JP2017108728A - Eggs and fry production method by a novel feed system replaced with artemia salina in aqua-culture (pisces, crustacea, cephalopoda, apoda) - Google Patents

Eggs and fry production method by a novel feed system replaced with artemia salina in aqua-culture (pisces, crustacea, cephalopoda, apoda) Download PDF

Info

Publication number
JP2017108728A
JP2017108728A JP2015257790A JP2015257790A JP2017108728A JP 2017108728 A JP2017108728 A JP 2017108728A JP 2015257790 A JP2015257790 A JP 2015257790A JP 2015257790 A JP2015257790 A JP 2015257790A JP 2017108728 A JP2017108728 A JP 2017108728A
Authority
JP
Japan
Prior art keywords
feed
seaweed
earthworm
culture
artemia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015257790A
Other languages
Japanese (ja)
Other versions
JP2017108728A5 (en
Inventor
正志 杉本
Masashi Sugimoto
正志 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015257790A priority Critical patent/JP2017108728A/en
Publication of JP2017108728A publication Critical patent/JP2017108728A/en
Publication of JP2017108728A5 publication Critical patent/JP2017108728A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • Y02A40/818Alternative feeds for fish, e.g. in aquacultures

Abstract

PROBLEM TO BE SOLVED: To provide domestically produced biofeed which can be stably produced with low cost, is capable of absorbing sufficient nutrients such as carbohydrates and lipids into a body of larvae and juveniles, and is easy to intake.SOLUTION: Pachydrilus nipponicus Yamaguchi (Oligochaeta, Tubificidae, Pachydrilus nipponicus Yamaguchi) which contains a strong fluorescent substance, often ingests seaweed (Eisenia bicyclis, Ecklonia cava and Sargassum horneri, Undaria pinnatifida and the like) and sea grass (Zostera marina L., Zostera caulescens.) which drifted ashore, and increases amazingly by repeating the processes of cleavage and regeneration in asexual reproduction is fed with hen's eggs for enhancing nutrients of docosahexaenoic acid.SELECTED DRAWING: Figure 2

Description

本発明は、水産養殖(魚類、甲殻類、頭足類、無足類)における種苗生産の安定化およびコスト削減のため、アルテミア(Artemia)に代わる好適な国産生物餌料を見出し、種苗生産における新たな餌料系列に関するものであり、加えて海岸漂着海藻の再資源化利用による、低コスト・リサイクル生態型餌料生産システムである。  The present invention has found a suitable domestic food alternative to Artemia for stabilization of seedling production and cost reduction in aquaculture (fish, crustaceans, cephalopods, anpods), and new in seedling production It is a low-cost, recycle ecological feed production system that recycles coastal seaweed and recycles it.

従来の水産養殖(魚類、甲殻類、頭足類、無足類)における種苗生産の餌料系列は、成長にともなってシオミズツボワムシからアルテミア、アルテミアから配合飼料と切り替えていくが、魚類においては仔魚から稚魚への移行期には脂肪や代謝様式が変化しておらず、配合飼料の炭水化物や脂肪を十分に吸収できず、体内への摂取量が不足し、仔稚魚に個体差ができ共食いが多く発生し、その結果、種苗生産の不安定化につながっている。アルテミアは耐久卵の形で2010年度通関量では45.2トン輸入されており、国内では100gを2,000円前後で販売されている。アルテミア耐久卵は必要な時に孵化させて給餌できることから、計画的な種苗生産を行うためには大変便利で、仔稚魚期における餌料系列の要になっている。
特願1991−208499 特願2006−197433 特開2007−53967 特開2007−97463
In the conventional aquaculture (fish, crustaceans, cephalopods, apods), the feed series for seed and seedling production will be switched from rotifer to artemia and from artemia to mixed feed as the fish grows. During the transition period from larvae to juveniles, fat and metabolic patterns have not changed, carbohydrates and fats in the compound feed cannot be sufficiently absorbed, intake into the body is insufficient, individual differences in larvae and juveniles, and cannibalism As a result, seed production has become unstable. Artemia is imported in the form of a durable egg, with a customs clearance of 45.2 tons in 2010. In Japan, 100g is sold for around 2,000 yen. Since Artemia durable eggs can be hatched and fed when needed, it is very convenient for planned seedling production, and is the key to the food series during the larval stage.
Japanese Patent Application No. 1991-208499 Japanese Patent Application No. 2006-197433 JP2007-53967 JP2007-97463

発明が解決しようとする課題Problems to be solved by the invention

我々の発明が解決しようとする課題は、水産養殖(魚類、甲殻類、頭足類、無足類)における種苗生産の餌料系列の要になっているアルテミアにあると考える。アルテミアは供給のすべてを海外からの輸入に頼っており、価格の年変動が大きく品質も様々である。また、アルテミア幼生には海水魚の必須脂肪酸である不飽和脂肪酸のドコサヘキサエン酸(DHA)の含有量が少なく、不飽和脂肪酸を含む藻類等を与えて栄養強化するか、輸入冷凍カイアシ類の併用を行っているが。これらの栄養強化が餌料コストを大きく引き上げている。加えて多くの種苗生産現場では作業の軽減化のため生物餌料のアルテミアから可能な限り早く配合飼料に転換させている。本発明の目的は、将来の安定供給や品質が不安視されているアルテミアに代わる国産生物餌料として、低コストで安定的に量産でき、十分な炭水化物や脂肪等の栄養を仔稚魚の体内に吸収可能で摂取されやすい国産生物餌料を見出し、配合飼料への転換時期を遅らせ、種苗生産での最大の減耗要因となっている成長や生残低下を防ぐ新たな餌料系列を提供しなければならない。  The problem that our invention is trying to solve is considered to be Artemia, which is the core of the feed series for seedling production in aquaculture (fish, crustaceans, cephalopods, anpods). Artemia relies on imports from abroad for all of its supply, with yearly price fluctuations and varying quality. Artemia larvae are low in the content of unsaturated fatty acid docosahexaenoic acid (DHA), which is an essential fatty acid of seawater fish, and are fed with algae containing unsaturated fatty acids to enhance nutrition or use imported frozen copepods in combination. Although. These fortifications have greatly increased feed costs. In addition, many seed and seedling production sites are switching from the biological feed Artemia to the mixed feed as soon as possible to reduce work. The purpose of the present invention is as a nationally produced food substitute for Artemia whose future stable supply and quality are considered uneasy, can be stably mass-produced at low cost, and absorb sufficient nutrients such as carbohydrates and fats into the body of larvae We must find a domestic food feed that is possible and easily ingested, provide a new feed line that delays the transition to formula feed and prevents growth and survival loss, which is the biggest depletion factor in seed production.

