JP2017110856A - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
JP2017110856A
JP2017110856A JP2015245674A JP2015245674A JP2017110856A JP 2017110856 A JP2017110856 A JP 2017110856A JP 2015245674 A JP2015245674 A JP 2015245674A JP 2015245674 A JP2015245674 A JP 2015245674A JP 2017110856 A JP2017110856 A JP 2017110856A
Authority
JP
Japan
Prior art keywords
indoor
air
cooling operation
heat exchanger
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015245674A
Other languages
Japanese (ja)
Inventor
卓登 ▲瀬▼戸山
卓登 ▲瀬▼戸山
Takuto Setoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2015245674A priority Critical patent/JP2017110856A/en
Publication of JP2017110856A publication Critical patent/JP2017110856A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning device free from leakage of condensate water after stop of a cooling operation in a floor-installed indoor unit.SOLUTION: Control for preventing dripping of condensate water is executed to reduce an amount of air flowing to an air outflow face 51a2 from an air inflow face 51a1 while taking a time, by rotating an indoor fan 55a1 at a prescribed rotating speed when a cooling operation is stopped, and lowering the rotating speed of the indoor fan 55a1 with a prescribed lowering ratio while taking a prescribed time from the time when the cooling operation is stopped to stop the indoor fan 55a1 at the lapse of the prescribed time. Thus the condensate water generating in an indoor heat exchanger 51a in the cooling operation and reaching the air inflow face 51a1 of the indoor heat exchanger 51a, is allowed to drip to a drain pan 57a similarly as that in the cooling operation, or can be dried.SELECTED DRAWING: Figure 2

Description

本発明は空気調和装置に関し、より詳細には、室内機からの水漏れを防止できる空気調和装置に関するものである。   The present invention relates to an air conditioner, and more particularly to an air conditioner that can prevent water leakage from an indoor unit.

空気調和装置において、室外機に冷媒配管で接続される室内機として床置型室内機が用いられることがある。床置型室内機は、小型のものは空調室のクローゼット等に設置され、大型のものは空調室の外に設置される。床置型室内機は、空気吸込口と空気吹出口を有する筐体を有し、筐体内には室内熱交換器と室内ファンとドレンパンが設けられている。室内熱交換器と室内ファンは、筐体内における空気の流れ方向(空気吸込口から空気吹出口に向かう方向)に室内熱交換器、室内ファンの順で配置されており、室内熱交換器は空気の流れを横切るように斜めに傾けて配置されている。ドレンパンは、空気吸込口を塞がないよう、かつ、冷房運転時に室内熱交換器に発生した凝縮水が受けられるように形成・配置されている(例えば、特許文献1参照)。   In an air conditioner, a floor-mounted indoor unit may be used as an indoor unit connected to an outdoor unit through a refrigerant pipe. As for the floor-mounted indoor unit, a small one is installed in a closet of an air conditioning room, and a large one is installed outside the air conditioning room. The floor-mounted indoor unit has a housing having an air inlet and an air outlet, and an indoor heat exchanger, an indoor fan, and a drain pan are provided in the housing. The indoor heat exchanger and the indoor fan are arranged in the order of the indoor heat exchanger and the indoor fan in the air flow direction (the direction from the air inlet to the air outlet) in the housing, and the indoor heat exchanger is the air It is inclined at an angle so as to cross the flow. The drain pan is formed and arranged so as not to block the air inlet and to receive condensed water generated in the indoor heat exchanger during the cooling operation (see, for example, Patent Document 1).

床置型室内機の空気吹出口には、一端が空調室の天井面や壁面に開口している吹出ダクトが接続される。また、床置型室内機が大型である場合は、空気吸込口にも一端が空調室の天井面や壁面に開口している吸込ダクトが接続される。空気調和装置が運転を開始すると、室内ファンの回転によって空気吸込口から筐体内に吸い込まれた空調室の空気が室内熱交換器で冷媒と熱交換して冷却あるいは加熱される。室内熱交換器で冷却あるいは加熱された空気は、室内ファンの回転によって空気吹出口から吹出ダクトを介して空調室に吹き出される。このようにして、空調室の冷房あるいは暖房が行われる。   The air outlet of the floor-mounted indoor unit is connected to an air outlet duct having one end opened to the ceiling surface or wall surface of the air conditioning room. Further, when the floor-standing indoor unit is large, a suction duct having one end opened to the ceiling surface or wall surface of the air conditioning room is also connected to the air suction port. When the air conditioner starts operation, the air in the air conditioning room sucked into the housing from the air suction port by the rotation of the indoor fan is cooled or heated by exchanging heat with the refrigerant in the indoor heat exchanger. The air cooled or heated by the indoor heat exchanger is blown out from the air outlet through the blowout duct to the air conditioning room by the rotation of the indoor fan. In this way, the air conditioning room is cooled or heated.

特開平11−311421号公報JP-A-11-311421

ところで、上述した床置型室内機において、筐体の底面に空気吸込口が設けられるとともに筐体の天面に空気吹出口が設けられ、筐体内の空気吹出口の近傍に室内ファンが配置されその下方に室内熱交換器が配置されるものがある。このような床置型室内機では、ドレンパンを室内熱交換器の筐体底面を覆うように配置すると、ドレンパンが空気吸込口を塞いでしまう。この場合、ドレンパンは、傾けて配置される室内熱交換器の下端部の直下に配置され、下端部から滴下する凝縮水のみ受けるように形成される。   By the way, in the floor-mounted indoor unit described above, an air suction port is provided on the bottom surface of the casing and an air outlet is provided on the top surface of the casing, and an indoor fan is disposed in the vicinity of the air outlet in the casing. Some have an indoor heat exchanger disposed below. In such a floor-standing indoor unit, if the drain pan is disposed so as to cover the bottom surface of the casing of the indoor heat exchanger, the drain pan blocks the air suction port. In this case, the drain pan is disposed directly below the lower end portion of the indoor heat exchanger disposed at an inclination, and is formed so as to receive only condensed water dripping from the lower end portion.

上記のような構造を有する床置型室内機では、冷房運転を行っているときに室内熱交換器に発生する凝縮水は、室内熱交換器の底面側に臨む面を伝って下方に流れ、室内熱交換器の下端部からドレンパンに滴下する。これは、冷房運転中は室内ファンの回転により空気吸込口から空気吹出口に向かって流れる空気が室内熱交換器の底面側に臨む面から凝縮水が直下に滴下するのを防ぐためであり、空気の流れにより直下に滴下することを妨げられた凝縮水が室内熱交換器の底面側に臨む面を伝って下方に流れるためである。   In the floor-mounted indoor unit having the above structure, the condensed water generated in the indoor heat exchanger during the cooling operation flows downward along the surface facing the bottom surface side of the indoor heat exchanger, Drip onto the drain pan from the lower end of the heat exchanger. This is to prevent the condensed water from dripping directly from the surface of the indoor heat exchanger facing the bottom side of the air that flows from the air inlet to the air outlet during the cooling operation due to the rotation of the indoor fan. This is because the condensed water, which is prevented from dripping directly under the air flow, flows downward along the surface facing the bottom surface side of the indoor heat exchanger.

しかし、冷房運転を終了し室内ファンが停止すれば、空気吸込口から空気吹出口に向かう空気の流れがなくなる。このため、冷房運転終了時に室内熱交換器に発生している凝縮水が、室内熱交換器の底面側に臨む面から直下に滴下する恐れがあり、滴下した凝縮水が室内熱交換器の下方に配置されている空気吸込口から床置型室内機が設置されている床面が漏れる恐れがあった。   However, when the cooling operation is finished and the indoor fan is stopped, the air flow from the air inlet to the air outlet is eliminated. For this reason, the condensed water generated in the indoor heat exchanger at the end of the cooling operation may drop directly from the surface facing the bottom surface side of the indoor heat exchanger, and the dropped condensed water is below the indoor heat exchanger. There is a risk that the floor surface on which the floor-mounted indoor unit is installed leaks from the air suction port arranged in the room.

本発明は以上述べた問題点を解決するものであって、床置型室内機において冷房運転停止後に凝縮水室内熱交換器から滴下しない空気調和装置を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide an air conditioner that does not drip from the condensed water indoor heat exchanger after the cooling operation is stopped in a floor-standing indoor unit.

