JP2017111023A - Evaluation method in magnetic flux leakage method - Google Patents

Evaluation method in magnetic flux leakage method Download PDF

Info

Publication number
JP2017111023A
JP2017111023A JP2015246074A JP2015246074A JP2017111023A JP 2017111023 A JP2017111023 A JP 2017111023A JP 2015246074 A JP2015246074 A JP 2015246074A JP 2015246074 A JP2015246074 A JP 2015246074A JP 2017111023 A JP2017111023 A JP 2017111023A
Authority
JP
Japan
Prior art keywords
magnetic flux
leakage
flux density
leakage magnetic
magnetization current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015246074A
Other languages
Japanese (ja)
Other versions
JP6146828B1 (en
Inventor
衛英 程
Eiei Tei
衛英 程
芳教 上山
Yoshinori Kamiyama
芳教 上山
塚田 啓二
Keiji Tsukada
啓二 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Japan Power Engineering and Inspection Corp
Original Assignee
Okayama University NUC
Japan Power Engineering and Inspection Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC, Japan Power Engineering and Inspection Corp filed Critical Okayama University NUC
Priority to JP2015246074A priority Critical patent/JP6146828B1/en
Application granted granted Critical
Publication of JP6146828B1 publication Critical patent/JP6146828B1/en
Publication of JP2017111023A publication Critical patent/JP2017111023A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method for solving a problem in a conventional magnetic flux leakage method.SOLUTION: An evaluation method in a magnetic flux leakage method includes steps of: magnetizing multiple test pieces that are composed of the same prescribed material and differ in board thickness; measuring a value of magnetization current and a value of leakage magnetic flux density signal, with respect to each of the test pieces; creating a waveform of magnetization current-leakage magnetic flux density, with respect to each of the test pieces, on the basis of the value of magnetization current and the value of leakage magnetic flux density signal; creating a master curve on the basis of the waveform of magnetization current-leakage magnetic flux density; and using the master curve to evaluate a sample composed of the prescribed material.SELECTED DRAWING: Figure 8

Description

本願発明は、漏洩磁束法における改善された評価方法に関し、より詳細には、低磁化強度漏洩磁束法における改善された損傷評価方法に関する。ここで、低磁化強度とは、「磁性体を磁界の中にいれるとき、弱く磁化され、磁化曲線において磁化曲線の原点付近、磁化強度が小さい」と定義される(以下、同様)。   The present invention relates to an improved evaluation method in the leakage magnetic flux method, and more particularly to an improved damage evaluation method in the low magnetization strength leakage magnetic flux method. Here, the low magnetization intensity is defined as “when a magnetic substance is put in a magnetic field, it is weakly magnetized and the magnetization intensity is small near the origin of the magnetization curve in the magnetization curve” (hereinafter the same).

強磁性鉄鋼構造物に発生した損傷(腐食等による欠陥(き裂、減肉等を含む)、材質劣化等、以下、同様)の磁気探傷試験における従来の漏洩磁束法は、以下の通りである。すなわち、強磁性の被検体を磁化したとき、表面または表面直下に損傷があると、そこの磁束線の流れが乱され、表面に漏洩磁束が現れる(図1参照)。この漏洩磁束を検知することにより、表面及び表面直下の損傷を検出する。漏洩磁束は被検体の磁化程度に依存する(例えば、非特許文献1、2参照)。   The conventional magnetic flux leakage method in the magnetic flaw detection test for damage (including defects (including cracks, thinning, etc.), material deterioration, etc., the same applies hereinafter) that occurred in a ferromagnetic steel structure is as follows. . That is, when a ferromagnetic specimen is magnetized, if there is damage on the surface or directly under the surface, the flow of magnetic flux lines is disturbed, and a leakage magnetic flux appears on the surface (see FIG. 1). By detecting this leakage magnetic flux, damage on the surface and directly under the surface is detected. The leakage magnetic flux depends on the degree of magnetization of the subject (for example, see Non-Patent Documents 1 and 2).

特許第3355322号公報Japanese Patent No. 3355322

新非破壊検査便覧 p6-p7、p516-p533、(社)日本非破壊検査協会 編、日刊工業新聞社 発行New Nondestructive Inspection Handbook p6-p7, p516-p533, edited by Japan Nondestructive Inspection Association, published by Nikkan Kogyo Shimbun Non-destructive Testing Handbook 2ndedition, Vol. 4, Electromagnetic Testing, p608-p630, published by The American Society For Nondestructive TestingNon-destructive Testing Handbook 2ndedition, Vol. 4, Electromagnetic Testing, p608-p630, published by The American Society For Nondestructive Testing

従来の漏洩磁束法は、表面あるいは表層の欠陥を対象にしており、裏面、深部欠陥には適用困難という問題がある。
従来の漏洩磁束法では、被検体の磁化特性に応じて、数百〜数千A/m程度の磁界を加え、被検体内部の磁束密度を該当材料の飽和磁束密度の約0.7〜0.8倍(図2参照)、通常の鉄鋼材料では1.0 〜1.4テスラ(tesla)程度まで磁化させる必要がある。特に、被検体の内部や裏面の損傷を検出するためには、より強力な磁化が必要になる。
The conventional magnetic flux leakage method is intended for defects on the front surface or surface layer, and there is a problem that it is difficult to apply to defects on the back surface and deep portions.
In the conventional leakage magnetic flux method, a magnetic field of about several hundred to several thousand A / m is applied according to the magnetization characteristics of the subject, and the magnetic flux density inside the subject is set to about 0.7-0 of the saturation magnetic flux density of the corresponding material. .Times.8 (see FIG. 2), ordinary steel materials need to be magnetized to about 1.0 to 1.4 tesla. In particular, stronger magnetization is required to detect damage to the inside and back of the subject.

被検体をこのような高磁界・高磁束密度レベルに磁化させるためには、大起電力を提供できる磁化装置(磁化器)と電源が必要である。たとえば、電磁石を用いた極間法で被検体を磁化させる場合、多くの巻き数且つ大電流を流れるコイルと大容量の電源装置が必要である。したがって、磁気ヘッドが大型化、重量化、検出の空間分解能の低下、及びコイルの発熱などの問題、並びに磁化器等の装置が高額化する問題がある。また、装置の大型化のために現場操作の負担が増す問題、ひいては使用場所が制限される問題がある。更に、検査時の高強度磁化によって被検体が磁化され、検査後消磁するプロセスが必要となり、検査効率が低下する問題がある。従来の漏洩磁束法は、漏洩磁束信号自身から損傷を評価するものであるが、漏洩磁束探傷信号から簡易且つ定量的に損傷を評価する方法はいまだ確立されていない。   In order to magnetize a subject to such a high magnetic field / high magnetic flux density level, a magnetizing device (magnetizer) and a power source that can provide a large electromotive force are required. For example, when a subject is magnetized by the inter-electrode method using an electromagnet, a coil having a large number of turns and a large current and a large-capacity power supply device are required. Therefore, there are problems such as an increase in size and weight of the magnetic head, a decrease in spatial resolution of detection, and heat generation of the coil, and a problem that the apparatus such as a magnetizer is expensive. In addition, there is a problem that the burden of field operation increases due to an increase in the size of the apparatus, and there is a problem that the place of use is limited. Furthermore, the subject is magnetized by the high-intensity magnetization at the time of inspection, and a process of degaussing after the inspection is required, resulting in a problem that inspection efficiency is lowered. The conventional leakage flux method evaluates damage from the leakage flux signal itself, but a method for evaluating damage easily and quantitatively from the leakage flux detection signal has not yet been established.

また、従来の漏洩磁束法を使用して強磁性鉄鋼材料の材質(劣化)評価する場合、次のような問題がある。すなわち、磁気特性は劣化とともに変化することがよく知られている。被検体を磁化するために交流磁化法(例えば、特許文献1参照)を用いる場合、高周波を使うため、表皮効果によって磁束が被検体の表面に集中してしまい、内部の材質変化を把握できない可能性があるという問題がある。また、渦電流に導電率と透磁率両方の影響が現れるため、評価がより複雑になるという問題がある。さらに、材料を強力に磁化させ、磁気特性変化を検知する方法では、飽和など‘組織変化’に不敏感なパラメーターに着目してしまい、‘組織変化’に敏感な透磁率変化を見落とす可能性があるという問題がある。   Moreover, when evaluating the material (deterioration) of a ferromagnetic steel material using the conventional leakage magnetic flux method, there are the following problems. That is, it is well known that magnetic characteristics change with deterioration. When using the AC magnetization method (for example, refer to Patent Document 1) to magnetize the subject, since the high frequency is used, the magnetic flux concentrates on the surface of the subject due to the skin effect, and the internal material change may not be grasped. There is a problem of having sex. Moreover, since the influence of both conductivity and magnetic permeability appears in the eddy current, there is a problem that the evaluation becomes more complicated. Furthermore, in the method of strongly magnetizing the material and detecting the change in magnetic properties, attention is paid to parameters that are insensitive to 'tissue change' such as saturation, and there is a possibility of overlooking permeability change that is sensitive to 'tissue change'. There is a problem that there is.

