JP2017105047A - Water vapor flow control structure and drier using the same - Google Patents

Water vapor flow control structure and drier using the same Download PDF

Info

Publication number
JP2017105047A
JP2017105047A JP2015240093A JP2015240093A JP2017105047A JP 2017105047 A JP2017105047 A JP 2017105047A JP 2015240093 A JP2015240093 A JP 2015240093A JP 2015240093 A JP2015240093 A JP 2015240093A JP 2017105047 A JP2017105047 A JP 2017105047A
Authority
JP
Japan
Prior art keywords
water vapor
moisture
flow control
control structure
drying chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015240093A
Other languages
Japanese (ja)
Other versions
JP5963101B1 (en
Inventor
田中 裕之
Hiroyuki Tanaka
裕之 田中
良男 荒井
Yoshio Arai
良男 荒井
康芳 荒井
Yasuyoshi Arai
康芳 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arai Furniture Manufacturing Inc
Tokyo Institute of Technology NUC
Original Assignee
Arai Furniture Manufacturing Inc
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arai Furniture Manufacturing Inc, Tokyo Institute of Technology NUC filed Critical Arai Furniture Manufacturing Inc
Priority to JP2015240093A priority Critical patent/JP5963101B1/en
Application granted granted Critical
Publication of JP5963101B1 publication Critical patent/JP5963101B1/en
Priority to CN201680071254.XA priority patent/CN108307653B/en
Priority to PCT/JP2016/086541 priority patent/WO2017099177A1/en
Publication of JP2017105047A publication Critical patent/JP2017105047A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/06Chambers, containers, or receptacles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Drying Of Solid Materials (AREA)
  • Processing Of Solid Wastes (AREA)
  • Laminated Bodies (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water vapor flow control structure having high moisture permeability and high adiabaticity, and a drier using the same.SOLUTION: The carbide particles 1a of a carbide particle layer 1 are held by being held with two film-type moisture-permeable sheets 2-1, 2-2. The diameter of the carbide particles 1a of the carbide particle layer 1 is made smaller than that of the holes 2a of the moisture-permeable sheets 2-1, 2-2. The carbide particle layer 1 has the hygroscopic properties of water vapor, internal diffusibility and dehumidification properties, namely, has moisture-permeability, and the moisture-permeability of the carbide particle layer 1 is maintained by the moisture-permeable sheets 2-1, 2-2. The waver vapor V is moisture-absorbed with the moisture-permeable sheet 2-1, is further moisture-absorbed with the carbide particle layer 1, is internally diffused into the moisture-permeable sheet 2-2, is dehumidified from the moisture-permeable sheet 2-2, and has high moisture permeability. The carbide particle layer 1 has high adiabaticity.SELECTED DRAWING: Figure 1

Description

本発明は水蒸気流制御構造及びこれを用いた乾燥装置たとえば高含水率バイオマスを低温(35°C〜60°C)乾燥させるための乾燥装置に関する。   The present invention relates to a water vapor flow control structure and a drying apparatus using the same, for example, a drying apparatus for drying a high water content biomass at a low temperature (35 ° C. to 60 ° C.).

一般に、食品有機廃棄物、木材等の固有形状の高含有水率バイオマスを対象とする乾燥装置は、箱型である。この種の箱型乾燥装置として、真空方式(参照:非特許文献1)、減圧方式、ヒートポンプ方式及び熱風方式(参照:非特許文献1)がある。   In general, a drying device for a high-content water-content biomass having a specific shape such as organic food waste or wood is a box shape. As this type of box-type drying apparatus, there are a vacuum system (reference: Non-Patent Document 1), a decompression system, a heat pump system, and a hot air system (Reference: Non-Patent Document 1).

真空方式は真空ポンプを必要とし、また、減圧方式は減圧のための減圧ファン、循環ファンを必要とし、さらに、ヒートポンプ方式はヒートポンプを必要とし、従って、製造コスト及び消費電力が高い。   The vacuum system requires a vacuum pump, the decompression system requires a decompression fan and a circulation fan for decompression, and further, the heat pump system requires a heat pump, and thus the manufacturing cost and power consumption are high.

