JP2017109224A - Manufacturing method of metal product using new forging processing method - Google Patents

Manufacturing method of metal product using new forging processing method Download PDF

Info

Publication number
JP2017109224A
JP2017109224A JP2015245722A JP2015245722A JP2017109224A JP 2017109224 A JP2017109224 A JP 2017109224A JP 2015245722 A JP2015245722 A JP 2015245722A JP 2015245722 A JP2015245722 A JP 2015245722A JP 2017109224 A JP2017109224 A JP 2017109224A
Authority
JP
Japan
Prior art keywords
forging
product
new
temperature
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015245722A
Other languages
Japanese (ja)
Other versions
JP6792330B2 (en
Inventor
信行 川端
Nobuyuki Kawabata
信行 川端
日出好 中村
Hideyoshi Nakamura
日出好 中村
恭平 宮島
Kyohei Miyajima
恭平 宮島
篠原 正幸
Masayuki Shinohara
正幸 篠原
清彦 野原
Kiyohiko Nohara
清彦 野原
仁司 早野
Hitoshi Hayano
仁司 早野
山本 明
Akira Yamamoto
山本  明
学行 佐伯
Takayuki Saeki
学行 佐伯
加藤 茂樹
Shigeki Kato
茂樹 加藤
山中 将
Susumu Yamanaka
将 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINOHARA PRESS SERVICE KK
High Energy Accelerator Research Organization
Original Assignee
SHINOHARA PRESS SERVICE KK
High Energy Accelerator Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINOHARA PRESS SERVICE KK, High Energy Accelerator Research Organization filed Critical SHINOHARA PRESS SERVICE KK
Priority to JP2015245722A priority Critical patent/JP6792330B2/en
Publication of JP2017109224A publication Critical patent/JP2017109224A/en
Application granted granted Critical
Publication of JP6792330B2 publication Critical patent/JP6792330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a metal product using a new forging processing method, concerning a forging processing method occupying an important position in plastic processing of a metal material, more precisely, which does not belonging to any of hot forging, warm forging and cold (room temperature) forging which are each conventional forging processing method.SOLUTION: In a manufacturing method of a metal product using a new forging processing method, a preformed piece formed from a metal plate material is molded into a finished article by avoiding blue heat embrittlement by temperature control in a low temperature area of 200°C or lower which is different from a hot/warm/cold forging temperature area, and by heightening plastic fluidity jointly with servo control.SELECTED DRAWING: Figure 9

Description

本発明は、金属材料の塑性加工の中で重要な位置を占める鍛造加工法に関し、より詳しくは、従来の鍛造加工方法である、熱間鍛造、温間鍛造、冷間(室温)鍛造のいずれにも属さない、新鍛造加工法を用いた金属製品の製造方法に関するものである。   The present invention relates to a forging method that occupies an important position in plastic processing of a metal material, and more specifically, any of conventional forging methods such as hot forging, warm forging, and cold (room temperature) forging. The present invention relates to a method for manufacturing a metal product using a new forging method that does not belong to any of the above.

近年、精密機械部品や電気・電子部品、あるいは超伝導素粒子加速器などの先端的分野において、加工性ならびに加工精度・生産性・経済性などに対する要求が厳しさを増している。
従来の熱間鍛造法は耐熱材料に適し、温間鍛造法は冷間鍛造では難度の高い素材の鍛造加工に適し、冷間鍛造法は良作業性・良生産性に適するという特徴を、それぞれ有している。しかしながら、熱間鍛造では、多大な熱エネルギーを要し、金属材料の表面酸化とその除去が問題になる。温間鍛造には、化成処理を要することや、青熱脆性あるいは歪時効の懸念がある。また、冷間鍛造では、ネッキング(くびれ)や、亀裂などの不良の発生が回避できない場合が多々存在する。
In recent years, in advanced fields such as precision machine parts, electrical / electronic parts, and superconducting particle accelerators, demands for processability, processing accuracy, productivity, and economic efficiency are increasing.
The conventional hot forging method is suitable for heat-resistant materials, the warm forging method is suitable for forging of materials that are difficult in cold forging, and the cold forging method is suitable for good workability and good productivity. Have. However, hot forging requires a great deal of thermal energy, and surface oxidation of the metal material and its removal become a problem. Warm forging involves chemical conversion treatment, and there are concerns about blue heat embrittlement or strain aging. Further, in cold forging, there are many cases where occurrence of defects such as necking (necking) and cracks cannot be avoided.

近時、ヒッグス粒子の発見やビッグバン及びインフレーション理論の進展もあり、30〜50kmに及ぶ長大な線形加速器である国際リニアコライダー(ILC)建設計画が鋭意進められている。ILCの中核をなすのが超伝導高周波加速空洞であり、その構成単位となる装置を「9連空洞」と称する。ILC では、この装置を約1万7,000台必要とする。図1に示すように、9個のセルからなるセンター部品2と、両エンドグループ部品3からなる。エンドグループ部品3は電力の入力やモニターのためのポート類(ビームパイプ3a,ポートパイプ3b)のほかに、複雑形状を有するHOM(高調波)カプラー3c等から構成される。   Recently, with the discovery of the Higgs boson and the development of the Big Bang and inflation theory, the International Linear Collider (ILC) construction plan, which is a long linear accelerator ranging from 30 to 50 km, has been intensively advanced. The core of the ILC is a superconducting high-frequency accelerating cavity. ILC requires about 17,000 units. As shown in FIG. 1, it consists of a center part 2 composed of nine cells and both end group parts 3. The end group component 3 includes a port (beam pipe 3a, port pipe 3b) for power input and monitoring, and a HOM (harmonic) coupler 3c having a complicated shape.

HOMカプラー3cは、図2に示すように、HOMカップ4とHOMアンテナ5が一体化されたものである。即ち、粒子ビームが電磁加速され、空洞内を通過するときにHOM(高調波)を励起してしまい、ビームの加速を阻害するため、空洞外に吸い出して減衰させる必要がある。この機能を受け持つのがHOMカプラー(高調波減衰器)である。   As shown in FIG. 2, the HOM coupler 3 c is obtained by integrating a HOM cup 4 and a HOM antenna 5. That is, when the particle beam is electromagnetically accelerated and passes through the cavity, the HOM (harmonic) is excited, and the beam acceleration is hindered. Therefore, the particle beam needs to be sucked out of the cavity and attenuated. The HOM coupler (harmonic attenuator) is responsible for this function.

9連空洞のセンター部品2もエンドグループ部品3も使用素材は、希少金属の純ニオブである。主たる理由は、純ニオブは超伝導遷移温度が9.2Kと高く、これを2Kで使用することにより、最重要な超伝導特性、即ち粒子ビームの易加速性を向上するための単位長さあたりの加速電圧を高く取れる可能性が大きいことによる。   The material used for both the 9-cavity center part 2 and the end group part 3 is pure niobium, a rare metal. The main reason is that pure niobium has a high superconducting transition temperature of 9.2K. By using this at 2K, the most important superconducting property, that is, per unit length to improve the easy acceleration of the particle beam. This is because there is a high possibility that a high acceleration voltage can be obtained.

純ニオブは極めて高価、かつ難プレス加工・難切削材料である。その主たる理由は、プレス加工については低塑性歪比、切削については工具との凝着現象にある。従来、HOMアンテナ5は、素材から全切削加工もしくはウォータジェット加工等によって作成した素形品を切削加工によって製品化しているのが実情である。   Pure niobium is extremely expensive and difficult to press / cut. The main reasons are the low plastic strain ratio for press working and the adhesion phenomenon with tools for cutting. Conventionally, the actual state of the HOM antenna 5 is that a shaped product made from a raw material by cutting or water jet machining is commercialized by cutting.

また、HOMカップ4に関しては全切削加工もしくは後方押し出し後切削及び熱処理、あるいは複数工程のプレス加工と、工程間の熱処理並びに加工後熱処理の挿入によっている。   Further, with respect to the HOM cup 4, the entire cutting process or cutting and heat treatment after backward extrusion, or press work of a plurality of processes, heat treatment between processes, and insertion of heat treatment after work are inserted.

従って、いずれも生産性及び経済性の点で、深刻な課題を内包しており、これらの課題解決のため、先進的なプレス加工法への工法転換が強く期待されている。   Accordingly, all of them have serious problems in terms of productivity and economy, and in order to solve these problems, there is a strong expectation that the construction method will be switched to an advanced press working method.

そこで、発明者等は、HOMカップ4について、超深絞り加工に工法転換する技術について研究し、既に国内及び国際特許出願(特許文献1及び2)をしている。   Therefore, the inventors have studied a technique for converting the method to ultra deep drawing for the HOM cup 4 and have already filed domestic and international patent applications (Patent Documents 1 and 2).

しかしながら、HOMアンテナ5は、図2(D)の外観図からも推察されるように、プレス加工化に関しては「難加工形状品」であり、かつ純ニオブ素材は、機械切削加工やプレス加工のいずれにおいても「難加工材」である。そして、HOMアンテナ5の初期板厚が10mmの「厚板」ゆえ、目標とする障壁は高い。   However, as can be inferred from the external view of FIG. 2D, the HOM antenna 5 is a “difficult-to-process product” in terms of press processing, and the pure niobium material is machine-cut or pressed. In any case, it is a “difficult to process material”. And since the initial plate thickness of the HOM antenna 5 is 10 mm, the target barrier is high.

HOMアンテナ5において、特に、超伝導特性の適正化を図るために、各部位の距離寸法が重要である。同時に板厚や辺縁部のR寸法にも配慮する必要がある。本来エンドグループ部品3のプレス加工化にあたっては「材料技術」と「塑性加工技術」を同時に配慮する必要がある。また、ほぼ四角形状の打抜き穴部分の一部が狭小になっており、応力集中が生じやすいのでネッキング(くびれ)/亀裂、肉余り/不足、形状出し、残留応力等の発生が予想され、加工難度が高い。   In the HOM antenna 5, in particular, the distance dimension of each part is important in order to optimize the superconducting characteristics. At the same time, it is necessary to consider the plate thickness and the R dimension of the edge. Originally, it is necessary to consider “material technology” and “plastic processing technology” at the same time when the end group part 3 is pressed. In addition, a part of the almost square punching hole is narrowed and stress concentration is likely to occur, so necking / cracking, excess / insufficiency, shape formation, residual stress, etc. are expected. Difficulty is high.

さらに、仕上げ工程においてCP(化学研磨)及びEP(電解研磨)を行うが、その負荷をできるだけ低減するためにも、表面性状や表面もしくはその近傍の異物や微量不純物元素の付着・侵入にも注意しなければならない。   Furthermore, CP (chemical polishing) and EP (electrolytic polishing) are performed in the finishing process. In order to reduce the load as much as possible, attention should be paid to the surface properties and adhesion / intrusion of foreign substances and trace impurity elements on or near the surface. Must.

そのため、HOMアンテナ5の切削加工や高エネルギー加工に属するウォータジェット加工以外の加工法については、知られておらず、確立もされていない。そして、切削加工やウォータジェット加工からの工法転換による、量産性の飛躍的向上及び製造コストの低減が強く期待されている。   Therefore, a processing method other than the water jet processing belonging to the cutting processing and high energy processing of the HOM antenna 5 is not known and has not been established. And, a drastic improvement in mass productivity and a reduction in manufacturing cost are strongly expected by changing the construction method from cutting and water jet machining.

ここで期待に沿う手段として、従来工法を全プレス加工に転換するために、「新たなせん断打抜き加工」とそれに続く「新たな鍛造加工」の先進技術による「新たな全プレス加工」の未だ試みられたことのない発想のもとに、その実現のために開発研究した成果が本発明である。   Here, as a means to meet expectations, in order to convert the conventional method to full press processing, “new full press processing” by “new shear stamping” and subsequent “new forging” is still an attempt. The present invention is the result of research and development for the realization of the idea based on a never-before-seen idea.

