JP2017105650A - Silicon single crystal manufacturing method - Google Patents

Silicon single crystal manufacturing method Download PDF

Info

Publication number
JP2017105650A
JP2017105650A JP2015238360A JP2015238360A JP2017105650A JP 2017105650 A JP2017105650 A JP 2017105650A JP 2015238360 A JP2015238360 A JP 2015238360A JP 2015238360 A JP2015238360 A JP 2015238360A JP 2017105650 A JP2017105650 A JP 2017105650A
Authority
JP
Japan
Prior art keywords
single crystal
nitrogen
silicon single
silicon
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015238360A
Other languages
Japanese (ja)
Other versions
JP6471683B2 (en
Inventor
優作 鈴木
Yusaku Suzuki
優作 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2015238360A priority Critical patent/JP6471683B2/en
Priority to CN201611115143.2A priority patent/CN106894083B/en
Publication of JP2017105650A publication Critical patent/JP2017105650A/en
Application granted granted Critical
Publication of JP6471683B2 publication Critical patent/JP6471683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/08Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone
    • C30B13/10Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials
    • C30B13/12Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials in the gaseous or vapour state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/28Controlling or regulating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon single crystal manufacturing method, in which a discharge in the slit or the like of an induction heating coil is prevented to reduce the dispersion of a nitrogen concentration in a top cone side straight trunk and a bottom cone side straight trunk of a single crystal thereby to cause neither a dislocation portion and a void defect of an elongated silicon crystal following an increase of the prepared quantity of a silicon material.SOLUTION: In an FZ method of the invention, a mixed gas of nitrogen and argon is fed to the inside of a furnace. A silicon single crystal is grown by varying a nitrogen concentration in the mixed gas during the growth of the silicon single crystal so that the nitrogen concentration of the silicon single crystal in a straight trunk may be confined within a range of 2.0×10atoms/cmto 4.0×10atoms/cm.SELECTED DRAWING: Figure 1

Description

本発明は、シリコン原料棒を誘導加熱コイルで加熱溶融して浮遊帯域を形成し、浮遊帯域を移動することで棒状のシリコン単結晶を育成する浮遊帯溶融法(以下、FZ法という。)によるシリコン単結晶の製造方法に関する。更に詳しくは、誘導加熱コイルのスリット等での放電を防止し、かつ結晶欠陥の発生を抑制して、単結晶の製品化率を高めるシリコン単結晶の製造方法に関する。なお、本明細書で「単結晶の製品化率」とは、シリコン単結晶を育成した際に、シリコン単結晶の直胴部全体に対して、有転位化部分もボイド欠陥もない製品として取り扱うことができる直胴部の割合をいう。   The present invention is based on a floating zone melting method (hereinafter referred to as FZ method) in which a silicon raw material rod is heated and melted by an induction heating coil to form a floating zone, and a rod-shaped silicon single crystal is grown by moving the floating zone. The present invention relates to a method for producing a silicon single crystal. More specifically, the present invention relates to a method for manufacturing a silicon single crystal that prevents discharge at a slit or the like of an induction heating coil and suppresses the generation of crystal defects to increase the product yield of the single crystal. In this specification, the term “single crystal productization rate” means that when a silicon single crystal is grown, the entire straight body of the silicon single crystal is treated as a product having no dislocation portion or void defect. The ratio of the straight body that can be used.

FZ法とは、シリコン原料棒を狭小域において短時間に芯まで加熱溶融して浮遊帯域を形成し、この浮遊帯域から単結晶を成長させるという方法であり、石英ルツボを使用しないことから、酸素や重金属などの不純物汚染が少ないことや、高抵抗率の単結晶が成長できるなどの利点がある。    The FZ method is a method in which a silicon raw material rod is heated and melted to a core in a narrow area in a short time to form a floating zone, and a single crystal is grown from this floating zone, and a quartz crucible is not used. There are advantages such as low contamination of impurities such as heavy metals, and growth of high resistivity single crystals.

FZ法でシリコン原料棒を狭小域において短時間に芯まで溶融するためには、その誘導加熱コイルに高電流を発生させる必要がある。しかし、誘導加熱コイルの電源端子間に高電圧を印加すると、単結晶成長中に誘導加熱コイルのスリットで放電が発生し、結晶の無転位化を阻害するという問題があった。このため、誘導加熱コイルのスリット部に窒素ガスを吹き付け、誘導加熱コイルのスリットで生じる放電を効果的に防止するシリコン単結晶の製造方法が開示されている(例えば、特許文献1参照)。   In order to melt the silicon raw material rod to the core in a narrow range in a short time by the FZ method, it is necessary to generate a high current in the induction heating coil. However, when a high voltage is applied between the power supply terminals of the induction heating coil, there is a problem that discharge is generated at the slit of the induction heating coil during single crystal growth, thereby preventing dislocation of the crystal. For this reason, the manufacturing method of the silicon single crystal which sprays nitrogen gas to the slit part of an induction heating coil, and prevents effectively the electric discharge which arises in the slit of an induction heating coil is disclosed (for example, refer patent document 1).

この特許文献1の発明では、窒素ガスをスリット部へ局所的に流すことで、スリット部近傍の温度が低下することから荷電粒子の発生を抑制するとともに、スリットに発生した荷電粒子をガスで吹き飛ばすことで除去し、この結果、誘導加熱コイルのスリットで生じる放電を効果的に防止している。この特許文献1には、誘導加熱コイルのスリット部に吹き付けるガスの流量を、10mL/min〜1L/minとするのが好ましいことが記載され、その実施例1〜3及び比較例1では、それぞれチャンバー内窒素ガス濃度を0.1%の一定濃度に設定してシリコン単結晶を製造している。   In the invention of this Patent Document 1, by locally flowing nitrogen gas to the slit portion, the temperature in the vicinity of the slit portion is lowered, so that the generation of charged particles is suppressed and the charged particles generated in the slit are blown off with the gas. As a result, the discharge generated in the slit of the induction heating coil is effectively prevented. Patent Document 1 describes that the flow rate of the gas blown to the slit portion of the induction heating coil is preferably 10 mL / min to 1 L / min. In Examples 1 to 3 and Comparative Example 1, A silicon single crystal is manufactured by setting the nitrogen gas concentration in the chamber to a constant concentration of 0.1%.

一方、 FZ法を用いてシリコン単結晶を製造する際に、浮遊帯域近傍の赤熱したシリコン原料棒に窒素と高純度アルゴンとの混合ガスをノズルを通して吹き付け、表面が窒化されたシリコン原料棒を溶融することによりシリコン単結晶に窒素を添加し、シリコン単結晶における結晶欠陥の発生を抑制する方法が開示されている(例えば、特許文献2参照)。この特許文献2の発明では、シリコン原料棒に対する窒素と高純度アルゴンとの混合ガスの吹き付け時間を調整し、窒素の総吹き付け量を1.0×1022〜6.0×1023atomsとすることにより、シリコン単結晶に添加する窒素濃度を制御し、結晶欠陥の発生を抑制するとともに、窒素の過剰添加による単結晶の有転位化を回避している。この結晶欠陥として、特許文献2の実施例にはフローパターン欠陥を示している。このフローパターン欠陥はシリコン単結晶のD欠陥と呼ばれる空洞状のボイド欠陥(空孔型点欠陥の凝集体)である。 On the other hand, when manufacturing a silicon single crystal using the FZ method, a mixed gas of nitrogen and high-purity argon is blown through a nozzle onto a red hot silicon raw material rod in the vicinity of the floating zone to melt the silicon raw material rod whose surface is nitrided Thus, a method is disclosed in which nitrogen is added to a silicon single crystal to suppress generation of crystal defects in the silicon single crystal (see, for example, Patent Document 2). In the invention of Patent Document 2, the spraying time of the mixed gas of nitrogen and high purity argon on the silicon raw material rod is adjusted, and the total spraying amount of nitrogen is 1.0 × 10 22 to 6.0 × 10 23 atoms. As a result, the concentration of nitrogen added to the silicon single crystal is controlled to suppress generation of crystal defects, and avoid dislocation of the single crystal due to excessive addition of nitrogen. As this crystal defect, the flow pattern defect is shown in the Example of patent document 2. FIG. This flow pattern defect is a void defect (agglomerated hole type point defect) called a D defect of a silicon single crystal.

特許文献2には、窒素の総吹き付け量を上記範囲にする理由として、窒素とアルゴンとの混合ガス雰囲気中でシリコン単結晶の育成を続けていると、窒素が供給され続けるが、窒素のシリコンに対する偏析係数が7×10−4と小さいため、シリコン融液中の窒素濃度が増加して、シリコン単結晶中の窒素の固溶度が4.5×1015atoms/cmを超えて、単結晶の有転位化が起きるからと記載されている。特許文献2の発明では、窒素の総吹き付け量を、実施例1〜4でそれぞれ5.0×1022atoms,1.0×1023atoms,2.0×1023atoms,4.0×1023atomsに設定し、また比較例2、3でそれぞれ2.0×1021atoms,1.0×1024atomsに設定している。即ち、シリコン単結晶の育成中、窒素の総吹き付け量を一定に設定している。 In Patent Document 2, as the reason for setting the total amount of nitrogen to be blown within the above range, if silicon single crystal is continuously grown in a mixed gas atmosphere of nitrogen and argon, nitrogen is continuously supplied. Since the segregation coefficient with respect to is as small as 7 × 10 −4 , the nitrogen concentration in the silicon melt increases, and the solid solubility of nitrogen in the silicon single crystal exceeds 4.5 × 10 15 atoms / cm 3 , It is described that dislocation of a single crystal occurs. In the invention of Patent Document 2, the total amount of nitrogen sprayed is 5.0 × 10 22 atoms, 1.0 × 10 23 atoms, 2.0 × 10 23 atoms, and 4.0 × 10 in Examples 1 to 4, respectively. It is set to 23 atoms, and in Comparative Examples 2 and 3, it is set to 2.0 × 10 21 atoms and 1.0 × 10 24 atoms, respectively. That is, during the growth of the silicon single crystal, the total amount of nitrogen sprayed is set constant.