これに対し、熱風方式は、ヒータ及び送風ファンを必要とするが製造コストは低い。しかしながら、熱風方式は、熱風が外部から送り込まれ対象物の水分を蒸発させて外部へ排気される空気非循環式なので、乾燥に使われる熱量は投入熱量の25〜40%程度であり、残りの熱量は主に排出熱風によって排出される(参照:非特許文献2)。従って、消費電力は高い。尚、熱風方式に空気循環方式を導入できるが、この場合には、低温で操作した場合、湿度の増加によって乾燥速度が大きく低下し、さらに、消費電力が高くなる(参照:非特許文献3)。   On the other hand, the hot air method requires a heater and a blower fan, but the manufacturing cost is low. However, since the hot air method is an air non-circulation type in which hot air is sent from the outside to evaporate the moisture of the object and exhausted to the outside, the amount of heat used for drying is about 25 to 40% of the input heat amount, and the rest The amount of heat is mainly discharged by discharged hot air (see Non-Patent Document 2). Therefore, power consumption is high. In addition, although an air circulation system can be introduced into the hot air system, in this case, when operated at a low temperature, the drying rate is greatly reduced due to an increase in humidity, and the power consumption is increased (see Non-Patent Document 3). .

他方、真空ポンプ、減圧ファン、循環ファン、ヒートポンプ、送風ファン等の機器を用いない第1の従来の乾燥装置においては、乾燥室の天井、壁、床等の躯体を内側板材、中間層及び外側板材とし、中間層に多量の潮解性の吸湿剤を含浸又は塗布した吸湿材料(たとえばダンボール紙)を隙間なく挿入してあり、さらに、乾燥室内に遠赤外線を放出する天然鉱石を設けてある(参照:特許文献1)。これにより、内側板材から蒸発する水分を短時間に中間層が吸湿して拡散し、中間層が吸湿した水分を外側板材が排出する。これにより、吸湿剤による透湿性及び板材による断熱性の両立を図っている。   On the other hand, in the first conventional drying apparatus that does not use equipment such as a vacuum pump, a decompression fan, a circulation fan, a heat pump, and a blower fan, the casings such as the ceiling, wall, and floor of the drying chamber are used as the inner plate, intermediate layer, and outer layer. As a plate material, a hygroscopic material (for example, corrugated paper) impregnated or coated with a large amount of a deliquescent hygroscopic agent is inserted in the intermediate layer without any gaps, and a natural ore that emits far-infrared rays is provided in the drying chamber ( Reference: Patent Document 1). Thereby, the intermediate layer absorbs and diffuses moisture evaporating from the inner plate material in a short time, and the outer plate material discharges moisture absorbed by the intermediate layer. Thereby, both the moisture permeability by a hygroscopic agent and the heat insulation by a board | plate material are aimed at.

尚、透湿性とは、3つの性質、つまり内側の水蒸気を吸湿する吸湿性、吸湿された水蒸気を外側へ向って拡散する内部拡散性、及び拡散された水蒸気を外側へ脱湿する脱湿性をいう。   Incidentally, the moisture permeability means three properties, that is, a hygroscopic property that absorbs water vapor inside, an internal diffusibility that diffuses the absorbed water vapor outward, and a dehumidifying property that dehumidifies the diffused water vapor outward. Say.

また、真空ポンプ、減圧フィン、循環ファン、ヒートポンプ等の機器を用いない第2の従来の乾燥装置においては、乾燥室の天井、壁、床等の躯体を板材で構成し、さらに、熱を発生する加熱手段及び加熱手段からの熱を乾燥室に送り込む送風手段を設けている(参照:特許文献2)。これにより、内側の水蒸気を外側へ放出する透湿性を確保できる。   In addition, in the second conventional drying apparatus that does not use equipment such as a vacuum pump, a decompression fin, a circulation fan, and a heat pump, the ceiling, wall, floor, etc. of the drying chamber are made of plate material, and further generate heat. The heating means to perform and the ventilation means to send the heat from the heating means into the drying chamber are provided (see Patent Document 2). Thereby, the moisture permeability which discharge | releases water vapor | steam inside can be ensured.