ここで既存の慣用せん断打抜き加工、精密打抜き法は除外される。前者では通常打抜きクリアランスが板厚(t)の5〜10%であるため、所要形状寸法精度を出すことは不可能であり、後者では高価な専用機と高価な金型費用が発生し、技術難度も高く、生産効率が問題になる可能性があることによる。 Here, the existing conventional shear punching and precision punching methods are excluded. In the former, since the punching clearance is usually 5 to 10% of the plate thickness (t), it is impossible to obtain the required shape accuracy, and in the latter, an expensive dedicated machine and expensive mold costs are generated. This is because the difficulty is high and production efficiency may become a problem.

発明者等は、「新たなせん断打抜き法」の検討に先んじて、まず切削に替えて、高エネルギー加工法の一種である「ウォータジェット加工」での素形品成形の可能性について検討・評価した。ウォータジェット加工による素形品の加工は、比較的高速化・高能率化が期待されるところから、後続の切削加工を、周知の「冷間鍛造加工」によってプレス加工に置き換えられないかを視野に入れつつ、種々の実験・検討を行ったものである。   Prior to the study of the “new shear punching method”, the inventors examined and evaluated the possibility of forming a shaped part in “water jet machining”, which is a type of high-energy machining method, instead of cutting first. did. Since processing of shaped parts by water jet machining is expected to be relatively fast and highly efficient, it is possible to replace the subsequent cutting with press working by the well-known “cold forging” Various experiments and examinations were conducted while putting them in

その結果、幾つかの技術課題の存在が認識された。主たる問題点は、試作品のCP後の表面SEM観察及びEDX元素分析によって砥粒の存在と、それらが素地中に埋入されているのが認められたことである(図3)。SEM像(図3(A))からは、明らかに数μ〜数10μの白点が散在しており、その周辺の色調がおそらく応力場により変化している。   As a result, the existence of several technical problems was recognized. The main problem is that the presence of abrasive grains and their embedding in the substrate were confirmed by surface SEM observation and EDX elemental analysis after CP of the prototype (FIG. 3). From the SEM image (FIG. 3A), white dots of several μ to several tens of μ are clearly scattered, and the surrounding color tone is probably changed by the stress field.

SEM像中の観察視野(白丸で表示)のEDX(エネルギー分散型X線解析)測定チャート(図3(B))では、白点(粒子群)はアルミナ、シリカ、酸化鉄もしくは酸化マグネシウム等によるものと同定された。これら粒子状異物の存在原因は、素形品製作のウォータジェット切断時に使用する「砥粒」と見なされる。現在のところ、この切断手法を適用する限り、砥粒の残存は避けられない。   In the EDX (energy dispersive X-ray analysis) measurement chart (FIG. 3B) of the observation field of view (indicated by white circles) in the SEM image, white points (particle groups) are due to alumina, silica, iron oxide, magnesium oxide, or the like. Identified. The cause of the presence of these particulate foreign matters is regarded as “abrasive grains” used at the time of water jet cutting in the production of a shaped product. At present, as long as this cutting method is applied, residual abrasive grains are inevitable.

砥粒の埋入があると、高周波共振モードの発生を促進させる恐れが大きく、空洞性能に悪影響を与える懸念が拭えないので、この素形品のウォータジェット加工は回避せざるを得ない。しかも、ウォータジェット加工は、プレスせん断打抜き加工に比べれば、生産性及び経済性に劣ることも否めない。HOMアンテナ5であれば、1個の切断素形品を製作するために、10分程度の時間を要するゆえ、全切削に比べれば遙かに効率的であるが、数万個(加速空洞一台にアンテナが2個必要)の量産には難がある。   If the abrasive grains are embedded, there is a high possibility of promoting the generation of the high-frequency resonance mode, and the concern of adversely affecting the cavity performance cannot be wiped out. Therefore, the water jet machining of this shaped product must be avoided. Moreover, the water jet machining cannot be denied that it is inferior in productivity and economy as compared with the press shear punching. In the case of the HOM antenna 5, since it takes about 10 minutes to manufacture one cut-shaped product, it is much more efficient than the whole cutting, but tens of thousands (one acceleration cavity) There is a difficulty in mass production of 2 antennas required for the stand.

他方、素形品の製品形状への加工においては、従来の冷間鍛造が先ず考えられた。しかし、試験の結果、例えば、ネッキングや寸法不同あるいは応力集中及び形状問題(だれ・バリ・材料の肉余りや充填不足等)あるいは凝着現象等の問題が確認された。これらに共通する原因に関わるのは、材料と金型間の「塑性流動」と云ってよい。   On the other hand, conventional cold forging was first considered in the processing of a shaped product into a product shape. However, as a result of the test, for example, problems such as necking, dimensional inconsistency, stress concentration and shape problems (sag, burr, material surplus, insufficient filling, etc.) or adhesion phenomenon were confirmed. It can be said that “plastic flow” between the material and the mold is related to the common cause.

その中で、特に、冷間鍛造試験後の一部に図4に示すようなネッキング現象が発生することは重大問題である。技術的な塑性加工上の冷間鍛造条件を種々変動させた実験を行ったが、ネッキング(円内)の発生を回避することはできなかった。   In particular, it is a serious problem that the necking phenomenon shown in FIG. 4 occurs in a part after the cold forging test. Although experiments were conducted with various cold forging conditions on technical plastic working, the occurrence of necking (in a circle) could not be avoided.

ネッキングの発生確率がいかに小さくてもこれはHOMアンテナ5の機能を損ない、加速器に使用される全体の内1個であっても加速器が作動しなくなるような重要な問題であるため、容認することはできない。   No matter how small the occurrence of necking is, this is an important problem that impairs the function of the HOM antenna 5 and causes the accelerator not to operate even if it is one of the total used for the accelerator. I can't.

このネッキングは応力集中によって生じたのは確かだが、材料の強度不足・延性不足・塑性流動・加工変形過程における変形余裕度不足のいずれが主原因であるかは未詳である。   It is certain that this necking is caused by stress concentration, but it is unknown whether the material is mainly due to insufficient strength, ductility, plastic flow, or insufficient deformation margin in the deformation process.

上記砥粒の残存やネッキングは、材料と加工との相互作用によって生じた現象である。当然HOMカップ4との組み合わせや電子ビーム溶接(EBW)後に共振モードの制御や超伝導特性等の加速空洞の機能を劣化させることが確実ゆえ、発生を皆無にする必要がある。しかし、上述のごとく主因として塑性流動性の問題があることは確かである。そのため、材料と加工の両者に配慮した新たなHOMアンテナ5の加工法の検討が、極めて重要になる。
即ち、作業性・量産性・経済性・初期投資等の観点から、冷間鍛造で加工品を製造するにあたって、近年の鉄・非鉄を問わず難加工材料の使用要求や、さまざまな難加工形状品の加工の必要性が生じてきた。また加工品の精度への厳しい要求により、ネッキング・亀裂発生や寸法不良、あるいは形状性(だれ・ばり・肉余り・充填不足など)、凝着現象などの諸問題が生じている。さらには、不良率の改善・量産性・材料歩留り・経済性(コスト)に関しても、要求が厳しいところから、これらに対処するための新たな鍛造法の開発が求められている。
The remaining or necking of the abrasive grains is a phenomenon caused by the interaction between the material and processing. Naturally, the function of the accelerating cavity such as resonance mode control and superconducting properties is surely deteriorated after combination with the HOM cup 4 or electron beam welding (EBW), so that it is necessary to eliminate the generation. However, as mentioned above, it is certain that there is a problem of plastic fluidity as a main cause. Therefore, it is extremely important to examine a new method for processing the HOM antenna 5 in consideration of both the material and the processing.
In other words, from the viewpoints of workability, mass productivity, economy, initial investment, etc., when manufacturing processed products by cold forging, demands for using difficult-to-process materials in recent years, regardless of whether they are ferrous or non-ferrous, and various difficult-to-process shapes The need for product processing has arisen. In addition, due to strict demands on the accuracy of processed products, problems such as necking, cracking, dimensional defects, shape (such as drooling, flashing, overfilling, insufficient filling), and adhesion phenomena have occurred. Furthermore, with respect to the improvement of defect rate, mass productivity, material yield, and economic efficiency (cost), since demands are severe, development of a new forging method to cope with these is required.

特願2013−152686号Japanese Patent Application No. 2013-152686 WO2013/115401 A1WO2013 / 115401 A1 特開平07−48589号公報JP 07-48589 A

そこで、本発明は、金属材料の塑性加工の中で重要な位置を占める鍛造加工法に関し、より詳しくは、従来の鍛造加工方法である、熱間鍛造、温間鍛造、冷間(室温)鍛造のいずれにも属さない、新鍛造加工法を用いた金属製品の製造方法を提供することを目的とする。   Therefore, the present invention relates to a forging method that occupies an important position in plastic processing of a metal material. More specifically, the present invention relates to a conventional forging method such as hot forging, warm forging, and cold (room temperature) forging. An object of the present invention is to provide a metal product manufacturing method using a new forging method that does not belong to any of the above.

発明者等は、上記試験、課題を検討した結果、新せん断打抜き加工法、新鍛造加工法を見出し、さらに新せん断打抜き加工法で素形品を形成し、新たな鍛造加工法で、製品形状の加工品に成形する組み合わせ技術を創出することによって、本発明を完成するに至った。
即ち、上記した経済性と生産性を含む厳しいニーズに対して、以下の考察と検証を行った成果による:1)加工温度による材料変形および表面と内部に生じる種々の温度依存現象;2)鍛造加工の基礎知識・シミュレーション・基礎実験;3)トライボロジー(摩擦・潤滑工学)の考察・回転摩擦試験;4)塑性流動に関する巨視的/ 微視的検討;等である。
そして、従来かえりみられなかった温度領域において、温度制御装置およびサーボ機能搭載プレス機を用いて、鍛造挙動に対する変形温度 / 分布効果ならびに変形速度 / モーション効果を、材料の塑性流動性に特段の配慮を行って、新たな鍛造方法を見出したものである。
As a result of examining the above tests and problems, the inventors have found a new shear punching method and a new forging method, further forming a shaped product by the new shear punching method, and using a new forging method, the product shape The present invention has been completed by creating a combination technique for forming a processed product.
That is, based on the results of the following consideration and verification for the above-mentioned severe needs including economy and productivity: 1) Material deformation due to processing temperature and various temperature-dependent phenomena occurring on the surface and inside; 2) Forging Basic knowledge of processing, simulation, basic experiments; 3) Consideration of tribology (friction and lubrication engineering); Rotational friction test; 4) Macroscopic / microscopic examination on plastic flow;
Then, in the temperature range that was not seen in the past, the temperature control device and the press equipped with servo function were used to give special consideration to the plastic fluidity of the material for the deformation temperature / distribution effect and deformation speed / motion effect on the forging behavior. I went and found a new forging method.

