JP2017107070A5 - - Google Patents

Download PDF

Info

Publication number
JP2017107070A5
JP2017107070A5 JP2015240736A JP2015240736A JP2017107070A5 JP 2017107070 A5 JP2017107070 A5 JP 2017107070A5 JP 2015240736 A JP2015240736 A JP 2015240736A JP 2015240736 A JP2015240736 A JP 2015240736A JP 2017107070 A5 JP2017107070 A5 JP 2017107070A5
Authority
JP
Japan
Prior art keywords
coil
optical element
unit
optical device
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015240736A
Other languages
Japanese (ja)
Other versions
JP6742717B2 (en
JP2017107070A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2015240736A priority Critical patent/JP6742717B2/en
Priority claimed from JP2015240736A external-priority patent/JP6742717B2/en
Priority to TW105137666A priority patent/TWI657317B/en
Priority to KR1020160162575A priority patent/KR102111070B1/en
Priority to CN201611106037.8A priority patent/CN106873148B/en
Publication of JP2017107070A publication Critical patent/JP2017107070A/en
Publication of JP2017107070A5 publication Critical patent/JP2017107070A5/ja
Application granted granted Critical
Publication of JP6742717B2 publication Critical patent/JP6742717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

上記課題を解決するために、本発明は、学素子を変形させる光学装置であって、光学素子に取り付けられた第1磁性部材と、第1磁性部材と非接触に対向して配置される第1コイルと、を含み、光学素子を変形させる第1アクチュエータユニットと、光学素子に取り付けられた第2磁性部材と、第2磁性部材と非接触に対向して配置される第2コイルと、を含み、光学素子を変形させる第2アクチュエータユニットと、第1コイルと第2コイルを冷却する冷却部と、を備え、第1アクチュエータユニットが発生する推力は、第2アクチュエータユニットが発生する推力より大きく、冷却部が第1コイルを冷却する第1冷却力は、冷却部が第2コイルを冷却する第2冷却力より大きいことを特徴とする。 In order to solve the above problems, the present invention provides an optical device for deforming the optical optical element, a first magnetic member attached to the light optical element, disposed facing the first magnetic member and a non-contact includes a first coil that, and a first actuator unit for deforming the optical element, and a second magnetic member attached to the optical element, a second coil disposed to face the second magnetic members and non-contact And a second actuator unit that deforms the optical element, and a cooling unit that cools the first coil and the second coil , and the thrust generated by the first actuator unit is the thrust generated by the second actuator unit. larger, first cooling power cooling unit cools the first coil, characterized in that the cooling unit is larger than the second cooling power for cooling the second coil.

ミラー101の目標形状によっては、各アクチュエータユニット103に要求される推力、すなわち、各コイル105の発熱量が異なる。ミラー101等の熱変形を抑えるためには、最も発熱量の大きなコイル105に合わせて、たとえば、伝熱体124を太くしたり、冷却プレート125の厚みを増したり、冷媒の流量を増大させたりする必要がある。これは、装置の大形化およびコスト増を招く。各アクチュエータユニット103の推力は、ミラー101、ミラー固定部102、基準プレート121の構成やミラー101の目標形状に基づいて決まる。コイル105の発熱量は、当該推力に基づいて推定することができる。光学装置100の構成は、推定したコイル105の発熱量により決定される。 The thrust required for each actuator unit 103, that is, the amount of heat generation of each coil 105 differs depending on the target shape of the mirror 101. In order to suppress the thermal deformation of the mirror 101 etc., for example, the heat transfer body 124 is made thicker, the thickness of the cooling plate 125 is increased, or the flow rate of the refrigerant is increased in accordance with the coil 105 having the largest calorific value. There is a need to. This leads to an increase in size and cost of the device. The thrust of each actuator unit 103 is determined based on the configuration of the mirror 101, the mirror fixing unit 102 , the reference plate 121, and the target shape of the mirror 101. The calorific value of the coil 105 can be estimated based on the thrust. The configuration of the optical device 100 is determined by the estimated amount of heat generation of the coil 105.