特開2007−112640号公報(請求項1、請求項16、段落[0005]、段落[0011]、段落[0065]〜段落[0071])JP 2007-112640 A (Claim 1, Claim 16, Paragraph [0005], Paragraph [0011], Paragraph [0065] to Paragraph [0071]) 特開平9−286688号公報(請求項1、請求項2、段落[0007]、段落[0014]、段落[0016]、段落[0018]〜段落[0020])JP-A-9-286688 (Claim 1, Claim 2, Paragraph [0007], Paragraph [0014], Paragraph [0016], Paragraph [0018] to Paragraph [0020])

近年、シリコン原料の仕込み量を増加させて長尺の棒状のシリコン単結晶を製造するようになっている。長尺のシリコン単結晶を、前述したように、スリット等での放電を防止し、かつ結晶欠陥の発生を抑制するために、窒素を供給し続けて育成した場合、特許文献2に記載されているように、単結晶のボトムコーン側直胴部は窒素濃度が過多となり有転位化する。この単結晶のボトムコーン側直胴部の有転位化を回避するために、特許文献2の発明のように、窒素ガスの供給量を一定に設定し、そのうえで育成初期の窒素ガスの供給量を少量にした場合、単結晶のボトムコーン側直胴部の窒素濃度の過多は防止できる一方、単結晶のトップコーン側直胴部において、窒素ドープ量が少なくなり過ぎ、窒素ドープによるボイド欠陥の発生を抑制できない。ボイド欠陥を生じたシリコン単結晶から作られたシリコンウェーハは高耐圧パワーデバイス用には使用できない。その結果、有転位化したボトムコーン側直胴部とボイド欠陥を生じたトップコーン側直胴部は製品として用いることができず、シリコン単結晶を長尺で製造しても、その製品化率を高くできない問題があった。   In recent years, a long rod-shaped silicon single crystal has been produced by increasing the amount of silicon raw material charged. As described above, when a long silicon single crystal is grown by continuously supplying nitrogen in order to prevent discharge at a slit or the like and to suppress generation of crystal defects, it is described in Patent Document 2. As shown in the figure, the straight cone portion of the single crystal bottom cone side has an excessive nitrogen concentration and undergoes dislocation. In order to avoid the dislocation of the bottom cone side barrel of this single crystal, as in the invention of Patent Document 2, the supply amount of nitrogen gas is set constant, and then the supply amount of nitrogen gas at the initial stage of growth is reduced. When a small amount is used, excessive nitrogen concentration in the straight cone part of the bottom cone side of the single crystal can be prevented, but in the straight cylinder part of the top cone side of the single crystal, the amount of nitrogen doping becomes too small and void defects are generated due to nitrogen doping. Can not be suppressed. Silicon wafers made from silicon single crystals with void defects cannot be used for high voltage power devices. As a result, the bottom cone side barrel with dislocations and the top cone side barrel with void defects cannot be used as products. There was a problem that could not be raised.

本発明の第1の目的は、誘導加熱コイルのスリット等での放電を防止し、単結晶のトップコーン側直胴部とボトムコーン側直胴部の窒素濃度のばらつきを低減して、有転位化部分とボイド欠陥という結晶欠陥を生じさせないシリコン単結晶の製造方法を提供することにある。本発明の第2の目的は、シリコン原料の仕込み量の増加に伴う長尺化したシリコン単結晶の有転位化部分とボイド欠陥という結晶欠陥のない製品化率を高めるシリコン単結晶の製造方法を提供することにある。   The first object of the present invention is to prevent discharge at the slit of the induction heating coil, reduce the variation in nitrogen concentration of the single crystal top cone side barrel and bottom cone side barrel, and It is an object of the present invention to provide a method for producing a silicon single crystal that does not cause crystal defects such as crystallization and void defects. The second object of the present invention is to provide a method for producing a silicon single crystal which increases the productization rate without crystal defects such as dislocations and void defects in the elongated silicon single crystal accompanying an increase in the amount of silicon raw material charged. It is to provide.

本発明の第1の観点は、浮遊帯域溶融法による単結晶製造装置を用いてシリコン単結晶を製造する際に、窒素とアルゴンとの混合ガスを炉内に供給してシリコン単結晶の製造方法であって、前記シリコン単結晶の育成中に前記混合ガス中の窒素濃度を変化させてシリコン単結晶の直胴部の窒素濃度が2.0×1014atoms/cm以上4.0×1015atoms/cm以下、好ましくは4.0×1014atoms/cm以上1.0×1015atoms/cm以下の範囲内になるように前記シリコン単結晶を育成することを特徴とする。 A first aspect of the present invention is a method for producing a silicon single crystal by supplying a mixed gas of nitrogen and argon into a furnace when producing a silicon single crystal using a single crystal production apparatus based on a floating zone melting method. The nitrogen concentration in the mixed gas is changed during the growth of the silicon single crystal so that the nitrogen concentration in the straight body portion of the silicon single crystal is 2.0 × 10 14 atoms / cm 3 or more and 4.0 × 10. The silicon single crystal is grown so as to be within a range of 15 atoms / cm 3 or less, preferably 4.0 × 10 14 atoms / cm 3 or more and 1.0 × 10 15 atoms / cm 3 or less. .

本発明の第2の観点は、第1の観点に基づく発明であって、前記シリコン単結晶の直胴部を育成する際に、前記直胴部の終端での窒素ガス供給量を前記直胴部の始端での供給量より少なくなるように調整することを特徴とする。   A second aspect of the present invention is the invention based on the first aspect, wherein when the straight body portion of the silicon single crystal is grown, the amount of nitrogen gas supplied at the end of the straight body portion is determined as the straight body. It adjusts so that it may become less than the supply amount in the start end of a part.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、前記単結晶製造装置は、窒素ガスを供給するための少なくとも第1及び第2の2つの供給管を備え、前記第1及び/又は第2供給管により炉内に窒素ガスを供給することを特徴とする。   A third aspect of the present invention is the invention based on the first or second aspect, wherein the single crystal manufacturing apparatus includes at least first and second supply pipes for supplying nitrogen gas. The nitrogen gas is supplied into the furnace through the first and / or second supply pipes.

本発明の第4の観点は、第3の観点の発明であって、前記第2供給管による窒素ガスの供給が前記単結晶のトップコーン部においてのみ行われることを特徴とする。   A fourth aspect of the present invention is the invention of the third aspect, characterized in that the supply of nitrogen gas through the second supply pipe is performed only in the top cone portion of the single crystal.

本発明の第5の観点は、第3又は第4の観点の発明であって、前記単結晶直径に応じて前記第2供給管による窒素ガスの供給量を変えることにより、単結晶内に取り込まれる窒素量を調整することを特徴とする。   A fifth aspect of the present invention is the invention of the third or fourth aspect, wherein the nitrogen gas is supplied into the single crystal by changing the supply amount of nitrogen gas through the second supply pipe according to the single crystal diameter. The amount of nitrogen produced is adjusted.

本発明の第6の観点は、第3ないし第5の観点のいずれかの観点の発明であって、前記単結晶直径に応じて前記第2供給管による窒素ガスの供給時間を変えることにより、単結晶内に取り込まれる窒素量を調整することを特徴とする。   A sixth aspect of the present invention is the invention according to any one of the third to fifth aspects, wherein the supply time of the nitrogen gas through the second supply pipe is changed according to the single crystal diameter, The amount of nitrogen taken into the single crystal is adjusted.

本発明の第7の観点は、浮遊帯域溶融法によるシリコン単結晶の製造装置であって、炉内に窒素ガスを供給する少なくとも2つの供給管を備え、かつ前記少なくとも2つの供給管が前記炉内への窒素ガスの供給量を独立して調整可能に構成されたことを特徴とする。   A seventh aspect of the present invention is an apparatus for producing a silicon single crystal by a floating zone melting method, comprising at least two supply pipes for supplying nitrogen gas into the furnace, wherein the at least two supply pipes are the furnace. It is characterized in that the supply amount of nitrogen gas into the inside can be adjusted independently.

本発明の第1の観点の製造方法では、FZ法による単結晶製造装置の炉内に窒素とアルゴンとの混合ガスを供給することにより、シリコン原料棒の表面に窒化物の薄膜が形成され、シリコン原料棒の溶融とともに融液シリコン中に窒素が溶解し、シリコン単結晶中に窒素が取り込まれる(ドープされる)。またシリコン単結晶の育成中に混合ガス中の窒素濃度を変化させてシリコン単結晶の直胴部の窒素濃度が2.0×1014atoms/cm以上4.0×1015atoms/cm以下の範囲内になるようにシリコン単結晶を育成するため、育成中の窒素濃度のばらつきが減少する。シリコン単結晶の直胴部の窒素濃度が2.0×1014atoms/cm以上になるように窒素をドープするため、シリコン単結晶中にボイド欠陥がなくなり、またシリコン単結晶の直胴部の窒素濃度が4.0×1015atoms/cm以下になるように窒素を単結晶中に取り込む(ドープする)ため、シリコン単結晶の有転位化が抑制され、シリコン単結晶の製品化率を高めることができる。また好ましくは4.0×1014atoms/cm以上1.0×1015atoms/cm以下の範囲内にすることにより、トップコーン側直胴部のボイド欠陥がより一層消滅し、かつボトムコーン側直胴部の有転位化がより一層抑制され、シリコン単結晶の製品化率をより高めることができる。 In the manufacturing method of the first aspect of the present invention, by supplying a mixed gas of nitrogen and argon into the furnace of the single crystal manufacturing apparatus by the FZ method, a nitride thin film is formed on the surface of the silicon raw material rod, As the silicon raw material rod is melted, nitrogen is dissolved in the melted silicon, and nitrogen is taken into (doped) into the silicon single crystal. Further, the nitrogen concentration in the mixed gas is changed during the growth of the silicon single crystal so that the nitrogen concentration in the straight body portion of the silicon single crystal is 2.0 × 10 14 atoms / cm 3 or more and 4.0 × 10 15 atoms / cm 3. Since the silicon single crystal is grown so as to be within the following range, variation in the nitrogen concentration during the growth is reduced. Since nitrogen is doped so that the nitrogen concentration in the straight body portion of the silicon single crystal is 2.0 × 10 14 atoms / cm 3 or more, void defects are eliminated in the silicon single crystal, and the straight body portion of the silicon single crystal Nitrogen is incorporated (doped) into the single crystal so that the nitrogen concentration of the silicon becomes 4.0 × 10 15 atoms / cm 3 or less, so that the dislocation of the silicon single crystal is suppressed, and the product rate of the silicon single crystal is reduced. Can be increased. Preferably, the void defect in the top cone side straight body portion is further eliminated by setting the thickness within the range of 4.0 × 10 14 atoms / cm 3 or more and 1.0 × 10 15 atoms / cm 3 or less, and the bottom It is possible to further suppress the dislocation of the cone-side straight body portion and further increase the product rate of the silicon single crystal.