特開2006−132911号公報JP 2006-132911 A 特開2011−217628号公報JP 2011-217628 A

中村ら、“はじめての乾燥技術”、日刊工業新聞社、p.102(2011)Nakamura et al., “First Drying Technology”, Nikkan Kogyo Shimbun, p.102 (2011) 中村ら、“はじめての乾燥技術”、日刊工業新聞社、p.130(2011)Nakamura et al., “First Drying Technology”, Nikkan Kogyo Shimbun, p.130 (2011) 中村ら、“はじめての乾燥技術”、日刊工業新聞社、p.132(2011)Nakamura et al., “First Drying Technology”, Nikkan Kogyo Shimbun, p.132 (2011)

しかしながら、上述の第1の従来の乾燥装置は、透湿性及び断熱性の両立を図ることができるも、潮解性の吸湿剤として用いる塩類等が安全上食品を対象とすることができず、しかも、内側板材及び外側板材の二重壁の間に中間層を挿入する三重構造のために製造コストが高いという課題がある。   However, although the first conventional drying device described above can achieve both moisture permeability and heat insulation properties, salts used as a deliquescent hygroscopic agent cannot be targeted for food for safety reasons, and The manufacturing cost is high due to the triple structure in which the intermediate layer is inserted between the double walls of the inner plate and the outer plate.

また、上述の第2の従来の乾燥装置においては、潮解性の吸湿剤を用いていない。しかしながら、板材を薄くすれば高い透湿性が得られるが高い断熱性は得られず、他方、板材を厚くすれば高い断熱性が得られるが高い透湿性は得られない。つまり、透湿性及び断熱性はトレードオフの関係にあり、両立を図れないという課題がある。   Further, the second conventional drying apparatus described above does not use a deliquescent hygroscopic agent. However, if the plate material is made thin, high moisture permeability can be obtained but high heat insulation cannot be obtained. On the other hand, if the plate material is made thick, high heat insulation can be obtained, but high moisture permeability cannot be obtained. That is, there is a problem that moisture permeability and heat insulation are in a trade-off relationship and cannot be achieved at the same time.

上述の課題を解決するために、本発明に係る水蒸気流制御構造は、炭化物粒子層と、炭化物粒子層を挟んだ第1、第2の透湿性シートとを具備し、炭化物粒子層の炭化物粒子の直径は第1、第2の透湿性シートの孔の直径より大きいものである。これにより、炭化物粒子層の炭化物粒子は第1、第2の透湿性シートによって漏れずに保持される。   In order to solve the above-described problems, a water vapor flow control structure according to the present invention includes a carbide particle layer and first and second moisture-permeable sheets sandwiching the carbide particle layer, and the carbide particles of the carbide particle layer. Is larger than the diameter of the holes of the first and second moisture-permeable sheets. Thereby, the carbide particles of the carbide particle layer are held without leakage by the first and second moisture-permeable sheets.

また、本発明に係る乾燥装置は、乾燥室と、乾燥室内に設けられた加熱手段とを具備し、乾燥室の天井、壁、床、開閉扉の少なくとも一部は上述の水蒸気流制御構造によって構成されたものである。   Moreover, the drying apparatus according to the present invention includes a drying chamber and heating means provided in the drying chamber, and at least a part of the ceiling, wall, floor, and open / close door of the drying chamber is provided by the above-described water vapor flow control structure. It is configured.

さらに、本発明に係る乾燥装置は、主乾燥室と、主乾燥室内に設けられた減圧乾燥室と、主乾燥室と減圧乾燥室との間の近傍に設けられた減圧ファンとを具備し、主乾燥室の天井、壁、床、開閉扉の少なくとも一部は上述の水蒸気流制御構造によって構成されたものである。   Furthermore, the drying apparatus according to the present invention comprises a main drying chamber, a vacuum drying chamber provided in the main drying chamber, and a vacuum fan provided in the vicinity between the main drying chamber and the vacuum drying chamber, At least a part of the ceiling, wall, floor, and open / close door of the main drying chamber is configured by the above-described water vapor flow control structure.

本発明によれば、透湿性シートによって挟まれた炭化物粒子層は高い透湿性及び高い断熱性を有する。従って、これを用いた乾燥装置の消費電力を低減できる。また、必要とする機器が少ないので、製造コストも低くできる。   According to the present invention, the carbide particle layer sandwiched between the moisture permeable sheets has high moisture permeability and high heat insulation. Therefore, the power consumption of the drying apparatus using this can be reduced. In addition, since less equipment is required, the manufacturing cost can be reduced.