本願発明は、これらの問題点を解決することを目的とする。   The present invention aims to solve these problems.

本願発明に係る漏洩磁束法における評価方法の実施形態は、例えば、以下の通りである。
[実施形態1]
漏洩磁束法における評価方法において、同一の所定の材料からなり異なる板厚を有する複数の試験片を磁化するステップと、前記複数の試験片のそれぞれについて、磁化電流の値及び漏洩磁束密度信号の値を計測するステップと、前記磁化電流の値及び漏洩磁束密度信号の値に基き、前記複数の試験片のそれぞれについて、磁化電流−漏洩磁束密度の波形を作成するステップと、前記磁化電流−漏洩磁束密度の波形に基き、マスターカーブを作成するステップと、前記マスターカーブを使用して、前記所定の材料からなる被検体を評価するステップとを有する、評価方法。
An embodiment of the evaluation method in the leakage magnetic flux method according to the present invention is as follows, for example.
[Embodiment 1]
In the evaluation method in the leakage magnetic flux method, a step of magnetizing a plurality of test pieces made of the same predetermined material and having different plate thicknesses, and a value of a magnetizing current and a value of a leakage magnetic flux density signal for each of the plurality of test pieces , A step of creating a magnetization current-leakage flux density waveform for each of the plurality of test pieces based on the magnetization current value and the leakage flux density signal value, and the magnetization current-leakage flux An evaluation method comprising: creating a master curve based on a waveform of density; and evaluating a subject made of the predetermined material using the master curve.

[実施形態2]
前記評価の内容が、前記所定の材料からなる被検体の板厚に関する、実施形態1に記載の評価方法。
[Embodiment 2]
The evaluation method according to the first embodiment, wherein the content of the evaluation relates to the thickness of the subject made of the predetermined material.

[実施形態3]
前記マスターカーブを作成するステップにおいて、前記磁化電流−漏洩磁束密度の波形を正規化し、前記複数の試験片のそれぞれについて正規化された磁化電流−漏洩磁束密度の波形を使用して各初期漏洩抵抗率を求め、前記初期漏洩抵抗率と前記試験片の板厚の関係を示す前記マスターカーブを作成する、実施形態2に記載の評価方法。
[Embodiment 3]
In the step of creating the master curve, the waveform of the magnetization current-leakage magnetic flux density is normalized, and each of the initial leakage resistances is normalized using the waveform of the magnetization current-leakage magnetic flux density normalized for each of the plurality of test pieces. The evaluation method according to the second embodiment, in which the master curve is created by calculating the rate and indicating the relationship between the initial leakage resistivity and the thickness of the test piece.

[実施形態4]
前記マスターカーブを作成するステップにおいて、前記磁化電流−漏洩磁束密度の波形を正規化し、前記複数の試験片のそれぞれについて正規化された磁化電流−漏洩磁束密度の波形を使用して各初期漏洩抵抗率を求め、前記複数の試験片の板厚のうち最大の第一の板厚を有する第一の試験片の初期漏洩抵抗率から、前記第一の試験片以外の他の板厚を有する試験片の各初期漏洩抵抗率をそれぞれ減じることにより、初期漏洩抵抗率の差を求め、前記第一の板厚から他の板厚の各値をそれぞれ減じることにより、板厚の差を求め、前記初期漏洩抵抗率の差と前記試験片の板厚の差の関係を示す前記マスターカーブを作成する、実施形態2に記載の評価方法。
[Embodiment 4]
In the step of creating the master curve, the waveform of the magnetization current-leakage magnetic flux density is normalized, and each of the initial leakage resistances is normalized using the waveform of the magnetization current-leakage magnetic flux density normalized for each of the plurality of test pieces. A test having a plate thickness other than the first test piece from the initial leakage resistivity of the first test piece having the maximum first plate thickness among the plate thicknesses of the plurality of test pieces. By subtracting each initial leakage resistivity of each piece, the difference in initial leakage resistivity is obtained, and by subtracting each value of the other plate thickness from the first plate thickness, the difference in plate thickness is obtained, The evaluation method according to the second embodiment, in which the master curve indicating a relationship between a difference in initial leakage resistivity and a difference in plate thickness of the test piece is created.

[実施形態5]
前記マスターカーブが、線形関数である、実施形態3又は4に記載の評価方法。
[実施形態6]
漏洩磁束法における評価方法において、異なる特性を備える複数の試験片を磁化するステップと、前記複数の試験片のそれぞれについて、磁化電流の値及び漏洩磁束密度信号の値を計測するステップと、前記磁化電流の値及び漏洩磁束密度信号の値に基き、前記複数の試験片のそれぞれについて、磁化電流−漏洩磁束密度の波形を作成するステップと、前記磁化電流−漏洩磁束密度の波形を正規化するステップと、前記複数の試験片のそれぞれについて正規化された磁化電流−漏洩磁束密度の波形を使用して各初期漏洩抵抗率を求めるステップと、前記複数の試験片のそれぞれについて、前記磁化電流−漏洩磁束密度の波形における上部分と下部分が囲む面積を求めるステップと、前記初期漏洩抵抗率と前記磁化電流−漏洩磁束密度の波形の前記面積の関係を示すマスターカーブを作成するステップと、前記マスターカーブを使用して、被検体の前記特性を評価するステップとを有する、評価方法。
[Embodiment 5]
The evaluation method according to Embodiment 3 or 4, wherein the master curve is a linear function.
[Embodiment 6]
In the evaluation method in the leakage flux method, a step of magnetizing a plurality of test pieces having different characteristics, a step of measuring a value of a magnetization current and a value of a leakage flux density signal for each of the plurality of test pieces, and the magnetization Based on the value of the current and the value of the leakage magnetic flux density signal, a step of creating a magnetization current-leakage magnetic flux density waveform for each of the plurality of test pieces, and a step of normalizing the magnetization current-leakage magnetic flux density waveform Determining each initial leakage resistivity using a normalized magnetization current-leakage magnetic flux density waveform for each of the plurality of test pieces; and for each of the plurality of test pieces, the magnetization current-leakage A step of obtaining an area surrounded by an upper portion and a lower portion in a waveform of magnetic flux density, and a waveform of the initial leakage resistivity and the magnetization current-leakage magnetic flux density waveform And creating a master curve showing the relationship between serial areas, using the master curve, and a step of evaluating the characteristics of the subject evaluation method.

[実施形態7]
前記被検体の前記特性が、PWHT処理である、実施形態6に記載の評価方法。
[実施形態8]
前記被検体の前記特性が、磁気特性である、実施形態6に記載の評価方法。
[Embodiment 7]
The evaluation method according to the sixth embodiment, wherein the characteristic of the subject is a PWHT process.
[Embodiment 8]
The evaluation method according to Embodiment 6, wherein the characteristic of the subject is a magnetic characteristic.

[実施形態9]
前記磁化電流−漏洩磁束密度の波形を作成するステップにおいて、計測された前記磁化電流の値及び漏洩磁束密度信号に対して所定の平均化プロセスを施し、ノイズ低減を行う、実施形態1乃至8の何れか1項に記載の評価方法。
[Embodiment 9]
In the step of creating the magnetization current-leakage magnetic flux density waveform, a predetermined averaging process is performed on the measured value of the magnetization current and the leakage magnetic flux density signal to reduce noise. The evaluation method according to any one of the above items.

[実施形態10]
前記試験片及び前記被検体が強磁性材料からなる、実施形態1乃至9の何れか1項に記載の評価方法。
[Embodiment 10]
10. The evaluation method according to any one of Embodiments 1 to 9, wherein the test piece and the subject are made of a ferromagnetic material.

本願発明に係る漏洩磁束法における評価方法は、例えば、以下のような有利な効果を奏することができる。
すなわち、本評価方法は、被検体の表面のみならず、裏面(図3参照)、深部欠陥(図示せず)の探傷に適用できる。本評価方法は、低励磁、低磁化において実施可能であるため、強力な磁化が必要な従来の漏洩磁束法が抱える上述した種々の問題点を解決できる。また、本評価方法により、簡易な欠陥評価法を確立できる。
The evaluation method in the leakage magnetic flux method according to the present invention can provide the following advantageous effects, for example.
That is, the present evaluation method can be applied not only to the surface of the subject but also to the back surface (see FIG. 3) and deep defects (not shown). Since this evaluation method can be implemented at low excitation and low magnetization, it can solve the above-described various problems of the conventional leakage magnetic flux method that requires strong magnetization. In addition, a simple defect evaluation method can be established by this evaluation method.