上記の課題を解決するために、本発明の空気調和装置は、空気吸込口と空気吹出口を備える筐体内に室内熱交換器と室内ファンを有し、室内ファンの回転により空気吸込口から空気吹出口に向かう空気の流れに対して斜めに室内熱交換器が配置される室内機と、室内機に冷媒配管で接続される室外機と、室内熱交換器を凝縮器として機能させる冷房運転を終了した時点で室内ファンを予め定められた所定回転数とし、冷房運転を終了した時点から室内ファンの回転数を所定回転数から予め定められた所定の低下率で低下させて室内ファンを停止させる凝縮水滴下防止制御を実行する制御手段とを有するものである。   In order to solve the above-described problems, an air conditioner of the present invention has an indoor heat exchanger and an indoor fan in a housing having an air inlet and an air outlet, and air is supplied from the air inlet by the rotation of the indoor fan. An indoor unit in which the indoor heat exchanger is arranged obliquely with respect to the air flow toward the outlet, an outdoor unit connected to the indoor unit by a refrigerant pipe, and a cooling operation that causes the indoor heat exchanger to function as a condenser At the time of completion, the indoor fan is set to a predetermined number of rotations, and from the time of completion of the cooling operation, the number of rotations of the indoor fan is decreased from the predetermined number of rotations at a predetermined rate of decrease to stop the indoor fan. And a control means for executing condensate dripping prevention control.

上記のように構成した本発明の空気調和装置によれば、冷房運転停止時点で室内ファンを所定回転数とし、その後、室内ファンの回転数を所定回転数から所定の低下率で減少させるので、冷房運転停止後に室内熱交換器への空気の流れが徐々に減少する。これにより、室内熱交換器に発生した凝縮水が、室内熱交換器の筐体底面に臨む面から下方へ滴下することを防止できる。   According to the air conditioner of the present invention configured as described above, when the cooling operation is stopped, the indoor fan is set to a predetermined rotation speed, and then the rotation speed of the indoor fan is decreased from the predetermined rotation speed at a predetermined decrease rate. After the cooling operation is stopped, the air flow to the indoor heat exchanger gradually decreases. Thereby, the condensed water which generate | occur | produced in the indoor heat exchanger can be prevented from dripping downward from the surface which faces the housing | casing bottom face of an indoor heat exchanger.

本発明の実施形態における、空気調和装置の説明図であり、(A)は冷媒回路図、(B)は室内機制御手段のブロック図である。It is explanatory drawing of the air conditioning apparatus in embodiment of this invention, (A) is a refrigerant circuit figure, (B) is a block diagram of an indoor unit control means. 本発明の実施形態における、室内機の構造の説明図である。It is explanatory drawing of the structure of the indoor unit in embodiment of this invention. 本発明の実施形態における、室内機制御手段が実行する処理を示すフローチャートである。It is a flowchart which shows the process which the indoor unit control means performs in embodiment of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、屋外に設置される1台の室外機に、空調室の内部あるいは外部に設置される3台の床置型室内機(以降、必要な場合を除き室内機と記載する)が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。例えば、3台の室内機のうち1台が床置型室内機であり、残りの2台が壁掛け型や天井埋め込み型等の別形態の室内機であってもよい。また、室外機に接続される室内機が床置型室内機1台であってもよい。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, three outdoor units installed in the air conditioning room or outside (in the following, referred to as indoor units except where necessary) are arranged in parallel with one outdoor unit installed outdoors. A description will be given by taking as an example an air conditioner that is connected to the air conditioner and can simultaneously perform cooling operation or heating operation in all indoor units. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention. For example, one of the three indoor units may be a floor-standing indoor unit, and the remaining two units may be other types of indoor units such as a wall-mounted type or a ceiling-embedded type. Moreover, the indoor unit connected to an outdoor unit may be one floor-mounted indoor unit.

図1(A)に示すように、本実施形態における空気調和装置1は、屋外に設置される1台の室外機2と、建物内であって空調室の内部あるいは外部に設置され、室外機2に液管8およびガス管9で並列に接続された3台の床置型の室内機5a〜5cを備えている。詳細には、液管8は、一端が室外機2の閉鎖弁25に、他端が分岐して室内機5a〜5cの各液管接続部53a〜53cに、それぞれ接続されている。また、ガス管9は、一端が室外機2の閉鎖弁26に、他端が分岐して室内機5a〜5cの各ガス管接続部54a〜54cに、それぞれ接続されている。以上により、空気調和装置1の冷媒回路100が構成されている。   As shown in FIG. 1A, an air conditioner 1 according to this embodiment includes one outdoor unit 2 that is installed outdoors, and an outdoor unit that is installed inside or outside an air conditioning room in a building. 2 includes three floor-mounted indoor units 5 a to 5 c connected in parallel by a liquid pipe 8 and a gas pipe 9. Specifically, the liquid pipe 8 has one end connected to the closing valve 25 of the outdoor unit 2 and the other end branched to be connected to the liquid pipe connecting portions 53a to 53c of the indoor units 5a to 5c. The gas pipe 9 has one end connected to the closing valve 26 of the outdoor unit 2 and the other end branched to be connected to the gas pipe connecting portions 54a to 54c of the indoor units 5a to 5c. The refrigerant circuit 100 of the air conditioner 1 is configured as described above.

まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、室外膨張弁24と、液管8の一端が接続された閉鎖弁25と、ガス管9の一端が接続された閉鎖弁26と、アキュムレータ28と、室外ファン27を備えている。そして、室外ファン27を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室外機冷媒回路20を構成している。   First, the outdoor unit 2 will be described. The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, a closing valve 25 to which one end of the liquid pipe 8 is connected, and one end of the gas pipe 9. A closing valve 26, an accumulator 28, and an outdoor fan 27 are provided. These devices other than the outdoor fan 27 are connected to each other through refrigerant pipes described in detail below to constitute an outdoor unit refrigerant circuit 20 that forms part of the refrigerant circuit 100.

圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで、運転容量を可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出側は、後述する四方弁22のポートaに吐出管41で接続されている。また、圧縮機21の冷媒吸入側は、アキュムレータ28の冷媒流出側に吸入管42で接続されている。   The compressor 21 is a variable capacity compressor that can vary its operating capacity by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. The refrigerant discharge side of the compressor 21 is connected to a port a of a four-way valve 22 described later by a discharge pipe 41. The refrigerant suction side of the compressor 21 is connected to the refrigerant outflow side of the accumulator 28 by a suction pipe 42.

四方弁22は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、前述したように圧縮機21の冷媒吐出側に吐出管41で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管43で接続されている。ポートcは、アキュムレータ28の冷媒流入側と冷媒配管46で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管45で接続されている。   The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and includes four ports a, b, c, and d. The port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 41 as described above. The port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 23 by a refrigerant pipe 43. The port c is connected to the refrigerant inflow side of the accumulator 28 by a refrigerant pipe 46. The port d is connected to the closing valve 26 by an outdoor unit gas pipe 45.

室外熱交換器23は、冷媒と、後述する室外ファン27の回転により室外機2の内部に取り込まれた外気とを熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、前述したように四方弁22のポートbに冷媒配管43で接続され、他方の冷媒出入口は室外機液管44で閉鎖弁25に接続されている。   The outdoor heat exchanger 23 exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27 described later. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 by the refrigerant pipe 43, and the other refrigerant inlet / outlet is connected to the closing valve 25 by the outdoor unit liquid pipe 44.

室外膨張弁24は、室外機液管44に設けられている。室外膨張弁24は電子膨張弁であり、その開度が調整されることで、室外熱交換器23に流入する冷媒量、あるいは、室外熱交換器23から流出する冷媒量を調整する。室外膨張弁24の開度は、空気調和装置1が冷房運転を行っている場合は全開とされる。また、空気調和装置1が暖房運転を行っている場合は、後述する吐出温度センサ33で検出した圧縮機21の吐出温度に応じてその開度を制御することで、吐出温度が性能上限値を超えないようにしている。   The outdoor expansion valve 24 is provided in the outdoor unit liquid pipe 44. The outdoor expansion valve 24 is an electronic expansion valve, and the amount of refrigerant flowing into the outdoor heat exchanger 23 or the amount of refrigerant flowing out of the outdoor heat exchanger 23 is adjusted by adjusting the opening thereof. The opening degree of the outdoor expansion valve 24 is fully opened when the air conditioner 1 is performing a cooling operation. In addition, when the air conditioner 1 is performing a heating operation, the opening temperature is controlled according to the discharge temperature of the compressor 21 detected by a discharge temperature sensor 33 described later, so that the discharge temperature has a performance upper limit value. I do not exceed it.