より具体的には、
本発明は、上記課題を解決するため、
(1)
金属板材から形成された素形品を、熱間・温間・冷間鍛造温度域とも異なる200℃以下における低温域温度制御によって青熱脆化を回避し加工品に成形することを特徴とする新鍛造加工法を用いた金属製品の製造方法。
(2)
前記鍛造加工の低温域温度制御は、前記素形品の表面酸化被膜の生成を極小化する温度制御であることを特徴とする(1)に記載の新鍛造加工法を用いた金属製品の製造方法。
(3)
前記鍛造加工の低温域温度制御は、前記素形品の塑性流動性を容易化する温度制御であることを特徴とする(1)に記載の新鍛造加工法を用いた金属製品の製造方法。
(4)
前記金属板材は、粒径が数10μmの細粒結晶組織からなることを特徴とする(1)に記載の新鍛造加工法を用いた金属製品の製造方法。
(5)
前記鍛造加工で使用する金型は、焼付き防止のため、表面改質された金型で、かつ被加工材に温度非依存型潤滑性能を有する固形被膜潤滑剤を使用することを特徴とする(1)に記載の新鍛造加工法を用いた金属製品の製造方法。
(6)
前記鍛造加工には、プレス機のサーボ化を計り速度及びモーション制御を含むことを特徴とする(1)に記載の新鍛造加工法を用いた金属製品の製造方法。
(7)
(A)金属板材から素形品を成形するせん断打抜き加工と、
(B)前記素形品の製品形状の加工品を成形するために、前記素形品の青熱脆化回避と塑性流動容易化を計るための前記金型及び前記素形品の温度制御を行う加熱装置と、前記素形品の成形性向上と表面酸化極小化のために表面改質した金型と、前記素形品と金型間の焼付きを防止するための温度非依存固形被膜タイプの潤滑剤と、前記新せん断打抜き加工した素形品の速度及びモーションを制御するサーボ機構をプレス機に搭載する、熱間・温間・冷間鍛造のいずれとも異なる鍛造加工とからなり、
前記金属製品の切削加工やウォータジェット加工をプレス加工へ工法転換したことを特徴とする新鍛造加工法を用いた金属製品の製造方法。
とした。
More specifically,
In order to solve the above problems, the present invention
(1)
It is characterized in that a shaped product formed from a metal plate material is formed into a processed product by avoiding blue heat embrittlement by low temperature region temperature control at 200 ° C. or less, which is different from the hot, warm and cold forging temperature regions. A metal product manufacturing method using a new forging method.
(2)
The low temperature range temperature control of the forging process is a temperature control that minimizes the formation of a surface oxide film of the shaped article, and manufacturing a metal product using the new forging process described in (1) Method.
(3)
The method for producing a metal product using the new forging method according to (1), wherein the low temperature range temperature control of the forging is temperature control for facilitating plastic fluidity of the shaped product.
(4)
The method for producing a metal product using the new forging method according to (1), wherein the metal plate material has a fine grain structure with a grain size of several tens of μm.
(5)
The die used in the forging is a surface-modified die for preventing seizure, and a solid film lubricant having temperature-independent lubrication performance is used for a workpiece. A method for producing a metal product using the new forging method described in (1).
(6)
The forging process includes measuring a servo of a press machine and includes speed and motion control. The method for producing a metal product using the new forging process described in (1).
(7)
(A) a shear punching process for forming a shaped product from a metal plate material;
(B) In order to form a processed product having the shape of the shaped product, temperature control of the mold and the shaped product for avoiding blue heat embrittlement and facilitating plastic flow of the shaped product. A heating device to perform, a mold whose surface is modified to improve moldability and minimize surface oxidation of the molded product, and a temperature-independent solid coating for preventing seizure between the molded product and the mold It consists of a type of lubricant and a forging process different from any of hot / warm / cold forging, in which the press machine is equipped with a servo mechanism that controls the speed and motion of the new shear stamped shaped product,
A metal product manufacturing method using a new forging method, wherein the metal product cutting or water jet processing is converted into a press method.
It was.

本発明は、鍛造、例えば、既存の熱間/温間/冷間鍛造法のいずれにもよらない加工品を成形する鍛造加工の連携技術によって、各種金属製品を成形することができる。産業への利用に必須の優れた生産性と経済性を可能にする。また、素形品成形において、金属板材を出発材料として、切削加工やウォータジェット加工を用いることなく、また精密打抜き法を用いることなく、素形品を成形する新せん断プレス打抜き加工を用いた金属製品の製造方法を提供することができ、現用ファインブランキング法の技術課題を解決し、難生産性・高コスト化を解消することができる。対象金属製品として、例えば、精密機械部品、電気・電子分野の精密部品、素粒子加速器などの先端分野の異形精密部品など多岐にわたる金属製品が例示できる。   The present invention can form various metal products by forging, for example, a forging cooperative technology for forming a processed product that does not depend on any of the existing hot / warm / cold forging methods. Enables excellent productivity and economics essential for industrial use. Also, in forming a shaped product, using a metal plate as a starting material, a metal using a new shear press punching process that forms a shaped product without using cutting or water jet processing or using a precision punching method. It is possible to provide a product manufacturing method, solve the technical problem of the current fine blanking method, and eliminate difficult productivity and high cost. Examples of the target metal products include a wide variety of metal products such as precision mechanical parts, precision parts in the electric / electronic field, and deformed precision parts in advanced fields such as elementary particle accelerators.

その結果、ウォータジェット加工による砥粒埋入問題、冷間鍛造によるネッキングの問題が解消され、高価な金属材、例えば純ニオブ、あるいは種々の鉄鋼材料や非鉄金属材料において、その使用量を削減し、素材コストを抑えることができる。さらに、プレス成形で、要求精度にもよるが、仕上げ処理前の加工品とすることもでき、あるいは仕上げ処理(仕上げ切削)を大幅に低減することが可能になるため、製造時間の短縮が図られるので、大幅な製造コストを抑えることが可能になるとともに、安定的量産・部品供給に寄与するところ大である。当該技術は、ニオブ製品に限らず、例えば、冷延鋼板、ステンレス、鋼、鉄、非鉄金属材料など、各種金属材に応用できる。また、加速器関連部品であっても、安定した加速器の運転を保障することができる。   As a result, the problem of embedding abrasive grains due to water jet processing and the problem of necking due to cold forging are eliminated, and the amount of use of expensive metal materials such as pure niobium, various steel materials and non-ferrous metal materials can be reduced. , Material costs can be reduced. Furthermore, depending on the required accuracy in press molding, it can be processed before finishing, or the finishing process (finishing cutting) can be greatly reduced, reducing the manufacturing time. As a result, it is possible to significantly reduce manufacturing costs and contribute to stable mass production and parts supply. The technology is not limited to niobium products, and can be applied to various metal materials such as cold-rolled steel plates, stainless steel, steel, iron, and non-ferrous metal materials. Moreover, even if it is an accelerator related part, the operation | movement of the stable accelerator can be ensured.

純ニオブ製エンドグループを取り付けた超伝導高周波9セル加速空洞の写真である。It is the photograph of the superconducting high frequency 9 cell acceleration cavity which attached the end group made from a pure niobium. 超伝導高周波加速空洞の純ニオブ製エンドグループを構成するHOMカプラーと、HOMカプラーを構成するHOMカップ及びHOMアンテナの模式図である。It is a schematic diagram of the HOM coupler which comprises the pure niobium end group of a superconducting high frequency acceleration cavity, and the HOM cup and HOM antenna which comprise a HOM coupler. 従来の厚肉純ニオブ板材のウォータジェット加工の説明図である。(A)はウォータジェット加工によって成形された素形品の表面のSEM電子顕微鏡写真、(B)は(A)の白円内の粒子のEDX元素分析結果である。It is explanatory drawing of the water jet processing of the conventional thick pure niobium board | plate material. (A) is an SEM electron micrograph of the surface of a shaped product formed by water jet processing, and (B) is an EDX elemental analysis result of particles in the white circle of (A). 従来のウォータジェット加工によって成形された素形品の冷間鍛造加工によって成形された加工品の写真である。(A)外観像、(B)は(A)の円内の接写画像である。(B)でネッキングの発生が認められる。It is a photograph of a processed product formed by cold forging of a shaped product formed by conventional water jet processing. (A) Appearance image, (B) is a close-up image in the circle of (A). The occurrence of necking is observed in (B). せん断打抜き加工における厚肉純ニオブ材の束縛方法の一例である。(A)は素材、工具とともに示した(B)のB−B‘断面模式図、(B)は(A)のA−A’矢視模式図である。It is an example of the constraining method of the thick pure niobium material in the shear punching process. (A) is a BB 'cross-sectional schematic diagram of (B) shown with a raw material and a tool, (B) is an A-A' arrow schematic diagram of (A). 純ニオブの青熱脆性現象を示す図である。It is a figure which shows the blue-hot brittle phenomenon of pure niobium. 本発明のプレス加工に用いられた各種制御機構と金型を搭載したサーボプレス機及び加熱・冷却制御装置の外観写真である。It is the external appearance photograph of the servo press machine and heating / cooling control apparatus which mount various control mechanisms and metal mold | die used for the press work of this invention. 本発明によるせん断打抜き素形品(A)、鍛造加工品(仕上げ前)(B)の写真である。It is a photograph of a shear punching shaped article (A) and a forged product (before finishing) (B) according to the present invention. ステンレス鋼板から新せん断打抜き加工法で得た素形品(A)、新鍛造加法で得た鍛造品(B)、(B‘)、及び切削加工を施したノズルベーンの斜視図(写真)である。FIG. 3 is a perspective view (photograph) of a shaped product (A) obtained from a stainless steel plate by a new shear punching method, forged products (B) and (B ′) obtained by a new forging method, and a nozzle vane subjected to cutting. .

以下、図5,6に基づき、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to FIGS.

本発明である荷電粒子の加速に用いられる超伝導高周波加速空洞の純ニオブ製エンドグループ部品3のうちHOMアンテナ5は、本願手段による新たなせん断打抜き加工法(1)と、新たな鍛造加工法(2)とから製造され、従来の切削加工やウォータジェット加工からプレス加工への工法転換を可能にする。   Of the superconducting high-frequency accelerating cavity pure niobium end group part 3 used for acceleration of charged particles according to the present invention, the HOM antenna 5 has a new shear punching method (1) and a new forging method. It is manufactured from (2) and makes it possible to switch from conventional cutting and water jet processing to press processing.

(1)せん断打抜き加工
せん断打抜き加工は、厚肉純ニオブ板材5aから素形品5bを成形する工程で、ダイ6aとポンチ6cとの隙間(クリアランス)の微小化、厚肉純ニオブ板材6の束縛手段、高速打抜き手段、抜熱冷却手段、マルチアクションダイ、サーボダイクッション、プレス機のサーボ制御を含み、各手法の適切な組み合わせからなる。以下にそれらの手段/効果について説明する。
(1) Shear punching process The shear punching process is a process of forming the shaped article 5b from the thick pure niobium plate material 5a, and the gap (clearance) between the die 6a and the punch 6c is reduced. It includes a binding means, a high-speed punching means, a heat removal cooling means, a multi-action die, a servo die cushion, and servo control of a press machine, and consists of an appropriate combination of each method. The means / effects will be described below.

・微小クリアランス6e
図5(A)に示すように、微小クリアランス6eは、高精度のせん断打抜き品を得るために、ダイ6aとポンチ6cの隙間を被加工材板厚(t)の0.5%以下の微小に設定するものである。慣用打抜きでは、板厚(t)の10〜15%が通常であり、既存の精密打抜き(FB)法ではt≦0.5%である。しかしFB法では、高価なFB(油圧)プレス機とV字突起を形成する等が必要な特殊金型を要すること、打抜きスピードが遅いこと、さらにプレス機の操作に熟練を要すること等の問題がある。
・ Fine clearance 6e
As shown in FIG. 5 (A), in order to obtain a high precision shear punched product, the minute clearance 6e is a minute gap of 0.5% or less of the workpiece thickness (t) through the gap between the die 6a and the punch 6c. Is set to In conventional punching, 10 to 15% of the plate thickness (t) is normal, and in the existing precision punching (FB) method, t ≦ 0.5%. However, the FB method requires an expensive FB (hydraulic) press machine and special dies that need to form V-shaped projections, the punching speed is slow, and the press machine requires skill. There is.

他方、本発明は、下記する創案によって、慣用打抜きにも、FB法にも該当しない、厚肉純ニオブ板材5aのごとき難プレス加工材に適応できる新たなせん断打抜き加工法を提供する。   On the other hand, the present invention provides a new shear punching method that can be applied to difficult-to-press materials such as the thick-walled pure niobium plate 5a, which does not correspond to the conventional punching or FB method, by the following idea.

・束縛手段6
この手段は、図5に例示するように、例えば、厚肉純ニオブ板材5aを通常のFB法に採用されているV字突起方式の特殊金型を採用することなく、厚肉純ニオブ板材5aのふくれや素形品5bの板厚変動を抑制、制御するものである。
-Binding means 6
As shown in FIG. 5, for example, the thick pure niobium plate 5a can be used without adopting the special metal mold of the V-shaped projection method employed in the normal FB method. This suppresses and controls fluctuations in the thickness of the bulge and the shaped product 5b.