従来の漏洩磁束法の原理を説明するための模式図である。It is a schematic diagram for demonstrating the principle of the conventional magnetic flux leakage method. 強磁性体の初期磁化曲線、及び従来の漏洩磁束法における動作点(H,B)の一例を示す。同図中、Bは磁束密度(単位:テスラ)、Hは磁界強度(単位:A/m)を示す。An example of an initial magnetization curve of a ferromagnetic material and an operating point (H 0 , B 0 ) in a conventional leakage magnetic flux method is shown. In the figure, B represents magnetic flux density (unit: Tesla), and H represents magnetic field strength (unit: A / m). 裏面に欠陥を有する被検体を表すための模式図である。同図中、Hは、試験片の表面近傍における(漏洩した)磁界の強さである(以下、同様)。HTPは、被検体内の磁界の強さである(以下、同様)。T、tはそれぞれ、被検体の板厚、残肉厚である(以下、同様)。It is a schematic diagram for showing the test object which has a defect in a back surface. In the figure, H 1 is the strength of the magnetic field (leaked) in the vicinity of the surface of the test piece (hereinafter the same). HTP is the strength of the magnetic field in the subject (the same applies hereinafter). T and t are the thickness and the remaining thickness of the subject (the same applies hereinafter). 図2において、本願発明が着目する低磁化領域を示すための図である。同図中、右の軸は、微分透磁率を示す。In FIG. 2, it is a figure for showing the low magnetization area | region which this invention pays attention. In the figure, the right axis shows the differential permeability. 本願発明の基本理論を説明するための模式図である。同図中「core」、「gap」はそれぞれ、磁気コア、電磁石と被検体の間の所定の間隙を示す。It is a schematic diagram for demonstrating the basic theory of this invention. In the figure, “core” and “gap” indicate predetermined gaps between the magnetic core, the electromagnet, and the subject, respectively. 本願発明の基本理論を説明するための「磁化電流―漏洩磁束密度」波形を示す図である。同図中、横軸は磁化電流(i)、縦軸は漏洩磁束密度(B)を示す(以下、「磁化電流―漏洩磁束密度」波形について同様)。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform for demonstrating the basic theory of this invention. In the figure, the horizontal axis represents the magnetization current (i), and the vertical axis represents the leakage magnetic flux density (B l ) (hereinafter, the same applies to the “magnetization current-leakage magnetic flux density” waveform). 図6中の「磁化電流―漏洩磁束密度」波形を正規化する方法を説明するための図である。同図中、Bla、Bldはそれぞれ、上記波形の分解された上(ascend)部分、同下(descend)部分を示す。Blnは正規化された漏洩磁束密度である。It is a figure for demonstrating the method of normalizing the "magnetization current-leakage magnetic flux density" waveform in FIG. In the figure, it shows B la, respectively B ld is decomposed on (: ascend) portion of the waveform, the same lower (descend) moiety. B ln is the normalized leakage magnetic flux density. 本願発明に係る漏洩磁束法における評価方法の手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the procedure of the evaluation method in the magnetic flux leakage method which concerns on this invention. 実施例1−1で求めた「磁化電流―漏洩磁束密度」波形を示す図である。同図中、横軸は磁化電流(i)、縦軸は漏洩磁束密度(B)を示す(以下、「正規磁化電流―漏洩磁束密度」図について同様)。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform calculated | required in Example 1-1. In the figure, the horizontal axis indicates the magnetization current (i), and the vertical axis indicates the leakage magnetic flux density (B l ) (hereinafter the same applies to the “regular magnetization current−leakage magnetic flux density” diagram). 実施例1−1で求めた「正規磁化電流―漏洩磁束密度」図を示す図である。It is a figure which shows the "regular magnetization current-leakage magnetic flux density" figure calculated | required in Example 1-1. 実施例1−1で求めた、板厚3mmの試験片の「磁化電流―漏洩磁束密度」波形(上のグラフ、以下の図12−16において同様)及び「正規磁化電流―漏洩磁束密度」図(下のグラフ、以下の図12−16において同様)を示す図である。“Magnetic current—leakage magnetic flux density” waveform (same as in the above graph, FIGS. 12-16 below) and “normal magnetization current—leakage magnetic flux density” of the test piece having a thickness of 3 mm obtained in Example 1-1 FIG. 17 is a diagram showing a lower graph (the same applies to FIGS. 12-16 below). 実施例1−1で求めた、板厚4mmの試験片の「磁化電流―漏洩磁束密度」波形及び「正規磁化電流―漏洩磁束密度」図を示す図である。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform and the "regular magnetization current-leakage magnetic flux density" figure of the test piece of 4 mm in thickness calculated | required in Example 1-1. 実施例1−1で求めた、板厚6mmの試験片の「磁化電流―漏洩磁束密度」波形及び「正規磁化電流―漏洩磁束密度」図を示す図である。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform and the "regular magnetization current-leakage magnetic flux density" figure of the test piece of thickness 6mm calculated | required in Example 1-1. 実施例1−1で求めた、板厚8mmの試験片の「磁化電流―漏洩磁束密度」波形及び「正規磁化電流―漏洩磁束密度」図を示す図である。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform and the "regular magnetization current-leakage magnetic flux density" figure of the test piece of thickness 8mm calculated | required in Example 1-1. 実施例1−1で求めた、板厚10mmの試験片の「磁化電流―漏洩磁束密度」波形及び「正規磁化電流―漏洩磁束密度」図を示す図である。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform and the "regular magnetization current-leakage magnetic flux density" figure of the 10-mm-thick test piece calculated | required in Example 1-1. 実施例1−1で求めた、板厚12mmの試験片の「磁化電流―漏洩磁束密度」波形及び「正規磁化電流―漏洩磁束密度」図を示す図である。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform and the "regular magnetization current-leakage magnetic flux density" figure of the 12-mm-thick test piece calculated | required in Example 1-1. 実施例1−1で求めた、初期漏洩抵抗率と試験片の板厚の関係を示すマスターカーブ(同図中、破線で示す。)である。同図中、横軸は試験片の板厚、縦軸は初期漏洩抵抗率を示す。It is a master curve (it shows with a broken line in the figure) which shows the relationship between the initial stage leakage resistivity calculated | required in Example 1-1, and the plate | board thickness of a test piece. In the figure, the horizontal axis represents the thickness of the test piece, and the vertical axis represents the initial leakage resistivity. 実施例1−2で求めた「磁化電流―漏洩磁束密度」波形を示す図である。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform calculated | required in Example 1-2. 実施例1−2で求めた「正規磁化電流―漏洩磁束密度」図を示す図である。It is a figure which shows the "normal magnetization current-leakage magnetic flux density" figure calculated | required in Example 1-2. 実施例1−2で求めた、初期漏洩抵抗率と試験片の板厚の関係を示すマスターカーブ(同図中、破線で示す。)である。同図中、横軸は試験片の板厚、縦軸は初期漏洩抵抗率を示す。It is a master curve (it shows with a broken line in the figure) which shows the relationship between the initial leakage resistivity calculated | required in Example 1-2, and the plate | board thickness of a test piece. In the figure, the horizontal axis represents the thickness of the test piece, and the vertical axis represents the initial leakage resistivity. 実施例1の[実験結果の利用]で求めた、初期漏洩抵抗率と試験片の減肉量の関係を示すマスターカーブ(同図中、破線で示す。)である。同図中、横軸は試験片の減肉量、縦軸は初期漏洩抵抗率の変化量を示す。2 is a master curve (indicated by a broken line in the figure) showing the relationship between the initial leakage resistivity and the thinning amount of the test piece obtained in [Utilization of Experimental Results] of Example 1. In the figure, the horizontal axis indicates the amount of thinning of the test piece, and the vertical axis indicates the amount of change in the initial leakage resistivity. 実施例2−1で求めた「磁化電流―漏洩磁束密度」波形を示す図である。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform calculated | required in Example 2-1. 実施例2−1で求めた「正規磁化電流―漏洩磁束密度」図を示す図である。It is a figure which shows the "normal magnetization current-leakage magnetic flux density" figure calculated | required in Example 2-1. 実施例2−1で求めた、As receivedの試験片の「磁化電流―漏洩磁束密度」波形(上のグラフ、以下の図25−28において同様)及び「正規磁化電流―漏洩磁束密度」図(下のグラフ、以下の図25−28において同様)を示す図である。The “magnetization current—leakage magnetic flux density” waveform (the same as in the above graph, FIGS. 25-28 below) and the “normal magnetization current—leakage magnetic flux density” diagram of the As received test piece obtained in Example 2-1. It is a figure which shows the lower graph and the following FIGS. 25-28). 実施例2−1で求めた、PWHT温度682℃の試験片の「磁化電流―漏洩磁束密度」波形及び「正規磁化電流―漏洩磁束密度」図を示す図である。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform and the "regular magnetization current-leakage magnetic flux density" figure of the test piece of PWHT temperature 682 degreeC calculated | required in Example 2-1. 実施例2−1で求めた、PWHT温度720℃の試験片の「磁化電流―漏洩磁束密度」波形及び「正規磁化電流―漏洩磁束密度」図を示す図である。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform and the "regular magnetization current-leakage magnetic flux density" figure of the test piece of PWHT temperature 720 degreeC calculated | required in Example 2-1. 実施例2−1で求めた、PWHT温度740℃の試験片の「磁化電流―漏洩磁束密度」波形及び「正規磁化電流―漏洩磁束密度」図を示す図である。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform and the "regular magnetization current-leakage magnetic flux density" figure of the test piece of PWHT temperature 740 degreeC calculated | required in Example 2-1. 実施例2−1で求めた、PWHT温度762℃の試験片の「磁化電流―漏洩磁束密度」波形及び「正規磁化電流―漏洩磁束密度」図を示す図である。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform and the "regular magnetization current-leakage magnetic flux density" figure of the test piece of PWHT temperature 762 degreeC calculated | required in Example 2-1. 実施例2−1で求めた、初期漏洩抵抗率と「磁化電流−漏洩磁束密度」波形の面積のグラフを示す図である。It is a figure which shows the graph of the area of the initial stage leakage resistivity calculated | required in Example 2-1, and a "magnetization current-leakage magnetic flux density" waveform. 実施例2−2で求めた「磁化電流―漏洩磁束密度」波形を示す図である。It is a figure which shows the "magnetization current-leakage magnetic flux density" waveform calculated | required in Example 2-2. 実施例2−2で求めた「正規磁化電流―漏洩磁束密度」図を示す図である。It is a figure which shows the "regular magnetization current-leakage magnetic flux density" figure calculated | required in Example 2-2. 実施例2−2で求めた、初期漏洩抵抗率と「磁化電流−漏洩磁束密度」波形の面積のグラフを示す図である。It is a figure which shows the graph of the area of the initial stage leakage resistivity calculated | required in Example 2-2, and the "magnetization current-leakage magnetic flux density" waveform.

