial specific resistance) / initial specific resistance The initial specific resistance was measured by measuring the specific resistance of the electrolyte after preparation.
The results are shown in Table 2.

Figure 2017112389
Figure 2017112389

表2に示すように、105℃‐500時間の放置試験において、本発明の電解液(実施例1)は、従来例1,2の各電解液に比べて、試験後の比抵抗の変化率が小さく、通常運転条件下における比抵抗の上昇を抑制して電解コンデンサの長期安定性を向上させることが期待される電解液であることがわかった。   As shown in Table 2, in the standing test at 105 ° C.-500 hours, the electrolytic solution of the present invention (Example 1) has a rate of change in specific resistance after the test compared to the electrolytic solutions of Conventional Examples 1 and 2. It was found that the electrolyte was expected to improve the long-term stability of the electrolytic capacitor by suppressing an increase in specific resistance under normal operating conditions.

本発明の電解液の比抵抗変化率が小さくなるのは、高級二塩基ジカルボキシル酸をジオキサ骨格構造にて結合することにより、耐電圧性能と耐熱性能が高くなるためである。   The reason why the specific resistance change rate of the electrolytic solution of the present invention is small is that the withstand voltage performance and the heat resistance performance are enhanced by bonding higher dibasic dicarboxylic acid with a dioxa skeleton structure.

なお、本発明は、上記実施例に限られるものではなく、前記の溶質を単独または複数使用した場合にも、上記同様の効果が得られる。   In addition, this invention is not restricted to the said Example, Even when the said solute is used individually or in multiple, the same effect as the above is acquired.

また、本発明の上記実施例では、化9からなる分岐アルキル基を有する化合物を用いたが、化7、化8、化10、化11からなる分岐アルキル基を有する化合物を用いた場合にも、上記同様の効果が得られる。   Further, in the above examples of the present invention, a compound having a branched alkyl group consisting of Chemical Formula 9 was used, but also when a compound having a branched alkyl group consisting of Chemical Formula 7, Chemical Formula 8, Chemical Formula 10, and Chemical Formula 11 is used. The same effect as described above can be obtained.

さらに、本発明の上記実施例では、溶媒はエチレングリコールと水との混合液を使用したが、グリコール類、ラクトン類、ニトリル類、アルコール類、エーテル類、ケトン類、エステル類、カーボネート類、スルホン類、スルホランおよびスルホラン誘導体からなる群より選ばれた一種または二種以上の溶媒を用いた場合にも、上記同様の効果が得られる。   Furthermore, in the above embodiment of the present invention, a solvent mixture of ethylene glycol and water was used, but glycols, lactones, nitriles, alcohols, ethers, ketones, esters, carbonates, sulfones were used. The same effect as described above can be obtained when one or more solvents selected from the group consisting of sulfolane and sulfolane derivatives are used.

本発明の電解液を用いることで、高耐電圧でかつ長期耐熱寿命を可能とする電解コンデンサを製造することができ、本発明の電解液は非常に有用である。   By using the electrolytic solution of the present invention, an electrolytic capacitor having a high withstand voltage and a long heat-resistant life can be produced, and the electrolytic solution of the present invention is very useful.

Claims (3)

溶媒に電解質を溶解してなる電解コンデンサの駆動用電解液であって、前記電解質が、下記の一般式[化1]を有する化合物、および当該化合物の塩からなる群より選ばれたものであり、
Figure 2017112389
が、炭素数4〜16の分岐アルキル基であることを特徴とする電解コンデンサの駆動用電解液。
An electrolytic solution for driving an electrolytic capacitor obtained by dissolving an electrolyte in a solvent, wherein the electrolyte is selected from the group consisting of a compound having the following general formula [Chemical Formula 1] and a salt of the compound. ,
Figure 2017112389
An electrolytic solution for driving an electrolytic capacitor, wherein R 0 is a branched alkyl group having 4 to 16 carbon atoms.
前記Rが、下記の化学式7〜11で示される分岐アルキル基
Figure 2017112389
Figure 2017112389
Figure 2017112389
Figure 2017112389
Figure 2017112389
からなる群より選ばれたものであることを特徴とする請求項1に記載の電解コンデンサの駆動用電解液。
R 0 is a branched alkyl group represented by the following chemical formulas 7 to 11
Figure 2017112389
Figure 2017112389
Figure 2017112389
Figure 2017112389
Figure 2017112389
The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the electrolytic solution is selected from the group consisting of:
請求項1または2に記載の駆動用電解液を含浸させてなるコンデンサ素子を有することを特徴とする電解コンデンサ。   An electrolytic capacitor comprising a capacitor element impregnated with the driving electrolytic solution according to claim 1.
JP2017016586A 2017-02-01 2017-02-01 Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same Active JP6399466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017016586A JP6399466B2 (en) 2017-02-01 2017-02-01 Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017016586A JP6399466B2 (en) 2017-02-01 2017-02-01 Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013162112A Division JP6201172B2 (en) 2013-08-05 2013-08-05 Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2017112389A true JP2017112389A (en) 2017-06-22
JP6399466B2 JP6399466B2 (en) 2018-10-03