例えば、図5に示すごとく、厚肉純ニオブ板材5aに通常の板押え荷重Pbを上下(板押え6d及びダイ6a)から加える。なお、厚肉純ニオブ板材5aのダレの生成程度に応じて場合により打抜き荷重Pfに対し逆押え(逆方向)荷重Ppを加える。   For example, as shown in FIG. 5, a normal plate presser load Pb is applied to the thick pure niobium plate material 5a from above and below (the plate presser 6d and the die 6a). In some cases, a reverse presser (reverse direction) load Pp is applied to the punching load Pf depending on the generation degree of the sagging of the thick pure niobium plate material 5a.

さらに、本発明では、束縛荷重Fを厚肉純ニオブ板材5aに加える。束縛荷重Fは、長方形素材である厚肉純ニオブ板材5aの長手側面に加えられる第一側面束縛力F1と、短手側面に加えられる第二側面束縛力F2とからなる。なお、F1’はF1の反荷重、F2’はF2の反荷重である。   Further, in the present invention, the binding load F is applied to the thick pure niobium plate material 5a. The binding load F includes a first side surface binding force F1 applied to the long side surface of the thick pure niobium plate 5a, which is a rectangular material, and a second side surface binding force F2 applied to the short side surface. F1 'is a counter load of F1, and F2' is a counter load of F2.

この際、
Pb=F1+F2 式(1)
の関係を維持するように制御するのが要諦である。その結果、せん断打抜き時の厚肉純ニオブ板材5aの板厚変動を必要十分な程度に抑制することができる。
On this occasion,
Pb = F1 + F2 Formula (1)
It is important to control to maintain this relationship. As a result, the thickness variation of the thick pure niobium plate material 5a at the time of shear punching can be suppressed to a necessary and sufficient level.

ここで、Pbはサーボダイクッションによって加工中に動的制御することを本発明に含むことから、原理的にはFはそれに追随して変動する要因とみなしてよい。   Here, since the present invention includes that Pb is dynamically controlled during processing by the servo die cushion, F may be regarded as a factor that fluctuates following the principle.

厚肉純ニオブ板材5aは、通常のFB法に採用されているV字突起方式であっても、通常の板押えであっても、打抜き時に、移動し、素形品5bの板厚減少が起こることを認識して、かかる発明要素の考案に至ったものである。   The thick pure niobium plate material 5a moves at the time of punching regardless of whether it is a V-shaped projection method adopted in the normal FB method or a normal plate retainer, and the thickness of the shaped product 5b is reduced. Recognizing that this happens, the inventors have devised such an inventive element.

・連続高速打抜きと抜熱冷却
厚肉純ニオブ板材5aの打抜き時に、ポンチスピードを例えば100mm/sec以上に高速化することにより、せん断打抜き性が向上することを知見した。このような高速化は、FB法における油圧サーボ機構では実現できない。そこで、本発明では後述の電気的サーボ制御機構のプレス機搭載機能によって実現可能にしたものである。
-It has been found that the shear punchability is improved by increasing the punch speed to, for example, 100 mm / sec or more when punching the continuous high-speed punching and the heat-extracted and cooled thick pure niobium plate material 5a. Such a high speed cannot be realized by a hydraulic servo mechanism in the FB method. Therefore, in the present invention, it can be realized by a press machine mounting function of an electric servo control mechanism described later.

純ニオブにおいて、高速打抜きで打抜き性が向上するメカニズムは不明だったが、発明者等は、材料工学的な観点から、純ニオブ材料の加工変形中にミクロすべりとそのタングリング(もつれ)の影響がおもに歪みとして積層欠陥エネルギーの低下による交叉すべりの容易化によって減殺するためであることを知見した。   In pure niobium, the mechanism by which punching performance is improved by high-speed punching was unclear, but the inventors, from the viewpoint of materials engineering, affected the microslip and its tangling (tangling) during processing deformation of pure niobium material. However, it was found that this is mainly due to the fact that the strain is reduced by facilitating cross-slip due to a decrease in stacking fault energy.

他方、打抜きスピードを高速化し、かつ連続加工すると、外力の熱エネルギーへの変換量が増加・蓄積して、発熱現象が生じ、金型温度が上昇する。すると金型と厚肉純ニオブ板材5aの表面で相互の原子間相互作用が増加するとともに、潤滑剤や金型表面改質被膜の化学変化、主として酸化反応が起こり、「焼付き現象」が生じるので、連続せん断打抜き中に、被加工材料と金型の「抜熱」が必要になる。そのため、温度制御装置で、金型を冷却し、熱伝導で被加工材の冷却を行わなければならない。   On the other hand, when the punching speed is increased and continuous machining is performed, the amount of conversion of the external force into heat energy increases and accumulates, generating a heat generation phenomenon and increasing the mold temperature. Then, the interaction between the atoms increases on the surface of the mold and the thick pure niobium plate material 5a, and a chemical change of the lubricant and the mold surface modification film, mainly an oxidation reaction occurs, resulting in a "seizure phenomenon". Therefore, it is necessary to “heat-extract” the work material and the mold during continuous shear punching. Therefore, the mold must be cooled by the temperature control device, and the workpiece must be cooled by heat conduction.

・マルチアクションダイ
プレス機は通常2軸外力加工(スライドと板押え)形式が基本であるが、FB法のような複雑な機構によらずに、慣用プレス機にサーボ機能を付加した装置マルチアクションダイを搭載することで、スライド力に対して反対方向の「対抗力」(第3番目の軸力)の作動が可能になり、ノックアウト機能として兼用することができる(3軸外力加工化)。
・ The multi-action die press machine is usually based on the 2-axis external force machining (slide and plate press) type, but it is a multi-action machine that adds a servo function to the conventional press machine without using a complicated mechanism like the FB method. By mounting the die, it is possible to operate a “counterforce” (third axial force) in the opposite direction to the sliding force, which can also be used as a knockout function (three-axis external force machining).

微小クリアランス6eで高精度な素形品5bを成形するには、かかる簡略な複動化の工夫の効果は無視できない(図5のPpに相当する)。その結果、せん断打抜き加工装置の初期投資を抑え、生産性向上と相俟って、素形品5bの製品コストを低く抑えることが可能になる。   In order to mold the highly accurate shaped product 5b with the minute clearance 6e, the effect of such a simple double-acting device cannot be ignored (corresponding to Pp in FIG. 5). As a result, it is possible to suppress the initial investment of the shear punching processing apparatus and to reduce the product cost of the shaped product 5b in combination with the productivity improvement.

・サーボダイクッション
厚肉純ニオブ板材5aのせん断打抜き時の板押え荷重(面圧)を、せん断打抜き加工中に可変にして、せん断打抜き性の向上を図るために搭載する。加工時間が短いため、かかる動的可変動作を行うことには困難が伴うが、フィードバックセンサーの応答速度の改良によって実用化を可能にした。当該機構は、他の構成と併用することで、相乗作用を発揮し、高精度・高能率のせん断打抜き加工を可能にする。
The servo die cushion is mounted to improve the shear punchability by changing the plate pressing load (surface pressure) during shear punching of the thick pure niobium plate material 5a during the shear punching process. Since the machining time is short, it is difficult to perform such dynamic variable operation, but it has become possible to put it to practical use by improving the response speed of the feedback sensor. This mechanism, when used in combination with other components, exhibits a synergistic effect and enables high-accuracy and high-efficiency shear punching.

・サーボ(速度・モーション)制御
プレス加工においては、すでに知られた手法・装置であるが、高速・連続せん断打抜きや速度制御やモーション制御を有効利用することを特徴とする本願発明においては大切な要素であり、せん断打抜き加工において、かかる発想は従来存在しない。
-Servo (speed / motion) controlled press working is a known method / apparatus, but is important in the present invention characterized by effective use of high-speed / continuous shear punching, speed control and motion control. There is no such idea in the past in the shear punching process.

(2)鍛造加工
次いで、鍛造加工は、素形品5dを製品形状の加工品5cに成形する工程で、低温域温度制御(青熱脆化抑制、表面酸化被膜極小化、塑性流動容易化)、微細結晶純ニオブ材の選択、表面改質された金型、適正潤滑油、プレス機のサーボ制御を含む、各手法の適切な組み合わせからなる。以下に、それらの手段/効果について説明する。素形品に、鍛造加工後或いは鍛造加工に換え、従来の後処理、或いは仕上げ処理を施すことで完成品になる。
(2) Forging process Next, forging process is a process of forming the shaped product 5d into a product-shaped processed product 5c, in which the temperature is controlled at a low temperature range (blue heat embrittlement suppression, surface oxide film minimization, plastic flow facilitation). It consists of an appropriate combination of each method including selection of fine crystal pure niobium material, surface-modified mold, proper lubricating oil, and servo control of press machine. Hereinafter, these means / effects will be described. The shaped product is subjected to conventional post-processing or finishing processing after forging or replacing forging, and a finished product is obtained.

・低温度域温度制御
純ニオブの青熱脆化、表面酸化被膜の極小化、塑性流動容易化のために、室温(RT)を超えた温度(室温を含まない温度)〜200℃の低温域で温度制御する。より好ましくは20℃より高く200℃以下、いっそう好ましくは50〜150℃の温度域である。
従来から、鍛造加工において、温度条件に関連して、
熱間鍛造(再結晶温度以上、大略>800℃)
温間鍛造(300〜800℃)
冷間鍛造(RT(室温))が知られている。
本発明のこの低温度域制御の温度範囲は、従来知られているいずれの温度制御領域にも当てはまらない新たな温度域における温度制御手段であり、難プレス加工材の加工にふさわしい新たな鍛造加工法を提供するものである。
-Low temperature range Temperature control Temperature exceeding room temperature (RT) (temperature not including room temperature) to 200 ° C for low temperature range pure niobium blue heat embrittlement, surface oxide film minimization, plastic flow facilitation Control the temperature with. More preferably, it is higher than 20 ° C. and not higher than 200 ° C., more preferably 50 to 150 ° C.
Conventionally, in forging, in relation to temperature conditions,
Hot forging (above recrystallization temperature, roughly> 800 ° C)
Warm forging (300-800 ° C)
Cold forging (RT (room temperature)) is known.
The temperature range of this low temperature range control of the present invention is a temperature control means in a new temperature range that does not apply to any conventionally known temperature control range, and a new forging process suitable for processing difficult-to-press materials It provides the law.

・青熱脆性
純ニオブの静的及び動的機械的特性の温度依存性を広範な領域で調べた結果(図6)、厚肉純ニオブ板材5aのプレス加工化の手段と効果に関して貴重な情報が得られ、本願発明に関わる新たな鍛造法につき重要な要素の創案を得るに至った。
As a result of investigating the temperature dependence of static and dynamic mechanical properties of blue-hot brittle pure niobium in a wide range (Fig. 6), valuable information on the means and effects of pressing the thick pure niobium plate 5a As a result, the inventors have come up with an important element for a new forging method related to the present invention.

図6に0〜400℃における純ニオブの静的単軸引張結果を示す。横軸が温度、第一縦軸(左)が伸び(延性)、第二縦軸(右)が引張強さ(強度特性)である。EL(全伸び)については異なるチャージの結果をプロットしてある。   FIG. 6 shows the results of static uniaxial tension of pure niobium at 0 to 400 ° C. The horizontal axis is temperature, the first vertical axis (left) is elongation (ductility), and the second vertical axis (right) is tensile strength (strength characteristics). The results for different charges are plotted for EL (total elongation).

これから、純ニオブの静的な機械的特性が温度変化に対して一様には変化(増加・減少・不変)しないことが分かる。特に200〜300℃の温度領域で純ニオブの延性・強度特性ともに急減することが知られた。これを、従来の金属材工学にならって純ニオブの「青熱脆化」と称する。   From this, it can be seen that the static mechanical properties of pure niobium do not change uniformly (increase, decrease, or remain unchanged) with respect to temperature changes. In particular, it has been known that both ductility and strength characteristics of pure niobium rapidly decrease in a temperature range of 200 to 300 ° C. This is called “blue heat embrittlement” of pure niobium following conventional metal engineering.