[基本理論]
本願発明の基本理論は、以下の通りである。すなわち、空気の透磁率がゼロではなく、磁束は必ず空気中に‘漏洩’すること、低い磁化領域の透磁率が磁界強度によっては変化せずほぼ一定であること、磁界の接線成分が連続であることに基づき、図4に示すような磁化特性の低磁界領域に着目する。低磁界領域では、レイリーの法則(Rayleigh's law)により、次式が成立する。ここで、低磁界領域とは、「強磁性体の磁気特性を表すB−Hカーブにおいて、原点付近(磁束密度B=0,磁界強度H=0)の磁界(H)の値が小さい領域」と定義される(以下、同様)。なお、Hは磁界の強さ、μ(H)は磁界の強さHにおける透磁率、μi0は磁界の強さHが0のときの初期透磁率である。
[Basic theory]
The basic theory of the present invention is as follows. That is, the magnetic permeability of air is not zero, the magnetic flux always 'leaks' into the air, the permeability of the low magnetization region does not change depending on the magnetic field strength, is almost constant, and the tangential component of the magnetic field is continuous. Based on this fact, attention is focused on a low magnetic field region having magnetization characteristics as shown in FIG. In the low magnetic field region, the following equation is established by Rayleigh's law. Here, the low magnetic field region is “a region where the value of the magnetic field (H) near the origin (magnetic flux density B = 0, magnetic field strength H = 0) is small in the BH curve representing the magnetic characteristics of the ferromagnetic material”. (Hereinafter the same). H is the magnetic field strength, μ (H) is the magnetic permeability at the magnetic field strength H, and μ i0 is the initial magnetic permeability when the magnetic field strength H is zero.

本願発明では、ゼロ付近で変化する直流或いは低周波交流電流を磁化器の励磁コイルに流して試験片を低強度で磁化させ、好ましくは高感度な磁気センサを用い空気中に漏れる微弱な磁束密度信号を検知することによって、損傷を検知・評価する。   In the present invention, a weak magnetic flux density that leaks into the air, preferably using a highly sensitive magnetic sensor, by passing a direct current or low frequency alternating current that changes near zero to the exciting coil of the magnetizer to magnetize the test piece with low strength. Detect and evaluate damage by detecting signals.

図5に示す所定の縦横寸法及び板厚Tの板材である被検体を極間法で磁化した場合を例に説明する。被検体の裏面には減肉部すなわち凹部(減肉部における残肉厚t)が設けられる。同図中「core」と記す磁気コアにコイル巻きの小型ヨーク型電磁石(磁化器)の磁化コイルに対し所定の交流電流を流して、被検体を磁化する。なお、電磁石と被検体との間には所定の間隙(同図中、「gap」と記す。)が設けられている。磁気回路各部分の断面積と透磁率は一様である。勿論、極間法以外の磁化方法を採用してもよい。各指標は以下のように定められる。   An example will be described in which a subject, which is a plate material having predetermined vertical and horizontal dimensions and plate thickness T shown in FIG. A thinned portion, that is, a concave portion (remaining thickness t in the thinned portion) is provided on the back surface of the subject. In the same figure, a predetermined alternating current is passed through a magnetizing coil of a small-yoke type electromagnet (magnetizer) wound around a magnetic core denoted by “core” to magnetize the subject. Note that a predetermined gap (denoted as “gap” in the figure) is provided between the electromagnet and the subject. The cross-sectional area and permeability of each part of the magnetic circuit are uniform. Of course, a magnetization method other than the inter-pole method may be employed. Each indicator is defined as follows.

電磁石、空気間隙及び被検体からなる磁気回路全体の磁気抵抗R:   Magnetoresistance R of the entire magnetic circuit consisting of an electromagnet, an air gap and a subject:

ここで、Rcore、Rgap、RTPはそれぞれ、磁気回路としての電磁石のコア、上記所定の間隙、試験片の各磁気抵抗である(以下、同様)。μcore、μ、μTPはそれぞれ、磁気回路としての電磁石のコア、空気(すなわち、上記所定の間隙における)、試験片のそれぞれ透磁率である(以下、同様)。Acore、Agap、ATPはそれぞれ、磁気回路としての電磁石のコア、上記所定の間隙、試験片の断面積である(以下、同様)。lcore、lgap、lTPはそれぞれ、磁気回路としての電磁石の コア、上記所定の間隙、試験片のそれぞれの磁路長さである(以下、同様)。 Here, R core , R gap , and R TP are the respective magnetoresistances of the core of the electromagnet as the magnetic circuit, the predetermined gap, and the test piece (hereinafter the same). μ core , μ 0 , and μ TP are the magnetic permeability of the electromagnet core, air (that is, in the predetermined gap) as a magnetic circuit, and the test piece, respectively (hereinafter the same). A core , A gap and A TP are respectively the core of the electromagnet as the magnetic circuit, the predetermined gap, and the cross-sectional area of the test piece (the same applies hereinafter). l core , l gap , and l TP are the magnetic path lengths of the core of the electromagnet as the magnetic circuit, the predetermined gap, and the test piece, respectively (the same applies hereinafter).

電磁石のコア及び被検体からなる磁気回路に流れる磁束Φ:   Magnetic flux Φ flowing in a magnetic circuit composed of an electromagnet core and a subject:

ここで、Φは電磁石のコア、空気間隙及び被検体からなる磁気回路に流れる磁束、nは磁化コイルの巻き回数、iは磁化コイルに流れる電流である(以下、同様)。
また、磁束は該回路において連続と考えられるから、次式が成り立つ。
Here, Φ is a magnetic flux flowing in a magnetic circuit composed of an electromagnet core, an air gap, and a subject, n is the number of turns of the magnetization coil, and i is a current flowing in the magnetization coil (the same applies hereinafter).
Further, since the magnetic flux is considered to be continuous in the circuit, the following equation holds.

ここで、Φcore、Φgap、ΦTPはそれぞれ、磁気回路としての電磁石のコア、上記所定の間隙、試験片の各磁束である(以下、同様)。
被検体内の磁束密度BTP
Here, Φ core , Φ gap , and Φ TP are the magnetic core of the electromagnet as the magnetic circuit, the predetermined gap, and the magnetic flux of the test piece (hereinafter the same).
Magnetic flux density B TP in the subject:

被検体内の磁界の強さHTPMagnetic field strength H TP in the subject:

また、Rgap、Rcoreは被検体によって変わらないから、その和をRと記述し、次式が成り立つ。 Since R gap and R core do not change depending on the subject, the sum is described as R 0, and the following equation holds.

また、磁界の接線成分の連続性を考慮すると、次式が成り立つ。なお、Hは、試験片の表面近傍における(漏洩した)磁界の強さである(以下、同様)。 Further, considering the continuity of the tangential component of the magnetic field, the following equation holds. H 1 is the strength of the magnetic field (leaked) in the vicinity of the surface of the test piece (hereinafter the same).

高感度磁気センサ等の所定の計測器を用い、磁化電流(i)と漏洩磁束密度(B)を記録する。磁化電流と漏洩磁束密度の信号をそれぞれ横軸・縦軸にとり、「磁化電流―漏洩磁束密度」波形を作る(図6)。その際、同図に示すように、計測器により直接計測された生信号(raw signal)に対して所定の平均化プロセス(averaging process)を施し、ノイズ低減を行ってもよい。 Using a predetermined measuring instrument such as a high-sensitivity magnetic sensor, the magnetization current (i) and the leakage magnetic flux density (B l ) are recorded. The magnetization current and leakage flux density signals are plotted on the horizontal and vertical axes, respectively, to create a “magnetization current-leakage flux density” waveform (FIG. 6). At this time, as shown in the figure, a predetermined averaging process (averaging process) may be performed on the raw signal directly measured by the measuring instrument to perform noise reduction.