本発明に係る水蒸気流制御構造を示す断面図である。It is sectional drawing which shows the water vapor flow control structure which concerns on this invention. 図1の水蒸気流制御構造の変更例を示す斜視図である。It is a perspective view which shows the example of a change of the water vapor flow control structure of FIG. 本発明に係る乾燥装置の第1の実施の形態を示す概略図である。It is the schematic which shows 1st Embodiment of the drying apparatus which concerns on this invention. 図3の乾燥装置の実施例1を説明する表であり、(A)は市販乾燥装置の乾燥処理データを示し、(B)は図3の乾燥処理データを示す。It is a table | surface explaining Example 1 of the drying apparatus of FIG. 3, (A) shows the drying process data of a commercial drying apparatus, (B) shows the drying process data of FIG. 図3の乾燥装置の実施例2を説明する表であり、(A)は第2の従来の乾燥装置の乾燥処理データを示し、(B)は図3の乾燥処理データを示す。4 is a table for explaining a second embodiment of the drying apparatus of FIG. 3, (A) shows the drying process data of the second conventional drying apparatus, and (B) shows the drying process data of FIG. 3. 本発明に係る乾燥装置の第2の実施の形態を示す概略図である。It is the schematic which shows 2nd Embodiment of the drying apparatus which concerns on this invention.

図1は本発明に係る水蒸気流制御構造を示す断面図である。   FIG. 1 is a cross-sectional view showing a water vapor flow control structure according to the present invention.

図1において、炭化物粒子層1の炭化物粒子1aはフィルムタイプの2つの透湿性シート2−1、2−2によって挟むことによって保持される。この場合、炭化物粒子層1の炭化物粒子1aの直径は透湿性シート2−1、2−2の孔2aの直径より大きくされており、この結果、炭化物粒子層1の炭化物粒子1aは透湿性シート2−1、2−2によって漏れずに保持される。たとえば、炭化物粒子1aの直径は0.1μm〜10mmであり、他方、透湿性シート2−1、2−2の孔2aの直径は0.1μm〜100μm、好ましくは0.5μm〜10μm(参照:http://www.ntba.jp/modules/weblog0/)である。このような炭化物粒子層1としては、杉チップ又は竹チップを400℃で炭化した顆粒状炭粒があり、他方、このような透湿性シート2−1、2−2としてはポリエステルシートがある。   In FIG. 1, the carbide particles 1a of the carbide particle layer 1 are held by being sandwiched between two film-type moisture-permeable sheets 2-1, 2-2. In this case, the diameter of the carbide particles 1a of the carbide particle layer 1 is larger than the diameter of the holes 2a of the moisture permeable sheets 2-1, 2-2, and as a result, the carbide particles 1a of the carbide particle layer 1 are the moisture permeable sheet. 2-1 and 2-2 are held without leakage. For example, the diameter of the carbide particles 1a is 0.1 μm to 10 mm, while the diameter of the holes 2a of the moisture permeable sheets 2-1 and 2-2 is 0.1 μm to 100 μm, preferably 0.5 μm to 10 μm (see: http://www.ntba.jp/modules/weblog0/). As such a carbide particle layer 1, there are granular carbon particles obtained by carbonizing cedar chips or bamboo chips at 400 ° C., and as such moisture-permeable sheets 2-1 and 2-2, there are polyester sheets.