青熱脆化現象が生じると、延性低下による塑性変形能の低下と、強度特性の劣化による材料の外力に対する変形抵抗の低減を招くことになるから、純ニオブ材の加工性の低下、即ち応力集中部分のネッキングが生じる危険性が急増する。それゆえ、青熱脆化は鍛造加工にあたって、絶対に避けなければならない。   When the blue heat embrittlement phenomenon occurs, it will lead to a decrease in plastic deformability due to a decrease in ductility and a decrease in deformation resistance to the external force of the material due to a deterioration in strength characteristics. The risk of necking in concentrated areas increases rapidly. Therefore, blue heat embrittlement must be avoided in the forging process.

青熱脆化の生成原因は、以下のように考えられる。これは、後述の「細粒化純ニオブの選択使用」と関連する。図6中の挿入図の斜線丸囲い部の応力−歪線の流動応力変化からも分かるように、青熱脆化は、純ニオブ素材中の結晶粒界やミクロすべり(歪)生成部位における侵入型原子(炭素及び窒素)の固体拡散による固着・ブロックによるものである。   The cause of blue heat embrittlement is considered as follows. This is related to “selective use of fine-grained pure niobium” described later. As can be seen from the change in the flow stress of the stress-strain line in the hatched circle in the inset in FIG. 6, blue heat embrittlement is intrusion at grain boundaries and microslip (strain) generation sites in pure niobium material. This is due to sticking / blocking by solid diffusion of type atoms (carbon and nitrogen).

純ニオブのごときフェライト(体心立方結晶(BCC))中の拡散現象(拡散係数D)は、温度Tに依存する、
D=Dexp(−Q/kT) 式(2)
で表される。
:振動数項,Q:活性化エネルギー,k:ボルツマン定数
The diffusion phenomenon (diffusion coefficient D) in ferrite (body-centered cubic crystal (BCC)) such as pure niobium depends on the temperature T.
D = D O exp (−Q / kT) Formula (2)
It is represented by
D O : Frequency term, Q: Activation energy, k: Boltzmann constant

そして、時間tにおける原子の拡散距離xは、
x=(Dt)1/2 式(3)
となる。
The atomic diffusion distance x at time t is
x = (Dt) 1/2 formula (3)
It becomes.

しかるに、200〜300℃におけるフェライト中の炭素及び窒素のDは100〜1000mm/sec程度であるから、ミクロすべり速度とマッチングするので、前記固着作用が生じ、青熱脆化が生じるものと考える。   However, since D of carbon and nitrogen in the ferrite at 200 to 300 ° C. is about 100 to 1000 mm / sec, it matches with the micro-slip speed, so that the fixing action occurs and blue heat embrittlement occurs.

そして、後述のように前記「細粒化純ニオブの選択使用」と同時に、「塑性流動の容易化」も同時に考慮しなければならないのである。   As described later, the “selective use of fine-grained pure niobium” must be considered simultaneously with the “ease of plastic flow”.

・表面酸化被膜極小化
純ニオブは酸化物(殆どNb)の標準生成自由エネルギーΔGが小さく、酸化しやすい。スケール(酸化膜)除去として、仕上げ切削(機械的/化学的(Cp)/電気化学的(Ep))等をプレス鍛造製品(場合により仕上げ切削)製作後に行う。とくにEpは2万台弱つくる予定の“9連空洞”の1台ごとに行う必要がある。よって酸化膜生成を少しでも減らすことは、EP処理能力の向上に寄与するから、コストダウンにつながる。
-Minimized surface oxide film Pure niobium has a small standard formation free energy ΔG of oxide (mostly Nb 2 O 5 ) and is easily oxidized. As the removal of scale (oxide film), finish cutting (mechanical / chemical (Cp) / electrochemical (Ep)) or the like is performed after manufacturing a press forged product (in some cases, finish cutting). In particular, it is necessary to carry out Ep for every “9-spindle cavity” that is planned to produce less than 20,000 units. Therefore, reducing the oxide film generation as much as possible contributes to the improvement of the EP processing capability, leading to cost reduction.

従って、鍛造温度は室温を超えた温度(室温を含まない温度)〜200℃の間でなるべく低値に越したことはないが、同時に青熱脆性の回避及び前記のごとく図6に挿入した応力−歪線図に示された弾塑性限界近傍の流動応力変化への対応を含む)。この原因は青熱脆化と同じで、前記したように侵入型原子のミクロすべり歪の固着によるものであるが、時効現象とも称し、青熱脆化下限温度以下での高温域においても生じる可能性がある。同時に後述する塑性流動性の容易化にも配慮すると、130℃付近を中心とした100〜150℃の温度域制御が好適である。   Therefore, the forging temperature never exceeded the lowest possible value between the temperature exceeding room temperature (temperature not including room temperature) and 200 ° C., but at the same time avoiding blue brittleness and the stress inserted in FIG. 6 as described above. -Including the response to changes in flow stress near the elastoplastic limit shown in the strain diagram). The cause of this is the same as blue heat embrittlement, and as mentioned above, is due to the fixation of microslip strain of interstitial atoms, which is also called aging phenomenon and can occur even in the high temperature range below the blue heat embrittlement lower limit temperature There is sex. At the same time, considering the ease of plastic fluidity, which will be described later, it is preferable to control the temperature range from 100 to 150 ° C. around 130 ° C.

・塑性流動容易化
鍛造加工は、主として圧縮力による材料変形によって進捗するものであるから、いかに純ニオブ材料のマクロ的な塑性流動を所要の製品形状寸法に沿って適切かつ均一かつ適切に起こさせるかが肝要である。
・ Plastic flow facilitating forging process is progressed mainly by material deformation due to compressive force, so how to cause macro plastic flow of pure niobium material appropriately, uniformly and appropriately along the required product geometry. It is important.

そのためには、少しでもマクロ機械的特性のうち全伸び(均一伸びと局部伸びの和)で示される延性(特に均一伸び)に優れることと、変形抵抗を減殺するために強度・流動応力を低めに保つことが望ましい。そして、既述の炭素や窒素の侵入型原子のミクロな変形歪に対する固着作用を回避することが望まれる。   To that end, it has excellent ductility (particularly uniform elongation) indicated by the total elongation (sum of uniform elongation and local elongation) of the macro mechanical properties, and lowers strength and flow stress to reduce deformation resistance. It is desirable to keep Then, it is desired to avoid the fixing action against the micro deformation strains of the carbon and nitrogen interstitial atoms described above.

かかる観点から、図6を参照すると、室温を超えた温度(室温を含まない温度)〜200℃間の低温域温度制御をすることの肝要性が理解できるのであるが、望ましくは表面酸化被膜極小化温度について述べた観点とも一致することとなる130℃付近の温度域制御の選択が好ましいといえる。この好適温度は、金属材料の種類によって若干変動する。   From this point of view, referring to FIG. 6, it can be understood that it is essential to control the temperature in a low temperature range between a temperature exceeding room temperature (a temperature not including room temperature) to 200 ° C., but preferably the surface oxide film is minimal. It can be said that it is preferable to select temperature range control around 130 ° C., which is consistent with the viewpoint described for the conversion temperature. This suitable temperature varies slightly depending on the type of metal material.

かくして、鍛造時のあらゆる曲面部分の形成と高精度化や、表面性状が向上することになる。開発研究実験と理論的指導原理から導かれた本発明、即ち純ニオブ材料の全プレス加工化を実現した技術は、これまで知られていない。 Thus, the formation and high accuracy of all curved surfaces during forging and the surface properties are improved. The present invention derived from the development research experiment and the theoretical teaching principle, that is, the technology that realizes all press working of pure niobium material has not been known so far.

・微細結晶純ニオブ材の選択
これには二つの考慮を払うべき観点がある。第1点は、厚肉純ニオブ板材5aと金型間で起こる焼付き(凝着)現象回避の観点である。純ニオブは通常再結晶熱処理による結晶粒成長速度が大きく、数100μm程度の粗大粒を呈するのが一般である。
-Selection of fine crystalline pure niobium material There are two points to consider. The first point is the viewpoint of avoiding the seizure (adhesion) phenomenon that occurs between the thick pure niobium plate material 5a and the mold. Pure niobium usually has a large crystal grain growth rate by recrystallization heat treatment, and generally exhibits coarse grains of about several hundred μm.

これは、本願用途に使用する純ニオブが300RRR以上の高純度(炭素や窒素等の侵入型不純物元素の含有率が数ppm程度)ゆえ、結晶粒界移動阻止作用が小さいことと、ニオブ原子の体拡散が容易なことによるものと推察される。   This is because pure niobium used for the present application has a high purity of 300 RRR or more (the content of interstitial impurity elements such as carbon and nitrogen is about several ppm), so that the action of preventing grain boundary movement is small, This is probably due to the fact that body diffusion is easy.

被加工材料の結晶組織が粗大粒からなると、その表面と金型表面との間に、原子のランダムウオークによる交互作用が、細粒材の場合よりも確率的に増大するので、化学反応も生じやすくなり、焼付きや摩耗現象が促進されるものとの推定原理によって、数10μmの細粒結晶の純ニオブ素材を用いることによって焼付き(凝着)現象を低減させるものである。   When the crystal structure of the material to be processed is composed of coarse grains, the interaction of atoms by random walk between the surface and the mold surface increases more stochastically than in the case of fine-grained materials, and chemical reactions also occur. The seizure (adhesion) phenomenon is reduced by using a pure niobium material having a fine crystal of several tens of μm on the presumption principle that seizure and wear phenomenon are facilitated.

純ニオブ素材の結晶粒径が焼付き・凝着の原因のひとつであることはこれまで知られていない。また、結晶粒径を数10μmオーダーに調整する技術も開示されていない。   It has not been known so far that the crystal grain size of pure niobium is one of the causes of seizure and adhesion. Further, a technique for adjusting the crystal grain size to the order of several tens of μm is not disclosed.

もう1点は、図6の青熱脆化及び時効現象について前記したことからも分かるように、結晶粒径が如上のように現用の1/10程度の細粒材を使用することによって、結晶粒界面積が著しく増大するので、炭素や窒素等の侵入型元素の多くが拡散によって、同じ温度であっても、結晶粒界に固着(トラップ)され、ミクロすべりの進行を妨げる程度が減少することである。つまり、同じ温度条件の鍛造加工において、粗粒材よりも細粒材の方が青熱脆化や時効現象が緩和され、鍛造加工が容易になり、鍛造性も改善されることである。   The other point is that, as can be understood from the above-mentioned fact about the blue heat embrittlement and aging phenomenon in FIG. 6, by using a fine material having a crystal grain size of about 1/10 as above, The grain boundary area increases significantly, so that many of the interstitial elements such as carbon and nitrogen are diffused and fixed (trapped) at the grain boundaries even at the same temperature, reducing the extent to which the microslip is hindered. That is. That is, in the forging process under the same temperature condition, the fine-grained material is less susceptible to blue heat embrittlement and aging than the coarse-grained material, the forging process is facilitated, and the forgeability is improved.

・表面改質された金型
金型と厚肉純ニオブ板材5aとの焼付き(凝着)防止と金型の摩擦・摩耗対策のため、金型の表面をDLCや低温窒化あるいは化成処理等で改質する。被加工材が軟質純ニオブであることを考慮して、改質層の厚みや下地処理に配慮すると同時に、金型材質の選択にも配慮する。
・ To prevent seizure (adhesion) between the surface-modified mold and the thick pure niobium plate 5a and to prevent friction and wear of the mold, the surface of the mold is subjected to DLC, low-temperature nitridation or chemical conversion treatment, etc. Reform with. Considering that the material to be processed is soft pure niobium, consideration is given to the thickness of the modified layer and the surface treatment, and at the same time, the selection of the mold material is considered.