本発明の第2の観点の製造方法では、シリコン単結晶の直胴部を育成する際に、この直胴部の終端での窒素ガス供給量を直胴部の始端での供給量より少なくなるように調整することにより、トップコーン側直胴部での窒素ドープ量不足によるボイド欠陥がなくなるとともに、ボトムコーン側直胴部での窒素ドープ過多による単結晶の有転位化を防止することができる。   In the manufacturing method according to the second aspect of the present invention, when the straight body portion of the silicon single crystal is grown, the supply amount of nitrogen gas at the end of the straight body portion is less than the supply amount at the start end of the straight body portion. By adjusting as described above, void defects due to insufficient nitrogen doping amount in the top cone side straight body portion can be eliminated, and dislocation of the single crystal due to excessive nitrogen doping in the bottom cone side straight body portion can be prevented. .

本発明の第3の観点の製造方法では、単結晶製造装置が窒素ガスを供給するための少なくとも第1及び第2の2つの供給管を備え、この第1及び/又は第2供給管により炉内に窒素ガスを供給することにより、効率的に窒素供給量を調整することができる。   In the manufacturing method of the third aspect of the present invention, the single crystal manufacturing apparatus includes at least first and second supply pipes for supplying nitrogen gas, and the first and / or second supply pipes provide a furnace. By supplying nitrogen gas into the inside, the nitrogen supply amount can be adjusted efficiently.

本発明の第4の観点の製造方法では、第2供給管による窒素ガスの供給を単結晶のトップコーン部においてのみ行うことにより、第2の観点の方法と同様に、トップコーン側直胴部での窒素ドープ量不足によるボイド欠陥がなくなるとともに、第1供給管の窒素供給量を変化させることによりボトムコーン側直胴部での窒素ドープ過多による単結晶の有転位化を防止することができる。   In the manufacturing method according to the fourth aspect of the present invention, the supply of nitrogen gas through the second supply pipe is performed only at the top cone portion of the single crystal, so that the top cone side straight body portion is the same as the method according to the second aspect. Void defects due to insufficient nitrogen doping at the bottom are eliminated, and dislocation of the single crystal due to excessive nitrogen doping in the bottom cone side straight body can be prevented by changing the nitrogen supply amount of the first supply pipe. .

本発明の第5の観点の製造方法では、作製する単結晶直径に応じて第2供給管による窒素ガスの供給量を変えて、単結晶内に取り込まれる窒素量を調整することにより、育成されるシリコン単結晶の直径方向における窒素濃度を均一にすることができる。   In the manufacturing method according to the fifth aspect of the present invention, it is grown by adjusting the amount of nitrogen taken into the single crystal by changing the supply amount of nitrogen gas through the second supply pipe according to the diameter of the single crystal to be manufactured. The nitrogen concentration in the diameter direction of the silicon single crystal can be made uniform.

本発明の第6の観点の製造方法では、作製する単結晶直径に応じて第2供給管による窒素ガスの供給時間を変えて、単結晶内に取り込まれる窒素量を調整することにより、第4の観点の方法と同様に、育成されるシリコン単結晶の直径方向における窒素濃度を均一にすることができる。   In the manufacturing method according to the sixth aspect of the present invention, the amount of nitrogen taken into the single crystal is adjusted by changing the supply time of the nitrogen gas through the second supply pipe according to the diameter of the single crystal to be produced. Similarly to the method of this aspect, the nitrogen concentration in the diameter direction of the grown silicon single crystal can be made uniform.

本発明の第7の観点の製造装置では、少なくとも2つの供給管でそれぞれ独立して炉内に窒素ガスを供給することにより、効率的に窒素供給量を調整することができる。   In the manufacturing apparatus according to the seventh aspect of the present invention, the nitrogen supply amount can be adjusted efficiently by supplying nitrogen gas into the furnace independently with at least two supply pipes.

本発明の実施形態に係るFZ法による単結晶製造装置の構成図である。It is a block diagram of the single-crystal manufacturing apparatus by FZ method which concerns on embodiment of this invention. 比較例1のシリコン単結晶の結晶長に応じた結晶中の窒素濃度の変化状況を示す図である。It is a figure which shows the change condition of the nitrogen concentration in the crystal | crystallization according to the crystal length of the silicon single crystal of the comparative example 1. 比較例1及び2のシリコン単結晶の結晶長に応じた結晶中の窒素濃度の変化状況を示す図である。It is a figure which shows the change condition of the nitrogen concentration in the crystal | crystallization according to the crystal length of the silicon single crystal of the comparative examples 1 and 2. FIG. 実施例1〜3のシリコン単結晶の結晶長に応じた結晶中の窒素濃度の変化状況を示す図である。It is a figure which shows the change condition of the nitrogen concentration in the crystal | crystallization according to the crystal length of the silicon single crystal of Examples 1-3.

次に本発明を実施するための形態を図面を参照して説明する。   Next, embodiments for carrying out the present invention will be described with reference to the drawings.

以下、本発明の実施形態について図面を参照して説明するが、本発明はこれらに限定されるものではない。図1に示すように、FZ単結晶製造装置10は、シリコン原料棒11と育成後の棒状のシリコン単結晶12とを収容する炉13を有する。シリコン原料棒11としては、シリコン多結晶棒、途中まで育成したFZシリコン単結晶棒、CZ法(チョクラルスキー法)で作製したシリコン単結晶棒等が挙げられる。この炉13内にはシリコン原料棒11とシリコン単結晶12との間に浮遊帯域12aを形成するための熱源となるスリットを有するリング状の誘導加熱コイル14が設けられる。この炉13内には窒素とアルゴンの混合ガスがガス供給口16から供給される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. As shown in FIG. 1, the FZ single crystal manufacturing apparatus 10 includes a furnace 13 that accommodates a silicon raw material rod 11 and a grown rod-shaped silicon single crystal 12. Examples of the silicon raw material rod 11 include a silicon polycrystalline rod, an FZ silicon single crystal rod grown halfway, a silicon single crystal rod produced by the CZ method (Czochralski method), and the like. In the furnace 13, a ring-shaped induction heating coil 14 having a slit serving as a heat source for forming the floating zone 12 a between the silicon raw material rod 11 and the silicon single crystal 12 is provided. A mixed gas of nitrogen and argon is supplied into the furnace 13 from the gas supply port 16.

また炉13内には、シリコン原料棒11を保持する上部保持治具17、種結晶18を保持する下部保持治具19、シリコン原料棒11を上下移動、回転させるための上軸21、育成した棒状のシリコン単結晶12を上下移動、回転させるための下軸22が設けられる。更に炉13の上部には、炉内のガスを排出するガス排出口24が設けられる。なお、図1ではシリコン原料棒11の回転中心となる上軸21と、シリコン単結晶12の回転中心となる下軸22とを同一軸線上に設けたが、上軸21と下軸22をずらして(偏芯させて)単結晶を育成することもできる。このように両中心をずらした場合、単結晶化の際に溶融部が攪拌され、製造する単結晶の品質を均一化することができる。偏芯量は単結晶の直径に応じて適宜設定される。   Also, in the furnace 13, an upper holding jig 17 for holding the silicon raw material rod 11, a lower holding jig 19 for holding the seed crystal 18, an upper shaft 21 for moving the silicon raw material rod 11 up and down and rotating it were grown. A lower shaft 22 is provided for vertically moving and rotating the rod-shaped silicon single crystal 12. Further, a gas discharge port 24 for discharging the gas in the furnace is provided at the upper part of the furnace 13. In FIG. 1, the upper shaft 21 serving as the rotation center of the silicon raw material rod 11 and the lower shaft 22 serving as the rotation center of the silicon single crystal 12 are provided on the same axis, but the upper shaft 21 and the lower shaft 22 are shifted. Single crystal can be grown. When both centers are shifted in this way, the melted part is stirred during the single crystallization, and the quality of the produced single crystal can be made uniform. The amount of eccentricity is appropriately set according to the diameter of the single crystal.

窒素とアルゴンの混合ガスを供給するためのガス供給口16は誘導加熱コイル14近傍の炉壁、例えば誘導加熱コイル14とほぼ同一レベルの炉壁に設けられる。このガス供給口16から炉内に導入された混合ガスはスリットのみならず、浮遊帯域近傍の赤熱したシリコン原料棒11にも供給される。   A gas supply port 16 for supplying a mixed gas of nitrogen and argon is provided in a furnace wall in the vicinity of the induction heating coil 14, for example, a furnace wall at substantially the same level as the induction heating coil 14. The mixed gas introduced into the furnace from the gas supply port 16 is supplied not only to the slits but also to the red hot silicon raw material rod 11 near the floating zone.

