JP2017108378A5 - - Google Patents

Download PDF

Info

Publication number
JP2017108378A5
JP2017108378A5 JP2016183643A JP2016183643A JP2017108378A5 JP 2017108378 A5 JP2017108378 A5 JP 2017108378A5 JP 2016183643 A JP2016183643 A JP 2016183643A JP 2016183643 A JP2016183643 A JP 2016183643A JP 2017108378 A5 JP2017108378 A5 JP 2017108378A5
Authority
JP
Japan
Prior art keywords
metamaterial cell
tuning
cell
metamaterial
adjustable element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016183643A
Other languages
English (en)
Japanese (ja)
Other versions
JP2017108378A (ja
JP6814580B2 (ja
Filing date
Publication date
Priority claimed from US14/865,600 external-priority patent/US10312597B2/en
Application filed filed Critical
Publication of JP2017108378A publication Critical patent/JP2017108378A/ja
Publication of JP2017108378A5 publication Critical patent/JP2017108378A5/ja
Application granted granted Critical
Publication of JP6814580B2 publication Critical patent/JP6814580B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

JP2016183643A 2015-09-25 2016-09-21 フェライト増強メタマテリアル Active JP6814580B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/865,600 US10312597B2 (en) 2015-09-25 2015-09-25 Ferrite-enhanced metamaterials
US14/865,600 2015-09-25

Publications (3)

Publication Number Publication Date
JP2017108378A JP2017108378A (ja) 2017-06-15
JP2017108378A5 true JP2017108378A5 (enExample) 2019-07-04
JP6814580B2 JP6814580B2 (ja) 2021-01-20

Family

ID=56896422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016183643A Active JP6814580B2 (ja) 2015-09-25 2016-09-21 フェライト増強メタマテリアル

Country Status (5)

Country Link
US (1) US10312597B2 (enExample)
EP (1) EP3148003B1 (enExample)
JP (1) JP6814580B2 (enExample)
AU (1) AU2016204089B2 (enExample)
RU (1) RU2705941C1 (enExample)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD842279S1 (en) 2016-04-08 2019-03-05 Mitsubishi Electric Corporation Frequency selective surface
CN108270070A (zh) * 2017-01-03 2018-07-10 中兴通讯股份有限公司 一种液态天线结构及其控制方法
CN110609422B (zh) * 2018-06-15 2021-01-22 京东方科技集团股份有限公司 超材料结构单元、超材料及电子装置
US11705637B2 (en) * 2018-10-11 2023-07-18 Northeastern University Magnetodielectric metamaterials and articles including magnetodielectric metamaterials
CN110320579A (zh) * 2019-06-14 2019-10-11 太原理工大学 一种锥状双曲超材料光子结构及其制备方法
KR20210067469A (ko) * 2019-11-29 2021-06-08 삼성전자주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
EP3915513A1 (en) * 2020-05-28 2021-12-01 Koninklijke Philips N.V. An oral treatment device
EP3915436A1 (en) * 2020-05-28 2021-12-01 Koninklijke Philips N.V. An oral treatment device
CN112968292B (zh) * 2021-02-07 2022-09-16 北京邮电大学 可调太赫兹器件及可调天线
US11888327B2 (en) * 2021-03-30 2024-01-30 University Of Florida Research Foundation, Inc. High efficiency metasurface-based multi-scale wireless power transfer
JPWO2023162660A1 (enExample) * 2022-02-28 2023-08-31
WO2024014772A1 (ko) * 2022-07-13 2024-01-18 서울대학교산학협력단 광-마그논 상호작용을 이용한 음굴절 구현 방법 및 그 제어 방법
CN116430281A (zh) * 2023-04-28 2023-07-14 杭州电子科技大学 一种聚二甲基硅氧烷光学腔直流磁场传感系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020186A2 (en) * 2002-08-29 2004-03-11 The Regents Of The University Of California Indefinite materials
KR101250059B1 (ko) * 2004-07-23 2013-04-02 더 리젠트스 오브 더 유니이버시티 오브 캘리포니아 메타물질
US7405866B2 (en) * 2004-11-19 2008-07-29 Hewlett-Packard Development Company, L.P. Composite material with controllable resonant cells
US7474456B2 (en) * 2007-01-30 2009-01-06 Hewlett-Packard Development Company, L.P. Controllable composite material
EP1975656B1 (en) 2007-03-30 2011-06-08 Institut Jozef Stefan Metamaterials and resonant materials based on liquid crystal dispersions of colloidal particles and nanoparticles
US7724180B2 (en) * 2007-05-04 2010-05-25 Toyota Motor Corporation Radar system with an active lens for adjustable field of view
US7750869B2 (en) * 2007-07-24 2010-07-06 Northeastern University Dielectric and magnetic particles based metamaterials
US8130171B2 (en) * 2008-03-12 2012-03-06 The Boeing Company Lens for scanning angle enhancement of phased array antennas
US20100277298A1 (en) 2009-04-29 2010-11-04 Delphi Technologies, Inc. Detection system and method thereof
US8811914B2 (en) * 2009-10-22 2014-08-19 At&T Intellectual Property I, L.P. Method and apparatus for dynamically processing an electromagnetic beam
US8711897B2 (en) * 2010-08-11 2014-04-29 Miles Technologies, Llc Split-ring resonator creating a photonic metamaterial
JP5771818B2 (ja) * 2011-06-13 2015-09-02 国立研究開発法人理化学研究所 メタマテリアル用の単位共振器、共振器アレイおよびメタマテリアルの製造方法
US9059496B2 (en) 2011-11-14 2015-06-16 The Regents Of The University Of Colorado Nanoparticle-enhanced liquid crystal radio frequency phase shifter
CN102790283A (zh) * 2012-07-24 2012-11-21 电子科技大学 基于亚铁磁体的可调谐三频负磁导率超材料及制备方法
US9876526B2 (en) 2015-04-13 2018-01-23 The Boeing Company Tunable bandpass filter for communication system
US9577723B1 (en) 2015-08-10 2017-02-21 The Boeing Company Systems and methods of analog beamforming for direct radiating phased array antennas