・適正潤滑剤
温度非依存型潤滑性能を有する固形被膜潤滑剤を用いる。例えば、本願発明者のひとりが関わった、室温〜800℃まで固形被膜の潤滑性能不変な潤滑剤が知られている(特許文献3)ので、これを用いることで、焼付き・凝着現象が緩和される。なお、特許文献3に記載の潤滑剤は、焼付き・凝着防止に従来使用されてきた塩素添加潤滑油の人体/環境への負荷を回避した固形潤滑剤で、加工性のアップにも寄与する。
-Use a solid film lubricant with proper lubricant temperature-independent lubrication performance. For example, a lubricant that does not change the lubrication performance of a solid coating from room temperature to 800 ° C., which is one of the inventors of the present application, is known (Patent Document 3). Alleviated. The lubricant described in Patent Document 3 is a solid lubricant that avoids the burden on the human body / environment of the chlorine-added lubricant that has been used in the past to prevent seizure and adhesion, and contributes to the improvement of workability. To do.

・サーボ(速度・モーション)制御
この機能は、慣用プレス機に搭載して、プレス機のスライド(ストローク)の速度制御及びまたはモーション制御を行い、外力の使用要件を変化させ、厚肉純ニオブ板材5aのミクロ的及び又はマクロ的変形モードの親和性を改善し、塑性加工性を向上させることを意図したものである。
・ Servo (speed / motion) control This function is installed in a conventional press machine to control the speed and / or motion of the slide (stroke) of the press machine, and to change the usage requirements of external force. It is intended to improve the plastic workability by improving the affinity of the micro pure and macro deformation modes of the meat pure niobium plate material 5a.

以上、本願発明内容について詳細説明をしるしたので、以下、これらに基づく具体的な実施例を、図6、7を参照しつつ示す。なお本発明は下記実施例に限定されるものではない。   Since the present invention has been described in detail, specific examples based on these will be described below with reference to FIGS. The present invention is not limited to the following examples.

図7に発明を実施するための設備・装置の外観写真を示した。主たる装置はプレス機であり、慣用プレス機に電気式(AC)サーボ機構を搭載し、さらにサーボダイクッション及びマルチアクションダイを取り付けた。基本的にはコストパフォーマンスの観点から、実施例では単発加工とした。即ち、素形品5bの加工のための新せん断打抜き加工と仕上げ処理前の製品加工のための新鍛造加工を、適当な個数ごとに分けて行った。(いうまでもなく量産時には2台のプレス機で連続加工を行うこととなる)。   FIG. 7 shows a photograph of the appearance of facilities and apparatuses for carrying out the invention. The main device was a press machine, and an electric (AC) servo mechanism was mounted on a conventional press machine, and a servo die cushion and a multi-action die were attached. Basically, from the viewpoint of cost performance, single-shot machining was used in the examples. That is, the new shear punching process for processing the shaped article 5b and the new forging process for processing the product before the finishing process were performed for each appropriate number. (Needless to say, during mass production, continuous processing is performed with two press machines).

そのために、途中でせん断打抜き用金型と鍛造用金型を交換した。金型重量物の交換にはQDCを用いた。実施例のための金型材質はSKD11とし、表面改質はDLCとし、改質層の厚みは約2μmである。潤滑剤には固形潤滑剤G2578T(日本工作油(株)製)を使用した。これら型材・表面改質・潤滑剤は、せん断打抜き加工と鍛造加工共用で実施した。   Therefore, the shear punching die and the forging die were exchanged on the way. QDC was used for exchanging heavy metal molds. The mold material for the example is SKD11, the surface modification is DLC, and the thickness of the modified layer is about 2 μm. A solid lubricant G2578T (manufactured by Nippon Tool Oil Co., Ltd.) was used as the lubricant. These mold material, surface modification, and lubricant were used for both shear punching and forging.

新せん断打抜き加工の冷却制御及び新鍛造加工のための加熱制御用に、図7に示した温度制御装置7を使用した。温度制御範囲は−20〜+300℃であり、冷却は非フロン冷媒、加熱は金型7aに埋入した電気ヒーターを、それぞれ用いた。厚肉純ニオブ板材5aと金型の温度制御には若干の時間差が生じたが、特段の問題はなかった。   The temperature control device 7 shown in FIG. 7 was used for cooling control of the new shear punching process and heating control for the new forging process. The temperature control range was −20 to + 300 ° C., cooling was a non-fluorocarbon refrigerant, and heating was an electric heater embedded in the mold 7a. Although there was a slight time difference in temperature control between the thick pure niobium plate 5a and the mold, there was no particular problem.

純ニオブ被加工材としては、板厚10mmの厚肉純ニオブ板材を使用した。このものは数回のEBM(電子ビーム溶解)を施したのち、インゴットの分塊圧延及び厚板圧延を行い、脱スケール後に真空焼鈍したものである。材料ミルシート(検査表)によれば、不純物固溶原子の炭素、窒素、酸素等はすべて数ppmのレベルで、RRR(電気抵抗に関系する指標で、数字が大きいほど恋純度材であることを示す)は341であった。同族(元素周期表の第5族)のタンタル含有量は280ppmであった。金属結晶粒径は大略100〜300μm径で、ほぼ等軸粒である。結晶方位集合組織の測定は行われていない。硬さを測定したところ、ビッカース硬度で約90であった。   As the pure niobium workpiece, a thick pure niobium plate having a thickness of 10 mm was used. This is obtained by performing EBM (electron beam melting) several times, performing ingot lump rolling and thick plate rolling, and vacuum annealing after descaling. According to the material mill sheet (inspection table), carbon, nitrogen, oxygen, etc. of impurity solid solution atoms are all at the level of several ppm, and RRR (an index related to electrical resistance. Was 341. The tantalum content of the same group (Group 5 of the periodic table) was 280 ppm. The metal crystal grain size is approximately 100-300 μm and is approximately equiaxed. The crystal orientation texture has not been measured. When the hardness was measured, it was about 90 in terms of Vickers hardness.

実施例の条件は以下のようである。
(1)せん断打抜き加工:(微小)クリアランス40μm;板押え荷重(Pb)20トン;板押え面圧140kg/cm^2;束縛荷重(F)は面圧に同じ;打抜き荷重(Pf)90トン;逆押え荷重(Pp)13トン;速度200mm/sec;冷却温度0℃;サーボモーションはストレート;連続加工個数50個。
The conditions of the example are as follows.
(1) Shear punching: (Fine) Clearance 40 μm; Plate presser load (Pb) 20 tons; Plate presser surface pressure 140 kg / cm ^ 2; Binding load (F) is the same as surface pressure; Punch load (Pf) 90 tons Reverse presser load (Pp) 13 tons; speed 200 mm / sec; cooling temperature 0 ° C .; servo motion is straight;

(2)鍛造加工:鍛造加工荷重160トン;鍛造速度0.5mm/sec;鍛造金型の素形品5bワークのオフセット量0.2mm;加工温度130℃;連続加工個数50個。 (2) Forging: Forging load 160 tons; Forging speed 0.5 mm / sec; Forging die shaped part 5b Workpiece offset 0.2 mm; Processing temperature 130 ° C .;

以上の条件にて、本発明に従って、厚肉純ニオブ板材5aから多数個のHOMアンテナ5の新せん断打抜き方法と、それに続く新鍛造方法によって行った実施加工品5b及び5cのうち典型的な例を図8に示す。   Under the above conditions, typical examples of the processed products 5b and 5c performed by the new shear punching method of a large number of HOM antennas 5 from the thick pure niobium plate material 5a and the subsequent new forging method according to the present invention. Is shown in FIG.

図8(A)に、せん断打抜き素形品5bを示したが、板厚10mmに達する加工難度の高い軟質厚肉純ニオブ板材5aのせん断打抜きが、特段の問題が全くない状態で実施できた。もちろん、ウォータジェット素形品加工における砥粒の埋入は皆無であり、この問題を完全に解決することができた。   FIG. 8A shows the shear punching shaped product 5b, but the shear punching of the soft thick pure niobium plate material 5a having a high processing difficulty reaching a plate thickness of 10 mm could be performed without any particular problems. . Of course, there was no embedding of abrasive grains in the water jet shaped article processing, and this problem could be solved completely.

図8(B)に、(A)からの継続加工である新鍛造方法による鍛造後(仕上げ(切削)処理前)の製品(加工品5c)を示したが、この場合も前記縷々しるした手段・条件の適用によって所要の形状寸法を有する加工品が、再現性をもって製造可能であることが示された。   FIG. 8B shows a product (processed product 5c) after forging (before finishing (cutting) processing) by the new forging method, which is the continuous processing from (A). It was shown that a processed product having a required shape and dimension can be manufactured with reproducibility by applying means and conditions.

相当の個数を鍛造加工したが、従来法の冷間鍛造で発生した「ネッキング」の発生は皆無であった。図8には、(A),(B)それぞれの長さ寸法及び板厚寸法をしるしているが、これらは十分この後の仕上げ処理に問題のないことを確認している。   A considerable number of pieces were forged, but no “necking” occurred in the conventional cold forging. FIG. 8 shows the length and thickness of each of (A) and (B), and it has been confirmed that there is no problem in the subsequent finishing process.

特に、板厚が鍛造によって、1mm減少し、長さ寸法も減少しているが、これらは想定内であり、前記したように金型で設計図に対するオフセット量を適正に考慮したゆえんである。   In particular, the plate thickness is reduced by 1 mm due to forging, and the length dimension is also reduced. However, these are within the assumption, and as described above, the offset amount with respect to the design drawing is properly considered in the mold.

以上の実施例から判断できるように、本願発明の適用によって、厚肉純ニオブ板材5aからHOMアンテナ5の加工品を、従来の切削やウォータジェットを回避した、仕上げ処理を除く製造工程をすべてプレス加工方法へ工法転換することが可能であるとの結果を得た。従って、大きなネックであった加速空洞部品の素材歩留りの減少、コスト低減、量産性の向上等の実現が可能になった。   As can be judged from the above embodiments, the application of the present invention presses all the manufacturing processes except for the finishing process, which avoids conventional cutting and water jet, from the thick pure niobium plate material 5a to the processed product of the HOM antenna 5. The result that it was possible to change to the processing method was obtained. Accordingly, it has become possible to realize a reduction in material yield, cost reduction, and improvement in mass productivity of acceleration cavity parts, which has been a major bottleneck.

次に、本発明の一例として、ディーゼルエンジン用可変翼型ターボチャージャーの重要部品であるノズルベーン10(図9(C))の、新せん断打抜き加工法及び新鍛造加工法を用いた製造(成形)方法について説明する。   Next, as an example of the present invention, manufacturing (molding) of the nozzle vane 10 (FIG. 9C), which is an important part of a variable wing turbocharger for a diesel engine, using a new shear punching method and a new forging method A method will be described.

図9(A)に示す素形品8は、板厚10mmのステンレス鋼板(SUS310S=25Cr−20Ni−0.06C)の圧延材に、新せん断打抜き加工法を適用して得られる。この時点で、素形品8は、打ち抜かれた平坦なT字形状の板状である。これが次工程で、翼9aに鍛造成形される翼部8aと、笠9b及び軸9cに鍛造成形される軸部8aからなる製品とするのが本発明である。   The shaped product 8 shown in FIG. 9A is obtained by applying a new shear punching method to a rolled material of a stainless steel plate (SUS310S = 25Cr-20Ni-0.06C) having a thickness of 10 mm. At this point, the shaped product 8 is a punched flat T-shaped plate. This is the next step, and the present invention is a product comprising a blade portion 8a forged and formed on the blade 9a, and a shaft portion 8a forged and formed on the cap 9b and the shaft 9c.

従来のノズルベーンの素形品は、ファインブランキング(FB)や転造で成形されることが多いが、FB装置の導入コストが高いこと、高い運転技術を要することから、割高の製品になっている。同時に、次工程(冷間鍛造や転造加工)にも、高い成形難度・歩留・コスト等の問題が避けられない。   Conventional nozzle vane shaped products are often formed by fine blanking (FB) or rolling, but the cost of introducing the FB device is high, and high operation techniques are required, making it an expensive product. Yes. At the same time, problems such as high forming difficulty, yield, and cost are unavoidable in the next process (cold forging and rolling).