ミラー101の目標形状に応じてコイルの発熱量は変動するが、特に発熱量の大きいミラー固定部102周辺のコイル105aは、発熱量の変動幅も大きい。本実施形態では、フィードバック制御によりペルチェ素子301の電流値を制御しているので、コイル105aの発熱量に応じて冷却力(放熱量)を制御(調節)できる。また、ペルチェ素子301は、コイル105aに近い伝熱124aの温度に基づいて制御部(不図示)により制御されているので、コイル105aを効率よく冷却できる。もし、ペルチェ素子301の替わりに、一定温度(23℃)の冷媒が供給されるヒートシンクを用いると、ヒートシンクとコイル105a間の熱抵抗(伝熱124aなど)の影響によりコイル105aの冷却効率は低下することになる。本実施形態では、ペルチェ素子301の冷却負荷を低減するために、伝熱124aは、ミラー101の外周部の伝熱124bよりも太くし、コイル105aとペルチェ素子301との熱抵抗値を下げている。 Although the calorific value of the coil fluctuates according to the target shape of the mirror 101, the coil 105a around the mirror fixing portion 102 having a particularly large calorific value also has a large fluctuation range of the calorific value. In the present embodiment, since the current value of the Peltier element 301 is controlled by feedback control, the cooling power (heat release amount) can be controlled (adjusted) in accordance with the heat generation amount of the coil 105 a. Further, since the Peltier element 301 is controlled by the control unit (not shown) based on the temperature of the heat transfer body 124a close to the coil 105a, the coil 105a can be cooled efficiently. If, instead of the Peltier device 301, the use of heat sink coolant at a constant temperature (23 ° C.) is supplied, the cooling efficiency of the coil 105a by the influence of thermal resistance between the heat sink and the coil 105a (such as heat conductor 124a) is It will decline. In the present embodiment, in order to reduce the cooling load of the Peltier device 301, heat conductor 124a is thicker than the heat conductor 124b of the outer peripheral portion of the mirror 101, the thermal resistance between the coil 105a and the Peltier device 301 It is lowered.

なお、本実施形態では、ペルチェ素子301を用いているが、ペルチェ素子301の替わりに温度フィードバック方式のヒートシンクを用いてもよい。その場合、各ヒートシンクに流れる冷媒の温度を温度センサ302に基づいて、フィードバック制御することになる。また、本実施形態では、光学素子101はミラーであるが透過性の光学素子でもよい。その場合、アクチュエータユニット103、冷却プレート125、ペルチェ素子301は光学素子の光が透過しない非有効領域に配置する。さらに、アクチュエータユニット103aを直接冷却する構成でもよく、伝熱124aは必ずしも必須ではない。 Although the Peltier element 301 is used in the present embodiment, a heat sink of a temperature feedback method may be used instead of the Peltier element 301. In that case, the temperature of the refrigerant flowing to each heat sink is feedback-controlled based on the temperature sensor 302. Further, in the present embodiment, the optical element 101 is a mirror, but may be a transmissive optical element. In that case, the actuator unit 103, the cooling plate 125, and the Peltier element 301 are disposed in the non-effective area where the light of the optical element does not pass. Further, may be a structure for cooling the actuator unit 103a directly heat conductor 124a is not always essential.

コイル105aおよびコイル105bで発生した熱は、伝熱体124aおよび124bに伝熱し、隙間503の空気層を介して基準プレート501に伝熱し、流路502で回収される。この場合、隙間503に熱伝導率の良い熱伝導部材を挿入することで、冷却効果を向上させることができる。発熱量の大きなコイル105aに連結する伝熱124aは、端部にペルチェ素子301を有し、流路502の冷却能力を補い、コイル105bに比べ冷却能力が強化されている。 The heat generated by the coil 105 a and the coil 105 b is transferred to the heat transfer members 124 a and 124 b, transferred to the reference plate 501 through the air layer in the gap 503, and recovered in the flow passage 502. In this case, the cooling effect can be improved by inserting a heat conductive member having a high thermal conductivity into the gap 503. Heat conductor 124a which connects the large coil 105a of the heat generation amount has a Peltier device 301 to the end, supplement the cooling capacity of the channel 502, cooling capacity is enhanced compared to the coil 105b.

本実施形態は、上記実施形態と比べて、別体の冷却プレート125がないため、装置サイズおよび装置構成の点で有利である。特に、基準プレート501内に流路50が形成されているため、基準プレート501の温度は冷媒と略等しい温度となり、光学装置500の置かれている環境温度が変動しても、基準プレート501の温度変動は低減される。本実施形態の光学装置も、第1実施形態および第2実施形態と同様の効果を奏する。なお、上記実施形態の基準プレートは、本実施形態の基準プレート501と置き換えてもよい。 The present embodiment is advantageous in terms of apparatus size and apparatus configuration since there is no separate cooling plate 125 as compared with the above embodiment. In particular, since the reference plate 501 passage 50 2 is formed, the temperature of the reference plate 501 becomes substantially equal to the temperature and the refrigerant, even if the environmental temperature that is placed with the optical device 500 fluctuates, the reference plate 501 Temperature fluctuations are reduced. The optical device of the present embodiment also exhibits the same effects as those of the first and second embodiments. The reference plate of the above embodiment may be replaced with the reference plate 501 of this embodiment.