炉13外には、高周波発振機25が設けられ、その出力は上記誘導加熱コイル14の一対の電源端子(図示せず)に接続される。また炉13外には、高純度のアルゴンガス源と窒素ガス源が設けられる。アルゴンガス源には主供給管26が接続され、主供給管26は炉13内に臨むガス供給口16に接続される。主供給管26には流量計27が設けられる。この流量計27は、例えば10〜50L/minの範囲のアルゴンガスが流れるように設定される。また窒素ガス源には第1供給管31とこの第1供給管31から分岐した第2供給管32が接続される。第1供給管31と第2供給管32は併合して主供給管26に接続される。第1供給管31は誘導加熱コイル14のスリット等での放電を防止するために窒素ガスを供給するために配管され、第2供給管32は結晶欠陥の発生を抑制するために窒素ガスを供給する配管されている。第1供給管31には電磁弁33と第1供給管内の窒素ガスの流量を計測する流量計34が設けられ、第2供給管32には電磁弁36と第2供給管内の窒素ガスの流量を計測する流量計37が設けられる。第1供給管31の流量計34は、例えば1〜50mL/minの範囲の窒素ガスが流れるように設定され、第2供給管32の流量計37は、例えば0〜100mL/minの範囲の窒素ガスが流れるように設定される。電磁弁33と36には制御部40の制御出力が接続される。なお、上述した流量計27、34、37の代わりに、それぞれマスフローメータを用いてもよい。第2供給管32により欠陥消滅用窒素ガスを供給する場合には、作製する単結晶の直径に応じて、欠陥消滅用窒素ガスの供給量又は供給時間を変えるか、或いはシリコン原料棒の直径に応じて、欠陥消滅用窒素ガスの供給量又は供給時間を変えることが好ましい。具体的には単結晶の直径が大きくなる程、上記窒素ガスの供給量を多くするか、又は供給時間を長くする。また作製する単結晶の直径を大きくしなくても、シリコン原料棒の直径が大きい程、窒素ガスの供給量を少なくするか、又は供給時間を短くする必要がある。こうすることにより、単結晶内に取り込まれる窒素量を所望の値に調整することができる。   A high frequency oscillator 25 is provided outside the furnace 13, and its output is connected to a pair of power supply terminals (not shown) of the induction heating coil 14. In addition, a high-purity argon gas source and a nitrogen gas source are provided outside the furnace 13. A main supply pipe 26 is connected to the argon gas source, and the main supply pipe 26 is connected to the gas supply port 16 facing the furnace 13. The main supply pipe 26 is provided with a flow meter 27. The flow meter 27 is set so that an argon gas in a range of, for example, 10 to 50 L / min flows. Further, a first supply pipe 31 and a second supply pipe 32 branched from the first supply pipe 31 are connected to the nitrogen gas source. The first supply pipe 31 and the second supply pipe 32 are merged and connected to the main supply pipe 26. The first supply pipe 31 is piped to supply nitrogen gas to prevent discharge at the slit of the induction heating coil 14, and the second supply pipe 32 supplies nitrogen gas to suppress the generation of crystal defects. Piping to be done. The first supply pipe 31 is provided with an electromagnetic valve 33 and a flow meter 34 for measuring the flow rate of nitrogen gas in the first supply pipe. The second supply pipe 32 is provided with a flow rate of nitrogen gas in the electromagnetic valve 36 and the second supply pipe. A flow meter 37 for measuring is provided. The flow meter 34 of the first supply pipe 31 is set so that, for example, nitrogen gas in the range of 1 to 50 mL / min flows, and the flow meter 37 of the second supply pipe 32 is, for example, nitrogen in the range of 0 to 100 mL / min. The gas is set to flow. A control output of the control unit 40 is connected to the electromagnetic valves 33 and 36. A mass flow meter may be used instead of the flow meters 27, 34, and 37 described above. When supplying the defect elimination nitrogen gas through the second supply pipe 32, the supply amount or supply time of the defect elimination nitrogen gas is changed according to the diameter of the single crystal to be produced, or the diameter of the silicon raw material rod is changed. Accordingly, it is preferable to change the supply amount or supply time of the nitrogen gas for eliminating defects. Specifically, as the diameter of the single crystal increases, the supply amount of the nitrogen gas is increased or the supply time is lengthened. Even if the diameter of the single crystal to be produced is not increased, it is necessary to reduce the supply amount of nitrogen gas or shorten the supply time as the diameter of the silicon raw material rod is increased. By doing so, the amount of nitrogen taken into the single crystal can be adjusted to a desired value.

このように構成されたFZ単結晶製造装置10を用いたシリコン単結晶の製造方法について説明する。先ず、シリコン原料棒11の溶融を開始する部分をコーン形状に加工し、加工歪みを除去するために表面のエッチングを行う。その後、図1に示すFZ法による単結晶製造装置10の炉13内にシリコン原料棒11を収容し、炉13内に設置された上軸21の上部保持治具17にこのシリコン原料棒11をネジ等で固定する。一方、下軸22の下部保持治具19にはシリコン単結晶からなる目的結晶方位を有する種結晶18を取り付ける。   A silicon single crystal manufacturing method using the FZ single crystal manufacturing apparatus 10 configured as described above will be described. First, the part where the silicon raw material rod 11 starts melting is processed into a cone shape, and the surface is etched to remove the processing distortion. Thereafter, the silicon raw material rod 11 is accommodated in the furnace 13 of the single crystal manufacturing apparatus 10 by the FZ method shown in FIG. 1, and the silicon raw material rod 11 is placed on the upper holding jig 17 of the upper shaft 21 installed in the furnace 13. Secure with screws. On the other hand, a seed crystal 18 having a target crystal orientation made of a silicon single crystal is attached to the lower holding jig 19 of the lower shaft 22.

次いで、主供給管26から流量計27で計測された所定流量のアルゴンガスを炉13内に導入しながら、高周波発振機25により誘導加熱コイル14に高周波電流を流すことにより、シリコン原料棒11の一端部を溶融させて、その融液に種結晶18を融着させる。その後、種絞りにより絞り部15を形成して無転位化を図り、溶融したシリコンを凝固させつつ単結晶を育成する。上軸21と下軸22を互いに反対方向に回転させながら、シリコン原料棒11を誘導加熱コイル14に対して軸線方向に相対移動させると同時に、溶融部を融着部からシリコン原料棒11の他端部に向けて徐々に移動させて単結晶化する。続いてシリコン原料棒11とこうして作製されたシリコン単結晶12を下降させることにより浮遊帯域12aをシリコン原料棒11と棒状のシリコン単結晶12の間に形成し、この浮遊帯域12aをシリコン原料棒11の他端部まで一定速度、例えば1〜4mm/分の範囲内の一定速度で移動させて、シリコン単結晶12を育成する。   Next, a high-frequency current is caused to flow through the induction heating coil 14 by the high-frequency oscillator 25 while introducing a predetermined flow rate of argon gas measured by the flow meter 27 from the main supply pipe 26 into the furnace 13. One end is melted, and the seed crystal 18 is fused to the melt. Thereafter, a narrowed portion 15 is formed by seed drawing to eliminate dislocation, and a single crystal is grown while solidifying molten silicon. While rotating the upper shaft 21 and the lower shaft 22 in directions opposite to each other, the silicon raw material rod 11 is moved relative to the induction heating coil 14 in the axial direction, and at the same time, the melting portion is moved from the fusion portion to the silicon raw material rod 11. Single crystallized by gradually moving toward the edge. Subsequently, by lowering the silicon raw material rod 11 and the silicon single crystal 12 thus produced, a floating zone 12a is formed between the silicon raw material rod 11 and the rod-shaped silicon single crystal 12, and this floating zone 12a is formed on the silicon raw material rod 11. The silicon single crystal 12 is grown at a constant speed, for example, a constant speed within a range of 1 to 4 mm / min.

このシリコン単結晶12の育成中には、窒素とアルゴンとの混合ガスが主供給管26及びガス供給口16から炉13内に供給される。予め、放電防止用窒素濃度や欠陥消滅用窒素濃度、窒素偏析係数、シリコン単結晶の直径、ゾーン長、シリコン原料棒の直径等に基づいた計算式により、育成される単結晶中に取り込まれる窒素濃度を予測することが可能である。この計算式に基づき、シリコン単結晶の直胴部の窒素濃度が2.0×1014atoms/cm以上4.0×1015atoms/cm以下の範囲内、好ましくは4.0×1014atoms/cm以上1.0×1015atoms/cm以下の範囲内になるように、放電防止用窒素濃度や欠陥消滅用窒素の濃度と供給時間が決められる。2.0×1014atoms/cm未満では、窒素のドープ量が少な過ぎ、シリコン単結晶中にボイド欠陥が残存する不具合がある。また窒素のドープ量が4.0×1015atoms/cmを超えると、シリコン単結晶が有転位化する不具合がある。 During the growth of the silicon single crystal 12, a mixed gas of nitrogen and argon is supplied into the furnace 13 from the main supply pipe 26 and the gas supply port 16. Nitrogen to be incorporated into the single crystal to be grown in advance by a calculation formula based on the nitrogen concentration for discharge prevention, the nitrogen concentration for defect elimination, the nitrogen segregation coefficient, the diameter of the silicon single crystal, the zone length, the diameter of the silicon raw material rod, etc. It is possible to predict the concentration. Based on this calculation formula, the nitrogen concentration in the straight body portion of the silicon single crystal is in the range of 2.0 × 10 14 atoms / cm 3 to 4.0 × 10 15 atoms / cm 3 , preferably 4.0 × 10. The concentration and supply time of the discharge preventing nitrogen and the defect extinguishing nitrogen are determined so as to be in the range of 14 atoms / cm 3 or more and 1.0 × 10 15 atoms / cm 3 or less. If it is less than 2.0 × 10 14 atoms / cm 3 , the doping amount of nitrogen is too small and void defects remain in the silicon single crystal. Further, when the doping amount of nitrogen exceeds 4.0 × 10 15 atoms / cm 3 , there is a problem that the silicon single crystal is dislocated.

次に、シリコン単結晶の育成開始から終了までの窒素とアルゴンとの混合ガスの供給について詳しく説明する。最初に、育成を開始してからの結晶送り速度や結晶径などの必要データが制御部40に入力される。育成速度は予め設定しているため、育成時間からシリコン単結晶の育成長(結晶長)を算出することができる。制御部40は、シリコン単結晶のトップコーン部が形成されていると判断するときには、第1供給管31の電磁弁33及び第2供給管32の電磁弁36の双方を、シリコン単結晶が目標とする結晶径に到達するまでの間、開く。流量計34及び37により予め決められた流量の窒素ガスが主供給管26に流れ込む。このときの混合ガス中の窒素濃度はアルゴンガス流量100%に対して0.05〜0.7%に調整される。これにより、ガス供給口16からは、誘導加熱コイル14のスリット等における放電を防止するに足りる窒素ガス量と、窒素ドープによりボイド欠陥を防ぐに足りる窒素ガス量を含んだ混合ガスが供給される。なお、育成初期のトップコーン部を形成し始める段階では、育成初期の窒素濃度過多を防ぐために、第2供給管32の電磁弁36を閉じておき、第1供給管31の電磁弁33のみ開いてもよい。   Next, supply of a mixed gas of nitrogen and argon from the start to the end of the growth of the silicon single crystal will be described in detail. First, necessary data such as a crystal feed rate and a crystal diameter after the growth is started is input to the control unit 40. Since the growth rate is set in advance, the growth length (crystal length) of the silicon single crystal can be calculated from the growth time. When the control unit 40 determines that the top cone portion of the silicon single crystal is formed, the silicon single crystal is the target for both the electromagnetic valve 33 of the first supply pipe 31 and the electromagnetic valve 36 of the second supply pipe 32. Open until the crystal diameter is reached. Nitrogen gas having a flow rate determined in advance by the flow meters 34 and 37 flows into the main supply pipe 26. The nitrogen concentration in the mixed gas at this time is adjusted to 0.05 to 0.7% with respect to 100% of the argon gas flow rate. As a result, the gas supply port 16 supplies a mixed gas containing an amount of nitrogen gas sufficient to prevent discharge in the slit of the induction heating coil 14 and a nitrogen gas amount sufficient to prevent void defects due to nitrogen doping. . At the stage of starting to form the top cone portion in the initial stage of growth, the electromagnetic valve 36 of the second supply pipe 32 is closed and only the electromagnetic valve 33 of the first supply pipe 31 is opened in order to prevent excessive nitrogen concentration in the initial stage of growth. May be.