室外ファン27は樹脂材で形成されたプロペラファンであり、室外熱交換器23の近傍に配置されている。室外ファン27は、図示しない回転数可変のファンモータによって所定の回転数で回転することで図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を図示しない吹出口から室外機2外部へ放出する。   The outdoor fan 27 is a propeller fan formed of a resin material, and is disposed in the vicinity of the outdoor heat exchanger 23. The outdoor fan 27 is rotated at a predetermined rotation speed by a fan motor having a variable rotation speed (not shown), thereby taking outside air into the outdoor unit 2 from a suction port (not shown), and the outside air exchanged heat with the refrigerant in the outdoor heat exchanger 23. Is discharged to the outside of the outdoor unit 2 from an air outlet (not shown).

アキュムレータ28は、前述したように、冷媒流入側が四方弁22のポートcと冷媒配管46で接続されるとともに、冷媒流出側が圧縮機21の冷媒吸入側と吸入管42で接続されている。アキュムレータ28は、冷媒配管46からアキュムレータ28の内部に流入した冷媒をガス冷媒と液冷媒に分離してガス冷媒のみを圧縮機21に吸入させる。   As described above, the accumulator 28 has the refrigerant inflow side connected to the port c of the four-way valve 22 and the refrigerant pipe 46, and the refrigerant outflow side is connected to the refrigerant intake side of the compressor 21 through the intake pipe 42. The accumulator 28 separates the refrigerant flowing into the accumulator 28 from the refrigerant pipe 46 into a gas refrigerant and a liquid refrigerant, and causes the compressor 21 to suck only the gas refrigerant.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力である吐出圧力を検出する吐出圧力センサ31と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ33が設けられている。冷媒配管46におけるアキュムレータ28の冷媒流入口近傍には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ32と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ34が設けられている。   In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, the discharge pipe 41 includes a discharge pressure sensor 31 that detects a discharge pressure that is a pressure of the refrigerant discharged from the compressor 21, and a temperature of the refrigerant discharged from the compressor 21. A discharge temperature sensor 33 for detection is provided. Near the refrigerant inlet of the accumulator 28 in the refrigerant pipe 46, a suction pressure sensor 32 that detects the pressure of the refrigerant sucked into the compressor 21 and a suction temperature sensor 34 that detects the temperature of the refrigerant sucked into the compressor 21. Is provided.

室外機液管44における室外熱交換器23と室外膨張弁24との間には、室外熱交換器23に流入する冷媒の温度あるいは室外熱交換器23から流出する冷媒の温度を検出するための熱交温度センサ35が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ36が設けられている。   Between the outdoor heat exchanger 23 and the outdoor expansion valve 24 in the outdoor unit liquid pipe 44, the temperature of the refrigerant flowing into the outdoor heat exchanger 23 or the temperature of the refrigerant flowing out of the outdoor heat exchanger 23 is detected. A heat exchanger temperature sensor 35 is provided. An outdoor air temperature sensor 36 that detects the temperature of the outside air flowing into the outdoor unit 2, that is, the outside air temperature, is provided in the vicinity of a suction port (not shown) of the outdoor unit 2.

次に、3台の室内機5a〜5cについて、図1および図2を用いて説明する。3台の室内機5a〜5cは、筐体56a〜56cの内部に、室内熱交換器51a〜51cと、室内膨張弁52a〜52cと、分岐した液管8の他端が接続された液管接続部53a〜53cと、分岐したガス管9の他端が接続されたガス管接続部54a〜54cと、ドレンパン57a〜57cとを備えている。そして、室内ファン55a〜55cおよびドレンパン57a〜57cを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室内機冷媒回路50a〜50cを構成している。   Next, the three indoor units 5a to 5c will be described with reference to FIGS. The three indoor units 5a to 5c are liquid tubes in which the indoor heat exchangers 51a to 51c, the indoor expansion valves 52a to 52c, and the other end of the branched liquid tube 8 are connected to the inside of the casings 56a to 56c. Connection parts 53a-53c, gas pipe connection parts 54a-54c to which the other ends of the branched gas pipes 9 are connected, and drain pans 57a-57c are provided. And these apparatuses except indoor fan 55a-55c and drain pans 57a-57c are mutually connected by each refrigerant | coolant piping explained in full detail below, and comprise the indoor unit refrigerant circuit 50a-50c which makes a part of refrigerant circuit 100 doing.

尚、室内機5a〜5cの構成は全て同じであるため、以下の説明では、室内機5aの構成についてのみ説明を行い、その他の室内機5b、5cについては説明を省略する。図1および図2では、室内機5aの構成装置に付与した番号の末尾をaからbあるいはcに変更したものが、室内機5aの構成装置と対応する室内機5b、5cの構成装置となる。   In addition, since the structure of all the indoor units 5a-5c is the same, in the following description, only the structure of the indoor unit 5a is demonstrated and description is abbreviate | omitted about the other indoor units 5b and 5c. In FIG. 1 and FIG. 2, what changed the end of the number given to the component apparatus of the indoor unit 5a from a to b or c becomes the component unit of the indoor units 5b and 5c corresponding to the component unit of the indoor unit 5a. .

室内機5aの筐体56aは直方形状を有しており、図2に示す底面56a1および天面56a2とこれらをつなぐ4つの側面(図2ではこのうち2面を描画)で形成されている。底面56a1には空気吸込口56a3が設けられ、天面56a2には空気吹出口56a4が設けられている。そして、筐体56aの内部には、空気吸込口56a3から空気吹出口56a4に向かう方向に、室内熱交換器52a、室内ファン55aがこの順で配置されている。室内ファン55aが回転することによって、空気吸込口56a3から筐体56aの内部に取り込まれた空気が空気吹出口56a4に向かって流れ、空気吹出口56a4から吹き出される。尚、室内熱交換器52aと室内ファン55aの配置順が逆であってもよい。   The casing 56a of the indoor unit 5a has a rectangular shape, and is formed by a bottom surface 56a1 and a top surface 56a2 shown in FIG. 2 and four side surfaces connecting these (in FIG. 2, two of these are drawn). The bottom surface 56a1 is provided with an air suction port 56a3, and the top surface 56a2 is provided with an air outlet 56a4. In the casing 56a, an indoor heat exchanger 52a and an indoor fan 55a are arranged in this order in the direction from the air inlet 56a3 toward the air outlet 56a4. As the indoor fan 55a rotates, the air taken into the housing 56a from the air inlet 56a3 flows toward the air outlet 56a4 and is blown out from the air outlet 56a4. The arrangement order of the indoor heat exchanger 52a and the indoor fan 55a may be reversed.

室内熱交換器51aは平板状に形成されており、室内機5aの設置面(床面)に対して所定の角度(例えば、50度)に傾けることによって、空気吸込口56a3から空気吹出口56a4に向かう空気の流れを横切るように筐体56aの内部に配置されている。このように配置されることで、室内熱交換器51aの空気吸込口56a3側の面が空気が流入する空気流入面51a1となり、空気吹出口56a4側の面が空気が流出する空気流出面51a1となる。室内熱交換器51aは、冷媒と後述する室内ファン55aの回転により空気吸込口56a3から筐体56aの内部に取り込まれた空調室の空気を熱交換させるものである。   The indoor heat exchanger 51a is formed in a flat plate shape, and is inclined from the air inlet 56a3 to the air outlet 56a4 by being inclined at a predetermined angle (for example, 50 degrees) with respect to the installation surface (floor surface) of the indoor unit 5a. It is arrange | positioned inside the housing | casing 56a so that the flow of the air which goes to may be crossed. With this arrangement, the surface on the air inlet 56a3 side of the indoor heat exchanger 51a becomes an air inflow surface 51a1 through which air flows in, and the surface on the air outlet 56a4 side has an air outflow surface 51a1 through which air flows out. Become. The indoor heat exchanger 51a exchanges heat between the refrigerant and the air in the air conditioning chamber taken into the housing 56a from the air suction port 56a3 by rotation of an indoor fan 55a described later.

室内熱交換器51aの下端部51a3には室内機液管71aの一端が接続されており、室内機液管71aの他端は液管接続部53aに接続されている。室内熱交換器51aの上端部51a4には室内機ガス管72aの一端が接続されており、室内機ガス管72aの他端はガス管接続部54aに接続されている。室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。尚、図2において図示は省略しているが、液管接続部53aやガス管接続部54aは筐体56aの側面に設けられており、液管接続部53aやガス管接続部54aには各冷媒配管が溶接やフレアナット等により接続されている。   One end of the indoor unit liquid pipe 71a is connected to the lower end 51a3 of the indoor heat exchanger 51a, and the other end of the indoor unit liquid pipe 71a is connected to the liquid pipe connecting part 53a. One end of the indoor unit gas pipe 72a is connected to the upper end part 51a4 of the indoor heat exchanger 51a, and the other end of the indoor unit gas pipe 72a is connected to the gas pipe connection part 54a. The indoor heat exchanger 51a functions as an evaporator when the indoor unit 5a performs a cooling operation, and functions as a condenser when the indoor unit 5a performs a heating operation. In addition, although illustration is abbreviate | omitted in FIG. 2, the liquid pipe connection part 53a and the gas pipe connection part 54a are provided in the side surface of the housing | casing 56a, and each of the liquid pipe connection part 53a and the gas pipe connection part 54a has each Refrigerant piping is connected by welding, flare nuts, or the like.