この課題を解決するための手段としてAs a means to solve this problem

海浜の潮上帯から潮間帯に潜砂し埋在生活する海浜産の発光ミミズで知られているイソミミズ(Pontodrirlus matsushimensis)はマルポとよばれ、ベラやカサゴ、コチなどの釣り餌として関係者には周知のことである。本発明に従えば、このイソミミズと共棲する体長10〜15mmたらずの小さなイソヒメミミズ(貧毛鋼、イトミミズ目、イソヒメミミズ、Pachydrilus nipponicus Yamaguchi)がイソミミズと同様に強い蛍光物質を含有し、また、海岸に打ち上げられた海藻(アラメやカジメ、アカモク、ワカメ等)と海草(アマモ、タチアマモ)を良く摂取し、無性生殖で切断・再生という過程を繰り返す事によって、驚異的に増殖することを見つけた。また、アルテミアはシストから同調孵化するのでサイズは均一であるが、イソヒメミミズのサイズ組成は広範囲にわたっている。加えてイソヒメミミズは環形動物であるため、水中に溶けた酸素を皮膚呼吸で取り込み、二酸化炭素を皮膚から排出するため、海水にも淡水にも耐性があり、また、イソヒメミミズの近縁種であるイトミミズはウナギ稚魚、観賞魚の好適餌料であるため、イソヒメミミズと他の生物餌料との栄養成分の差異を明らかにし、種苗生産対象魚種の特殊な栄養要求、特に不飽和脂肪酸の要求量(3〜4%)に答えるため、イソヒメミミズの栄養強化試験、培養系の餌料条件を変えてイソヒメミミズの培養試験、各魚種でのイソヒメミミズに対する摂餌選択性等を明らかにし、放流試験のため種苗生産された仔稚魚の耳石への蛍光標識における問題点等を解決し、新たな餌料系列による計画的な種苗生産方法を提供する。  Isotomi earthworm (Pontodrirulus matsushimensis) known as a light-emitting earthworm from the seashore is buried in the intertidal zone from the tide zone of the beach is called Malpo and is used as a bait for fishers such as bella, scorpionfish and kochi. Is well known. According to the present invention, a small isohime earthworm (less steel, citrus, isohime earthworm, Pachydrilus nipponicus Yamaguchi) that does not have a body length of 10 to 15 mm coexisting with the earthworm contains a strong fluorescent substance as well as the earthworm, We found that it proliferates astoundingly by ingesting seaweed (Arame, Kajime, Akamok, Seaweed, etc.) and seaweed (Amomo, Tachiamamo) that have been launched to the coast, and repeating the process of asexual reproduction, cutting and regeneration. It was. Artemia is synchronized in size from cysts, so the size is uniform, but the size composition of Isohime earthworms is wide. In addition, because the earthworm is an annelid, it absorbs oxygen dissolved in water through skin respiration and discharges carbon dioxide from the skin, so it is resistant to seawater and freshwater. Some worms are the preferred feed for eel fry and ornamental fish, so the differences in nutritional components between iso-worms and other biological feeds will be clarified, and the special nutritional requirements of the fish species for seedling production, especially the requirement for unsaturated fatty acids ( 3-4%), to improve the nutritional test of the earthworm earthworm, to change the culture conditions of the culture system, to clarify the culture test of the earthworm earthworm, the feeding selectivity for the sea earthworm in each fish species, etc. Therefore, it solves the problems of fluorescent labeling on otoliths of larvae and juveniles produced by seedlings, and provides a planned seedling production method using a new feed series.

発明の効果Effect of the invention

本発明に係わるイソヒメミミズは、既に知られているヤマトヒメミミズ(Enchytraeus japonensis)と同様に無性生殖と有性生殖の両方を行う珍しい特徴を持つヒメミミズの仲間でサイズ組成も酷似し、ミミズのまわりに砂(鉱物の砂)、サンゴ砂、粉砕貝殻、ゼオライト、活性炭、ピートモス、海藻等の適切な基質が存在すれば、切断と再生という過程を繰り返して増殖するため、1匹が2週間後には10匹に、4週間後には100匹に、6週間後には10,000匹と驚異的に増殖し、海岸に打ち上がった海藻を餌とする好塩性であるため、海岸漂着海藻の再資源化利用により、海岸の保全、美化につとめ海浜の有機物汚染の浄化に寄与する共益性と、低コスト・リサイクル生態型餌料生産システムを確立可能であり、アルテミア耐久卵の生産システムに対抗し得ると期待できる。加えてヒメミミズの仲間は広食性であるため仔稚魚期における特殊な栄養要求である不飽和脂肪酸の栄養強化が容易であり、新たな餌料系列の提案が期待できる。  Similar to the well-known Yamato earthworm (Enchytraeus japonensis), the earthworm earthworm of the present invention is a member of the earthworm earthworm that has both unusual and sexual reproduction characteristics, and its size composition is very similar. If there is a suitable substrate such as sand (mineral sand), coral sand, crushed shell, zeolite, activated carbon, peat moss, seaweed, etc. Because of the halophilicity of 10 animals, 100 animals after 4 weeks, and 10,000 animals after 6 weeks and feeding on seaweeds launched on the coast, it is a resource of seaweeds. Utilization of the plant enables establishment of a low-cost, recycle ecological feed production system that contributes to the conservation and beautification of the coast and contributes to the purification of organic pollution on the beach. Ri, can be expected to be against the production system of Artemia endurance eggs. In addition, because the earthworm mate is widespread, it is easy to fortify unsaturated fatty acids, which are special nutritional requirements during the larval and juvenile stages, and a new food series can be expected.