Similar Documents

Publication Publication Date Title
JP2017108378A5 (enExample)
RU2016123450A (ru) Усиленные ферритом метаматериалы
Wang et al. A tunable left-handed metamaterial based on modified broadside-coupled split-ring resonators
CN107404003B (zh) 超材料及其频率调节方法和装置
CN203260700U (zh) 腔体滤波器
Cselyuszka et al. Novel negative mass density resonant metamaterial unit cell
Shchelokova et al. Magnetic topological transition in transmission line metamaterials
CN107037507A (zh) 一种高品质因子的全介质超材料谐振装置
Lin et al. Varactor-tunable frequency selective surface with an embedded bias network
CN103268970A (zh) 一种基于微带线的可调慢波器件
CN101567674A (zh) 一种可调带通滤波器
Yuan et al. A reconfigurable frequency selective surface for tuning multi-band frequency response separately
Bi et al. Tunable dielectric properties of ferrite-dielectric based metamaterial
CN204441426U (zh) 一种基于石墨烯的太赫兹调谐器件
RU2012100031A (ru) Метаматериальная резонансная структура
He et al. Tunable magnetic metamaterial based multi-split-ring resonator (MSRR) using MEMS switch components
CN103035998B (zh) 一种谐振腔
TWI304595B (enExample)
Wu et al. Dielectric meta-atom with tunable resonant frequency temperature coefficient
CN103035997B (zh) 一种谐振腔
CN104638376A (zh) 一种实现磁场调节介电常数的超材料结构体及其结构体设计方法
He et al. Nonresonant metamaterials with an ultra-high permittivity
Acher Permeability enhancement of soft magnetic films through metamaterial structures
He et al. MEMS switches controlled multi-split ring resonator as a tunable metamaterial component
Lian et al. Experimental realization of a magnetically tunable cavity in a gyromagnetic photonic crystal