次に、「磁化電流―漏洩磁束密度」波形を正規化して、「正規磁化電流―漏洩磁束密度」を作る。図7は、「磁化電流―漏洩磁束密度」波形を示す。同図中、縦軸が計測された漏洩磁束密度(Bl signal)、横軸が計測された電流(Current signal)である。上記「磁化電流―漏洩磁束密度」波形において、分解された上(ascend)部分(同図中、上部分の漏洩磁束密度の値を「Bla」と記す。)及び下(descend)部分(同図中、下部分の漏洩磁束密度の値を「Bld」と記す。)の同一電流値に対する漏洩磁束密度の各値の平均値「Bln」をトレースした曲線が、「正規磁化電流―漏洩磁束密度」波形である。上記「正規磁化電流―漏洩磁束密度」波形の傾斜に相当し、次式で表される「微分磁気漏洩抵抗率(Differential magnetical leakage reluctivity)γ」を求める。 Next, the “magnetization current—leakage magnetic flux density” waveform is normalized to create “normal magnetization current—leakage magnetic flux density”. FIG. 7 shows a “magnetization current-leakage magnetic flux density” waveform. In the figure, the vertical axis represents the measured magnetic flux density ( Bl signal), and the horizontal axis represents the measured current (Current signal). In the “magnetization current-leakage magnetic flux density” waveform, the decomposed upper part (ascend) (in the figure, the value of the magnetic flux density at the upper part is indicated as “B la ”) and the lower part (descend) In the figure, the value of the leakage magnetic flux density in the lower part is indicated as “B ld ”). A curve obtained by tracing the average value “B ln ” of each value of the leakage magnetic flux density with respect to the same current value is expressed as “normal magnetization current−leakage”. Magnetic flux density "waveform. Corresponding to the slope of the “normal magnetization current-leakage magnetic flux density” waveform, “differential magnetic leakage reluctivity γ” expressed by the following equation is obtained.

次に、電流が0になる時点、すなわち、印加磁界がほぼ0になる時点の次式で表される「初期磁気漏洩抵抗率(Initial magnetical leakage reluctivity)γ|i→0」を抽出する。 Next, “Initial magnetic leakage reluctivity γ | i → 0 ” expressed by the following equation when the current becomes 0, that is, when the applied magnetic field becomes almost 0, is extracted.

=μであるから、上記[数9]、[数10]、[数12]の各式より次式が得られる。 Since B 1 = μ 0 H 1 , the following equations are obtained from the equations [Equation 9], [Equation 10], and [Equation 12].

[残肉厚さの検知・評価]
上記[数13]の式において、μi0/nμが一定であって、減肉が十分大きな領域に発生する場合、残肉厚さtは断面積に比例しており、すなわち、
[Detection and evaluation of remaining thickness]
In the above equation [13], when μ i0 R 0 / nμ 0 is constant and thinning occurs in a sufficiently large region, the remaining thickness t is proportional to the cross-sectional area,

したがって、次式が成立する。   Therefore, the following equation is established.

異なる残肉厚さ(又は減肉量)、或いは健全部の肉厚を有する各被検体に対して上述した手順を行い、「初期漏洩抵抗率−残肉厚さ」関係図を求める。このようにして予め求めた「初期漏洩抵抗率−残肉厚さ」関係図(マスターカーブ)を参照することにより、被検体の残肉厚さ(又は減肉量)、或いは健全部の肉厚を評価することができる。
[材料磁気特性の検知・評価]
また、上記[数13]の式と同様にして次式が求められる。
The procedure described above is performed for each specimen having a different remaining thickness (or reduced thickness) or a thickness of a healthy part, and an “initial leakage resistance ratio−remaining thickness” relationship diagram is obtained. By referring to the “initial leakage resistivity—remaining thickness” relationship diagram (master curve) obtained in advance in this way, the remaining thickness (or reduced thickness) of the object or the thickness of the healthy part Can be evaluated.
[Detection and evaluation of magnetic properties of materials]
Further, the following equation is obtained in the same manner as the equation [Equation 13].

被検体の裏面に減肉部が設けられておらず厚さが一定、すなわち、ATP、R0,nが一定の場合、次式に示す如く、γ|i→0はμi0の変化を反映する。 When no thinned portion is provided on the back surface of the subject and the thickness is constant, that is, A TP , R 0 , and n are constant, γ | i → 0 changes μ i0 as shown in the following equation. reflect.

このように、γ|i→0とμi0の相関関係(線形関係)を利用して、初期漏洩抵抗率や「磁化電流−漏洩磁束密度」波形に囲まれた面積などの解析により、材質の磁気特性を評価し、予め求めた「磁気特性変化―組織や機械特性変化」の関係から、材質の変化を評価することができる。 In this way, by using the correlation (linear relationship) between γ | i → 0 and μ i0 , the analysis of the area surrounded by the initial leakage resistivity and the “magnetization current-leakage magnetic flux density” waveform, etc. By evaluating the magnetic characteristics, it is possible to evaluate the change of the material from the previously obtained relationship of “magnetic characteristic change—structure or mechanical characteristic change”.

上述した本願発明に係る漏洩磁束法における評価方法の手順の概略を、図8に示す。
[実施例1]
実施例1は、裏面減肉の検出・評価等に関する実験である。強磁性材料からなる被検体の材料を変更して二種類の実験を行った。ここで、強磁性とは、「鉄のように磁界の中にいれるとき強く磁化して、磁石を強く引き付ける磁性体」と定義される(以下、同様)。
FIG. 8 shows an outline of the procedure of the evaluation method in the above-described leakage magnetic flux method according to the present invention.
[Example 1]
Example 1 is an experiment related to detection / evaluation of backside thinning. Two types of experiments were performed by changing the material of the subject made of a ferromagnetic material. Here, ferromagnetism is defined as “a magnetic material that is strongly magnetized and attracts a magnet strongly when placed in a magnetic field, such as iron” (the same applies hereinafter).

[実施例1−1]
試験片として、縦100mmX横100mmX所定の板厚の寸法を有するSB410鋼板を使用して実験した。各試験片の板厚はそれぞれ、3mm、4mm、6mm、8mm、10mm、12mmである。本実験においては、小型ヨーク型電磁石(磁化器)の磁化コイルに対して、0.6 Ampere p-p(peak-to-peak)、周波数1Hzの交流電流を流して各試験片を磁化し、試験片の表面の減肉部に対応する所定箇所において、所定の計測器を用い空気中に漏れる磁束密度の信号を計測する。本願発明に係る方法の実際の現場における使用対象である被検体の裏面に減肉部(凹部)が存すると仮定すると、磁化コイルの極間の距離に対して同極間の距離の方向に沿う減肉部の両縁部間の距離が十分に大きい場合、本実験に使用した各試験片の板厚は、被検体の減肉部の残肉厚tとみなすことができる。
[Example 1-1]
Experiments were conducted using SB410 steel plates having dimensions of 100 mm long × 100 mm wide × predetermined plate thickness as test pieces. The thickness of each test piece is 3 mm, 4 mm, 6 mm, 8 mm, 10 mm, and 12 mm, respectively. In this experiment, 0.6 Ampere pp (peak-to-peak), 1Hz frequency alternating current was applied to the magnetizing coil of a small yoke-type electromagnet (magnetizer) to magnetize each test piece, and the surface of the test piece A signal of magnetic flux density leaking into the air is measured using a predetermined measuring instrument at a predetermined location corresponding to the thinned portion. Assuming that a thinned portion (concave portion) exists on the back surface of the subject to be used in the actual site of the method according to the present invention, the distance between the poles of the magnetizing coil is along the direction of the distance between the poles. When the distance between both edges of the thinned portion is sufficiently large, the plate thickness of each test piece used in this experiment can be regarded as the remaining thickness t of the thinned portion of the subject.

図9に示すような、各板厚の試験片に対応する「磁化電流−漏洩磁束密度」波形(横軸:磁化電流,縦軸;漏洩磁束密度、同波形について以下同様)を得る。次に、上記「磁化電流−漏洩磁束密度」波形を正規化し、図10に示すような、一価関数である「正規磁化電流−漏洩磁束密度」図(横軸:磁化電流,縦軸:正規化した漏洩磁束密度、同図について以下同様)を得る。正規化の方法として、前述の方法を採用したが、他の方法を適宜採用することもできる。図11−16のそれぞれは、上記図9,10のもとになった、各板厚3mm、4mm、6mm、8mm、10mm、12mmの各試験片の「磁化電流−漏洩磁束密度」波形及び「正規磁化電流−漏洩磁束密度」図を示したものである。上記各図において、図中上側に「磁化電流−漏洩磁束密度」波形、図中下側に「正規磁化電流−漏洩磁束密度」図を図示する。   As shown in FIG. 9, a “magnetization current-leakage magnetic flux density” waveform (horizontal axis: magnetization current, vertical axis; leakage magnetic flux density, the same applies to the same waveform) corresponding to the test pieces of each plate thickness is obtained. Next, the “magnetization current-leakage magnetic flux density” waveform is normalized, and a “normal magnetization current-leakage magnetic flux density” diagram (horizontal axis: magnetization current, vertical axis: normal) as shown in FIG. The obtained leakage magnetic flux density, the same applies to FIG. As the normalization method, the above-described method is employed, but other methods can be appropriately employed. Each of FIGS. 11-16 is the “magnetization current-leakage magnetic flux density” waveform of each test piece having a thickness of 3 mm, 4 mm, 6 mm, 8 mm, 10 mm, and 12 mm and “ FIG. 4 is a diagram of “normal magnetization current−leakage magnetic flux density”. In each of the above drawings, the “magnetization current-leakage magnetic flux density” waveform is shown on the upper side of the drawing, and the “normal magnetization current-leakage magnetic flux density” diagram is shown on the lower side of the drawing.