室内膨張弁52aは、室内機液管71aに設けられている。室内膨張弁52aは電子膨張弁であり、室内熱交換器51aが蒸発器として機能する場合、その開度は、室内熱交換器51aの一方の冷媒出口(ガス管接続部54a側)における冷媒の過熱度が目標過熱度となるように調整される。また、室内熱交換器51aが凝縮器として機能する場合、その開度は、室内熱交換器51aの他方の冷媒出口(液管接続部53a側)における冷媒の過冷却度が目標過冷却度となるように調整される。ここで、目標過熱度および目標過冷却度は、室内機5aで十分な暖房能力あるいは冷房能力が発揮されるための冷媒の過熱度および冷媒の過冷却度である。   The indoor expansion valve 52a is provided in the indoor unit liquid pipe 71a. The indoor expansion valve 52a is an electronic expansion valve. When the indoor heat exchanger 51a functions as an evaporator, the degree of opening of the indoor expansion valve 52a is that of the refrigerant at one refrigerant outlet (on the gas pipe connection portion 54a side) of the indoor heat exchanger 51a. The superheat degree is adjusted so as to become the target superheat degree. Further, when the indoor heat exchanger 51a functions as a condenser, the degree of opening of the indoor heat exchanger 51a is determined by the degree of supercooling of the refrigerant at the other refrigerant outlet (on the liquid pipe connection portion 53a side) of the indoor heat exchanger 51a being the target supercooling degree. It is adjusted to become. Here, the target degree of superheat and the target degree of supercooling are the degree of superheat of the refrigerant and the degree of supercooling of the refrigerant for exhibiting sufficient heating capacity or cooling capacity in the indoor unit 5a.

室内ファン55aは、多数の羽根を備えた筒状の羽根車55a2と、羽根車55a2を収容し開口部55a3を備えるケーシング55a1と、羽根車55a2を回転させる図示しない回転数可変のファンモータを備えている。ケーシング55a1と羽根車55a2は各々合成樹脂材で形成されている。室内ファン55aは、筐体56aの空気吹出口56a4の近傍に配置されており、ケーシング55a1の開口部55a3は空気吹出口56a4の筐体56aの内部側に接続されている。尚、空気吹出口56a4の筐体56a外部側には吹出ダクト300の一端が接続されており、吹出ダクト300の他端は、空調室の天井面や壁面に設けられた吹出口に接続されている。室内ファン55aが回転することで、空気吸込口56a3から筐体56aの内部に空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した空気を空気吹出口56a4から吹出ダクト300を介して空調室へ供給する。   The indoor fan 55a includes a cylindrical impeller 55a2 having a large number of blades, a casing 55a1 that accommodates the impeller 55a2 and includes an opening 55a3, and a fan motor that is not shown in the drawing and that rotates the impeller 55a2. ing. The casing 55a1 and the impeller 55a2 are each formed of a synthetic resin material. The indoor fan 55a is disposed in the vicinity of the air outlet 56a4 of the casing 56a, and the opening 55a3 of the casing 55a1 is connected to the inside of the casing 56a of the air outlet 56a4. Note that one end of the air outlet duct 300 is connected to the outside of the housing 56a of the air outlet 56a4, and the other end of the air outlet duct 300 is connected to an air outlet provided on the ceiling surface or wall surface of the air conditioning room. Yes. By rotating the indoor fan 55a, air is taken into the housing 56a from the air suction port 56a3, and the air that has exchanged heat with the refrigerant in the indoor heat exchanger 51a is discharged from the air outlet 56a4 through the blowout duct 300. To supply.

室内熱交換器51aの下端部51a3の下方には、冷房運転時に室内熱交換器51aに発生する凝縮水を受けるドレンパン57aが設けられている。このドレンパン57aは合成樹脂材で形成されており、底面と底面の四辺から延びる側面を有し上面が開放された箱型に形成されている。図2に示すように、ドレンパン57aは、室内熱交換器51aの下端部51a3の下方に空気吸込口56a3を塞がないように配置されている。   Below the lower end 51a3 of the indoor heat exchanger 51a, a drain pan 57a that receives condensed water generated in the indoor heat exchanger 51a during cooling operation is provided. The drain pan 57a is formed of a synthetic resin material, and is formed in a box shape having a bottom surface and side surfaces extending from the four sides of the bottom surface and having an open top surface. As shown in FIG. 2, the drain pan 57a is disposed below the lower end 51a3 of the indoor heat exchanger 51a so as not to block the air suction port 56a3.

以上説明した構成の他に、室内機5aには各種のセンサが設けられている。室内機液管71aにおける室内熱交換器51aと室内膨張弁52aとの間には、室内熱交換器51aに流入あるいは室内熱交換器51aから流出する冷媒の温度を検出する液側温度センサ61aが設けられている。室内機ガス管72aには、室内熱交換器51aから流出あるいは室内熱交換器51aに流入する冷媒の温度を検出するガス側温度センサ62aが設けられている。そして、室内機5aの図示しない吸込口付近には、室内機5a内に流入する室内空気の温度、すなわち吸込温度を検出する吸込温度センサ63aが設けられている。   In addition to the configuration described above, the indoor unit 5a is provided with various sensors. Between the indoor heat exchanger 51a and the indoor expansion valve 52a in the indoor unit liquid pipe 71a, a liquid side temperature sensor 61a that detects the temperature of the refrigerant flowing into or out of the indoor heat exchanger 51a. Is provided. The indoor unit gas pipe 72a is provided with a gas side temperature sensor 62a that detects the temperature of the refrigerant flowing out of the indoor heat exchanger 51a or flowing into the indoor heat exchanger 51a. A suction temperature sensor 63a for detecting the temperature of the indoor air flowing into the indoor unit 5a, that is, the suction temperature, is provided in the vicinity of a suction port (not shown) of the indoor unit 5a.

また、室内機5aには、室内機制御手段500aが設けられている。室内機制御手段500aは、室内機5aの図示しない電装品箱に格納されている制御基板に搭載されている。図1(B)に示すように、室内機制御手段500aは、CPU510aと、記憶部520aと、通信部530aと、センサ入力部540aを備えている。   The indoor unit 5a is provided with an indoor unit control means 500a. The indoor unit control means 500a is mounted on a control board stored in an electrical component box (not shown) of the indoor unit 5a. As shown in FIG. 1B, the indoor unit control means 500a includes a CPU 510a, a storage unit 520a, a communication unit 530a, and a sensor input unit 540a.

記憶部520aは、ROMやRAMで構成されており、室内機5aの制御プログラムや各種センサからの検出信号に対応した検出値、室内ファン55aの回転数や室内膨張弁52aの開度等を記憶している。通信部530aは、室外機2との通信を行うインターフェイスである。センサ入力部540aは、室内機5aの各種センサでの検出結果を取り込んでCPU510aに出力する。   The storage unit 520a is configured by a ROM or a RAM, and stores a detection value corresponding to the control program of the indoor unit 5a and detection signals from various sensors, the rotational speed of the indoor fan 55a, the opening of the indoor expansion valve 52a, and the like. doing. The communication unit 530a is an interface that performs communication with the outdoor unit 2. The sensor input unit 540a captures detection results from various sensors of the indoor unit 5a and outputs them to the CPU 510a.

CPU510aは、前述した室内機5aの各センサでの検出結果をセンサ入力部540aを介して取り込む。また、CPU510aは、室外機2から送信される制御信号を通信部530aを介して取り込む。CPU510aは、室外機2に冷房要求能力あるいは暖房要求能力を通信部530aを介して送信する。また、CPU510aは、取り込んだ検出結果や制御信号に基づいて、室内ファン55aの回転数制御や室内膨張弁52aの開度調整を行う。   The CPU 510a takes in the detection result of each sensor of the indoor unit 5a described above via the sensor input unit 540a. Moreover, CPU510a takes in the control signal transmitted from the outdoor unit 2 via the communication part 530a. The CPU 510a transmits the cooling request capability or the heating request capability to the outdoor unit 2 via the communication unit 530a. Further, the CPU 510a controls the rotational speed of the indoor fan 55a and adjusts the opening of the indoor expansion valve 52a based on the acquired detection result and control signal.