表1に示すように、本発明に係わるイソヒメミミズを、シオミズツボワムシやアルテミアとの栄養成分の差異を明らかにしたところ、高タンパク質で高脂肪、特に黄緑色蛍光物質であるリボフラビンをも高含有している。リボフラビンはビタミンB2とも呼ばれ、ビタミンの中で水溶性ビタミンに分類される生理活性物質であり、種苗生産された仔稚魚に投与されれば、抗体の生産、正常な成長と正常な健康状態の維持に不可欠な物質である。また、不飽和脂肪酸であるエイコサペンタエン酸(EPA)やイソヒメミミズの食性である海藻の栄養成分であるミネラル、ビタミン類も豊富で、栄養学的観点からシオミズツボワムシやアルテミアよりも優れている。但し、仔稚魚期における特殊な栄養要求の一つである不飽和脂肪酸であるドコサヘキサエン酸(DHA)が不足しているため栄養強化しなければならないが、イソヒメミミズは海藻、海草等の特定の餌しか食べない狭食性ではないため栄養強化が容易であると考える。  As shown in Table 1, the difference in nutritional components of the earthworm earthworms according to the present invention from those of the rotifers and artemia was found to be high in protein and high in fat, particularly riboflavin, which is a yellow-green fluorescent substance. Contains. Riboflavin, also called vitamin B2, is a physiologically active substance classified as a water-soluble vitamin among vitamins. When administered to seedling-produced larvae, antibody production, normal growth and normal health It is an essential substance for maintenance. It is also rich in minerals and vitamins, which are nutritional components of the seaweed that is the dietary property of the unsaturated fatty acid, eicosapentaenoic acid (EPA), and the earthworm earthworm, and is superior to the rotifer and artemia from a nutritional point of view. . However, because there is a lack of unsaturated fatty acid docosahexaenoic acid (DHA), which is one of the special nutritional requirements during the larval and juvenile season, it must be fortified, but Isohime earthworm is a specific food such as seaweed and seaweed. I think it is easy to fortify because it is not a narrow food that can only be eaten.

Figure 2017108728
Figure 2017108728

表2に示すように、イソヒメミミズは、幼生(体長1〜1.5mm)から成体(体長10〜15mm)、太さも直径約(50μm〜400μm)とサイズ組成は広範囲にわたっており、加えて幼生は水中で丸くなったり、絡み合って団子状になる習性があり、体長1mmの幼生は約200μmの大きさに変化する。このような多様なサイズの生物餌料の給餌により、仔稚魚の摂餌選択性が活発になり、成長と生存に効果的である。加えて水産養殖(魚類、甲殻類、頭足類、無足類)における種苗生産を企業規模で行うためには、シオミズツボワムシやアルテミアの代わりにイソヒメミミズを仔稚魚への単独給与を行い、作業性や生産性を大きく向上させなければならないが、イソヒメミミズにはその可能性が大きく、難種苗生産魚種とも称されているマグロ類、ブリ類、ハタ類、タコ類、ウナギ類、タツノオトシゴ類、甲殻類等の初期生物餌料として期待できる。  As shown in Table 2, isohime earthworms range from larvae (body length 1 to 1.5 mm) to adults (body length 10 to 15 mm), diameters of about diameter (50 μm to 400 μm), and a wide range of size composition. It has the habit of rounding in water or entangled to form a dumpling. A larva with a body length of 1 mm changes to a size of about 200 μm. Feeding such a variety of biological feeds increases the feeding selectivity of larvae and larvae and is effective for growth and survival. In addition, in order to carry out seedling production in aquaculture (fish, crustaceans, cephalopods, apods) on a corporate scale, we will supply isohime earthworms to larval and juvenile fish instead of hornworms and artemia. However, the workability and productivity must be greatly improved, but the potential for Isohime earthworms is great, such as tuna, yellowtail, grouper, octopus, eel, It can be expected as an early biological feed for seahorses and crustaceans.

Figure 2017108728
Figure 2017108728

以下、本発明の実施形態を詳細に説明すると。  Hereinafter, embodiments of the present invention will be described in detail.

海浜の満潮汀線から前浜と後浜の境界までに堆積するか埋却された海岸漂着海藻に、潜砂し埋在生活するイソヒメミミズを砂と共に100g採集し、本発明の培養系に使用したさらに培養系を構成する培養器には市販の塩ビ製(口径20cm長さ60cm)の蓋つきパイプを地面に20cmの深さに差込み、パイプ内部に水はけのため深さ10cmほど砂利を轢き、その上から基質として海砂を深さ15〜20cmになるように投入して飼育床とし、基質表面から蓋までを10cmとした。この簡易な培養器を明るい条件下に置き、飼育床内は湿度80から100%、温度22〜26℃、イソヒメミミズは負の走光性のため暗闇環境下に置いて、乾燥ワカメを水でもどして1週間ごとに適量を給餌し培養を行った。  100 g of sandy earthworm, submerged and buried, was collected on the coastal seaweed deposited or buried from the high tide line of the beach to the boundary between the foreshore and backshore, and used for the culture system of the present invention. In the incubator that constitutes the culture system, a commercially available PVC pipe (20 cm in diameter and 60 cm in length) with a lid is inserted into the ground at a depth of 20 cm, and gravel is poured into the pipe for drainage to a depth of about 10 cm. As a substrate, sea sand was introduced to a depth of 15 to 20 cm to form a breeding floor, and the substrate surface to the lid was 10 cm. This simple incubator is placed under bright conditions, the inside of the breeding floor is 80 to 100% humidity, the temperature is 22 to 26 ° C, and the earthworms are placed in a dark environment due to negative phototaxis, and the dried seaweed is returned with water. Then, an appropriate amount was fed every week and cultured.