続いて、図17に示すように、上記「正規磁化電流−漏洩磁束密度」図に基づき求めた各試験片の初期漏洩抵抗率をプロットした後、破線で示す初期漏洩抵抗率と板厚の関係を表すマスターカーブ(本実験では、線形関数)を得る。このマスターカーブを用いることによって、同じ試験条件下の測定信号から減肉部の残肉厚、或いは板厚を推定することができる。   Subsequently, as shown in FIG. 17, after plotting the initial leakage resistivity of each test piece obtained based on the above “regular magnetization current-leakage magnetic flux density” diagram, the relationship between the initial leakage resistivity and the plate thickness indicated by a broken line is plotted. Is obtained as a master curve (in this experiment, a linear function). By using this master curve, the remaining thickness or the plate thickness of the thinned portion can be estimated from the measurement signal under the same test conditions.

[実施例1−2]
同様の実験を、材料を変更して、すなわち、試験片として縦150mmX横150mmX所定の板厚の寸法を有するSM490鋼板を使用して実験した。本実験では、6mm、8mm、9mm、10mmの板厚の試験片を使用した。上記[実施例1−1]と同様に、0.6 Ampere p-p(peak-to-peak)、周波数1Hzの交流電流を流して各試験片を磁化し、試験片の表面の減肉部に対応する所定箇所において、所定の計測器を用い空気中に漏れる磁束密度の信号を計測する。
[Example 1-2]
A similar experiment was carried out by changing the material, that is, using an SM490 steel plate having a predetermined plate thickness dimension of 150 mm long × 150 mm wide as a test piece. In this experiment, test pieces having thicknesses of 6 mm, 8 mm, 9 mm, and 10 mm were used. Similar to [Example 1-1] above, each test piece is magnetized by passing an alternating current of 0.6 Ampere pp (peak-to-peak) and a frequency of 1 Hz to correspond to a thinned portion on the surface of the test piece. At a location, a signal of magnetic flux density leaking into the air is measured using a predetermined measuring instrument.

上記[実施例1−1]と同様に、「磁化電流−漏洩磁束密度」波形(図18)、「正規磁化電流−漏洩磁束密度」図(図19)、初期漏洩抵抗率と板厚のプロット図(図20)を作成して初期漏洩抵抗率と板厚の関係を表すマスターカーブ(本実験では、線形関数)を得ることができる。このマスターカーブを用いることによって、同じ試験条件下の測定信号から板厚、或いは残肉量を推定することができる。   Similar to [Example 1-1] above, “magnetization current-leakage magnetic flux density” waveform (FIG. 18), “regular magnetization current-leakage magnetic flux density” diagram (FIG. 19), plot of initial leakage resistivity and plate thickness. A master curve (linear function in this experiment) representing the relationship between the initial leakage resistivity and the plate thickness can be obtained by creating a diagram (FIG. 20). By using this master curve, it is possible to estimate the plate thickness or the remaining thickness from the measurement signal under the same test conditions.

[実施例1の結論]
以上より、種々の強磁性の被検体について、本願発明を適用して、測定信号から被検体の板厚、或いは残肉量を推定できることが証明された。
[Conclusion of Example 1]
From the above, it was proved that the plate thickness or the remaining thickness of the subject can be estimated from the measurement signal by applying the present invention to various ferromagnetic subjects.

[実施例1の応用例]
[理論]
上記[実施例1−1]の実験により、初期磁気漏洩抵抗率が残肉厚tの線形関数であることが証明された。この結果を利用して、視点を変えたマスターカーブを求めてみる。この理論的根拠は次の通りである。減肉が無い健全部について、次式が成立する。
[Application Example of Example 1]
[theory]
The experiment in [Example 1-1] above proves that the initial magnetic leakage resistivity is a linear function of the remaining thickness t. Use this result to find a master curve with a different viewpoint. The rationale for this is as follows. The following formula is established for a healthy part with no thinning.

ここで、Aは、板厚Tにおける横断面積である。これを上記[数13]に代入し、次式を得る。 Here, AT is a cross-sectional area at the plate thickness T. This is substituted into the above [Formula 13] to obtain the following equation.

他方、減肉がある減肉部について、次式が成立する。   On the other hand, the following formula is established for the thinned portion where there is thinning.

ここで、Aは、減肉部における残肉厚tにおける横断面積である。これを上記[数13]に代入し、次式を得る。 Here, A t is the cross-sectional area of the remaining wall thickness t at the reduced thickness portion. This is substituted into the above [Formula 13] to obtain the following equation.

T=d+tであるからA−A=LXd(ここで、dは減肉部における減肉量、Lは該横断面における幅である。)である。上記[数19]及び[数21]を利用し、健全部の初期磁気漏洩抵抗率と減肉部の初期磁気漏洩抵抗率の差をとると、次式のようになる。 Since T = d + t, A T −A t = LXd (where d is the amount of thinning in the thinned portion, and L is the width in the cross section). Using the above [Equation 19] and [Equation 21] and taking the difference between the initial magnetic leakage resistivity of the healthy part and the initial magnetic leakage resistance of the thinned part, the following equation is obtained.

以上より、Δγ|i→0は、減肉量dと比例関係にあることが証明された。
[実験結果の利用]
上記[実施例1−1]で求めた板厚12mmを健全部の板厚、板厚10mm、8mm、6mm、4mm、3mmが減肉部の残肉厚t(すなわち、それぞれ、減肉量d=2mm、4mm、6mm、8mm、9mm)と仮定して、上述した理論に則り、図21を得る。このように事前に求めたマスターカーブを利用して、現場において被検体の減肉量dを求めることができる。
[実施例2]
実施例2は、強磁性材料の材質変化(劣化)の検査・評価に関する実験である。被検体の材料を変更して二種類の実験を行った。
From the above, it was proved that Δγ t | i → 0 is proportional to the thinning amount d.
[Use of experimental results]
The plate thickness of 12 mm obtained in the above [Example 1-1] is the plate thickness of the healthy portion, and the plate thicknesses of 10 mm, 8 mm, 6 mm, 4 mm, and 3 mm are the remaining thickness t of the thinned portion (that is, the reduced thickness d respectively. = 2mm, 4mm, 6mm, 8mm, 9mm), and FIG. 21 is obtained in accordance with the theory described above. Using the master curve obtained in advance as described above, the thinning amount d of the subject can be obtained on site.
[Example 2]
Example 2 is an experiment relating to inspection / evaluation of material change (deterioration) of a ferromagnetic material. Two types of experiments were performed with different specimen materials.

[実施例2−1]
本実験は、9Cr-Mo鋼溶接部のPWHT(Post Weld Heat Treatmentの略であって、いわゆる「溶接後熱処理」のことである。)の有無・PWHT温度の評価に関する。
本実験では、同じ形状及び寸法(縦60mmX横50mmX厚さ20mm)の9Cr-Mo 溶接材を試験片として使用した。
[Example 2-1]
This experiment relates to the evaluation of the presence / absence / PWHT temperature of PWHT (abbreviation of Post Weld Heat Treatment, a so-called “post-weld heat treatment”) of 9Cr—Mo steel welds.
In this experiment, a 9Cr-Mo welding material having the same shape and dimensions (length 60 mm × width 50 mm × thickness 20 mm) was used as a test piece.

上述した実施例1で使用した磁化器を9Cr-Mo 溶接材のAs-received(要するに、PWHT処理無し)の試験片、及び、それぞれ682℃, 720℃, 740℃, 762℃ で2.25時間のあいだPWHT処理を施した各試験片の表面に置き、各試験片の磁気特性変化を検知・評価する。なお、磁化条件は上記実施例1と同様である。   The magnetizer used in Example 1 described above is a 9Cr-Mo welded As-received specimen (in short, no PWHT treatment), and at 682 ° C, 720 ° C, 740 ° C, and 762 ° C for 2.25 hours, respectively. It is placed on the surface of each test piece that has been subjected to PWHT treatment, and the magnetic property change of each test piece is detected and evaluated. The magnetization conditions are the same as in the first embodiment.