Claims (14)

光学素子を変形させる光学装置であって、
前記光学素子に取り付けられた第1磁性部材と、前記第1磁性部材と非接触に対向して配置される第1コイルと、を含み、前記光学素子を変形させる第1アクチュエータユニットと、
前記光学素子に取り付けられた第2磁性部材と、前記第2磁性部材と非接触に対向して配置される第2コイルと、を含み、前記光学素子を変形させる第2アクチュエータユニットと、
前記第1コイルと前記第2コイルを冷却する冷却部と、を備え、
前記第1アクチュエータユニットが発生する推力は、前記第2アクチュエータユニットが発生する推力より大きく、
前記冷却部が前記第1コイルを冷却する第1冷却力は、前記冷却部が前記第2コイルを冷却する第2冷却力より大きいことを特徴とする光学装置。
An optical device for deforming an optical element,
A first actuator unit including a first magnetic member attached to the optical element, and a first coil disposed to face the first magnetic member in a non-contact manner, and for deforming the optical element;
A second actuator unit that includes a second magnetic member attached to the optical element and a second coil disposed to face the second magnetic member in a non-contact manner, and that deforms the optical element;
A cooling unit configured to cool the first coil and the second coil;
The thrust generated by the first actuator unit is larger than the thrust generated by the second actuator unit,
The first cooling power with which the cooling unit cools the first coil is larger than the second cooling power with which the cooling unit cools the second coil.
前記第1冷却力は前記第1コイルの発熱量により決定され、前記第2冷却力は前記第2コイルの発熱量により決定されることを特徴とする請求項1に記載の光学装置。   The optical device according to claim 1, wherein the first cooling power is determined by the calorific value of the first coil, and the second cooling power is determined by the calorific value of the second coil. 前記第1コイルの発熱量は、前記光学素子の厚みを含むパラメータに基づき推定されることを特徴とする請求項1又は2に記載の光学装置。   The optical device according to claim 1, wherein the calorific value of the first coil is estimated based on a parameter including a thickness of the optical element. 前記光学素子を保持し、前記第1コイルと前記第2コイルが配置される基準プレートを備え、
前記第1コイルの発熱量は、前記基準プレートが前記光学素子を保持する部分と前記第1コイルが配置される位置との距離を含むパラメータに基づき推定され、
前記第2コイルの発熱量は、前記基準プレートが前記光学素子を保持する部分と前記第2コイルが配置される位置との距離を含むパラメータに基づいて推定されることを特徴とする請求項1又は2に記載の光学装置。
A reference plate which holds the optical element and on which the first coil and the second coil are disposed;
The calorific value of the first coil is estimated based on a parameter including the distance between the portion where the reference plate holds the optical element and the position where the first coil is disposed;
The calorific value of the second coil is estimated based on a parameter including a distance between a portion where the reference plate holds the optical element and a position where the second coil is disposed. Or the optical apparatus as described in 2.
前記冷却部は、前記第1コイルに連結され、前記第1コイルから発生した熱を伝える第1伝熱体と、前記第2コイルに連結され、前記第2コイルから発生した熱を伝える第2伝熱体と、を含み、The cooling unit is connected to the first coil and transmits a heat generated from the first coil. The cooling unit is connected to the second coil and transmits the heat generated from the second coil. A heat transfer body, and
前記第1伝熱体の形状は前記第2伝熱体の形状と異なることを特徴とする請求項1ないし4のいずれか1項に記載の光学装置。The optical device according to any one of claims 1 to 4, wherein the shape of the first heat transfer body is different from the shape of the second heat transfer body.
前記第1伝熱体の径は、前記第2伝熱体の径よりも大きいことを特徴とする請求項5に記載の光学装置。The optical device according to claim 5, wherein a diameter of the first heat transfer body is larger than a diameter of the second heat transfer body. 前記第1伝熱体と前記第2伝熱体はそれぞれ棒状の形状であることを特徴とする請求項6に記載の光学装置。The optical device according to claim 6, wherein each of the first heat transfer body and the second heat transfer body has a bar-like shape. 前記第1コイルと前記第2コイルの近傍の温度を計測する計測部と、