図1で示すように、イソヒメミミズを砂と共に100g投入してから1ヶ月後には、砂に面した壁面が白い糸くずの様なイソヒメミミズで覆われた。イソヒメミミズの採集方法は、前日給餌した水でもどした乾燥ワカメを水の中で篩いにかけ、イソヒメミミズを洗い落とし、水の中で団子状になったところをスポイトで採取した。イソヒメミミズ生産量は3ヶ月間で5,000cm当たり質重量約40gになり、ワカメの給餌量は乾燥重量48g(湿重量384g)であった。ワムシの平均生産量は40トン水槽7基で3ヶ月間生産した場合は質重量で約770kgになり、給餌量はイースト量とクロレラ海水量はそれぞれ2,460kg、2,810tであった。仮にイソヒメミミズを280トン飼育床で3ヵ月間生産した場合は質重量で約2,240kgとなり、ワムシの約3倍の生産力となる。ワカメの給餌量は乾燥重量2,688kg(湿重量21、500kg)となり、ワムシの給餌量の130分1とイソヒメミミズの餌料効率が非常に高かった。イソヒメミミズの年生産量を年4回で単純計算すると湿重量は8,960kgとなり、アルテミアの年間輸入量の約20%に相当する。加えて年給餌量は年4回で単純計算すると湿重量で86,000kgとなり、例えるならば、神奈川県全体における年間に埋め立て処分する漂着海藻量は約2,000〜10,000tと、イソヒメミミズの必要年給餌量の23〜116倍に相当する膨大な量の海藻が毎年漂着する計算になり、海岸漂着海藻の再資源化利用により、低コスト・リサイクル生態型餌料生産システムの確立が可能である。As shown in FIG. 1, 100 months after adding 100 g of Isohime earthworm with sand, the wall facing the sand was covered with Isohime earthworm like white lint. The method of collecting the earthworm was to dry dried seaweed that had been fed the day before, sifted in water, washed away the earthworm, and collected in a dropper in the water. The production of isohime earthworms was about 40 g in weight per 5,000 cm 3 over 3 months, and the feed amount of seaweed was 48 g dry weight (384 g wet weight). The average production of rotifers was about 770 kg in weight when produced in 7 units of 40 ton aquariums for 3 months, and the amounts of feed were 2,460 kg and 2,810 tons of yeast and chlorella seawater, respectively. If iso-worms are produced on a 280-ton breeding floor for 3 months, the weight is about 2,240 kg, which is about three times the productivity of rotifers. The feed amount of wakame was 2,688 kg dry weight (wet weight 21, 500 kg), and the feed efficiency of the worm was 130 minutes 1 and the feed efficiency of Isohime earthworm. A simple calculation of the annual production of Isohime earthworms four times a year gives a wet weight of 8,960 kg, which is equivalent to about 20% of the annual import of Artemia. In addition, the annual feed amount is calculated 4 times a year, and the wet weight is 86,000 kg. For example, the amount of seaweed to be disposed of in landfill in Kanagawa Prefecture is about 2,000 to 10,000 tons. A huge amount of seaweed equivalent to 23-116 times the required annual feeding amount of the seawater is calculated every year. By reusing the seaweed seaweed, it is possible to establish a low-cost, recycling ecological feed production system. is there.

表3で示すように、培養系の餌料条件を変えてイソヒメミミズの培養試験を行った。培養系を構成する培養器には4個の腰高シャーレーを使用し、深さ約10mm、洗浄し2mm目の篩いにかけ、残った湿気がある粉砕貝殻を基質として轢き、体長10mm以上のイソヒメミミズを20匹各シャーレーに移植した。餌料としてAシャーレーにはエイコサペンタエン酸(EPA)を高含有する乾燥ワカメをBシャーレーにはドコサヘキサエン酸(DHA)ドコサペンタエン酸(DPA)、ビタミン、ミネラルを高含有する鶏卵(ゆでた卵黄)を、CシャーレーにはビタミンB群、ミネラルを高含有する非常に栄養価が高いオートミールを、Dシャーレーにはドコサヘキサエン酸(DHA)を高含有するハプト藻類のパブロバを、2日置きに各栄養強化餌料を適量投与し、適温(24℃)に設定し、保冷庫(照明無し)に収容し20日間培養を行った。培養開始から10日目、20日目と2回、各々のシャーレー内の基質である貝殻を水の中で篩いにかけ、イソヒメミミズを洗い落とし、30分後浮遊幼生の沈下を待って、水の中で団子状になったイソヒメミミズをスポイトで黒色小型容器に採集して拡大鏡で計数した。結果、A、B、Cシャーレーは共にイソヒメミミズは高い嗜好性を示し広食性であることが確認された。20日目には無性生殖で切断・再生という過程を繰り返し同じような増殖を行った。Dシャーレーでは嗜好性は示さず増殖も殆ど無かった。  As shown in Table 3, the culture test of Isohime earthworm was performed by changing the feed conditions of the culture system. The incubator that constitutes the culture system uses four waist-high petri dishes, is washed at about 10 mm in depth, passed through a 2 mm sieve, and the remaining moist crushed shell is used as a substrate. Twenty animals were transplanted into each chalet. As a feed, A petri dish contains dried wakame with high content of eicosapentaenoic acid (EPA), and B petri dish with chicken egg (boiled egg yolk) containing docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), vitamins and minerals. , C Petri dish with vitamin B group, high-nutritive oatmeal with high mineral content, D Petri dish with haptoalgal pavlova with high content of docosahexaenoic acid (DHA) every 2 days Was administered in an appropriate amount, set to an appropriate temperature (24 ° C.), housed in a cool box (no lighting), and cultured for 20 days. On the 10th and 20th days from the start of the culture, the shells that are the substrates in each chalet are sifted in water, washed off the earthworms, and after 30 minutes, waiting for the floating larvae to settle, The soy earthworms that became dumplings were collected in a black small container with a dropper and counted with a magnifying glass. As a result, it was confirmed that all of A, B, and C petri dishes were highly palatable with Isohime earthworm. On the 20th day, the process of cutting and regeneration was repeated by asexual reproduction and the same growth was performed. The D petri dish did not show palatability and there was almost no proliferation.