図1の水蒸気流制御構造においては、炭化物粒子層1が水蒸気の吸湿性、内部拡散性及び脱湿性、つまり透湿性を有し、透湿性シート2−1、2−2によって炭化物粒子層1の透湿性は維持される。従って、水蒸気Vは透湿性シート2−1によって吸湿され、さらに炭化物粒子層1によって吸湿及び内部拡散され、透湿性シート2−2に向い、透湿性シート2−2から脱湿され、高い透湿性を呈する。尚、水蒸気Vの水蒸気粒子の直径は0.0004μm程度である。また、炭化物粒子層1は高い断熱性を呈する。従って、炭化物粒子層1及び透湿性シート2−1、2−2の各厚さd、d2−1、d2−2を適当な値にすると、図1の水蒸気流制御構造は高い透湿性及び高い脱湿性を発揮する。たとえば、上記厚さd、d2−1、d2−2は、
=10〜30mm
2−1=d2−2=1mm
である。
In the water vapor flow control structure of FIG. 1, the carbide particle layer 1 has moisture absorption, internal diffusibility and dehumidification of water vapor, that is, moisture permeability, and the carbide particle layer 1 is formed by moisture permeable sheets 2-1 and 2-2. Moisture permeability is maintained. Therefore, the water vapor V is absorbed by the moisture permeable sheet 2-1, and is further absorbed and internally diffused by the carbide particle layer 1, toward the moisture permeable sheet 2-2, dehumidified from the moisture permeable sheet 2-2, and has high moisture permeability. Presents. The diameter of the water vapor particles of the water vapor V is about 0.0004 μm. Moreover, the carbide particle layer 1 exhibits high heat insulation. Therefore, the thickness d 1 of the carbide particle layer 1 and the moisture vapor permeable sheet 2-1 and 2-2, d 2-1, when the d 2-2 to a suitable value, the steam flow control structure of FIG. 1 is a high permeability Demonstrate wetness and high dehumidification. For example, the thicknesses d 1 , d 2-1 and d 2-2 are as follows:
d 1 = 10 to 30 mm
d 2-1 = d 2-2 = 1 mm
It is.

図1の炭化物粒子1aは、バイオマスを原料として産生された抗菌性成分を含む溶液に含浸させて乾燥させることができる。また、この場合、溶液は天然抗菌性物質であるフルボ酸溶液及び/又は酢液とすることができる。   The carbide particles 1a in FIG. 1 can be dried by impregnating a solution containing an antibacterial component produced using biomass as a raw material. In this case, the solution may be a fulvic acid solution and / or a vinegar solution that are natural antibacterial substances.

図2の(A)に示すごとく、機械的強度を保持するために、図1の水蒸気流制御構造は、透湿性シート2−1、2−2をメッシュ状部材3−1、3−2たとえばメラミン焼き付け塗装した直径2.5mmの鉄丸棒を交叉させることによって固定する。   As shown in FIG. 2A, in order to maintain the mechanical strength, the water vapor flow control structure of FIG. 1 uses the moisture-permeable sheets 2-1 and 2-2 as mesh members 3-1, 3-2, for example. It is fixed by crossing an iron round bar with a diameter of 2.5 mm, painted with melamine.

また、図2の(B)に示すごとく、組立、解体、撤去を容易にするために、図1の水蒸気流制御構造は所定サイズのユニット4にする。   Further, as shown in FIG. 2B, in order to facilitate assembly, disassembly, and removal, the water vapor flow control structure of FIG.

図3は本発明に係る乾燥装置の第1の実施の形態を示す概略図である。   FIG. 3 is a schematic view showing a first embodiment of a drying apparatus according to the present invention.

図3において、乾燥装置は、天井11、壁12、床13及び開閉扉(図示せず)よりなる乾燥室10、非乾燥物を設定するための3段のトレー14−1、14−2、14−3、ヒータ15、送風ファン16−1、16−2、乾燥室10の温度Tを検出する温度センサ17、及び温度センサ17の温度Tに基づいてヒータ15及び送風ファン16−1、16−2を制御する制御ユニット(マイクロコンピュータ)18よりなる。   In FIG. 3, the drying apparatus includes a drying chamber 10 including a ceiling 11, a wall 12, a floor 13, and an open / close door (not shown), three-stage trays 14-1 and 14-2 for setting non-dried materials, 14-3, heater 15, blower fans 16-1, 16-2, temperature sensor 17 for detecting the temperature T of the drying chamber 10, and heater 15 and blower fans 16-1, 16 based on the temperature T of the temperature sensor 17. 2 is a control unit (microcomputer) 18 for controlling -2.

図3において、乾燥室10の天井11、壁12、床13及び開閉扉(図示せず)は図1の水蒸気流制御構造をなしている。   In FIG. 3, the ceiling 11, the wall 12, the floor 13, and the open / close door (not shown) of the drying chamber 10 form the water vapor flow control structure of FIG. 1.

図3の乾燥装置の動作を以下に説明する。   The operation of the drying apparatus in FIG. 3 will be described below.