前記冷却部の冷却力を制御する制御部と、を備え、
前記制御部は、前記計測部の計測結果に基づいて、前記冷却力を制御することを特徴とする請求項1ないしのいずれか1項に記載の光学装置。
A measurement unit configured to measure temperatures in the vicinity of the first coil and the second coil;
A control unit that controls the cooling power of the cooling unit;
The optical device according to any one of claims 1 to 7 , wherein the control unit controls the cooling power based on a measurement result of the measurement unit.
前記第1コイルに連結され、前記第1コイルから発生した熱を伝える第1伝熱体は、前記第1コイルから伝わった熱の放熱量を調節する第1放熱部、前記第1コイルから伝わった熱を一律に放熱する第2放熱部を備え、
前記制御部は、前記計測結果に基づいて、前記第1放熱部の放熱量を制御することを特徴とする請求項に記載の光学装置。
The first heat transfer body connected to the first coil and transferring the heat generated from the first coil is a first heat radiating portion that adjusts the amount of heat released from the first coil, and the first heat transfer portion from the first coil It has a second heat dissipation unit that uniformly dissipates the transferred heat,
The optical device according to claim 8 , wherein the control unit controls the heat release amount of the first heat release unit based on the measurement result.
前記計測部は、前記第1コイルの近傍の温度を計測することを特徴とする請求項8又は9に記載の光学装置。 The optical apparatus according to claim 8 , wherein the measurement unit measures a temperature near the first coil. 前記光学素子を保持し、前記第1コイルと前記第2コイルが配置される基準プレートを備え、
前記冷却部は、冷媒を流す流路を内部に備えた前記基準プレートを含むことを特徴とする請求項1ないし10のいずれか1項に記載の光学装置。
A reference plate which holds the optical element and on which the first coil and the second coil are disposed;
The optical device according to any one of claims 1 to 10, wherein the cooling unit includes the reference plate internally provided with a flow path through which a refrigerant flows.
前記光学素子は表面に反射面を有するミラーであり、
前記ミラーの裏面に設けられることを特徴とする請求項1ないし11のいずれか1項に記載の光学装置。
The optical element is a mirror having a reflective surface on the surface,
The optical device according to any one of claims 1 to 11 , which is provided on the back surface of the mirror.
請求項1ないし12のいずれか1項に記載の光学装置を有することを特徴とする露光装置。 An exposure apparatus comprising the optical device according to any one of claims 1 to 12 . 請求項13に記載の露光装置を用いて基板を露光する工程と、
前記露光された前記基板を現像する工程と、を含み
現像された前記基板から物品を製造することを特徴とする物品の製造方法。
Exposing the substrate using the exposure apparatus according to claim 13 ;
Developing the exposed substrate, and manufacturing an article from the developed substrate.
JP2015240736A 2015-12-10 2015-12-10 Optical device, exposure apparatus including the same, and article manufacturing method Active JP6742717B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015240736A JP6742717B2 (en) 2015-12-10 2015-12-10 Optical device, exposure apparatus including the same, and article manufacturing method
TW105137666A TWI657317B (en) 2015-12-10 2016-11-17 Optical device, exposure apparatus having the same, and article manufacturing method
KR1020160162575A KR102111070B1 (en) 2015-12-10 2016-12-01 Optical device, exposure apparatus having the same, and article manufacturing method
CN201611106037.8A CN106873148B (en) 2015-12-10 2016-12-06 Optical device, exposure apparatus having the same, and method of manufacturing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240736A JP6742717B2 (en) 2015-12-10 2015-12-10 Optical device, exposure apparatus including the same, and article manufacturing method