Figure 2017108728
Figure 2017108728
Figure 2017108728
Figure 2017108728

表4で示すように、鶏卵(ゆでた卵黄)を4日置きに残餌がないようにイソヒメミミズ湿重量40gに対してゆでた卵黄1個(16g)の割合で20日間給餌して、栄養強化前後のイソヒメミミズの一般成分と不飽和脂肪酸(DHA,EPA)を示した。栄養強化による一般成分では栄養強化前に比べて脂質が高くなり、不飽和脂肪酸では栄養強化前には認められなかったDHAが、栄養強化後には高い値で検出され、水産養殖における種苗生産対象魚種の不飽和脂肪酸の要求量(3〜4%)を十分に満たし、仔稚魚期の特殊な栄養要求にも答えられることが明らかになった。  As shown in Table 4, chicken eggs (boiled egg yolk) were fed for 20 days at a ratio of 1 egg boiled egg yolk (16 g) per 40 g wet weight so that there was no residual food every 4 days. General components and unsaturated fatty acids (DHA, EPA) before and after strengthening were shown. In general ingredients due to fortification, lipids are higher than before fortification, and DHA, which was not found before fortification with unsaturated fatty acids, was detected at a high value after fortification, and fish for seed production in aquaculture It became clear that the required amount (3-4%) of the unsaturated fatty acid of the seed was sufficiently satisfied, and the special nutritional requirement in the larval stage could be answered.

Figure 2017108728
Figure 2017108728

図2で示すように、栄養強化を目的として不飽和脂肪酸であるドコサヘキサエン酸(DHA)とエイコサペンタエン酸(EPA)を強化した栄養成分強化鶏卵のゆで卵黄をイソヒメミミズに給餌したところ高い嗜好性を示したため、デザイナーエッグと称されているビタミン、ミネラル、脂肪酸、タウリン、ヨード、イソフラボン等の栄養成分強化卵や免疫強化卵を、イソヒメミミズの栄養成分強化及び免疫強化餌料として、仔稚魚期における特殊な栄養要求や免疫強化に答えられる生物餌料の提供が可能である。  As shown in FIG. 2, when the boiled egg yolk of nutrient-enriched chicken eggs enriched with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), which are unsaturated fatty acids, is fed to Isohime earthworm for the purpose of enhancing nutrition As a result, it has been shown that the eggs with enhanced nutrients such as vitamins, minerals, fatty acids, taurine, iodine, and isoflavones and immune-enhanced eggs, which are called designer eggs, can be used as nutritional supplements and immune-enhanced feeds for the earthworm earthworms. It is possible to provide biological feed that can respond to various nutritional needs and immune enhancement.

表5で示すように、アクリル水槽(90x45x45)157Lで上部濾過器、2灯上部ライト、24℃オートヒーター、エアレーションのフルセット4基で、多種多様な魚種に対してイソヒメミミズによる30日間の摂餌選択性試験を行った。摂餌量を正立顕微鏡(蛍光)用いて体外から腹部領域を測定可能な透明な体をした魚スカシテンジクダイ(Rhabdamia gracilis)10匹(平均体長3cm)とおよそ魚に見えない外見と、繁殖形態のタツノオトシゴ(Hippocampus coronatus)5匹(平均体長3cm)とクロウミウマ(Hippocampus kuda)4匹(平均体長7cm)、近縁種のオビイシヨウジウオ(Corythoichthys amplexus)4匹(平均体長8cm)無足類のニホンウナギ(Anguilla japonica)5匹(平均体長9cm)、遊泳性が乏しい頭足類のバンダコウイカ(Sepia bandensis Adam)4匹(平均胴長3mm)、小型甲殻類のサラサエビ(Rhynchocinetes untai)5匹(平均体長2cm)を選択して試験に供し、30日間1日1回投餌し、水槽底面には砂は敷かず、絡み合って団子状になるイソヒメミミズを出来るだけ捕食させた。結果、スカシテンジクダイは落ちてくるイソヒメミミズも水槽底面で団子状になったイソヒメミミズも積極的に捕食した。ニホンウナギのシラス稚魚は盛んに水槽底面で団子状になったイソヒメミミズを突きながら捕食した。ふ化した平均胴長3mmのバンダコウイカは水槽底面付近で団子状になった成体、丸くなった幼生を不活発であるが触腕で捕食し30日目には平均胴長15mmに成長した。サラサエビは水槽底面で小さな団子状になったイソヒメミミズを積極的に顎脚内肢で捕獲し、岩陰に運び盛んに捕食していた。タツノオトシゴとクロウミウマはアルテミアやイサザアミに対して嗜好性が非常に高く良く捕食したが、イソヒメミミズに対しては嗜好性がやや低く、団子状になった成体や浮遊している幼生を緩慢な動作で選択捕食していた。糞はスカシテンジクダイの黒色に近い糞ではなく、タツノオトシゴ類の消化器官が未発達なためかイソヒメミミズをすり潰した様な白い糞であった。しかし、タツノオトシゴ類の嗜好性はやや低いが、仔稚魚から成体までのイソヒメミミズ単独給与が可能であることを示唆した。オビイシヨウジウオは口径が小さすぎるため、基質である貝殻を水の中で篩いにかけ、イソヒメミミズを洗い落とし、水中で団子状になったイソヒメミミズ成体をスポイトで採集した後、水中に20〜30分浮遊しているワムシやアルテミアサイズのイソヒメミミズ幼生を遠心分離機で集め給餌したが、全く嗜好性を示さず、捕食を確認できなかったが、衰弱死が無いということは水槽底部に繁殖した微生物を捕食していたのではないかと推測する。結果、特殊な魚種を除いて、摂餌選択性も良好で好適な国産生物餌料として新たな餌料系列を提供することが期待できることが明らかになった。  As shown in Table 5, 157 L of acrylic water tank (90 x 45 x 45) with an upper filter, 2 light upper lights, 24 ° C auto heater, and 4 full sets of aeration. A feeding selectivity test was conducted. 10 fish rainbow trout (Rhabdamia gracilis) with a transparent body that can measure the abdominal area from outside the body using an upright microscope (fluorescence), appearance that is not visible to fish, and breeding form 5 seahorses (Hippocampus coronatus) (average body length 3 cm) and 4 horses (Hippocampus kuda) (average body length 7 cm) 5 eel (Anguilla japonica) (average body length 9 cm), 4 craniopod crustacean banded cuttlefish (Sepia bandensis Adam) (average body length 3 mm), small crustacean salamander (Rhync) ocinetes untai) Select 5 animals (average body length 2 cm) and feed them once a day for 30 days. Don't lay sand on the bottom of the aquarium. It was. As a result, the ground beetle actively preyed on the falling ground and the ground ground that became dumpling on the bottom of the tank. Shirasu fry of Japanese eel actively preyed while squeezing dumplings on the bottom of the aquarium. The hatched cuttlefish with an average trunk length of 3 mm grew into an average trunk length of 15 mm on the 30th day after premature feeding with adults and rounded larvae that became dumplings near the bottom of the tank. The shrimp shrimp actively captured the earthworm earthworms that had become small dumplings at the bottom of the aquarium with the inner limbs of the chin leg, and carried them actively to the rocks. Seahorses and black horses have a very high preference for Artemia and Isaami, but they prey well, but they have a slightly lower preference for Isohime earthworms, and they have slow action on dumplings and floating larvae. We were selective predator. The faeces were not black stag beetles, but white faeces that seemed to have ground the earthworms because the digestive organs of seahorses were underdeveloped. However, although the preference for seahorses is somewhat low, it was suggested that it is possible to feed isohime earthworms alone from larvae to adults. Since the diameter of the sea bream is too small, the shell of the substrate is sieved in water, the earthworm earthworm is washed off, and the adult earthworm earthworm dumped in water is collected with a dropper, and then 20-30 minutes in the water. Floating rotifers and artemia-sized isohime earthworm larvae were collected using a centrifuge and fed, but they did not show any preference and could not confirm predation, but there was no debilitating death. I guess it was preying. As a result, it was clarified that, with the exception of special fish species, it is expected to provide a new food series as a suitable domestic product food with good food selectivity.