上記実施例1と同様に、各試験片に対応する「磁化電流−漏洩磁束密度」波形(図22)、「正規磁化電流−漏洩磁束密度」図(図23)を作成する。図24−28のそれぞれは、As-received, 682℃, 720℃, 740℃, 762℃の各試験片の「磁化電流−漏洩磁束密度」波形、及び「正規磁化電流−漏洩磁束密度」図を示したものである。上記各図において、図中上側に「磁化電流−漏洩磁束密度」波形、図中下側に「正規磁化電流−漏洩磁束密度」図を図示する。次に、上記実施例1と同様に、上記「正規磁化電流−漏洩磁束密度」に基づき初期漏洩抵抗率を得る。   Similarly to Example 1, the “magnetization current-leakage magnetic flux density” waveform (FIG. 22) and the “regular magnetization current-leakage magnetic flux density” diagram (FIG. 23) corresponding to each test piece are created. Each of FIGS. 24-28 shows “magnetization current-leakage magnetic flux density” waveforms and “normal magnetization current-leakage magnetic flux density” diagrams of As-received, 682 ° C, 720 ° C, 740 ° C, and 762 ° C test pieces. It is shown. In each of the above drawings, the “magnetization current-leakage magnetic flux density” waveform is shown on the upper side of the drawing, and the “normal magnetization current-leakage magnetic flux density” diagram is shown on the lower side of the drawing. Next, as in Example 1, the initial leakage resistivity is obtained based on the “normal magnetization current−leakage magnetic flux density”.

続いて、図29に示すような、マスターカーブとしての「初期漏洩抵抗率と「「磁化電流−漏洩磁束密度」波形の面積」のグラフを得る。ここで、同面積は、「磁化電流−漏洩磁束密度」波形における上(ascend)部分と下(descend)部分が囲む面積のことである。   Subsequently, as shown in FIG. 29, a graph of “initial leakage resistivity and“ area of “magnetization current-leakage magnetic flux density” waveform ”as a master curve is obtained. Here, the same area is an area surrounded by an upper part and a lower part in the “magnetization current-leakage magnetic flux density” waveform.

同図において、As-receivedの試験片の初期漏洩抵抗率の値が約−0.21であるのに対し、PWHT処理を施した各試験片の初期漏洩抵抗率の値が−0.12〜−0.004近傍である点で、As-receivedの試験片の初期漏洩抵抗率の値は、PWHT処理を施した各試験片の初期漏洩抵抗率の値と顕著に相違する。「磁化電流―漏洩磁束密度」波形の面積の値は、同図を参照すれば明らかなように、As-receivedの試験片とPWHT処理を施した各試験片とでは顕著に相違する。また、PWHT処理の温度が高いほど、同波形の面積の値は大きくなる。   In the figure, the value of the initial leakage resistivity of the As-received test piece is about -0.21, whereas the value of the initial leakage resistivity of each test piece subjected to the PWHT treatment is around -0.12 to -0.004. In a certain point, the value of the initial leakage resistivity of the As-received test piece is significantly different from the value of the initial leakage resistivity of each test piece subjected to the PWHT treatment. The value of the area of the “magnetization current-leakage magnetic flux density” waveform is remarkably different between the As-received test piece and each test piece subjected to the PWHT process, as is apparent from FIG. Further, as the temperature of the PWHT process is higher, the value of the area of the same waveform becomes larger.

以上より、事前にこのようなマスターカーブを用意することにより、As-received の試験片とPWHT処理を施した試験片を区別することができることが証明された。また、PWHT処理の温度を推定することができることが証明された。   From the above, it was proved that by preparing such a master curve in advance, it is possible to distinguish between the As-received test piece and the test piece subjected to PWHT treatment. It has also been proved that the temperature of the PWHT process can be estimated.

[実施例2−2]
本実験は、磁気特性が異なるSM400A 鋼とSM490YB 鋼の特性評価に関する。本実験では、同じ形状及び寸法(縦60mmX横50mmX厚さ20mm)のSM400A鋼 の試験片、及びSM490YB鋼の試験片を使用した。
[Example 2-2]
This experiment relates to the characterization of SM400A and SM490YB steels with different magnetic properties. In this experiment, a test piece of SM400A steel and a test piece of SM490YB steel having the same shape and dimensions (length 60 mm x width 50 mm x thickness 20 mm) were used.

上述した実施例1で使用した磁化器をSM400A鋼 とSM490YB鋼の各試験片の表面に置き、それぞれの試験片の磁気特性変化を検知・評価する。なお、磁化条件は上記実施例1と同様である。上記実施例2−1と同様に、各試験片に対応する「磁化電流−漏洩磁束密度」波形(図30)、「正規磁化電流−漏洩磁束密度」(図31)を作成し、上記「正規磁化電流−漏洩磁束密度」に基づき初期漏洩抵抗率を得る。続いて、図32に示すような「初期漏洩抵抗率と「「磁化電流−漏洩磁束密度」波形の面積」のグラフを得る。   The magnetizer used in Example 1 described above is placed on the surface of each test piece of SM400A steel and SM490YB steel, and the magnetic property change of each test piece is detected and evaluated. The magnetization conditions are the same as in the first embodiment. In the same manner as in Example 2-1, a “magnetization current-leakage magnetic flux density” waveform (FIG. 30) and “normal magnetization current-leakage magnetic flux density” (FIG. 31) corresponding to each test piece were created. The initial leakage resistivity is obtained based on “magnetization current-leakage magnetic flux density”. Subsequently, a graph of “initial leakage resistivity and“ magnetization current-leakage magnetic flux density ”waveform area” as shown in FIG. 32 is obtained.

同図を参照すれば明らかなように、SM400A鋼とSM490YB鋼の各試験片の初期磁気漏洩抵抗率の値は顕著に相違する。また、SM400A鋼とSM490YB鋼の各試験片の「磁化電流−漏洩磁束密度」波形の面積の値は顕著に相違する。このように、本方法を使用してこれら二種類の鋼材を特性評価できることが証明された。   As is apparent from the figure, the initial magnetic leakage resistivity values of the test pieces of SM400A steel and SM490YB steel are significantly different. Moreover, the values of the areas of the “magnetization current-leakage magnetic flux density” waveforms of the test pieces of SM400A steel and SM490YB steel are significantly different. Thus, it has been demonstrated that these two types of steel can be characterized using this method.

[実施例2の結論]
以上より、種々の材質の被検体について、本願発明を適用して、測定信号から被検体を特性評価できることが証明された。
[Conclusion of Example 2]
From the above, it was proved that the subject can be characterized from the measurement signal by applying the present invention to the subject of various materials.

試験片の表面近傍における(漏洩した)磁界の強さ
TP 被検体内の磁界の強さ
漏洩磁束密度
T 試験片/被検体の板厚
t 残肉厚
d 減肉量
γ|i→0 初期磁気漏洩抵抗率
μi0 初期透磁率
Δγ|i→0 初期磁気漏洩抵抗率の変化量
H 1 Magnetic field strength in the vicinity of the surface of the specimen (leaked) H Magnetic field intensity in the TP specimen B 1 Leakage magnetic flux density T Thickness of the specimen / specimen t Remaining thickness d Reduction in thickness γ | i → 0 initial magnetic leakage resistivity μ i0 initial magnetic permeability Δγ t | i → 0 change in initial magnetic leakage resistivity

Claims (10)