次に、本実施形態の空気調和装置1が冷房運転を行うときの冷媒回路100における冷媒の流れや各部の動作について、図1(A)を用いて説明する。尚、空気調和装置1が暖房運転を行うときの冷媒回路100における冷媒の流れや各部の動作については、本発明に直接関係がないため詳細な説明は省略し、冷房運転時の説明の後に簡単に触れるに留める。   Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 100 when the air-conditioning apparatus 1 of the present embodiment performs the cooling operation will be described with reference to FIG. The refrigerant flow and the operation of each part in the refrigerant circuit 100 when the air conditioner 1 performs the heating operation are not directly related to the present invention, and thus a detailed description thereof will be omitted, and a simple explanation will be given after the explanation during the cooling operation. Keep in touch.

図1(A)に示すように、室内機5a〜5cが冷房運転を行う場合、四方弁22が実線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するよう、切り換えられる。これにより、冷媒回路100を冷媒が破線矢印で示す方向に循環するようになり、室外熱交換器23が凝縮器として機能するとともに室内熱交換器51a〜51cが蒸発器として機能する。   As shown in FIG. 1A, when the indoor units 5a to 5c perform the cooling operation, the state where the four-way valve 22 is shown by a solid line, that is, the port a and the port b of the four-way valve 22 communicate with each other, The port c and the port d are switched so as to communicate with each other. As a result, the refrigerant circulates in the refrigerant circuit 100 in the direction indicated by the broken-line arrow, the outdoor heat exchanger 23 functions as a condenser, and the indoor heat exchangers 51a to 51c function as evaporators.

圧縮機21から吐出された高圧の冷媒は、吐出管41を流れて四方弁22に流入し、四方弁22から冷媒配管43を流れて室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。室外熱交換器23から流出した冷媒は室外機液管44を流れ、全開とされている室外膨張弁24および閉鎖弁25を介して液管8に流出する。   The high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 41 and flows into the four-way valve 22, flows from the four-way valve 22 through the refrigerant pipe 43, and flows into the outdoor heat exchanger 23. The refrigerant flowing into the outdoor heat exchanger 23 is condensed by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27. The refrigerant that has flowed out of the outdoor heat exchanger 23 flows through the outdoor unit liquid pipe 44, and flows out to the liquid pipe 8 through the outdoor expansion valve 24 and the closing valve 25 that are fully opened.

液管8を流れ液管接続部53a〜53cを介して各室内機5a〜5cに流入した冷媒は、室内機液管71a〜71cを流れ、室内膨張弁52a〜52cを通過するときに減圧されて低圧の冷媒となる。室内機液管71a〜71cから室内熱交換器51a〜51cに流入した冷媒は、室内ファン55a〜55cの回転により空気吸込口56a3〜56c3から室内機5a〜5cの内部に取り込まれた空調室の空気と熱交換を行って蒸発する。このように、室内熱交換器51a〜51cが蒸発器として機能し、室内熱交換器51a〜51cで冷媒と熱交換を行った空気が空気吹出口56a4〜56c4から吹出ダクト300を介して空調室に吹き出されることによって、空調室の冷房が行われる。   The refrigerant flowing through the liquid pipe 8 and flowing into the indoor units 5a to 5c through the liquid pipe connection portions 53a to 53c flows through the indoor unit liquid pipes 71a to 71c and is decompressed when passing through the indoor expansion valves 52a to 52c. And low pressure refrigerant. The refrigerant flowing into the indoor heat exchangers 51a to 51c from the indoor unit liquid pipes 71a to 71c is taken into the indoor units 5a to 5c from the air suction ports 56a3 to 56c3 by the rotation of the indoor fans 55a to 55c. Evaporates by exchanging heat with air. Thus, the indoor heat exchangers 51a to 51c function as evaporators, and the air that has exchanged heat with the refrigerant in the indoor heat exchangers 51a to 51c is air-conditioned from the air outlets 56a4 to 56c4 through the outlet duct 300. The air conditioning room is cooled by being blown out.

室内熱交換器51a〜51cから流出した冷媒は室内機ガス管72a〜72cを流れガス管接続部54a〜54cを介してガス管9に流出する。ガス管9を流れ閉鎖弁26を介して室外機2に流入した冷媒は、室外機ガス管45、四方弁22、吸入管42を流れ、圧縮機21に吸入されて再び圧縮される。   The refrigerant that has flowed out of the indoor heat exchangers 51a to 51c flows through the indoor unit gas pipes 72a to 72c, and then flows out to the gas pipe 9 through the gas pipe connection portions 54a to 54c. The refrigerant flowing through the gas pipe 9 and flowing into the outdoor unit 2 through the closing valve 26 flows through the outdoor unit gas pipe 45, the four-way valve 22, and the suction pipe 42, and is sucked into the compressor 21 and compressed again.

尚、室内機5a〜5cが暖房運転を行う場合、四方弁22が破線で示す状態、すなわち、四方弁22のポートaとポートdとが連通するよう、また、ポートbとポートcとが連通するよう、切り換えられる。これにより、冷媒回路100を冷媒が、圧縮機21と四方弁22の間を除いて冷房運転時の冷媒の流れ方向と逆の方向に循環するようになり、室外熱交換器23が蒸発器として機能するとともに室内熱交換器51a〜51cが凝縮器として機能する。   When the indoor units 5a to 5c perform the heating operation, the four-way valve 22 is in a state indicated by a broken line, that is, the port a and the port d of the four-way valve 22 communicate with each other, and the port b and the port c communicate with each other. To be switched. As a result, the refrigerant circulates in the refrigerant circuit 100 in a direction opposite to the refrigerant flow direction during the cooling operation except for the space between the compressor 21 and the four-way valve 22, and the outdoor heat exchanger 23 serves as an evaporator. The indoor heat exchangers 51a to 51c function as a condenser while functioning.

空気調和装置1が上述した冷房運転を行っているとき、凝縮器として機能する室内熱交換器51a〜51cでは凝縮水が発生する。発生した凝縮水は、重力によって室内熱交換器51a〜51cの空気流入面51a1〜51c1に到達する。一方、図2に示すように、冷房運転中は室内ファン55a〜55cの回転によって空気吸込口56a3〜56c3から筐体56a〜56cの内部に流入した空気が、室内熱交換器51a〜51cの空気流入面51a1〜51c1から空気流出面51a2〜51c2へと流れる。   When the air conditioning apparatus 1 performs the above-described cooling operation, condensed water is generated in the indoor heat exchangers 51a to 51c functioning as condensers. The generated condensed water reaches the air inflow surfaces 51a1 to 51c1 of the indoor heat exchangers 51a to 51c by gravity. On the other hand, as shown in FIG. 2, during the cooling operation, the air that has flowed into the housings 56a to 56c from the air suction ports 56a3 to 56c3 due to the rotation of the indoor fans 55a to 55c is the air in the indoor heat exchangers 51a to 51c. It flows from the inflow surfaces 51a1 to 51c1 to the air outflow surfaces 51a2 to 51c2.

従って、室内熱交換器51a〜51cの空気流入面51a1〜51c1に到達し重力によって空気流入面51a1〜51c1から下方(空気吸込口56a3〜56c3側)に滴下しようとする凝縮水は、室内熱交換器51a〜51cを空気流入面51a1〜51c1から空気流出面51a2〜51c2へと通過する空気によって滴下を阻まれ、空気流入面51a1〜51c1を伝って室内熱交換器51a〜51cの下端部51a3〜51c3に向かって流れる。そして、下端部51a3〜51c3からドレンパン57a〜57cに滴下する。つまり、冷房運転中は室内ファン55a〜55cの回転によって、室内熱交換器51a〜51cの空気流入面51a1〜51c1から凝縮水が滴下することが防がれている。   Therefore, the condensed water which reaches the air inflow surfaces 51a1 to 51c1 of the indoor heat exchangers 51a to 51c and drops downward from the air inflow surfaces 51a1 to 51c1 (by the air suction ports 56a3 to 56c3) due to gravity is exchanged indoors. Dropping is blocked by the air passing through the air inflow surfaces 51a1 to 51c1 from the air inflow surfaces 51a1 to 51c1, and the lower ends 51a3 to 51c of the indoor heat exchangers 51a to 51c through the air inflow surfaces 51a1 to 51c1. It flows toward 51c3. And it is dripped at the drain pans 57a-57c from lower end part 51a3-51c3. That is, during cooling operation, the rotation of the indoor fans 55a to 55c prevents the condensed water from dripping from the air inflow surfaces 51a1 to 51c1 of the indoor heat exchangers 51a to 51c.