Figure 2017108728
Figure 2017108728

図3で示すように、仔稚魚の放流試験のための耳石へ蛍光標識に関しての問題点を解決するため、イソヒメミミズが含有するイソフラビン黄緑色蛍光が体内に蓄積しているかを、イソヒメミミズの給餌期間30日目でスカシテンジクダイを5匹凍結保存し、摂餌量を正立顕微鏡(蛍光)にて体外から腹部領域を測定したが、蛍光が弱く測定できなかった。そのため、イソヒメミミズを給餌しなかったスカシテンジクダイと30日間給餌したスカシテンジクダイから耳石をそれぞれ摘出し、二つの検体による蛍光量の相違いを正立顕微鏡(蛍光)にて蛍光量を変えて測定したが、黄緑色蛍光は自家蛍光のみで差異は観察できなかった。イソヒメミミズが含有するイソフラビン黄緑色蛍光は水溶性のため蓄積が出来ないことが考察でき、結果、イソヒメミミズを初期生物飼料として種苗生産された仔稚魚を、放流試験のためテトラサイクリン(TC)やアリザリンコンプレクソン(ALC)等により耳石への蛍光標識を行っても支障がないことが確認できた。  As shown in FIG. 3, in order to solve the problems related to fluorescent labeling on otoliths for larval and juvenile fish release tests, the isoflavin yellow-green fluorescence contained in isohime earthworms is accumulated in the body. On the 30th day of the feeding period, 5 sugar beet daisies were stored frozen, and the amount of food intake was measured from outside the body with an upright microscope (fluorescence). However, the fluorescence was weak and could not be measured. For this reason, otoliths were removed from the rainbow beetle that was not fed with the earthworm earthworm and those that were fed for 30 days, and the difference in fluorescence between the two specimens was measured using an upright microscope (fluorescence). However, yellow-green fluorescence was only autofluorescence and no difference could be observed. It can be considered that the isoflavin yellow-green fluorescence contained in Isohime earthworm cannot be accumulated because it is soluble in water. As a result, larvae and seedlings produced using Isohime earthworm as an initial biological feed were tested for tetracycline (TC) and alizarin for release tests. It was confirmed that there was no problem even if fluorescent labeling on the otolith was performed by Complexon (ALC) or the like.

培養器の餌(ワカメ)から壁面に這い上がってきた白い糸くずの様なイソヒメミミズ  A white earthworm like white lint that crawls up from the incubator's bait (wakame) to the wall 鶏卵(ゆで卵黄)に群れるイソヒメミミズ  Isohime earthworms flock to chicken eggs (boiled egg yolk) 少し厚みのある耳石Aと厚みのない耳石Bを同じ蛍光量で測定したが差異は無かった。  A slightly thick otolith A and a thin otolith B were measured with the same amount of fluorescence, but there was no difference.

ミミズの栄養価について検討を行った。伊藤らの家禽会誌21巻(1984)によればミミズの粗蛋白質は魚粉の(60.1%)とほぼ同等の値(59.6%)を示し、アルテミアは(55%)と低い値であった。粗脂肪においては(11.3%)とアルテミアの(10%)、魚粉の(9.4%)より高値を表1で示した。ミミズの粗繊維や粗灰分はミミズの消化管内の不消化分に由来しているが、それぞれ1.58%、および8.79%と低かった。また、ミミズはDHAを含有しておらずEPA値も低く栄養強化の必要性が明らかになった。無機物ではカルシウム含量が少なく、他の動物性餌料などと大きな差が見られるが、これはミミズに骨格がないことを反映している。アミノ酸組成は、含硫アミノ酸含量が低いほかは、特に問題は無く、魚類仔稚魚期の餌料資源としてミミズの仲間であるイソヒメミミズは有望であると考えられる。The nutritional value of earthworms was examined. According to Ito et al. Poultry Society Vol. 21 (1984), the crude protein of earthworms is almost the same value as fish meal (60.1%) (59.6%), and Artemia is as low as (55%). there were. Table 1 shows the higher values of crude fat than (11.3%), Artemia (10%), and fish meal (9.4%). Earthworm fibers and coarse ash are derived from the undigested portion of the earthworm's digestive tract, but were as low as 1.58% and 8.79%, respectively. Also, earthworms do not contain DHA and have a low EPA value, which revealed the need for nutritional enhancement. Minerals have a low calcium content and show a large difference from other animal feeds, which reflects the absence of skeletons in earthworms. The amino acid composition is not particularly problematic except that the sulfur-containing amino acid content is low, and it is considered that Isohime earthworm, which is a member of earthworms, is a promising food resource during the fish larval stage.