漏洩磁束法における評価方法において、
同一の所定の材料からなり異なる板厚を有する複数の試験片を磁化するステップと、
前記複数の試験片のそれぞれについて、磁化電流の値及び漏洩磁束密度信号の値を計測するステップと、
前記磁化電流の値及び漏洩磁束密度信号の値に基き、前記複数の試験片のそれぞれについて、磁化電流−漏洩磁束密度の波形を作成するステップと、
前記磁化電流−漏洩磁束密度の波形に基き、マスターカーブを作成するステップと、
前記マスターカーブを使用して、前記所定の材料からなる被検体を評価するステップとを有する、評価方法。
In the evaluation method in the leakage magnetic flux method,
Magnetizing a plurality of test pieces made of the same predetermined material and having different plate thicknesses;
Measuring the value of the magnetizing current and the value of the leakage magnetic flux density signal for each of the plurality of test pieces;
Creating a magnetization current-leakage magnetic flux density waveform for each of the plurality of test pieces based on the value of the magnetization current and the value of the leakage magnetic flux density signal;
Creating a master curve based on the magnetization current-leakage magnetic flux density waveform;
Using the master curve to evaluate a subject made of the predetermined material.
前記評価の内容が、前記所定の材料からなる被検体の板厚に関する、請求項1に記載の評価方法。   The evaluation method according to claim 1, wherein the content of the evaluation relates to a plate thickness of the subject made of the predetermined material. 前記マスターカーブを作成するステップにおいて、
前記磁化電流−漏洩磁束密度の波形を正規化し、
前記複数の試験片のそれぞれについて正規化された磁化電流−漏洩磁束密度の波形を使用して各初期漏洩抵抗率を求め、前記初期漏洩抵抗率と前記試験片の板厚の関係を示す前記マスターカーブを作成する、請求項2に記載の評価方法。
In the step of creating the master curve,
Normalizing the magnetization current-leakage flux density waveform;
The master showing the relationship between the initial leakage resistivity and the plate thickness of the test piece by obtaining each initial leakage resistivity using a normalized magnetization current-leakage magnetic flux density waveform for each of the plurality of test pieces. The evaluation method according to claim 2, wherein a curve is created.
前記マスターカーブを作成するステップにおいて、
前記磁化電流−漏洩磁束密度の波形を正規化し、
前記複数の試験片のそれぞれについて正規化された磁化電流−漏洩磁束密度の波形を使用して各初期漏洩抵抗率を求め、
前記複数の試験片の板厚のうち最大の第一の板厚を有する第一の試験片の初期漏洩抵抗率から、前記第一の試験片以外の他の板厚を有する試験片の各初期漏洩抵抗率をそれぞれ減じることにより、初期漏洩抵抗率の差を求め、
前記第一の板厚から他の板厚の各値をそれぞれ減じることにより、板厚の差を求め、
前記初期漏洩抵抗率の差と前記試験片の板厚の差の関係を示す前記マスターカーブを作成する、請求項2に記載の評価方法。
In the step of creating the master curve,
Normalizing the magnetization current-leakage flux density waveform;
Determine each initial leakage resistivity using a normalized magnetization current-leakage flux density waveform for each of the plurality of test specimens,
From the initial leakage resistivity of the first test piece having the maximum first plate thickness among the plate thicknesses of the plurality of test pieces, each initial of the test pieces having other plate thicknesses other than the first test piece By reducing the leakage resistivity respectively, the difference in the initial leakage resistivity is obtained,
By subtracting each value of the other plate thickness from the first plate thickness, respectively, to obtain the difference in plate thickness,
The evaluation method according to claim 2, wherein the master curve indicating the relationship between the difference in the initial leakage resistivity and the difference in plate thickness of the test piece is created.
前記マスターカーブが、線形関数である、請求項3又は4に記載の評価方法。   The evaluation method according to claim 3 or 4, wherein the master curve is a linear function. 漏洩磁束法における評価方法において、
異なる特性を備える複数の試験片を磁化するステップと、
前記複数の試験片のそれぞれについて、磁化電流の値及び漏洩磁束密度信号の値を計測するステップと、
前記磁化電流の値及び漏洩磁束密度信号の値に基き、前記複数の試験片のそれぞれについて、磁化電流−漏洩磁束密度の波形を作成するステップと、
前記磁化電流−漏洩磁束密度の波形を正規化するステップと、
前記複数の試験片のそれぞれについて正規化された磁化電流−漏洩磁束密度の波形を使用して各初期漏洩抵抗率を求めるステップと、
前記複数の試験片のそれぞれについて、前記磁化電流−漏洩磁束密度の波形における上部分と下部分が囲む面積を求めるステップと、
前記初期漏洩抵抗率と前記磁化電流−漏洩磁束密度の波形の前記面積の関係を示すマスターカーブを作成するステップと、
前記マスターカーブを使用して、被検体の前記特性を評価するステップとを有する、評価方法。
In the evaluation method in the leakage magnetic flux method,
Magnetizing a plurality of specimens with different properties;
Measuring the value of the magnetizing current and the value of the leakage magnetic flux density signal for each of the plurality of test pieces;
Creating a magnetization current-leakage magnetic flux density waveform for each of the plurality of test pieces based on the value of the magnetization current and the value of the leakage magnetic flux density signal;
Normalizing the magnetization current-leakage flux density waveform;
Determining each initial leakage resistivity using a magnetized current-leakage flux density waveform normalized for each of the plurality of test specimens;
For each of the plurality of test pieces, obtaining an area surrounded by an upper part and a lower part in the waveform of the magnetizing current-leakage magnetic flux density;
Creating a master curve indicating the relationship between the initial leakage resistivity and the area of the waveform of the magnetizing current-leakage magnetic flux density;
Evaluating the characteristics of the subject using the master curve.
前記被検体の前記特性が、PWHT処理である、請求項6に記載の評価方法。   The evaluation method according to claim 6, wherein the characteristic of the subject is PWHT processing. 前記被検体の前記特性が、磁気特性である、請求項6に記載の評価方法。   The evaluation method according to claim 6, wherein the characteristic of the subject is a magnetic characteristic. 前記磁化電流−漏洩磁束密度の波形を作成するステップにおいて、
計測された前記磁化電流の値及び漏洩磁束密度信号に対して所定の平均化プロセスを施し、ノイズ低減を行う、請求項1乃至8の何れか1項に記載の評価方法。
In the step of creating the magnetization current-leakage magnetic flux density waveform,
The evaluation method according to any one of claims 1 to 8, wherein a noise is reduced by performing a predetermined averaging process on the measured value of the magnetizing current and the leakage magnetic flux density signal.
前記試験片及び前記被検体が強磁性材料からなる、請求項1乃至9の何れか1項に記載の評価方法。   The evaluation method according to claim 1, wherein the test piece and the subject are made of a ferromagnetic material.
JP2015246074A 2015-12-17 2015-12-17 Evaluation method in magnetic flux leakage method Active JP6146828B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015246074A JP6146828B1 (en) 2015-12-17 2015-12-17 Evaluation method in magnetic flux leakage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015246074A JP6146828B1 (en) 2015-12-17 2015-12-17 Evaluation method in magnetic flux leakage method

Publications (2)

Publication Number Publication Date
JP6146828B1 JP6146828B1 (en) 2017-06-14
JP2017111023A true JP2017111023A (en) 2017-06-22

Family

ID=59061216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015246074A Active JP6146828B1 (en) 2015-12-17 2015-12-17 Evaluation method in magnetic flux leakage method

Country Status (1)

Country Link
JP (1) JP6146828B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598304A (en) * 1979-01-19 1980-07-26 Sumitomo Metal Ind Ltd Thickness meter
JPH06324021A (en) * 1993-03-16 1994-11-25 Hitachi Ltd Non-destructive inspection device
JP2001255305A (en) * 2000-03-08 2001-09-21 Hatsuden Setsubi Gijutsu Kensa Kyokai Method and apparatus for evaluating creep damage of ferromagnetic structure using ac magnetization
JP3355322B2 (en) * 2000-03-08 2002-12-09 財団法人発電設備技術検査協会 Apparatus and method for evaluating post-weld heat treatment of ferromagnetic weldments using AC magnetization
JP4587005B2 (en) * 2008-09-30 2010-11-24 日立金属株式会社 Method for analyzing DC superposition characteristics of inductance element and electromagnetic field simulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598304A (en) * 1979-01-19 1980-07-26 Sumitomo Metal Ind Ltd Thickness meter
JPH06324021A (en) * 1993-03-16 1994-11-25 Hitachi Ltd Non-destructive inspection device
JP2001255305A (en) * 2000-03-08 2001-09-21 Hatsuden Setsubi Gijutsu Kensa Kyokai Method and apparatus for evaluating creep damage of ferromagnetic structure using ac magnetization
JP3355322B2 (en) * 2000-03-08 2002-12-09 財団法人発電設備技術検査協会 Apparatus and method for evaluating post-weld heat treatment of ferromagnetic weldments using AC magnetization
JP4587005B2 (en) * 2008-09-30 2010-11-24 日立金属株式会社 Method for analyzing DC superposition characteristics of inductance element and electromagnetic field simulator

Also Published As

Publication number Publication date
JP6146828B1 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
WO2017010215A1 (en) Defect measurement method, defect measurement device, and testing probe
Le et al. Hall sensor array based validation of estimation of crack size in metals using magnetic dipole models
WO2012111500A1 (en) Nondestructive inspection device using alternating magnetic field, and nondestructive inspection method
JP2011047736A (en) Method of inspecting austenite-based stainless steel welding section
WO2008072508A1 (en) Nondestructive test instrument and nondestructive test method
KR101150486B1 (en) Apparatus and Method for detecting the wall thinning of pipeline using pulse magnetic field
JP2013160739A (en) Method and apparatus for detecting flaws in magnetic materials
Okolo et al. Axial magnetic field sensing for pulsed magnetic flux leakage hairline crack detection and quantification
Saari et al. Design of eddy current testing probe for surface defect evaluation
JP6452880B1 (en) Method and apparatus for inspecting flaws or defects in tubular body
Yilai et al. Research on internal and external defect identification of drill pipe based on weak magnetic inspection
Li et al. Numerical simulation and experiments of magnetic flux leakage inspection in pipeline steel
KR20080070292A (en) Defective detector of metal object using an alternating magnetic field
JP6551885B2 (en) Nondestructive inspection device and nondestructive inspection method
KR101107757B1 (en) The complicated type nondestructive inspection apparatus using the hybrid magnetic induction thin film sensor
JP2013170910A (en) Carburization depth measuring method and device
JP6146828B1 (en) Evaluation method in magnetic flux leakage method
JPH08136509A (en) Eddy current flaw detection method and apparatus for inner surface layer of pipe
JP6550873B2 (en) Eddy current flaw detection method
Kikuchi et al. Feasibility study of magnetic flux leakage method for condition monitoring of wall thinning on tube
Song et al. Detecting internal defects of a steel plate by using low-frequency magnetic flux leakage method
JP2012112868A (en) Internal defective measuring method and internal defective measuring device
CN205656166U (en) Nearly surperficial small crack detection device of pressure -bearing equipment
JPH09274018A (en) Method and apparatus for detecting flaw of magnetic metal element
Qiu et al. Normal magnetizing-based eddy current testing method for surface crack and internal delamination of steel plate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170412

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170511

R150 Certificate of patent or registration of utility model

Ref document number: 6146828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250