しかし、冷房運転を停止すると室内ファン55a〜55cも停止するので、室内熱交換器51a〜51cを空気流入面51a1〜51c1から空気流出面51a2〜51c2へと通過する空気の流れがなくなる。これによって、冷房運転中に室内熱交換器51a〜51cに発生し室内熱交換器51a〜51cの空気流入面51a1〜51c1に到達した凝縮水が、下方に滴下して空気吸込口56a3〜56c3から床面へ滴下するので、冷房運転を停止すると室内機5a〜5cから凝縮水が空調室の床面に漏れる恐れがあった。   However, since the indoor fans 55a to 55c are also stopped when the cooling operation is stopped, there is no flow of air passing through the indoor heat exchangers 51a to 51c from the air inflow surfaces 51a1 to 51c1 to the air outflow surfaces 51a2 to 51c2. As a result, the condensed water generated in the indoor heat exchangers 51a to 51c during the cooling operation and reaching the air inflow surfaces 51a1 to 51c1 of the indoor heat exchangers 51a to 51c is dropped downward from the air intake ports 56a3 to 56c3. Since it drops on the floor surface, when the cooling operation is stopped, the condensed water may leak from the indoor units 5a to 5c to the floor surface of the air conditioning room.

そこで、本発明では、冷房運転を停止した時点で室内ファン55a1〜55c1を所定回転数とし、冷房運転を停止した時点から室内ファン55a1〜55c1の回転数を所定回転数から所定の低下率で低下させて室内ファン55a1〜55c1を停止させることで、空気流入面51a1〜51c1から空気流出面51a2〜51c2へ流す空気量を時間をかけて減少させる凝縮水滴下防止制御を行う。凝縮水滴下防止制御を行うことで、冷房運転中に室内熱交換器51a〜51cに発生し室内熱交換器51a〜51cの空気流入面51a1〜51c1に到達した凝縮水を、冷房運転中と同様にドレンパン57a〜57cに滴下させる、あるいは、乾燥させることができるので、凝縮水が室内熱交換器51a〜51cから下方に滴下して空気吸込口56a3〜56c3から床面へ滴下することを防ぐことができる。   Therefore, in the present invention, the indoor fans 55a1 to 55c1 are set to a predetermined rotational speed when the cooling operation is stopped, and the rotational speeds of the indoor fans 55a1 to 55c1 are decreased from the predetermined rotational speed at a predetermined decrease rate from the time when the cooling operation is stopped. Then, by stopping the indoor fans 55a1 to 55c1, the condensed water dripping prevention control is performed to reduce the amount of air flowing from the air inflow surfaces 51a1 to 51c1 to the air outflow surfaces 51a2 to 51c2 over time. By performing the condensed water dripping prevention control, the condensed water generated in the indoor heat exchangers 51a to 51c during the cooling operation and reaching the air inflow surfaces 51a1 to 51c1 of the indoor heat exchangers 51a to 51c is the same as during the cooling operation. Can be dripped onto the drain pans 57a to 57c or dried, so that the condensed water is prevented from dripping downward from the indoor heat exchangers 51a to 51c and dripping from the air suction ports 56a3 to 56c3 onto the floor surface. Can do.

ここで、凝縮水滴下防止制御を行うときの室内ファン55a1〜55c1の回転数である所定回転数(以降、所定回転数Rpと記載)と、所定回転数Rpから減少させる際の所定の低下率(以降、所定の低下率Rrと記載)は、それぞれ試験等を行って予め求められて室内機制御手段500a〜500cの記憶部520a〜520cに記憶されている数値である。これらの数値は、冷房運転停止時に室内ファン55a1〜55c1を所定回転数Rp(例えば、500rpm)とし、その後、所定の低下率Rr(例えば、100rpm/分)で回転数を減少すると、室内熱交換器51a〜51cに最大量の凝縮水が発生した場合であっても、室内熱交換器51a〜51cからの凝縮水の滴下を防ぐことができることが確認されている数値である。   Here, the predetermined rotational speed (hereinafter referred to as the predetermined rotational speed Rp) that is the rotational speed of the indoor fans 55a1 to 55c1 when the condensed water dripping prevention control is performed, and the predetermined reduction rate when the rotational speed is decreased from the predetermined rotational speed Rp. (Hereinafter referred to as a predetermined rate of decrease Rr) is a numerical value obtained in advance by performing tests or the like and stored in the storage units 520a to 520c of the indoor unit control means 500a to 500c. These numerical values indicate that the indoor fans 55a1 to 55c1 are set to a predetermined rotational speed Rp (for example, 500 rpm) when the cooling operation is stopped, and then the indoor heat exchange is performed when the rotational speed is decreased at a predetermined reduction rate Rr (for example, 100 rpm / minute). It is a numerical value that has been confirmed to prevent dripping of condensed water from the indoor heat exchangers 51a to 51c even when the maximum amount of condensed water is generated in the vessels 51a to 51c.

次に、上述した凝縮水滴下防止制御を行う際の処理について、図3を用いて説明する。図3は、室内機制御手段500a〜500cのCPU510a〜510cが冷房運転時に行う制御に関する処理の流れを示している。図3に示すフローチャートにおいて、STはステップを表しこれに続く数字はステップ番号を表している。尚、このフローチャートでは、本発明に関わる処理を中心に説明しており、これ以外の処理、例えば、設定温度と室内温度の温度差に応じた圧縮機21の回転数制御や、冷媒温度に応じた室外膨張弁24や各室内膨張弁52a〜52cの開度制御等、空気調和装置1に関わる一般的な処理については、説明を省略する。   Next, processing when performing the above-described condensed water dripping prevention control will be described with reference to FIG. FIG. 3 shows a flow of processing relating to control performed by the CPUs 510a to 510c of the indoor unit control means 500a to 500c during the cooling operation. In the flowchart shown in FIG. 3, ST represents a step, and the number following this represents a step number. In this flowchart, the processing related to the present invention is mainly described. Other processing, for example, control of the rotational speed of the compressor 21 according to the temperature difference between the set temperature and the room temperature, and the temperature of the refrigerant. Description of general processing related to the air conditioner 1 such as the opening control of the outdoor expansion valve 24 and the indoor expansion valves 52a to 52c is omitted.

空気調和装置1が運転を開始すると、CPU510a〜510cは、使用者が図示しない室内機5a〜5cのリモコンを用いる等の手段により冷房運転を指示したか否かを判断する(ST1)。冷房運転の指示であれば(ST1−Yes)、CPU210は、冷房運転開始処理を行い(ST2)、その後冷房運転制御を実行する(ST3)。   When the air conditioner 1 starts operation, the CPUs 510a to 510c determine whether or not the user has instructed the cooling operation by means such as using a remote controller of the indoor units 5a to 5c (not shown) (ST1). If it is the instruction | indication of air_conditionaing | cooling operation (ST1-Yes), CPU210 will perform air_conditionaing | cooling operation start processing (ST2), and will perform air_conditionaing | cooling operation control after that (ST3).

ここで、冷房運転開始処理とは、CPU510a〜510cが冷房運転を行うことを通信部530a〜530cを介して室外機2に送信し、これを受けた室外機2が、四方弁22を操作して冷媒回路100を図1(A)に示す状態、つまり、冷媒回路100を冷房サイクルとすることであり、最初に冷房運転を行うときに実行される処理である。   Here, the cooling operation start processing means that the CPUs 510a to 510c transmit the cooling operation to the outdoor unit 2 via the communication units 530a to 530c, and the outdoor unit 2 that has received the operation operates the four-way valve 22. The refrigerant circuit 100 is in the state shown in FIG. 1A, that is, the refrigerant circuit 100 is in a cooling cycle, which is a process executed when the cooling operation is first performed.

また、冷房運転制御とは、CPU510a〜510cが使用者による冷房要求能力に応じて室内ファン55a〜55cの回転数制御や室内膨張弁52a〜52cの開度調整を行うとともに、冷房要求能力を通信部530a〜530cを介して室外機2に送信する。冷房要求能力を受信した室外機2が圧縮機21や室外ファン27を受信した冷房要求能力に応じた回転数で駆動するよう制御することである。   In the cooling operation control, the CPUs 510a to 510c control the rotation speed of the indoor fans 55a to 55c and adjust the opening of the indoor expansion valves 52a to 52c according to the cooling request capability by the user, and communicate the cooling request capability. It transmits to the outdoor unit 2 via the units 530a to 530c. The outdoor unit 2 that has received the cooling request capability is controlled so as to drive the compressor 21 and the outdoor fan 27 at a rotational speed corresponding to the received cooling request capability.