Family

ID=59079631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016586A Active JP6399466B2 (en) 2017-02-01 2017-02-01 Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same

Country Status (1)

Country Link
JP (1) JP6399466B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875147A (en) * 2019-10-11 2020-03-10 深圳市兴创嘉技术有限公司 Impregnation method of aluminum electrolytic capacitor core cladding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145713A (en) * 1989-10-31 1991-06-20 Matsushita Electric Ind Co Ltd Electrolyte for driving of electrolytic capacitor
JPH06104144A (en) * 1992-09-18 1994-04-15 Nippon Chemicon Corp Electrolyte for electrolytic capacitor
JP2004071727A (en) * 2002-08-05 2004-03-04 Nof Corp Electrolytic capacitor and electrolyte therefor
US20090147444A1 (en) * 2007-12-07 2009-06-11 Panasonic Corporation Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP2010232630A (en) * 2009-03-27 2010-10-14 Shenzhen Capchem Technology Co Ltd Aluminum electrolytic capacitor electrolyte, and method of manufacturing core solute thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145713A (en) * 1989-10-31 1991-06-20 Matsushita Electric Ind Co Ltd Electrolyte for driving of electrolytic capacitor
JPH06104144A (en) * 1992-09-18 1994-04-15 Nippon Chemicon Corp Electrolyte for electrolytic capacitor
JP2004071727A (en) * 2002-08-05 2004-03-04 Nof Corp Electrolytic capacitor and electrolyte therefor
US20090147444A1 (en) * 2007-12-07 2009-06-11 Panasonic Corporation Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP2010232630A (en) * 2009-03-27 2010-10-14 Shenzhen Capchem Technology Co Ltd Aluminum electrolytic capacitor electrolyte, and method of manufacturing core solute thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875147A (en) * 2019-10-11 2020-03-10 深圳市兴创嘉技术有限公司 Impregnation method of aluminum electrolytic capacitor core cladding
CN110875147B (en) * 2019-10-11 2021-10-26 深圳市兴创嘉技术有限公司 Impregnation method of aluminum electrolytic capacitor core cladding

Also Published As

Publication number Publication date
JP6399466B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
JP2007080888A (en) Electrolyte for electrolytic capacitor, and electrolytic capacitor using the same
JP6399466B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP4925219B2 (en) Electrolytic solution for electrolytic capacitor drive
JP6131136B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP6201172B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP2016192465A (en) Electrolyte for driving electrolytic capacitor, and electrolytic capacitor employing the same
JP6566305B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP2009182275A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor
JP5488998B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JP2007184303A (en) Electrolytic capacitor, and electrolyte for driving same
JP2021086870A (en) Electrolyte solution for driving electrolytic capacitor, and electrolytic capacitor arranged to use the same
JP6459540B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP5387279B2 (en) Electrolytic solution for electrolytic capacitors
JP6459432B2 (en) Electrolytic capacitor driving electrolyte and electrolytic capacitor using the same
JP6829160B2 (en) Electrolytic solution for driving electrolytic capacitors and electrolytic capacitors using it
JP4724336B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2005005336A (en) Electrolyte for driving electrolytic capacitor, and electrolytic capacitor using the same
JP5207485B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP2010171305A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor using the same
JP2005116601A (en) Electrolytic capacitor, electrolyte therefor and electrochemistry element
JP3885836B2 (en) Electrolytic solution for electrolytic capacitors
JP4081617B2 (en) Electrolytic solution for electrolytic capacitors
JP4016218B2 (en) Electrolytic solution for electrolytic capacitors
JP2008300684A (en) Electrolytic solution for driving electrolytic capacitor, and electrolytic capacitor
JP4919434B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180824

R150 Certificate of patent or registration of utility model

Ref document number: 6399466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250