Figure 2017108728
Figure 2017108728

DHAは、淡水魚ではα・リノレン酸からの転換が可能であるが、海水魚では不可能であり、海水魚では淡水魚よりもDHAを強く要求する。種苗の遊泳異常や脊椎の異常は、DHAの不足が原因の一つと想定されているためイソヒメミミズへの栄養強化を行った。栄養強化方法は、ゆでた鶏卵の卵黄のみを3日間供与したAと、ゆでた鶏卵の卵黄にフィシュオイル(DHA:46%、EPA:3%)を卵黄レシチンが持つ乳化作用を利用して混合させ、3日間供与したB,このAとBの脂肪酸組成を分析した結果、イソヒメミミズはDHA,EPAを取り込み、蓄積することが明らかになった。餌料中のDHA,EPA濃度は、イソヒメミミズ中に蓄積されたDHA,EPA量と、直線的な比例関係となることが表4に示された。栄養強化アルテミアとの栄養素成分の差異は、近畿大学での(2005年)クロマグロの初期餌料の開発に関する研究中間成果報告でのアルテミア栄養素分析値と比較して考察した。イソヒメミミズの総アミノ酸含量(約1039.mg/g)はアルテミアの総アミノ酸含量(約529.7mg/g)より約2倍も高かった。加えて、アルテミアの必須アミノ酸含量は50%前後であったが、イソヒメミミズは約60%前後と高い値を表4で示した。また、卵黄にはリン脂質、アミノ酸、ビタミン、ミネラルが豊富で、加えて不飽和脂肪酸が豊富なフィシュオイルを混合し、栄養強化した餌を供与したイソヒメミミズは、海産魚類仔稚魚期の栄養要求多様性に十分に対応可能な生物餌料と考える。DHA can be converted from α-linolenic acid in freshwater fish, but not in saltwater fish, and saltwater fish require DHA more than freshwater fish. Abnormal seedling swimming and spinal abnormalities are thought to be caused by a deficiency in DHA, so nutritional enrichment for Isohime earthworms was performed. Nutrition enhancement method is to mix A for 3 days with egg yolk of boiled chicken egg and fish oil (DHA: 46%, EPA: 3%) to egg yolk of boiled chicken egg using the emulsifying action of egg yolk lecithin As a result of analyzing the fatty acid composition of B, which was donated for 3 days, and A and B, it was revealed that Isohime earthworms take up and accumulate DHA and EPA. Table 4 shows that the DHA and EPA concentrations in the feed are linearly proportional to the amount of DHA and EPA accumulated in the earthworm. Differences in nutrient composition from nutrient-enriched artemia were discussed in comparison with the analysis values of artemia nutrients in a research interim report on the development of bluefin tuna initial feed at Kinki University (2005). The total amino acid content of Isohime earthworm (about 1039. mg / g) was about twice as high as the total amino acid content of Artemia (about 529.7 mg / g). In addition, although the essential amino acid content of Artemia was around 50%, Isohime earthworm showed a high value of around 60% in Table 4. Egg yolks are rich in phospholipids, amino acids, vitamins and minerals, and mixed with fish oil rich in unsaturated fatty acids. It is considered as a biological feed that can sufficiently cope with diversity.

Figure 2017108728
Figure 2017108728

Claims (9)

水産養殖(魚類、甲殻類、頭足類、無足類)におけるアルテミア(Artemia)に代わる新しい餌料系列の生物餌料として、貧毛鋼、イトミミズ目(Tubificida)、ヒメミミズ科(Enchytraeidae)の群から選択されることを特徴とする種苗生産方法。Selected from the group of poor steel, Tubicida, Enchytraidae as a new feed series of biological feeds to replace Artemia in aquaculture (fish, crustaceans, cephalopods, anpods) A seed production method characterized by being made. 水産養殖(魚類、甲殻類、頭足類、無足類)におけるアルテミア(Artemia)に代わる新しい餌料系列の生物餌料として、貧毛鋼、イトミミズ目(Tubificida)、ヒメミミズ科(Enchytraeidae)、イソヒメミミズ(Pachydrilus nipponicus Yamaguchi)であることを特徴とする種苗生産方法。As a new food series to replace Artemia in aquaculture (fish, crustaceans, cephalopods, anpods), poor steel, Tufticida, Enchytraidae, A seedling production method characterized by being Pachydrilus nipponicus Yamaguchi). 請求項2の生物餌料が、海岸漂着海藻の再資源化利用として選択されることを特徴とする低コスト・リサイクル生態型餌料生産方法。A method for producing a low-cost, recycle ecological feed, characterized in that the biological feed of claim 2 is selected as a resource utilization of coastal seaweed. 請求項1、2の生物餌料が、タツノオトシゴ類(Hippocampus)の仔稚魚から成体までの単独給与餌料として選択されることを特徴とする飼育方法。The breeding method according to claim 1, wherein the biological feed according to claim 1 or 2 is selected as a single feed from larvae to adults of seahorses (Hippocampus). 請求項1、2の生物餌料に、不飽和脂肪酸であるドコサヘキサエン酸(DHA)を栄養強化させることを目的として、鶏卵(ゆで卵黄、乾燥卵黄)、うずら卵(ゆで卵黄、乾燥卵黄)を給餌させることを特徴とする栄養強化方法。Claims 1 and 2 are fed chicken eggs (boiled egg yolk, dried egg yolk) and quail eggs (boiled egg yolk, dried egg yolk) for the purpose of enhancing nutrition of docosahexaenoic acid (DHA), which is an unsaturated fatty acid. A nutritional enhancement method characterized by that. 請求項1、2の生物餌料に、デザイナーエッグ(栄養成分強化鶏卵、免疫強化鶏卵)を給餌させることを特徴とする栄養成分強化と免疫強化方法。A nutritional component enhancement and immunity enhancement method characterized by feeding a designer egg (nutrient-enriched chicken egg, immune-enhanced chicken egg) to the biological feed of claim 1 or 2. 請求項2の生物餌料に用いられる材料の飼育床に、砂(鉱物の砂)、サンゴ砂、粉砕貝殻、ゼオライト、活性炭、ピートモス、海藻(任意の状態)等の単独か、2種類以上の混合を基質とすることを特徴とする養殖方法。The material used for the biological feed of claim 2 may be a single or a mixture of two or more of sand (mineral sand), coral sand, crushed shell, zeolite, activated carbon, peat moss, seaweed (arbitrary state), etc. A culture method characterized by using as a substrate. 請求項7の飼育床にて、床内湿度80から100%、温度22から26℃、基質の深さ30cm以内の環境で飼育することを特徴とする養殖方法。The culture method according to claim 7, wherein the culture is carried out in an environment where the humidity in the floor is 80 to 100%, the temperature is 22 to 26 ° C, and the depth of the substrate is within 30 cm. 請求項7、8の飼育床にて、海藻(任意の状態)、海藻(任意の状態)を餌とすることを特徴とする養殖方法。A culture method comprising feeding seaweed (arbitrary state) or seaweed (arbitrary state) as a bait on the breeding floor according to claims 7 and 8.
JP2015257790A 2015-12-17 2015-12-17 Eggs and fry production method by a novel feed system replaced with artemia salina in aqua-culture (pisces, crustacea, cephalopoda, apoda) Pending JP2017108728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015257790A JP2017108728A (en) 2015-12-17 2015-12-17 Eggs and fry production method by a novel feed system replaced with artemia salina in aqua-culture (pisces, crustacea, cephalopoda, apoda)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015257790A JP2017108728A (en) 2015-12-17 2015-12-17 Eggs and fry production method by a novel feed system replaced with artemia salina in aqua-culture (pisces, crustacea, cephalopoda, apoda)