制御部40は、シリコン単結晶が目標とする結晶径に到達して、シリコン単結晶のトップコーン部から直胴部の育成が開始されたと判断するときには、第2供給管32の電磁弁36のみ閉じ、第1供給管31の電磁弁33を開いたままにする。シリコン単結晶の育成が終了するまでの間、即ちボトムコーン部が形成されるまで、制御部40は電磁弁33の「開」の状態と電磁弁36の「閉」の状態を維持する。流量計34により予め決められた流量の窒素ガスが主供給管26に流れ込む。育成が続けられると、窒素が供給され続けるが、第2供給管32からの窒素ガスの供給を止めるか、又は第1供給管31からの窒素ガスの供給量を減少させることにより、浮遊帯域のシリコン融液中の窒素濃度の増加は抑制される。第1供給管31からの窒素ガスの供給量を減少させる場合、直胴部の終端での窒素ガス供給量を直胴部の始端での供給量より少なくなるように調整することが好ましい。このときの混合ガス中のアルゴンガス流量100%に対する窒素濃度は0.05〜0.1%に調整される。この窒素濃度は前述した通り、シリコン単結晶の窒素濃度が2.0×1014atoms/cm以上4.0×1015atoms/cm以下の範囲内に収まって、結晶内の長手方向の窒素濃度を均一にするために設定される。そして、炉13内に導入された混合ガスは、炉13上部のガス排出口24より排気される。 When the control unit 40 determines that the silicon single crystal has reached the target crystal diameter and the growth of the straight body portion is started from the top cone portion of the silicon single crystal, only the electromagnetic valve 36 of the second supply pipe 32 is determined. Close and keep the solenoid valve 33 of the first supply pipe 31 open. Until the growth of the silicon single crystal is completed, that is, until the bottom cone portion is formed, the control unit 40 maintains the “open” state of the electromagnetic valve 33 and the “closed” state of the electromagnetic valve 36. A nitrogen gas having a flow rate determined in advance by the flow meter 34 flows into the main supply pipe 26. If the growth is continued, nitrogen continues to be supplied, but the supply of nitrogen gas from the second supply pipe 32 is stopped or the supply amount of nitrogen gas from the first supply pipe 31 is reduced, thereby An increase in nitrogen concentration in the silicon melt is suppressed. When reducing the supply amount of nitrogen gas from the first supply pipe 31, it is preferable to adjust the supply amount of nitrogen gas at the end of the straight body portion to be smaller than the supply amount at the start end of the straight body portion. At this time, the nitrogen concentration with respect to 100% of the argon gas flow rate in the mixed gas is adjusted to 0.05 to 0.1%. As described above, the nitrogen concentration of the silicon single crystal falls within the range of 2.0 × 10 14 atoms / cm 3 or more and 4.0 × 10 15 atoms / cm 3 or less. It is set to make the nitrogen concentration uniform. The mixed gas introduced into the furnace 13 is exhausted from a gas discharge port 24 at the top of the furnace 13.

上述した制御部40における電磁弁33及び36の開閉制御により、第1供給管31及び第2供給管32による窒素ガス総供給量は、ボトムコーン側直胴部での窒素濃度が高くなり過ぎないように調整される。   By the opening / closing control of the electromagnetic valves 33 and 36 in the control unit 40 described above, the total nitrogen gas supply amount by the first supply pipe 31 and the second supply pipe 32 does not cause the nitrogen concentration in the bottom cone side straight body part to be too high. To be adjusted.

次に本発明の実施例を比較例とともに詳しく説明する。以下に説明する実施例及び比較例の各シリコン単結晶は実験的に育成したものである。   Next, examples of the present invention will be described in detail together with comparative examples. Each silicon single crystal of Examples and Comparative Examples described below is grown experimentally.

<比較例1>
図1に示す単結晶製造装置10により、シリコン原料棒11としてシリコン多結晶棒を用いてFZ法により、直径100mmのシリコン単結晶12を育成した。炉13内の圧力を定められた圧力に設定し、育成開始から終了まで第1供給管31の電磁弁33は開き続けた。流量計27を通過した主供給管26を流れるアルゴンガスの流量を100%とするときに、第1供給管31の流量計34により流量を0.1%に調整された窒素ガスをアルゴンガスに混合し、この混合ガスをガス供給口16から炉内に供給した。即ち、誘導加熱コイル14のスリット等での放電を防止するための混合ガス中の窒素ガス濃度が0.1%に設定された。育成初期には第2供給管32の電磁弁36を閉じておき、第1供給管31の電磁弁33のみ開いた。結晶長(テーパ長)がある結晶径に達したトップコーン部の育成段階で、ボイド欠陥を消滅させる目的で第1供給管31の電磁弁33の開放に加えて第2供給管32の電磁弁36を開放した。第2供給管32の流量計37を通過したアルゴンガス流量100%に対する窒素ドープ濃度が0.4%になるように窒素ガスを加えた。即ち混合ガス中の窒素濃度は0.5%に設定された。第2供給管32の電磁弁36を開放した状態で、窒素ドープの時間制御を行った。トップコーン部の形成が終了して目標結晶径になった直胴部に移行する段階で、第2供給管32の電磁弁36を閉じ、第1供給管31の電磁弁33のみを開いた状態にしてシリコン単結晶を育成した。第2供給管32の電磁弁36の開放時間(窒素ドープ時間)は30分であった。直胴部の始端から終端まで育成している間、アルゴンガス流量100%に対する窒素ドープ濃度が0.1%と一定になるように、第1供給管31の電磁弁33を開放し続けた。上述したシリコン単結晶を同一条件で3回育成した。
<Comparative Example 1>
A single crystal manufacturing apparatus 10 shown in FIG. 1 was used to grow a silicon single crystal 12 having a diameter of 100 mm by FZ method using a silicon polycrystal rod as the silicon raw material rod 11. The pressure in the furnace 13 was set to a predetermined pressure, and the electromagnetic valve 33 of the first supply pipe 31 continued to open from the start to the end of the growth. When the flow rate of the argon gas flowing through the main supply pipe 26 that has passed through the flow meter 27 is 100%, the nitrogen gas whose flow rate is adjusted to 0.1% by the flow meter 34 of the first supply pipe 31 is used as the argon gas. The mixed gas was supplied from the gas supply port 16 into the furnace. That is, the nitrogen gas concentration in the mixed gas for preventing discharge at the slit of the induction heating coil 14 was set to 0.1%. At the initial stage of growth, the electromagnetic valve 36 of the second supply pipe 32 was closed, and only the electromagnetic valve 33 of the first supply pipe 31 was opened. The electromagnetic valve of the second supply pipe 32 in addition to the opening of the electromagnetic valve 33 of the first supply pipe 31 for the purpose of eliminating void defects at the growth stage of the top cone portion where the crystal length (taper length) reaches a certain crystal diameter. 36 was opened. Nitrogen gas was added so that the nitrogen dope concentration with respect to 100% of the argon gas flow rate passing through the flow meter 37 of the second supply pipe 32 was 0.4%. That is, the nitrogen concentration in the mixed gas was set to 0.5%. With the electromagnetic valve 36 of the second supply pipe 32 opened, the nitrogen doping time was controlled. The state where the solenoid valve 36 of the second supply pipe 32 is closed and only the solenoid valve 33 of the first supply pipe 31 is opened at the stage where the formation of the top cone portion is completed and the transition is made to the straight body portion having the target crystal diameter. A silicon single crystal was grown. The opening time (nitrogen doping time) of the electromagnetic valve 36 of the second supply pipe 32 was 30 minutes. While growing from the start end to the end of the straight body portion, the electromagnetic valve 33 of the first supply pipe 31 was kept open so that the nitrogen dope concentration with respect to the argon gas flow rate of 100% was constant at 0.1%. The above-described silicon single crystal was grown three times under the same conditions.

<比較例2>
比較例1と同様に、育成開始から終了まで第1供給管31の電磁弁33は開き続けた。比較例1との相違点として第2供給管32の電磁弁36を開放したときの第2供給管32の流量計37を通過したアルゴンガス流量100%に対する窒素ドープ流量割合が0.55%になるように窒素ガスを加えた。即ち混合ガス中の窒素濃度は0.65%に設定した。またトップコーン部の形成が終了して目標結晶径の100mmになった直胴部に移行する段階で、第2供給管32の電磁弁36を閉じ、第1供給管31の電磁弁33のみを開いた状態にした。第2供給管32の電磁弁36の開放時間(窒素ドープ時間)は30分であった。それ以外は、比較例1と同様にして上述したシリコン単結晶を同一条件で3回育成した。
<Comparative example 2>
Similar to Comparative Example 1, the electromagnetic valve 33 of the first supply pipe 31 continued to open from the start to the end of the growth. The difference from Comparative Example 1 is that the ratio of the nitrogen dope flow rate to the argon gas flow rate of 100% passing through the flow meter 37 of the second supply pipe 32 when the electromagnetic valve 36 of the second supply pipe 32 is opened is 0.55%. Nitrogen gas was added so that That is, the nitrogen concentration in the mixed gas was set to 0.65%. In addition, at the stage where the formation of the top cone portion is completed and the process shifts to the straight body portion where the target crystal diameter is 100 mm, the electromagnetic valve 36 of the second supply pipe 32 is closed and only the electromagnetic valve 33 of the first supply pipe 31 is closed. Opened. The opening time (nitrogen doping time) of the electromagnetic valve 36 of the second supply pipe 32 was 30 minutes. Otherwise, the silicon single crystal described above was grown three times under the same conditions as in Comparative Example 1.