一般的には、本製品の製造手段として、鋳造用ステンレス鋼のSCS21(25Ni−20Cr−0.3C)を用いた「精密鋳造」法が採用される。しかし、この場合、例えば本製品の生産量は数10万個/月といわれ、精密鋳造による生産には量産性・コスト・納期・流通など困難な課題が山積している。また、SCS21は、Cを多量に含有し、使用中の温度変化で、Cr炭化物や、σ相非金属介在物もしくはラーベス相を生成し、耐酸化性が低下して可動不良や耐久性の劣化を招く懸念があり、また、鋭敏化(粒界腐食)及び脆化(劈開破壊・粒界破壊)の恐れがある。   In general, a “precision casting” method using SCS21 (25Ni-20Cr-0.3C) of stainless steel for casting is employed as a manufacturing means of this product. However, in this case, for example, the production amount of this product is said to be several hundred thousand pieces / month, and difficult problems such as mass productivity, cost, delivery date, and distribution are piled up in production by precision casting. In addition, SCS21 contains a large amount of C, and generates Cr carbide, σ phase non-metallic inclusions or Laves phase with temperature change during use, lowering oxidation resistance and causing poor operation and deterioration of durability. In addition, there is a risk of sensitization (intergranular corrosion) and embrittlement (cleavage fracture / intergranular fracture).

図9(B)、(B‘)に示す鍛造品9は、塑性流動を利用した新鍛造加工法を素形品8に適用して得た。図9(B’)は、図9(B)の翼9a側からの写真である。ここでは、鍛造温度を150℃ とし、サーボ制御を行って、笠9bを一部打抜きとの合せ技で鍛造成形するとともに、特殊な形状の翼9aを鍛造する。なお、部品によっては、新鍛造加工で最終製品となる。ノズルベーンでは、次の切削加工を施して完成品になる。   The forged product 9 shown in FIGS. 9B and 9B was obtained by applying a new forging method using plastic flow to the shaped product 8. FIG. 9B 'is a photograph from the wing 9a side of FIG. 9B. Here, the forging temperature is set to 150 ° C., the servo control is performed, and the cap 9b is forged by a combination technique of partially punching, and the blade 9a having a special shape is forged. Depending on the parts, the final product will be produced by new forging. In the nozzle vane, the following cutting process is performed to obtain a finished product.

図9(C)に示すノズルベーン10は、鍛造品9に、必要な切削を施し、切削部10a、10bを形成して完成とした。以上の工程で、生産性、経済性を具備したノズルベーンの製造が可能になる。なお、部品によって、最適、必要な種々の研磨等によって仕上げ加工を施し、完成品とする。
例えば、精密機械部品の範疇に属する特殊ギヤ・カム・レバーや割リングなどの従来法の冷間鍛造方法によれば、形状・寸法精度の厳しさが増すにつれて、ネッキング・亀裂・R部の寸法不良・だれ・ばり・肉余りなどの不具合発生率の増加を免れないが、本発明法によればこれら技術問題が解消される。これは主として素材の塑性流動性と変形の余裕度の向上によるものである。同時に量産性および経済性に関しては、従来の冷間鍛造法と比べて殆ど遜色がない。
また、最先端プロジェクトILC(国際線形衝突型加速器)の超伝導加速空洞端末部品の高調波結合器(HOM Coupler)を高純度のNb素材で実施したが、加速電圧などの所要機能を満足した結果が得られている。実施例に基づく特有な効果としては、上記HOM Coupler部品(antenna)のごとき、異形・複雑な部品を、金属材料の新せん断打抜き加工方法などによって得られた素形品に、本発明の新鍛造加工法を適用することによって、製品化できることである。
常識的にも、実績的にも、このような複雑形状かつ高精度品を全切削もしくは高エネルギー加工法あるいは鋳造法や複数工程によるファインブランキングや転造によらなければ、加工不可能であったが、新打抜き法とともに新鍛造法によって加工が可能になることは、10〜100分の1という大幅な生産時間・効率アップになることを意味するゆえに、優れて好ましい効果を有する。
The nozzle vane 10 shown in FIG. 9C was completed by subjecting the forged product 9 to necessary cutting to form the cutting portions 10a and 10b. Through the above steps, it is possible to manufacture a nozzle vane having productivity and economy. Depending on the parts, finishing is performed by various kinds of polishing that are optimum and necessary, and a finished product is obtained.
For example, according to conventional cold forging methods such as special gears, cams, levers and split rings belonging to the category of precision machine parts, as the severity of shape and dimensional accuracy increases, the dimensions of necking, cracks and R part Although an increase in the occurrence rate of defects such as defects, drool, burrs, and excess meat is inevitable, the method of the present invention solves these technical problems. This is mainly due to the improvement of the plastic fluidity and deformation margin of the material. At the same time, mass productivity and economic efficiency are almost the same as those of the conventional cold forging method.
The harmonic coupler (HOM Coupler) of the superconducting accelerating cavity terminal component of the cutting-edge project ILC (International Linear Collision Accelerator) was implemented with high-purity Nb material. Is obtained. As a unique effect based on the embodiment, the new forging of the present invention can be applied to a shaped product obtained by using a new shear punching method for a metal material, such as the above HOM Coupler part (antenna). It can be commercialized by applying processing methods.
It is impossible to process such complicated shapes and high precision products without using cutting, high energy processing methods, casting methods, fine blanking or rolling by multiple processes. However, the fact that processing is possible by the new forging method together with the new punching method means that the production time and efficiency are greatly increased by 1 to 1/100, and therefore, it has an excellent and favorable effect.

その他、例えば、現在ファインブランキング法で製造している安定高級ステンレス鋼(SUS310S、あるいはSUS316Lなど)を素材としたノズルベーン・リンクプレート・スライドジョイントなどの自動車ターボチャージャー(過給機)部品へ適用すれば、高温・長時間使用における出力やトルクおよび排ガスの有効利用や浄化機能に資することができる。   In addition, for example, applied to automotive turbocharger (supercharger) parts such as nozzle vanes, link plates and slide joints made of stable high-grade stainless steel (SUS310S or SUS316L, etc.) currently manufactured by the fine blanking method. Thus, it can contribute to the effective use and purification function of output, torque, and exhaust gas at high temperature and long time use.

以上から、本発明技術は、温度・速度・外力などを組み合わせた新技術を、材料工学と塑性加工学の活用・融合の観点から見いだし、そのための具体的な新たな手段の創出に至ったものである。   From the above, the technology of the present invention has found a new technology that combines temperature, speed, external force, etc. from the viewpoint of utilization and integration of material engineering and plastic processing, and has led to the creation of specific new means for that purpose. It is.

最も大きな特有な効果として、現用のファインブランキング精密打抜き法に取って替わる可能性を知見したことである。具体的にいえば、ファインブランキング専用機への投資に比べて、格段に安価な対応・手段で、即ち、各メーカーが、既に所有している汎用プレス機のモディファイと温度制御機構の準備とからなるハード設備を、煩雑な作業技術を必要とせずに、またファインブランキング用の高価な特殊金型を準備しなくても、高精度の新たな精密新せん断打抜き加工法を用いた金属製品の製造方法を実現した。ファインブランキング加工機をすでに所有していて、減価償却が済んでいる加工メーカーと比較した場合でも、中期的な時間経過においてみれば、新せん断打抜き加工によるほうが優位性を示す。   The most unique effect is that they have found the possibility of replacing the existing fine blanking precision punching method. Specifically, compared to investing in fine blanking dedicated machines, it is much cheaper to deal with and means, that is, the modification of general-purpose presses already owned by each manufacturer and the preparation of temperature control mechanism Metal products using a new high-precision new shear punching method without the need for complicated work techniques and the need to prepare expensive special molds for fine blanking Realized the manufacturing method. Even when compared to a processing manufacturer that already owns a fine blanking machine and has already depreciated, the new shear punching process is superior over the medium term.

以上のように、微小クリアランスにおけるせん断加工、特に材料の変形工学、塑性加工学のなかの分離せん断加工に関する巨視的な塑性力学、熱処理およびサーボ機構並びにそれらと材料加工変形との相互作用に関する技術の考察・実験により、鉄鋼材料を含む種々の金属材料につき、厚さ10mm程度までの種々の材料を、所要の寸法精度・ダレやバリ(かえり)が極小の良形状性・良表面性状・打抜き側面の100%せん断面確保・板厚変化と分布・ループ内側の局所小R出しなどを、材料の塑性流動に配慮した適正なせん断打抜き条件において、打抜き品を製造することができる。   As described above, the techniques of macroscopic plastic mechanics, heat treatment and servomechanism related to shear processing in micro-clearance, especially material deformation engineering, separation shear processing in plastic processing, and their interaction with material processing deformation. Through various examinations and experiments, various metal materials, including steel materials, have various shapes up to a thickness of about 10 mm. They have good shape, good surface properties, and punched side surfaces with minimal required dimensional accuracy, sag and burr. It is possible to manufacture a punched product under appropriate shear punching conditions in consideration of the plastic flow of the material, such as securing a 100% shear surface, plate thickness change and distribution, and local small R out of the loop.

その結果、本発明は、異形高精度を要する精密打抜き部品、製品を、高価な専用プレス機を必要とするファインブランキング法によらずに、慣用プレス機および金型に冷却治具・装備を併設し、ストロークや面圧自動制御及び背圧を含めた3軸外力制御用サーボ機能をもたせて、精密せん断分離加工を可能にしたものである。   As a result, the present invention provides precision punched parts and products that require high profile and high precision, and does not rely on the fine blanking method that requires expensive dedicated press machines, but includes cooling jigs and equipment on conventional press machines and dies. It is also provided with a servo function for 3-axis external force control including stroke, automatic surface pressure control and back pressure to enable precision shear separation processing.

高価で使用難度の高いファインブランキング法を使用しなくても、せん断打抜き時の材料の高速抜熱・面圧制御・材料移動と圧縮抵抗等を考慮することにより、形状・寸法精度の高い部品・製品・素形品の製造が、微小さん幅・良材料歩留状態下で可能になる。
また、新鍛造加工法の採用によって、上記したごとく、良好な塑性流動を生じさせることによって、青熱脆化、時効効果、酸化、ネッキング、形状不良、肉余り/不足、ダレ、バリ(かえり)等を回避した成形体を、仕上げ切切削不要、もしくは極小の仕上げ切削にて製品化することができる。
Even without using the expensive and difficult-to-use fine blanking method, high-speed heat removal, surface pressure control, material movement and compression resistance of the material at the time of shear punching are taken into consideration, and parts with high shape and dimensional accuracy・ Manufacturing of products and shaped products is possible under conditions of minute width and good material yield.
In addition, by adopting a new forging method, as described above, good plastic flow is produced, so that blue heat embrittlement, aging effect, oxidation, necking, shape defect, excess / insufficiency, sagging, burr (burr) It is possible to commercialize a molded body that avoids the above-mentioned by a finish cutting unnecessary or a minimum finish cutting.