上記のように冷房運転制御を行っているとき、CPU510a〜510cは、使用者による運転切替指示があるか否かを判断する(ST4)。ここで、運転切替指示とは、冷房運転から暖房運転へ切り替える、あるいは、暖房運転から冷房運転へ切り替えることである。運転切替指示があれば(ST4−Yes)、CPU510a〜510cは、ST1に処理を戻す。運転切替指示がなければ(ST4−No)、CPU510a〜510cは、使用者による運転停止指示があるか否かを判断する(ST5)。   When the cooling operation control is performed as described above, the CPUs 510a to 510c determine whether or not there is an operation switching instruction from the user (ST4). Here, the operation switching instruction is switching from the cooling operation to the heating operation, or switching from the heating operation to the cooling operation. If there is an operation switching instruction (ST4-Yes), CPUs 510a to 510c return the process to ST1. If there is no operation switching instruction (ST4-No), the CPUs 510a to 510c determine whether or not there is an operation stop instruction from the user (ST5).

運転停止指示がなければ(ST5−No)、CPU510a〜510cは、現在の運転が冷房運転であるか否かを判断する(ST13)。現在の運転が冷房運転であれば(ST13−Yes)、CPU510a〜510cは、ST3に処理を戻し、現在の運転が冷房運転でなければ(ST13−No)、CPU210は、ST14に処理を戻す。   If there is no operation stop instruction (ST5-No), the CPUs 510a to 510c determine whether or not the current operation is a cooling operation (ST13). If the current operation is the cooling operation (ST13-Yes), the CPUs 510a to 510c return the process to ST3, and if the current operation is not the cooling operation (ST13-No), the CPU 210 returns the process to ST14.

運転停止指示があれば(ST5−Yes)、CPU510a〜510cは、室内膨張弁52a〜52cを閉じ(ST6)、ST5で運転停止指示があるまで冷房運転を行っていたか否かを判断する(ST7)。   If there is an operation stop instruction (ST5-Yes), the CPUs 510a to 510c close the indoor expansion valves 52a to 52c (ST6) and determine whether or not the cooling operation has been performed until the operation stop instruction is received in ST5 (ST7). ).

冷房運転を行っていたのでなければ(ST7−No)、つまり、暖房運転を行っていたのであれば、CPU510a〜510cは、室内ファン55a〜55cを停止して(ST12)、処理を終了する。冷房運転を行っていたのであれば(ST7−Yes)、CPU510a〜510cは、室内ファン55a〜55cの回転数を所定回転数Rpとし、その後、所定の低下率Rrで室内ファン55a〜55cの回転数を減少させる(ST8)。   If the cooling operation has not been performed (ST7-No), that is, if the heating operation has been performed, the CPUs 510a to 510c stop the indoor fans 55a to 55c (ST12), and the processing is terminated. If the cooling operation has been performed (ST7-Yes), the CPUs 510a to 510c set the rotational speed of the indoor fans 55a to 55c to the predetermined rotational speed Rp, and then rotate the indoor fans 55a to 55c at a predetermined reduction rate Rr. The number is decreased (ST8).

次に、CPU510a〜510cは、室内ファン55a〜55cの回転数が0となったか否かを判断する(ST9)。回転数が0となっていなければ(ST9−No)、CPU510a〜510cは、ST9に処理を戻し、継続して所定の低下率Rrで室内ファン55a〜55cの回転数を減少させる。   Next, the CPUs 510a to 510c determine whether or not the rotational speed of the indoor fans 55a to 55c has become 0 (ST9). If the rotational speed is not 0 (ST9-No), the CPUs 510a to 510c return the process to ST9 and continuously reduce the rotational speeds of the indoor fans 55a to 55c at a predetermined reduction rate Rr.

ST9において、回転数が0となっていれば(ST9−Yes)、CPU510a〜510cは、処理を終了する。尚、以上説明したST8とST9の処理が、本発明の凝縮水滴下防止制御に関わる処理である。   If the number of rotations is 0 in ST9 (ST9-Yes), the CPUs 510a to 510c end the process. In addition, the process of ST8 and ST9 demonstrated above is a process in connection with the condensed water dripping prevention control of this invention.

尚、ST1において、冷房運転指示でなければ(ST1−No)、つまり、暖房運転指示である場合は、CPU510a〜510cは、暖房運転開始処理を行い(ST10)、その後暖房運転制御を実行して(ST11)、ST4に処理を進める。   In ST1, if it is not a cooling operation instruction (ST1-No), that is, if it is a heating operation instruction, the CPUs 510a to 510c perform a heating operation start process (ST10), and then execute the heating operation control. The process proceeds to (ST11) and ST4.

ここで、暖房運転開始処理とは、CPU510a〜510cが暖房運転を行うことを通信部530a〜530cを介して室外機2に送信し、これを受けた室外機2が四方弁22を操作して冷媒回路100を暖房サイクルとすることであり、最初に暖房運転を行うときに実行される処理である。   Here, the heating operation start processing is that the CPUs 510a to 510c transmit the heating operation to the outdoor unit 2 via the communication units 530a to 530c, and the outdoor unit 2 that has received the operation operates the four-way valve 22. This is to make the refrigerant circuit 100 a heating cycle, and is a process executed when the heating operation is first performed.

また、暖房運転制御とは、CPU510a〜510cが使用者による暖房要求能力に応じて室内ファン55a〜55cの回転数制御や室内膨張弁52a〜52cの開度調整を行うとともに、暖房要求能力を通信部530a〜530cを介して室外機2に送信する。暖房要求能力受信した室外機2が圧縮機21や室外ファン27を受信した暖房要求能力に応じた回転数で駆動するよう制御することである。   The heating operation control means that the CPUs 510a to 510c perform the rotation speed control of the indoor fans 55a to 55c and the opening adjustments of the indoor expansion valves 52a to 52c according to the heating request capability by the user, and communicate the heating request capability. It transmits to the outdoor unit 2 via the units 530a to 530c. This is to control the outdoor unit 2 that has received the heating request capability to drive at the number of revolutions corresponding to the heating request capability that has received the compressor 21 and the outdoor fan 27.

以上説明したように、本発明の空気調和装置1では、冷房運転を停止した時点で室内ファン55a〜55cを所定回転数Rpとし、その後、所定の低下率Rrで室内ファン55a〜55cの回転数を低下させて室内ファン55a〜55cを停止することで、空気流入面51a1〜51c1から空気流出面51a2〜51c2へ流す空気量を時間をかけて減少させる凝縮水滴下防止制御を行う。これにより、冷房運転中に室内熱交換器51a〜51cに発生し室内熱交換器51a〜51cの空気流入面51a1〜51c1に到達した凝縮水を、ドレンパン57a〜57cに滴下させる、あるいは、乾燥させることができ、凝縮水が室内熱交換器51a〜51cから下方に滴下して空気吸込口56a3〜56c3から床面へ滴下することを防ぐことができる。また、本発明の凝縮水滴下防止制御では、冷房運転停止後に所定の低下率Rrで室内ファン55a〜55cの回転数を低下させるので、運転を停止させたにも関わらず室内ファン55a〜55cの回転により送風されることや室内ファン55a〜55cの回転音が聞こえるといった、使用者が感じる違和感が緩和される。   As described above, in the air conditioner 1 of the present invention, when the cooling operation is stopped, the indoor fans 55a to 55c are set to the predetermined rotational speed Rp, and then the rotational speeds of the indoor fans 55a to 55c are set at the predetermined decrease rate Rr. And the indoor fans 55a to 55c are stopped to perform the condensed water dripping prevention control for reducing the amount of air flowing from the air inflow surfaces 51a1 to 51c1 to the air outflow surfaces 51a2 to 51c2 over time. Thereby, the condensed water generated in the indoor heat exchangers 51a to 51c during the cooling operation and reaching the air inflow surfaces 51a1 to 51c1 of the indoor heat exchangers 51a to 51c is dropped or dried on the drain pans 57a to 57c. It is possible to prevent the condensed water from dropping from the indoor heat exchangers 51a to 51c and dropping from the air suction ports 56a3 to 56c3 to the floor surface. Further, in the condensate dripping prevention control of the present invention, the rotational speed of the indoor fans 55a to 55c is reduced at a predetermined reduction rate Rr after the cooling operation is stopped, so that the indoor fans 55a to 55c are controlled even though the operation is stopped. The uncomfortable feeling that the user feels, such as being blown by rotation and the sound of rotation of the indoor fans 55a to 55c, is alleviated.