Publications (2)

Publication Number Publication Date
JP2017108728A true JP2017108728A (en) 2017-06-22
JP2017108728A5 JP2017108728A5 (en) 2017-12-07

Family

ID=59080140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015257790A Pending JP2017108728A (en) 2015-12-17 2015-12-17 Eggs and fry production method by a novel feed system replaced with artemia salina in aqua-culture (pisces, crustacea, cephalopoda, apoda)

Country Status (1)

Country Link
JP (1) JP2017108728A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110367152A (en) * 2019-09-02 2019-10-25 吉林省水产科学研究院 The method of wild variegated sculpins artificial domestication
CN110367153A (en) * 2019-09-02 2019-10-25 吉林省水产科学研究院 Variegated sculpins postlarva breeding method
CN110537513A (en) * 2019-10-22 2019-12-06 广州市诚一水产科技有限公司 Nutrition level and feed for crayfishes in different breeding stages
CN110558256A (en) * 2019-10-09 2019-12-13 中国水产科学研究院黄海水产研究所 nutrition method for regulating and controlling bile acid secretion of takifugu rubripes in programmed mode
CN111480601A (en) * 2020-05-28 2020-08-04 陵水德林诚信水产养殖有限公司 Indoor seedling raising method for Lutjanus erythropterus
CN112673994A (en) * 2019-11-01 2021-04-20 海南青利水产繁殖有限公司 Golden adult fish culture method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110367152A (en) * 2019-09-02 2019-10-25 吉林省水产科学研究院 The method of wild variegated sculpins artificial domestication
CN110367153A (en) * 2019-09-02 2019-10-25 吉林省水产科学研究院 Variegated sculpins postlarva breeding method
CN110558256A (en) * 2019-10-09 2019-12-13 中国水产科学研究院黄海水产研究所 nutrition method for regulating and controlling bile acid secretion of takifugu rubripes in programmed mode
CN110537513A (en) * 2019-10-22 2019-12-06 广州市诚一水产科技有限公司 Nutrition level and feed for crayfishes in different breeding stages
CN112673994A (en) * 2019-11-01 2021-04-20 海南青利水产繁殖有限公司 Golden adult fish culture method
CN111480601A (en) * 2020-05-28 2020-08-04 陵水德林诚信水产养殖有限公司 Indoor seedling raising method for Lutjanus erythropterus

Similar Documents

Publication Publication Date Title
Muller‐Feuga Microalgae for aquaculture: the current global situation and future trends
Støttrup Production and nutritional value of copepods
Das et al. Important live food organisms and their role in aquaculture
JP2017108728A (en) Eggs and fry production method by a novel feed system replaced with artemia salina in aqua-culture (pisces, crustacea, cephalopoda, apoda)
CN103918615B (en) A kind of method of the red clam worm of indoor circulating water three-dimensional culture
Kumar et al. Effect of light, temperature and salinity on the growth of Artemia
Engell-Sørensen et al. Rearing of flounder (Platichthys flesus) juveniles in semiextensive systems
Duarte et al. An overview of jellyfish aquaculture: for food, feed, pharma and fun
Zmora et al. Microalga for aquaculture: practical implications
Priyadarshani et al. Algae in aquaculture
Hagiwara et al. Production and use of two marine zooplanktons, Tigriopus japonicus and Diaphanosoma celebensis, as live food for red sea bream Pagrus major larvae
Marquez et al. Microalgae diet for juveniles of Spondylus limbatu s
Nissar et al. The evolution of integrated multi-trophic aquaculture in context of its design and components paving way to valorization via optimization and diversification
Groover et al. Development of early larviculture protocols for the melanurus wrasse Halichoeres melanurus
El-Tohamy et al. Suitable algal species and density for the culture of copepod Gladioferens imparipes as a potential live food for fish larvae
Khairy et al. Effect of enriched Brachionus plicatilis and Artemia salina nauplii by microalga Tetraselmis chuii (Bütcher) grown on four different culture media on the growth and survival of Sparus aurata larvae
De Viçose et al. Larval settlement, early growth and survival of Haliotis tuberculata coccinea using several algal cues
Naman et al. The effect of copepod enriched-vegetable based diet on Giant Tiger Prawn (Penaeus monodon) post-larvae
Hagiwara et al. Live Food in Aquaculture: Proceedings of the Live Food and Marine Larviculture Symposium held in Nagasaki, Japan, September 1–4, 1996
Santhanam et al. Evaluation of the Suitability of Marine Copepods as an Alternative Live Feed in High-Health Fish Larval Production
Liao et al. Larval foods for penaeid prawns
Schubert et al. Effects of feed species and HUFA composition on survival and growth of the longsnout seahorse (Hippocampus reidi)
Rizk et al. An attempt to improve the proximate composition of local Artemia strain (Wadi El Natrun, Egypt)
Kelly et al. Psammechinus miliaris
Marques et al. Potential of ascidians as extractive species and their added value in marine integrated multitrophic aquaculture systems–From pests to valuable blue bioresources

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919