1 超伝導高周波加速空洞
2 センター部品
3 エンドグループ部品
3a ビームパイプ
3b ポートパイプ
3c HOMカプラー
4 HOMカップ
5 HOMアンテナ
5a 厚肉純ニオブ板材
5b 素形品
5c 加工品
6 束縛手段
6a ダイ
6b 板押え
6c ポンチ
6d 逆押え
6e 微小クリアランス
6f 束縛治具
6g 束縛治具
6h 束縛治具
Pf 打抜き荷重
Pb 板押え荷重
Pp 逆押え荷重
F 束縛荷重
F1 第一側面束縛力
F1’ 反荷重
F2 第二側面束縛力
F2’ 反荷重
7 サーボプレス機
7a 金型
7b 温度制御装置
8 素形品
8a 翼部
8b 軸部
9 鍛造品
9a 翼
9b 笠
9c 軸
10 ノズルベーン
10a 切削部
10b 切削部
DESCRIPTION OF SYMBOLS 1 Superconducting high frequency acceleration cavity 2 Center part 3 End group part 3a Beam pipe 3b Port pipe 3c HOM coupler 4 HOM cup 5 HOM antenna 5a Thick-pure niobium plate material 5b Shaped product 5c Work product 6 Binding means 6a Die 6b Plate retainer 6c Punch 6d reverse presser 6e minute clearance 6f binding jig 6g binding jig 6h binding jig Pf punching load Pb plate presser load Pp reverse presser load F binding load F1 first side binding force F1 'counter load F2 second side binding force F2 ′ Counter load 7 Servo press machine 7a Mold 7b Temperature control device 8 Shaped product 8a Blade 8b Shaft 9 Forged product 9a Blade 9b Shaft 9c Shaft 10 Nozzle vane 10a Cutting part 10b Cutting part

Claims (7)

金属板材から形成された素形品を、熱間・温間・冷間鍛造温度域とも異なる200℃以下における低温域温度制御によって青熱脆化を回避し加工品に成形することを特徴とする新鍛造加工法を用いた金属製品の製造方法。 It is characterized in that a shaped product formed from a metal plate material is formed into a processed product by avoiding blue heat embrittlement by low temperature region temperature control at 200 ° C. or less, which is different from the hot, warm and cold forging temperature regions. A metal product manufacturing method using a new forging method. 前記鍛造加工の低温域温度制御は、前記素形品の表面酸化被膜の生成を極小化する温度制御であることを特徴とする請求項1に記載の新鍛造加工法を用いた金属製品の製造方法。 2. The production of a metal product using the new forging method according to claim 1, wherein the low-temperature temperature control of the forging is temperature control that minimizes generation of a surface oxide film of the shaped product. Method. 前記鍛造加工の低温域温度制御は、前記素形品の塑性流動性を容易化する温度制御であることを特徴とする請求項1に記載の新鍛造加工法を用いた金属製品の製造方法。 The method for producing a metal product using the new forging method according to claim 1, wherein the low temperature range temperature control of the forging is temperature control for facilitating plastic fluidity of the shaped product. 前記金属板材は、粒径が数10μmの細粒結晶組織からなることを特徴とする請求項1に記載の新鍛造加工法を用いた金属製品の製造方法。 The method for producing a metal product using the new forging method according to claim 1, wherein the metal plate material has a fine grain structure with a grain size of several tens of μm. 前記鍛造加工で使用する金型は、焼付き防止のため、表面改質された金型で、かつ被加工材に温度非依存型潤滑性能を有する固形被膜潤滑剤を使用することを特徴とする請求項1に記載の新鍛造加工法を用いた金属製品の製造方法。 The die used in the forging is a surface-modified die for preventing seizure, and a solid film lubricant having temperature-independent lubrication performance is used for a workpiece. A method for producing a metal product using the new forging method according to claim 1. 前記鍛造加工には、プレス機のサーボ化を計り速度及びモーション制御を含むことを特徴とする請求項1に記載の新鍛造加工法を用いた金属製品の製造方法。 The method of manufacturing a metal product using the new forging method according to claim 1, wherein the forging includes servo control of a press and includes speed and motion control. (A)金属板材から素形品を成形するせん断打抜き加工と、
(B)前記素形品の製品形状の加工品を成形するために、前記素形品の青熱脆化回避と塑性流動容易化を計るための前記金型及び前記素形品の温度制御を行う加熱装置と、前記素形品の成形性向上と表面酸化極小化のために表面改質した金型と、前記素形品と金型間の焼付きを防止するための温度非依存固形被膜タイプの潤滑剤と、前記新せん断打抜き加工した素形品の速度及びモーションを制御するサーボ機構をプレス機に搭載する、熱間・温間・冷間鍛造のいずれとも異なる鍛造加工とからなり、
前記金属製品の切削加工やウォータジェット加工をプレス加工へ工法転換したことを特徴とする新鍛造加工法を用いた金属製品の製造方法。
(A) a shear punching process for forming a shaped product from a metal plate material;
(B) In order to form a processed product having the shape of the shaped product, temperature control of the mold and the shaped product for avoiding blue heat embrittlement and facilitating plastic flow of the shaped product. A heating device to perform, a mold whose surface is modified to improve moldability and minimize surface oxidation of the molded product, and a temperature-independent solid coating for preventing seizure between the molded product and the mold It consists of a type of lubricant and a forging process different from any of hot / warm / cold forging, in which the press machine is equipped with a servo mechanism that controls the speed and motion of the new shear stamped shaped product,
A metal product manufacturing method using a new forging method, wherein the metal product cutting or water jet processing is converted into a press method.
JP2015245722A 2015-12-16 2015-12-16 Manufacturing method of pure niobium products using the new forging method Active JP6792330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015245722A JP6792330B2 (en) 2015-12-16 2015-12-16 Manufacturing method of pure niobium products using the new forging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015245722A JP6792330B2 (en) 2015-12-16 2015-12-16 Manufacturing method of pure niobium products using the new forging method

Publications (2)

Publication Number Publication Date
JP2017109224A true JP2017109224A (en) 2017-06-22
JP6792330B2 JP6792330B2 (en) 2020-11-25

Family

ID=59079858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015245722A Active JP6792330B2 (en) 2015-12-16 2015-12-16 Manufacturing method of pure niobium products using the new forging method

Country Status (1)

Country Link
JP (1) JP6792330B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125304A (en) * 2019-06-05 2019-08-16 南京吉凯微波技术有限公司 The die-casting forming die of radar antenna mounting rack and its semi-finished product, device and method
CN115301868A (en) * 2022-09-29 2022-11-08 山西天和盛膜技术有限公司 Metal plate forging equipment and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748589A (en) * 1993-08-06 1995-02-21 Kobe Steel Ltd Lubricant for plastic working of metallic material difficult to process
JP2001040445A (en) * 1999-07-29 2001-02-13 Sharp Corp Forged article of magnesium alloy and method for forging magnesium alloy
JP2001105527A (en) * 1999-10-06 2001-04-17 Nippon Steel Corp Lubricated steel panel excellent in mold galling resistance and continuous moldability in high surface pressure/strong ironing processing, and molding method therefor
JP2002254132A (en) * 2001-02-28 2002-09-10 Kikusui Forging Co-Op Hot forging and forming method for magnesium alloy member
JP2004261836A (en) * 2003-02-28 2004-09-24 Yasuyuki Ozaki Press die and press method for working ultra-fine precise cross section, component applying the same and various kinds of parts, equipment and devices using the same
JP2008111189A (en) * 2006-10-03 2008-05-15 Nisshin Steel Co Ltd Hot-work method of hot dip plated steel sheet and hot-work formed article
JP2011121118A (en) * 2009-11-11 2011-06-23 Univ Of Electro-Communications Method and equipment for multidirectional forging of difficult-to-work metallic material, and metallic material
JP2012115869A (en) * 2010-11-30 2012-06-21 Kobe Steel Ltd Die for plastic working and method of manufacturing the same, and method of forging aluminum material
JP2014054642A (en) * 2012-09-11 2014-03-27 Amada Co Ltd Method and device for generating slide motion of servo press
JP2015020208A (en) * 2013-07-23 2015-02-02 しのはらプレスサービス株式会社 Method for fusion press working of metallic material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748589A (en) * 1993-08-06 1995-02-21 Kobe Steel Ltd Lubricant for plastic working of metallic material difficult to process
JP2001040445A (en) * 1999-07-29 2001-02-13 Sharp Corp Forged article of magnesium alloy and method for forging magnesium alloy
JP2001105527A (en) * 1999-10-06 2001-04-17 Nippon Steel Corp Lubricated steel panel excellent in mold galling resistance and continuous moldability in high surface pressure/strong ironing processing, and molding method therefor
JP2002254132A (en) * 2001-02-28 2002-09-10 Kikusui Forging Co-Op Hot forging and forming method for magnesium alloy member
JP2004261836A (en) * 2003-02-28 2004-09-24 Yasuyuki Ozaki Press die and press method for working ultra-fine precise cross section, component applying the same and various kinds of parts, equipment and devices using the same
JP2008111189A (en) * 2006-10-03 2008-05-15 Nisshin Steel Co Ltd Hot-work method of hot dip plated steel sheet and hot-work formed article
JP2011121118A (en) * 2009-11-11 2011-06-23 Univ Of Electro-Communications Method and equipment for multidirectional forging of difficult-to-work metallic material, and metallic material
WO2012063504A1 (en) * 2010-11-11 2012-05-18 国立大学法人 電気通信大学 Method for subjecting difficult-to-process metal material to multiaxial forging, device for carrying out said method, and metal material
JP2012115869A (en) * 2010-11-30 2012-06-21 Kobe Steel Ltd Die for plastic working and method of manufacturing the same, and method of forging aluminum material
JP2014054642A (en) * 2012-09-11 2014-03-27 Amada Co Ltd Method and device for generating slide motion of servo press
JP2015020208A (en) * 2013-07-23 2015-02-02 しのはらプレスサービス株式会社 Method for fusion press working of metallic material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125304A (en) * 2019-06-05 2019-08-16 南京吉凯微波技术有限公司 The die-casting forming die of radar antenna mounting rack and its semi-finished product, device and method
CN110125304B (en) * 2019-06-05 2024-03-26 南京吉凯微波技术有限公司 Radar antenna mounting frame and die-casting forming die, equipment and method of semi-finished product of radar antenna mounting frame
CN115301868A (en) * 2022-09-29 2022-11-08 山西天和盛膜技术有限公司 Metal plate forging equipment and method
CN115301868B (en) * 2022-09-29 2022-12-23 山西天和盛膜技术有限公司 Metal plate forging equipment and method

Also Published As

Publication number Publication date
JP6792330B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6446046B2 (en) Manufacturing method of end group parts made of pure niobium with superconducting high frequency acceleration cavity
JP5518475B2 (en) Tool steel
JP5907997B2 (en) Manufacturing method of end group parts made of pure niobium with superconducting acceleration cavity
KR101647890B1 (en) Method to manufacture cooling block for hot stamping metallic pattern using three dimensional metal-print
JP6506953B2 (en) Method of manufacturing performance-enhanced metallic material
CN101311285B (en) Cobalt-based high elastic alloy, manufacture method thereof, ultra-thin strip made from the alloy and manufacture method thereof
CN102896318B (en) Powder metallurgy method for preparing claw pole of electric generator and claw pole manufactured by method
US20200056268A1 (en) Aluminum alloys having iron and rare earth elements
JP5314807B1 (en) Cemented carbide and manufacturing method thereof, and carbide tool
Hou et al. Effect of technological parameters on microstructure and accuracy of B1500HS steel parts in the hot blanking
JP6792330B2 (en) Manufacturing method of pure niobium products using the new forging method
JP6499571B2 (en) Manufacturing method of metal products using new shear punching method
Zeng et al. Plastic deformation mechanism of the Ti6Al4V micro-gear formed under an electrical field
Şahbaz Development of a novel severe plastic deformation method for a thin-walled open section beam: thin-walled open channel angular pressing (TWO-CAP)
JP2004219323A (en) Method of evaluating iron base material
Zulhishamuddin et al. An overview of high thermal conductive hot press forming die material development
Dong et al. Homogeneity of microstructure and Vickers hardness in cold closed-die forged spur-bevel gear of 20CrMnTi alloy
CN112899559B (en) Steel for mold and mold
RU2708194C1 (en) Method of making article from h65nvft alloy
JP2009191296A (en) Steel fine wire or thin band steel sheet excellent in plastic workability
Lai et al. Thermal forming of light-weight alloys under a multi-stage forming process
KR100672839B1 (en) Heat resistant and high oxidation resistant mold material for Cu-alloy die casting and hot-working
Egger et al. Mechanical Properties of Selective Laser-Melted Components of AlSi10Mg for Prototype Vehicles
Jiang et al. Research on metal flow line control and mechanical anisotropy of M50 steel eccentric ball bearing ring
BR102017016244A2 (en) DUPLEX STAINLESS STEEL / VANARD CARBIDE COMPOSITE PRODUCED BY DUST METALURGY ROUTE

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180607

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180621

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191028

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191107

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191108

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200110

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200121

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200212

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200407

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20200529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200706

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200901

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200908

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201013

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201106

R150 Certificate of patent or registration of utility model

Ref document number: 6792330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250