<実施例1>
比較例1との相違点として、まず、直胴部の長さを比較例1を100としたときに108の割合になるように原料質量を増加させた。また第2供給管32の電磁弁36を開放したときの第2供給管32の流量計37を通過したアルゴンガス流量100%に対する窒素ドープ流量割合が0.55%になるように窒素ガスを加えた。即ち混合ガス中の窒素濃度は0.65%に設定した。更にトップコーン部の形成が終了して目標結晶径の100mmになった直胴部に移行する段階で、第2供給管32の電磁弁36を閉じ、第1供給管31の電磁弁33のみを開いた状態にしシリコン単結晶を育成するが、直胴長手方向の窒素濃度上昇を抑えるため、直胴部の始端時の育成段階では窒素濃度を0.1%にし、そこから直胴部の終端時の育成段階で窒素濃度が0.05%になるように、第1供給管31の電磁弁33の開度を徐々に小さくした。第2供給管32の電磁弁36の開放時間(窒素ドープ時間)は30分であった。それ以外は、比較例1と同様にして上述したシリコン単結晶を同一条件で3回育成した。
<Example 1>
As a difference from Comparative Example 1, first, the raw material mass was increased so that the length of the straight body portion was 108 when Comparative Example 1 was set to 100. Also, nitrogen gas is added so that the nitrogen doping flow rate ratio with respect to 100% of the argon gas flow rate passing through the flow meter 37 of the second supply pipe 32 when the electromagnetic valve 36 of the second supply pipe 32 is opened is 0.55%. It was. That is, the nitrogen concentration in the mixed gas was set to 0.65%. Further, at the stage where the formation of the top cone portion is completed and the process shifts to the straight body portion where the target crystal diameter is 100 mm, the electromagnetic valve 36 of the second supply pipe 32 is closed, and only the electromagnetic valve 33 of the first supply pipe 31 is closed. The silicon single crystal is grown in an open state, but in order to suppress an increase in the nitrogen concentration in the longitudinal direction of the straight cylinder, the nitrogen concentration is set to 0.1% at the growth stage at the start of the straight cylinder, and from there the end of the straight cylinder The degree of opening of the electromagnetic valve 33 of the first supply pipe 31 was gradually reduced so that the nitrogen concentration became 0.05% at the time of growth. The opening time (nitrogen doping time) of the electromagnetic valve 36 of the second supply pipe 32 was 30 minutes. Otherwise, the silicon single crystal described above was grown three times under the same conditions as in Comparative Example 1.

<実施例2>
比較例1との相違点として、まず、直胴部の長さを比較例1を100としたときに108の割合になるように原料質量を増加させた。また第2供給管32の電磁弁36を開放したときの第2供給管32の流量計37を通過したアルゴンガス流量100%に対する窒素ドープ流量割合が0.5%になるように窒素ガスを加えた。即ち混合ガス中の窒素濃度は0.6%に設定した。更にトップコーン部の形成が終了して目標結晶径の100mmになった直胴部に移行する段階で、第2供給管32の電磁弁36を閉じ、第1供給管31の電磁弁33のみを開いた状態にしシリコン単結晶を育成するが、直胴長手方向の窒素濃度上昇を抑えるため、直胴部の始端時の育成段階では窒素濃度を0.1%にし、そこから直胴部の終端時の育成段階で窒素濃度が0.05%になるように、第1供給管31の電磁弁33の開度を徐々に小さくした。第2供給管32の電磁弁36の開放時間(窒素ドープ時間)は25分であった。それ以外は、比較例1と同様にして上述したシリコン単結晶を同一条件で3回育成した。
<Example 2>
As a difference from Comparative Example 1, first, the raw material mass was increased so that the length of the straight body portion was 108 when Comparative Example 1 was set to 100. Also, nitrogen gas is added so that the nitrogen doping flow rate ratio to 0.5% of the argon gas flow rate passing through the flow meter 37 of the second supply pipe 32 when the electromagnetic valve 36 of the second supply pipe 32 is opened is 0.5%. It was. That is, the nitrogen concentration in the mixed gas was set to 0.6%. Further, at the stage where the formation of the top cone portion is completed and the process shifts to the straight body portion where the target crystal diameter is 100 mm, the electromagnetic valve 36 of the second supply pipe 32 is closed, and only the electromagnetic valve 33 of the first supply pipe 31 is closed. The silicon single crystal is grown in an open state, but in order to suppress an increase in the nitrogen concentration in the longitudinal direction of the straight cylinder, the nitrogen concentration is set to 0.1% at the growth stage at the start of the straight cylinder, and from there the end of the straight cylinder The degree of opening of the electromagnetic valve 33 of the first supply pipe 31 was gradually reduced so that the nitrogen concentration became 0.05% at the time of growth. The opening time (nitrogen doping time) of the electromagnetic valve 36 of the second supply pipe 32 was 25 minutes. Otherwise, the silicon single crystal described above was grown three times under the same conditions as in Comparative Example 1.

<実施例3>
比較例1との相違点として、まず、直胴部の長さを比較例1を100としたときに108の割合になるように原料質量を増加させた。また第2供給管32の電磁弁36を開放したときの第2供給管32の流量計37を通過したアルゴンガス流量100%に対する窒素ドープ流量割合が0.6%になるように窒素ガスを加えた。即ち混合ガス中の窒素濃度は0.7%に設定した。更にトップコーン部の形成が終了して目標結晶径の100mmになった直胴部に移行する段階で、第2供給管32の電磁弁36を閉じ、第1供給管31の電磁弁33のみを開いた状態にしシリコン単結晶を育成するが、直胴長手方向の窒素濃度上昇を抑えるため、直胴部の始端時の育成段階では窒素濃度を0.1%にし、そこから直胴部の終端時の育成段階で窒素濃度が0.05%になるように、第1供給管31の電磁弁33の開度を徐々に小さくした。第2供給管32の電磁弁36の開放時間(窒素ドープ時間)は35分であった。それ以外は、比較例1と同様にして上述したシリコン単結晶を同一条件で3回育成した。
<Example 3>
As a difference from Comparative Example 1, first, the raw material mass was increased so that the length of the straight body portion was 108 when Comparative Example 1 was set to 100. Further, nitrogen gas is added so that the nitrogen doping flow rate ratio to 0.6% of the argon gas flow rate passing through the flow meter 37 of the second supply pipe 32 when the electromagnetic valve 36 of the second supply pipe 32 is opened is 0.6%. It was. That is, the nitrogen concentration in the mixed gas was set to 0.7%. Further, at the stage where the formation of the top cone portion is completed and the process shifts to the straight body portion where the target crystal diameter is 100 mm, the electromagnetic valve 36 of the second supply pipe 32 is closed, and only the electromagnetic valve 33 of the first supply pipe 31 is closed. The silicon single crystal is grown in an open state, but in order to suppress an increase in the nitrogen concentration in the longitudinal direction of the straight cylinder, the nitrogen concentration is set to 0.1% at the growth stage at the start of the straight cylinder, and from there the end of the straight cylinder The degree of opening of the electromagnetic valve 33 of the first supply pipe 31 was gradually reduced so that the nitrogen concentration became 0.05% at the time of growth. The opening time (nitrogen doping time) of the electromagnetic valve 36 of the second supply pipe 32 was 35 minutes. Otherwise, the silicon single crystal described above was grown three times under the same conditions as in Comparative Example 1.

<実施例4>
比較例1との相違点として、まず、直胴部の長さを比較例1を100としたときに108の割合になるように原料質量を増加させ、直胴部の直径を125mmに大きくした。また第2供給管32の電磁弁36を開放したときの第2供給管32の流量計37を通過したアルゴンガス流量100%に対する窒素ドープ流量割合が0.57%になるように窒素ガスを加えた。即ち混合ガス中の窒素濃度は0.67%に設定した。更にトップコーン部の形成が終了して目標結晶径の125mmになった直胴部に移行する段階で、第2供給管32の電磁弁36を閉じ、第1供給管31の電磁弁33のみを開いた状態にしシリコン単結晶を育成するが、直胴長手方向の窒素濃度上昇を抑えるため、直胴部の始端時の育成段階では窒素濃度を0.1%にし、そこから直胴部の終端時の育成段階で窒素濃度が0.05%になるように、第1供給管31の電磁弁33の開度を徐々に小さくした。第2供給管32の電磁弁36の開放時間(窒素ドープ時間)は40分であった。それ以外は、比較例1と同様にして上述したシリコン単結晶を同一条件で3回育成した。
<Example 4>
As a difference from Comparative Example 1, first, the raw material mass was increased to a ratio of 108 when the length of the straight body part was 100 as Comparative Example 1, and the diameter of the straight body part was increased to 125 mm. . Further, nitrogen gas is added so that the nitrogen doping flow rate ratio with respect to 100% of the argon gas flow rate passing through the flow meter 37 of the second supply pipe 32 when the electromagnetic valve 36 of the second supply pipe 32 is opened is 0.57%. It was. That is, the nitrogen concentration in the mixed gas was set to 0.67%. Further, at the stage where the formation of the top cone portion is completed and the process shifts to the straight body portion where the target crystal diameter is 125 mm, the electromagnetic valve 36 of the second supply pipe 32 is closed, and only the electromagnetic valve 33 of the first supply pipe 31 is closed. The silicon single crystal is grown in an open state, but in order to suppress an increase in the nitrogen concentration in the longitudinal direction of the straight cylinder, the nitrogen concentration is set to 0.1% at the growth stage at the start of the straight cylinder, and from there the end of the straight cylinder The degree of opening of the electromagnetic valve 33 of the first supply pipe 31 was gradually reduced so that the nitrogen concentration became 0.05% at the time of growth. The opening time (nitrogen doping time) of the electromagnetic valve 36 of the second supply pipe 32 was 40 minutes. Otherwise, the silicon single crystal described above was grown three times under the same conditions as in Comparative Example 1.

実施例1〜4及び比較例1、2の育成条件及びシリコン単結晶直胴部の製品化率を表1に示す。   Table 1 shows the growth conditions of Examples 1 to 4 and Comparative Examples 1 and 2 and the production rate of the silicon single crystal straight body part.

Figure 2017105650
Figure 2017105650

<比較試験及び評価>
(1) ボイド欠陥と有転位化の発生部分からの製品化率の算出
実施例1及び比較例1〜3で育成した棒状のシリコン単結晶をトップコーン部、直胴部及びボトムコーン部の各部位毎に軸線に垂直方向にスライスしてサンプルのシリコンウェーハを作製した。これらのシリコンウェーハにおけるボイド欠陥の有無をセコエッチによるフローパターン評価及び赤外トモグラフ評価による欠陥評価(例 レイテック社製MO441等)により測定し、また有転位化の有無については育成中の結晶を目視観察することにより判定した。上述したフローパターン評価方法は、インゴットをスライスして作製されたサンプルウェーハを選択エッチング(セコエッチング)液内で揺動させないで放置することにより、欠陥の周囲にさざなみ模様(フローパターン)を形成させることによって欠陥を顕在化させる、簡便な評価方法である。
<Comparison test and evaluation>
(1) Calculation of productization rate from void defect and dislocation generation part The rod-shaped silicon single crystal grown in Example 1 and Comparative Examples 1 to 3 was used for each of the top cone part, the straight body part, and the bottom cone part. A sample silicon wafer was fabricated by slicing each part in a direction perpendicular to the axis. The presence or absence of void defects in these silicon wafers is measured by flow pattern evaluation by seco-etching and defect evaluation by infrared tomography evaluation (eg MO441 manufactured by Raytec), and the presence of dislocations is visually observed during growth. It was judged by doing. In the flow pattern evaluation method described above, a sample wafer produced by slicing an ingot is left without swinging in a selective etching (seco etching) solution, thereby forming a ripple pattern (flow pattern) around the defect. This is a simple evaluation method that reveals defects.