尚、以上説明した実施形態では、所定回転数として予め試験等を行って定められた所定回転数Rpを用いる場合を説明したが、冷房運転終了時点での室内ファン55a〜55cの回転数を所定回転数としてもよい。これにより、図3のフローチャートにおけるST8の処理において、室内ファン55a〜55cの回転数を予め定められた所定回転数Rpとする制御が不要となるので、CPU510a〜510cの負担を軽減できる。   In the embodiment described above, the case where the predetermined rotation speed Rp determined by performing a test or the like in advance is used as the predetermined rotation speed has been described. However, the rotation speed of the indoor fans 55a to 55c at the end of the cooling operation is predetermined. It is good also as a rotation speed. Thereby, in the process of ST8 in the flowchart of FIG. 3, it is not necessary to control the rotational speed of the indoor fans 55a to 55c to be a predetermined rotational speed Rp, so that the burden on the CPUs 510a to 510c can be reduced.

また、上記のように、冷房運転終了時点での室内ファン55a〜55cの回転数を所定回転数とする場合は、予め定められた所定の低下率Rrの代わりに、所定回転数に応じて所定の低下率を変化させることで、室内ファン55a〜55cの回転数を所定回転数から0まで低下させる時間、つまり、冷房運転終了時点から開始する凝縮水滴下防止制御の実行時間を、所定回転数に関わらず一定としてもよい。これにより、冷房運転終了時点から室内ファン55a〜55cが回転する時間が一定となるので、凝縮水の滴下を防止しつつ使用者が感じる違和感を低減できる。   Further, as described above, when the rotation speed of the indoor fans 55a to 55c at the end of the cooling operation is set to the predetermined rotation speed, the predetermined number is set according to the predetermined rotation speed instead of the predetermined decrease rate Rr. By changing the decrease rate of the indoor fan 55a to 55c, the time for reducing the rotational speed of the indoor fans 55a to 55c from the predetermined rotational speed to 0, that is, the execution time of the condensed water dripping prevention control starting from the end of the cooling operation is set to the predetermined rotational speed. Regardless, it may be constant. Thereby, since the time for which the indoor fans 55a to 55c rotate from the end of the cooling operation becomes constant, it is possible to reduce a sense of discomfort felt by the user while preventing dripping of the condensed water.

1 空気調和装置
2 室外機
5a〜5c 室内機
51a〜51c 室内熱交換器
51a1〜51c1 空気流入面
51a2〜51c2 空気流出面
51a3〜51c3 下端部
51a4〜51c4 上端部
52a〜52c 室内膨張弁
55a〜55c 室内ファン
55a3〜55c3 開口部
56a〜56c 筐体
56a1〜56c1 底面
56a2〜56c2 天面
56a3〜56c3 空気吸込口
56a4〜56c4 空気吹出口
57a〜57c ドレンパン
71a〜71c 室内機液管
72a〜72c 室内機ガス管
300 吹出ダクト
500a〜500c 室内機制御部
510a〜510c CPU
520a〜520c 記憶部
Rp 所定回転数
Rr 所定の低下率
tp 所定時間
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Outdoor unit 5a-5c Indoor unit 51a-51c Indoor heat exchanger 51a1-51c1 Air inflow surface 51a2-51c2 Air outflow surface 51a3-51c3 Lower end part 51a4-51c4 Upper end part 52a-52c Indoor expansion valve 55a-55c Indoor fan 55a3-55c3 Opening 56a-56c Housing 56a1-56c1 Bottom 56a2-56c2 Top 56a3-56c3 Air inlet 56a4-56c4 Air outlet 57a-57c Drain pan 71a-71c Indoor unit liquid pipe 72a-72c Indoor unit gas Pipe 300 Blowout duct 500a-500c Indoor unit control part 510a-510c CPU
520a to 520c Storage unit Rp Predetermined rotation speed Rr Predetermined decrease rate tp Predetermined time

Claims (3)

空気吸込口と空気吹出口を備える筐体内に室内熱交換器と室内ファンを有し、前記室内ファンの回転により前記空気吸込口から前記空気吹出口に向かう空気の流れに対して斜めに前記室内熱交換器が配置される室内機と、
前記室内機に冷媒配管で接続される室外機と、
前記室内熱交換器を凝縮器として機能させて行う冷房運転を終了した時点で前記室内ファンを予め定められた所定回転数とし、冷房運転を終了した時点から前記室内ファンの回転数を前記所定回転数から予め定められた所定の低下率で低下させて前記室内ファンを停止させる凝縮水滴下防止制御を実行する制御手段と、
を有することを特徴とする空気調和装置。
An indoor heat exchanger and an indoor fan are provided in a housing having an air inlet and an air outlet, and the room is inclined with respect to the flow of air from the air inlet to the air outlet by the rotation of the indoor fan. An indoor unit in which a heat exchanger is disposed;
An outdoor unit connected to the indoor unit by a refrigerant pipe;
When the cooling operation performed by causing the indoor heat exchanger to function as a condenser is completed, the indoor fan is set to a predetermined rotation speed, and the rotation speed of the indoor fan is set to the predetermined rotation from the completion of the cooling operation. Control means for performing condensation water dripping prevention control for lowering the indoor fan at a predetermined reduction rate determined from the number and stopping the indoor fan;
An air conditioner characterized by comprising:
前記所定回転数は、冷房運転終了時の前記室内ファンの回転数である、
ことを特徴とする請求項1に記載の空気調和装置。
The predetermined rotational speed is the rotational speed of the indoor fan at the end of the cooling operation.
The air conditioner according to claim 1.
前記所定の低下率を前記所定回転数に応じて変化させることを特徴とする請求項2に記載の空気調和装置。   The air conditioner according to claim 2, wherein the predetermined decrease rate is changed according to the predetermined rotation speed.
JP2015245674A 2015-12-16 2015-12-16 Air conditioning device Pending JP2017110856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015245674A JP2017110856A (en) 2015-12-16 2015-12-16 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015245674A JP2017110856A (en) 2015-12-16 2015-12-16 Air conditioning device

Publications (1)

Publication Number Publication Date
JP2017110856A true JP2017110856A (en) 2017-06-22

Family

ID=59080072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015245674A Pending JP2017110856A (en) 2015-12-16 2015-12-16 Air conditioning device

Country Status (1)

Country Link
JP (1) JP2017110856A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108644964A (en) * 2018-05-14 2018-10-12 广东美的制冷设备有限公司 Control method, control system and the air conditioner of air conditioner
KR20190007151A (en) * 2017-07-12 2019-01-22 삼성전자주식회사 Air conditioner and method for control of air conditioner
CN110068133A (en) * 2019-05-22 2019-07-30 珠海格力电器股份有限公司 Pedestal and air conditioner indoor unit with it
WO2024034328A1 (en) * 2022-08-09 2024-02-15 三菱重工サーマルシステムズ株式会社 Air conditioner and control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190007151A (en) * 2017-07-12 2019-01-22 삼성전자주식회사 Air conditioner and method for control of air conditioner
KR102420504B1 (en) * 2017-07-12 2022-07-14 삼성전자주식회사 Air conditioner and method for control of air conditioner
CN108644964A (en) * 2018-05-14 2018-10-12 广东美的制冷设备有限公司 Control method, control system and the air conditioner of air conditioner
CN108644964B (en) * 2018-05-14 2020-06-19 广东美的制冷设备有限公司 Control method and control system of air conditioner and air conditioner
CN110068133A (en) * 2019-05-22 2019-07-30 珠海格力电器股份有限公司 Pedestal and air conditioner indoor unit with it
WO2024034328A1 (en) * 2022-08-09 2024-02-15 三菱重工サーマルシステムズ株式会社 Air conditioner and control method

Similar Documents

Publication Publication Date Title
JP6693312B2 (en) Air conditioner
AU2016404760B2 (en) Refrigeration cycle apparatus
JP6569536B2 (en) Air conditioner
JP6468300B2 (en) Air conditioner
JP6870382B2 (en) Air conditioner
JP2017110856A (en) Air conditioning device
JP2018004131A (en) Air conditioner
JP2016061456A (en) Air conditioning device
JP6716960B2 (en) Air conditioner
JP2019039599A (en) Air conditioning device
JP6733424B2 (en) Air conditioner
JP6123289B2 (en) Air conditioning system
JP2018132217A (en) Air conditioning equipment
JP2017110855A (en) Air conditioning device
JP2012184886A (en) Air conditioner
JP2018159520A (en) Air conditioner
JP2017142017A (en) Air conditioner
CN114585868B (en) Refrigerating device
JP2018132218A (en) Air conditioning device
JP2019100591A (en) Air conditioning device
JP2018017479A (en) Air conditioner
JP2017142016A (en) Air conditioner
JP2021162174A (en) Air conditioner
JP6728749B2 (en) Air conditioner
JP6136158B2 (en) Heat pump cycle equipment