Publications (3)

Publication Number Publication Date
JP2017107070A JP2017107070A (en) 2017-06-15
JP2017107070A5 true JP2017107070A5 (en) 2019-05-23
JP6742717B2 JP6742717B2 (en) 2020-08-19

Family

ID=59059663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240736A Active JP6742717B2 (en) 2015-12-10 2015-12-10 Optical device, exposure apparatus including the same, and article manufacturing method

Country Status (4)

Country Link
JP (1) JP6742717B2 (en)
KR (1) KR102111070B1 (en)
CN (1) CN106873148B (en)
TW (1) TWI657317B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102098867B1 (en) * 2018-09-12 2020-04-09 (주)아이테드 Imprinting apparatus and imprinting method
CN114924378B (en) * 2022-05-30 2023-10-27 深圳综合粒子设施研究院 Mirror surface shape control structure and beam line device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756551B2 (en) * 1992-10-20 1998-05-25 住友重機械工業株式会社 Conduction-cooled superconducting magnet device
JP3870002B2 (en) * 2000-04-07 2007-01-17 キヤノン株式会社 Exposure equipment
JP3944008B2 (en) * 2002-06-28 2007-07-11 キヤノン株式会社 Reflective mirror apparatus, exposure apparatus, and device manufacturing method
JP2004039862A (en) * 2002-07-03 2004-02-05 Nikon Corp Optical device, aligner, and method for manufacturing the same
JP4245975B2 (en) * 2003-05-15 2009-04-02 オリンパス株式会社 Deformable mirror and driving method thereof
US20050236915A1 (en) * 2004-04-23 2005-10-27 Nikon Corporation Electromagnetic force actuator
JP4817702B2 (en) * 2005-04-14 2011-11-16 キヤノン株式会社 Optical apparatus and exposure apparatus provided with the same
JP2007316132A (en) * 2006-05-23 2007-12-06 Canon Inc Reflection apparatus
US8002420B2 (en) * 2008-07-23 2011-08-23 Nikon Corporation Hydrostatic liquid-metal deformable optical elements
US20100033704A1 (en) 2008-08-11 2010-02-11 Masayuki Shiraishi Deformable mirror, mirror apparatus, and exposure apparatus
JP5142946B2 (en) * 2008-10-29 2013-02-13 三菱電機株式会社 Actuator
JP2010141071A (en) * 2008-12-11 2010-06-24 Nikon Corp Optical member cooling device, optical system, exposure device, and method of manufacturing device
DE102011005778A1 (en) * 2011-03-18 2012-09-20 Carl Zeiss Smt Gmbh Optical element
JP2015050353A (en) * 2013-09-02 2015-03-16 キヤノン株式会社 Optical device, projection optical system, exposure device, and manufacturing method of article
JP6381877B2 (en) * 2013-09-04 2018-08-29 株式会社ニコン Linear motor, exposure apparatus, device manufacturing method, and coil unit
JP2015065246A (en) * 2013-09-24 2015-04-09 キヤノン株式会社 Optical device, optical system, exposure device, and manufacturing method for article
JP6336274B2 (en) * 2013-12-25 2018-06-06 キヤノン株式会社 Optical apparatus, projection optical system, exposure apparatus, and article manufacturing method

Similar Documents

Publication Publication Date Title
TWI587114B (en) Dual loop type temperature control module and electronic device testing apparatus provided with the same
JP2007305993A5 (en)
JP2012084824A (en) Temperature control of electronic apparatus
JP2004282011A (en) Method and device for cooling reticle during lithography exposure
US20100074586A1 (en) Deformable thermal pads for optical fibers
WO2014139896A3 (en) Arrangement for the thermal actuation of a mirror
KR102079533B1 (en) Flow volume control valve and mass flow controller using same
KR100950386B1 (en) Camera comprising cooling apparatus of image sensor using thermo-electric element
JP2017107070A5 (en)
JP2009064829A (en) Optical communication module, and optical transmission device
TWI658476B (en) Coil device
US7308008B2 (en) Magnetically controlled heat sink
TW201642386A (en) Substrate holder and method for bonding two substrates
JP2010231419A (en) High-temperature resistant rfid tag
CN106064805A (en) The thermostatically controlled hot type of a kind of band drives MEMS
KR101684327B1 (en) Complex Specifics Testing Apparatus for Thermoelectric Element
TWI657317B (en) Optical device, exposure apparatus having the same, and article manufacturing method
JP3611174B2 (en) Semiconductor wafer temperature test equipment
JP6088909B2 (en) Heat treatment equipment
JP2008177448A (en) Cooling device and cooling method of semiconductor laser
JPS60133329A (en) Non-contact temperature detection control apparatus
JP5258877B2 (en) Active control of spatial temperature distribution changing with time
CN208938959U (en) Radiator structure and thermal imaging system
CN107037076B (en) Measuring chip and method for determining the thermal conductivity of a thin layer
KR100369811B1 (en) Optical waveguide module using heat conducting element by means of phase change