比較例1のトップコーン側直胴部において、ボイド欠陥が見られ、この部分は製品として使用できず製品化率を落とす要因となった。またこの問題を解消するため、比較例2にてトップコーン部の単結晶中の窒素濃度を上昇させた場合、ボイド欠陥を消滅させることは可能となったが、ボトムコーン側直胴部での単結晶中の窒素濃度が上昇しすぎることにより、この部分の有転位化が起こり、製品化率を落とす要因となった。そこで両問題を解決させかつ原料質量を増加させた実施例1〜4のシリコン単結晶のトップコーン側直胴部から得られた各サンプルのシリコンウェーハにはボイド欠陥が見られず、更にボトムコーン側直胴部からボトムコーン部に切り替わる時点においても有転位化が抑えられ、結果として、製品化率を上昇させることができた。比較例1及び2の各3本のシリコン単結晶の製品化率の平均値はそれぞれ91%及び93%であったが、実施例1〜4の各3本のシリコン単結晶の製品化率の平均値はそれぞれ100%、98%、96%及び100%であった。   In the top cone side straight body portion of Comparative Example 1, void defects were observed, and this portion could not be used as a product, which caused a reduction in the productization rate. Moreover, in order to eliminate this problem, when the nitrogen concentration in the single crystal of the top cone portion was increased in Comparative Example 2, it was possible to eliminate void defects, but in the bottom cone side straight body portion. When the nitrogen concentration in the single crystal increases too much, dislocations occur in this part, causing a reduction in the productization rate. Therefore, the silicon wafer of each sample obtained from the top cone side straight body portion of the silicon single crystals of Examples 1 to 4 in which both problems were solved and the raw material mass was increased showed no void defect, and the bottom cone Even at the time of switching from the side straight body portion to the bottom cone portion, dislocation was suppressed, and as a result, the productization rate could be increased. Although the average value of the product yield of each of the three silicon single crystals of Comparative Examples 1 and 2 was 91% and 93%, respectively, the product yield of each of the three silicon single crystals of Examples 1 to 4 The average values were 100%, 98%, 96% and 100%, respectively.

(2) 窒素濃度の分布
上記(1)でボイド欠陥と有転位化の有無を調べた実施例1〜4と比較例1、2の各サンプルのシリコンウェーハを用いて、シリコンウェーハ中に取り込まれる窒素濃度を把握した。具体的には、シリコン単結晶の結晶長に応じた結晶中の窒素濃度の変化状況を、放電防止用窒素濃度や欠陥消滅用窒素濃度、窒素偏析係数、シリコン単結晶の直径、ゾーン長、シリコン原料棒の直径等に基づいて算出された計算式より図式化した。この計算式は、窒素濃度の実測値(SIMS測定)と一致することが確認されているものである。その結果を図2〜図4に示す。図2〜図4において、横軸は結晶長を示す。縦軸は育成後にシリコン単結晶をスライスしてシリコンウェーハにしたときにウェーハ中に含まれる窒素濃度を示す。図2における破線は比較例1を示し、図3における破線は比較例1を、一点鎖線は比較例2をそれぞれ示し、図4における3本の実線はそれぞれ実施例1〜3を示す。図2〜図4において、符号Aは結晶径が目標の直径に到達して直胴部に移行する時点(直胴部始端の時点)の結晶長を示し、符号Bは直胴部からボトムコーン部に移行する時点(直胴部終端の時点)の結晶長を示す。またX部分は単結晶中の窒素濃度が目標値未満のため、Y部分は単結晶中の窒素濃度が目標値を超えるため、それぞれ製品として取得できない部分を示す。
(2) Nitrogen concentration distribution The silicon wafers of Examples 1 to 4 and Comparative Examples 1 and 2 examined for the presence of void defects and dislocations in (1) above are incorporated into the silicon wafer. The nitrogen concentration was grasped. Specifically, the change in the nitrogen concentration in the crystal according to the crystal length of the silicon single crystal is expressed as the nitrogen concentration for discharge prevention, the nitrogen concentration for defect elimination, the nitrogen segregation coefficient, the diameter of the silicon single crystal, the zone length, the silicon The graph was drawn from a calculation formula calculated based on the diameter of the raw material rod. This calculation formula has been confirmed to agree with the actual measurement value (SIMS measurement) of the nitrogen concentration. The results are shown in FIGS. 2 to 4, the horizontal axis indicates the crystal length. The vertical axis represents the concentration of nitrogen contained in the wafer when the silicon single crystal is sliced into a silicon wafer after growth. 2 indicates Comparative Example 1, the broken line in FIG. 3 indicates Comparative Example 1, the alternate long and short dash line indicates Comparative Example 2, and the three solid lines in FIG. 4 indicate Examples 1 to 3, respectively. 2 to 4, the symbol A indicates the crystal length when the crystal diameter reaches the target diameter and shifts to the straight body portion (at the start of the straight body portion), and the symbol B indicates the bottom cone from the straight body portion. The crystal length at the time of transition to the part (at the end of the straight body part) is shown. In addition, since the nitrogen concentration in the single crystal is less than the target value in the X portion and the nitrogen concentration in the single crystal exceeds the target value, the Y portion indicates a portion that cannot be obtained as a product.

図2に示すように、育成中に混合ガス中の窒素濃度を変化させずに育成した比較例1のシリコン単結晶では、ボトムコーン側直胴部終端到達時点(B時点)の窒素濃度が4.0×1015atoms/cm未満であり、ボトムコーン側直胴部の有転位化は見られなかったが、目標結晶径到達時点(A時点)の窒素濃度はそれぞれ1.8×1014atoms/cmであり、このA時点以降の窒素濃度が2.0×1014atoms/cmになるまでのトップコーン側直胴部にはボイド欠陥が発生した(図2のX部分参照)。また図3に示すように、比較例2のシリコン単結晶では、目標結晶径到達時点(A時点)の窒素濃度は3.0×1014atoms/cmであり、このA時点以降のトップコーン側直胴部にはボイド欠陥は見られなかったが、そのボトムコーン側直胴部(B時点到達前)には有転位化が起こった(図3のY部分参照)。またスリップバック分戻った位置より取得したボトムコーン側直胴部のシリコンウェーハの窒素濃度は3.9×1015atoms/cmであり、有転位部の窒素濃度過多が考えられた。 As shown in FIG. 2, in the silicon single crystal of Comparative Example 1 grown without changing the nitrogen concentration in the mixed gas during the growth, the nitrogen concentration at the time when the bottom cone side straight body end reached (time B) was 4 0.0 × 10 15 atoms / cm 3 , and no dislocation was observed in the bottom cone side straight body, but the nitrogen concentration at the time when the target crystal diameter was reached (time A) was 1.8 × 10 14, respectively. a atoms / cm 3, the nitrogen concentration of the a point later in the top cone side straight body until the 2.0 × 10 14 atoms / cm 3 void defects occur (see X portion of FIG. 2) . As shown in FIG. 3, in the silicon single crystal of Comparative Example 2, the nitrogen concentration when the target crystal diameter was reached (time A) was 3.0 × 10 14 atoms / cm 3 , and the top cone after time A was reached. Although no void defect was found in the side straight barrel portion, dislocation occurred in the bottom cone side straight barrel portion (before reaching time B) (see the Y portion in FIG. 3). Further, the nitrogen concentration of the silicon wafer in the bottom cone side straight body portion obtained from the position returned by the slip back was 3.9 × 10 15 atoms / cm 3 , and it was considered that the nitrogen concentration in the dislocation portion was excessive.

その一方、図4に示すように、第1供給管及び第2供給管による窒素ガス総供給量について直胴部始端時の供給量よりも直胴部終端時での供給量を少なくなるように調整し、更に直胴部での窒素濃度を抑えた実施例1〜3のシリコン単結晶では、直胴部(時点Aから時点Bまで)における窒素濃度が2.0×1014atoms/cm以上4.0×1015atoms/cm以下の範囲内に入り、ボイド欠陥も単結晶の有転位化も見られなかった。特に実施例1のシリコン単結晶では、直胴部(時点Aから時点Bまで)における窒素濃度が4.0×1014atoms/cm以上1.0×1015atoms/cm以下の好ましい範囲内に入っていた。なお、実施例4のシリコン単結晶については図示しないが、表1に示す育成条件で窒素ガスを供給することにより、結晶軸方向において、実施例1と変わらない窒素濃度分布とすることができた。 On the other hand, as shown in FIG. 4, the total supply amount of nitrogen gas by the first supply pipe and the second supply pipe is set so that the supply amount at the end of the straight body portion is smaller than the supply amount at the start portion of the straight body portion. In the silicon single crystals of Examples 1 to 3 that were adjusted and the nitrogen concentration in the straight body portion was suppressed, the nitrogen concentration in the straight body portion (from time A to time B) was 2.0 × 10 14 atoms / cm 3. As described above, it was within the range of 4.0 × 10 15 atoms / cm 3 or less, and neither void defect nor single crystal dislocation was observed. In particular, in the silicon single crystal of Example 1, the preferable nitrogen concentration in the straight body portion (from time A to time B) is 4.0 × 10 14 atoms / cm 3 or more and 1.0 × 10 15 atoms / cm 3 or less. It was inside. Although the silicon single crystal of Example 4 is not shown, by supplying nitrogen gas under the growth conditions shown in Table 1, a nitrogen concentration distribution that is the same as that of Example 1 can be obtained in the crystal axis direction. .

10 単結晶製造装置
11 シリコン原料棒
12 シリコン単結晶
12a 浮遊帯域
13 炉
14 誘導加熱コイル
16 ガス供給口
24 ガス排出口
DESCRIPTION OF SYMBOLS 10 Single crystal manufacturing apparatus 11 Silicon raw material stick | rod 12 Silicon single crystal 12a Floating zone 13 Furnace 14 Induction heating coil 16 Gas supply port 24 Gas discharge port

本発明の方法は、シリコン原料の仕込み量の増加に伴う長尺化したシリコン単結晶の有転位化部分とボイド欠陥という結晶欠陥のないシリコン単結晶の製造に用いられる。   The method of the present invention is used for the production of a silicon single crystal having no crystal defects such as dislocations and void defects in an elongated silicon single crystal accompanying an increase in the amount of silicon raw material charged.

Claims (7)

浮遊帯域溶融法による単結晶製造装置を用いてシリコン単結晶を製造する際に、窒素とアルゴンとの混合ガスを炉内に供給してシリコン単結晶を製造する方法であって、
前記シリコン単結晶の育成中に前記混合ガス中の窒素濃度を変化させてシリコン単結晶の直胴部の窒素濃度が2.0×1014atoms/cm以上4.0×1015atoms/cm以下の範囲内になるように前記シリコン単結晶を育成することを特徴とするシリコン単結晶の製造方法。
A method for producing a silicon single crystal by supplying a mixed gas of nitrogen and argon into a furnace when producing a silicon single crystal using a single crystal production apparatus by a floating zone melting method,
During the growth of the silicon single crystal, the nitrogen concentration in the mixed gas is changed so that the nitrogen concentration in the straight body portion of the silicon single crystal is 2.0 × 10 14 atoms / cm 3 or more and 4.0 × 10 15 atoms / cm. A method for producing a silicon single crystal, comprising growing the silicon single crystal so as to fall within a range of 3 or less.
前記シリコン単結晶の直胴部を育成する際に、前記直胴部の終端での窒素ガス供給量を前記直胴部の始端での供給量より少なくなるように調整する請求項1記載のシリコン単結晶の製造方法。   2. The silicon according to claim 1, wherein when the straight body portion of the silicon single crystal is grown, the supply amount of nitrogen gas at the end of the straight body portion is adjusted to be smaller than the supply amount at the start end of the straight body portion. A method for producing a single crystal. 前記単結晶製造装置は、窒素ガスを供給するための少なくとも第1及び第2の2つの供給管を備え、前記第1及び/又は第2供給管により炉内に窒素ガスを供給する請求項1又は2記載のシリコン単結晶の製造方法。   The single crystal manufacturing apparatus includes at least first and second supply pipes for supplying nitrogen gas, and supplies the nitrogen gas into the furnace through the first and / or second supply pipes. Or the manufacturing method of the silicon single crystal of 2. 前記第2供給管による窒素ガスの供給が前記単結晶のトップコーン部においてのみ行われる請求項3記載のシリコン単結晶の製造方法。   The method for producing a silicon single crystal according to claim 3, wherein the supply of nitrogen gas through the second supply pipe is performed only in a top cone portion of the single crystal. 前記単結晶直径に応じて前記第2供給管による窒素ガスの供給量を変えることにより、単結晶内に取り込まれる窒素量を調整する請求項3又は4記載のシリコン単結晶の製造方法。   5. The method for producing a silicon single crystal according to claim 3, wherein the amount of nitrogen taken into the single crystal is adjusted by changing a supply amount of nitrogen gas from the second supply pipe according to the single crystal diameter. 前記単結晶直径に応じて前記第2供給管による窒素ガスの供給時間を変えることにより、単結晶内に取り込まれる窒素量を調整する請求項3ないし5いずれか1項に記載のシリコン単結晶の製造方法。   6. The silicon single crystal according to claim 3, wherein the amount of nitrogen taken into the single crystal is adjusted by changing a supply time of the nitrogen gas from the second supply pipe in accordance with the single crystal diameter. Production method. 浮遊帯域溶融法によるシリコン単結晶の製造装置であって、
炉内に窒素ガスを供給する2以上の供給管を備え、かつ前記2以上の供給管が前記炉内への窒素ガスの供給量を独立して調整可能に構成されたことを特徴とするシリコン単結晶の製造装置。
An apparatus for producing a silicon single crystal by a floating zone melting method,
Silicon having two or more supply pipes for supplying nitrogen gas into the furnace, and wherein the two or more supply pipes are configured to independently adjust the supply amount of nitrogen gas into the furnace. Single crystal manufacturing equipment.
JP2015238360A 2015-12-07 2015-12-07 Method for producing silicon single crystal Active JP6471683B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015238360A JP6471683B2 (en) 2015-12-07 2015-12-07 Method for producing silicon single crystal
CN201611115143.2A CN106894083B (en) 2015-12-07 2016-12-07 The manufacturing method of monocrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015238360A JP6471683B2 (en) 2015-12-07 2015-12-07 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2017105650A true JP2017105650A (en) 2017-06-15
JP6471683B2 JP6471683B2 (en) 2019-02-20

Family

ID=59058928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015238360A Active JP6471683B2 (en) 2015-12-07 2015-12-07 Method for producing silicon single crystal

Country Status (2)

Country Link
JP (1) JP6471683B2 (en)
CN (1) CN106894083B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122033A (en) * 2016-01-08 2017-07-13 信越半導体株式会社 Production of silicon single crystal
CN108330538A (en) * 2018-04-13 2018-07-27 内蒙古中环光伏材料有限公司 Disk and method are matched in a kind of nitrogen control for pulling single crystal silicon process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272239B2 (en) * 2019-11-08 2023-05-12 株式会社Sumco Single crystal manufacturing method
JP7255468B2 (en) * 2019-12-06 2023-04-11 株式会社Sumco Induction heating coil and single crystal manufacturing apparatus using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286688A (en) * 1996-04-22 1997-11-04 Komatsu Electron Metals Co Ltd Method for doping gas to silicon single crystal
WO2005010243A1 (en) * 2003-07-29 2005-02-03 Shin-Etsu Handotai Co., Ltd. Process for producing silicon single crystal substrate, method of measuring resistance characteristics and method of warranting resistance characteristics
JP2007112640A (en) * 2005-10-18 2007-05-10 Shin Etsu Handotai Co Ltd Apparatus and method for manufacturing single crystal
JP2007145610A (en) * 2005-11-24 2007-06-14 Shin Etsu Handotai Co Ltd Method for manufacturing silicon semiconductor crystal
JP2015023062A (en) * 2013-07-16 2015-02-02 信越半導体株式会社 Method of manufacturing diffused wafer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1003607B (en) * 1987-08-22 1989-03-15 浙江大学 Gas phase nitrogen-doping method for straight-pulling monocrystalline silicon
CN1014727B (en) * 1989-08-10 1991-11-13 浙江大学 Method of controlling nitrogen content in cz silicon single crystal
CN1325700C (en) * 2006-04-21 2007-07-11 天津市环欧半导体材料技术有限公司 Large-diameter zone-melting silicon single crystal growth method
CN1325702C (en) * 2006-04-26 2007-07-11 天津市环欧半导体材料技术有限公司 Process for preparing zone-melted vapor doping solar cell silicon single crystal
CN101597788B (en) * 2009-06-24 2011-12-07 浙江大学 Method for preparing cast nitrogen-doped monocrystalline silicon through melting polycrystalline silicon under nitrogen
CN101845666B (en) * 2010-06-03 2013-08-28 王敬 N-doped crystalline silicon and preparation method thereof
CN102168312A (en) * 2011-03-09 2011-08-31 浙江大学 High-nitrogen-doped silicon chip and rapid nitrogen doping method
CN103436951A (en) * 2013-08-27 2013-12-11 天津市环欧半导体材料技术有限公司 Drawing method of float-zone silicon single crystals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286688A (en) * 1996-04-22 1997-11-04 Komatsu Electron Metals Co Ltd Method for doping gas to silicon single crystal
WO2005010243A1 (en) * 2003-07-29 2005-02-03 Shin-Etsu Handotai Co., Ltd. Process for producing silicon single crystal substrate, method of measuring resistance characteristics and method of warranting resistance characteristics
JP2007112640A (en) * 2005-10-18 2007-05-10 Shin Etsu Handotai Co Ltd Apparatus and method for manufacturing single crystal
JP2007145610A (en) * 2005-11-24 2007-06-14 Shin Etsu Handotai Co Ltd Method for manufacturing silicon semiconductor crystal
JP2015023062A (en) * 2013-07-16 2015-02-02 信越半導体株式会社 Method of manufacturing diffused wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122033A (en) * 2016-01-08 2017-07-13 信越半導体株式会社 Production of silicon single crystal
CN108330538A (en) * 2018-04-13 2018-07-27 内蒙古中环光伏材料有限公司 Disk and method are matched in a kind of nitrogen control for pulling single crystal silicon process

Also Published As

Publication number Publication date
CN106894083A (en) 2017-06-27
CN106894083B (en) 2019-08-06
JP6471683B2 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
EP2705178B1 (en) Growth of a uniformly doped silicon ingot by doping only the initial charge
US8172943B2 (en) Single Crystal manufacturing method
JP6471683B2 (en) Method for producing silicon single crystal
KR19980018538A (en) How to control the thermal history of Czochralski grown silicon
CN108779577B (en) Method for producing silicon single crystal
CN101198727B (en) Method for growing silicon single crystal and method for manufacturing silicon wafer
JP4862290B2 (en) Silicon single crystal manufacturing method
JP5170061B2 (en) Resistivity calculation program and single crystal manufacturing method
WO2012114375A1 (en) Method for manufacturing n-type silicon single crystal, and phosphorus-doped n-type silicon single crystal
JP4193610B2 (en) Single crystal manufacturing method
JP2011105537A (en) Method for producing silicon single crystal
KR101942322B1 (en) An apparatus for growing a crystal ingot and a method for growing a crystal ingot using the same
JP5375636B2 (en) Method for producing silicon single crystal
CN113825862A (en) Process for preparing ingot with reduced deformation of main body length of rear section
JP3823717B2 (en) Method for producing silicon single crystal
KR101881381B1 (en) A method of growing a single crystal ingot
JP5262257B2 (en) Method for producing nitrogen-doped silicon single crystal
JP2006347857A (en) Apparatus for manufacturing semiconductor single crystal
KR102492237B1 (en) Method and apparatus for growing silicon single crystal ingot
JP2014058414A (en) Method for producing silicon single crystal for evaluation
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal
JP7452314B2 (en) Method for producing silicon raw material crystal for FZ and production system for silicon raw material crystal for FZ
JP2005314143A (en) Method for producing silicon single crystal
KR100829061B1 (en) Method of manufacturing silicon single crystal using cusp magnetic field
JP6777013B2 (en) Single crystal manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190107

R150 Certificate of patent or registration of utility model

Ref document number: 6471683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250