始めに、被乾燥物たとえば野菜、薬草等をトレー14−1、14−2、14−3に載せる。次に、所定の温度Tを設定し、ヒータ15及び送風ファン16−1、16−2を起動する。制御ユニット18は温度センサ17の温度Tが所定の温度Tとなるようにヒータ15をオンオフ制御する。この結果、ヒータ15によって加温された空気は、太線矢印に示すごとく、トレー14−1、14−2、14−3内を通過して被乾燥物を乾燥させ、天井11、壁12に沿って下降して循環する。このとき、乾燥を終えた空気の水蒸気圧は上昇し、その空気に含まれる水蒸気は、細線矢印に示すごとく、天井11、壁12、床13及び開閉扉(図示せず)を構成する水蒸気流制御構造によって乾燥装置の内側から外側へ排出される。 First, an object to be dried, such as vegetables and medicinal herbs, is placed on the trays 14-1, 14-2, 14-3. Then, set the predetermined temperature T 0, activates the heater 15 and the blower fan 16-1 and 16-2. Control unit 18 for turning on and off the heater 15 so that the temperature T of the temperature sensor 17 reaches a predetermined temperature T 0. As a result, the air heated by the heater 15 passes through the trays 14-1, 14-2 and 14-3 to dry the objects to be dried, as indicated by the thick arrows, along the ceiling 11 and the wall 12. Then descend and circulate. At this time, the water vapor pressure of the air that has been dried increases, and the water vapor contained in the air is a water vapor flow that constitutes the ceiling 11, the wall 12, the floor 13, and the open / close door (not shown) as indicated by the thin arrows. It is discharged from the inside to the outside of the drying device by the control structure.

天井11、壁12、床13及び開閉扉(図示せず)の水蒸気流制御構造の内部は循環式となり、乾燥に要した熱以外の熱は水蒸気流制御構造の断熱性によって漏出することなく、又は漏出されてもその熱は小さく、非循環式の乾燥装置内で循環される。一方、水蒸気は水蒸気流制御構造によって排出されるので、循環される空気の水蒸気圧は低くなり、被乾燥物を乾燥できる。
[実施例1]
The interior of the water vapor flow control structure of the ceiling 11, the wall 12, the floor 13 and the open / close door (not shown) is a circulation type, and heat other than the heat required for drying does not leak due to the heat insulation of the water vapor flow control structure, Alternatively, even if leaked, the heat is small and is circulated in a non-circulating dryer. On the other hand, since water vapor is discharged by the water vapor flow control structure, the water vapor pressure of the circulated air becomes low, and the object to be dried can be dried.
[Example 1]

市販の乾燥装置(東明テック(株)製、製造名:プチマレンギ、モデル名:TTM−435S)と図3に示す第1の実施の形態の乾燥装置との比較を行った。共通の条件は次の通りである。
設定乾燥温度:45℃
乾燥時間:14時間
被乾燥試料(1個当り):直径30−70mm、幅12mmの輪切り野菜
乾燥開始時乾燥装置外温度:21℃
乾燥終了時乾燥装置外温度:18℃
乾燥開始時乾燥装置外湿度:65.5%
乾燥終了時乾燥装置外湿度:64.5%
また、図3の第1の実施の形態の乾燥装置の条件は次の通りである。
寸法:横500mm、奥行き645mm、縦520mm
天井、壁、床面の6面:水蒸気流制御構造
炭化物粒子1a:杉チップを400℃で炭化した顆粒状炭化物粒子
炭化物粒子層1の厚さ:25mm
透湿性シート:ポリエステルシート
メッシュ部材:メラミン焼き付け塗装した直径2.5mmの鉄丸棒
枠材料:厚さ10mmの杉材
Comparison was made between a commercially available drying device (manufactured by Tomei Tech Co., Ltd., manufactured name: petit marengi, model name: TTM-435S) and the drying device of the first embodiment shown in FIG. The common conditions are as follows.
Set drying temperature: 45 ° C
Drying time: 14 hours Samples to be dried (per one): Round vegetables with a diameter of 30-70 mm and a width of 12 mm Drying outside temperature at the start of drying: 21 ° C.
Drying device outside temperature at the end of drying: 18 ° C
Humidity outside the drying device at the start of drying: 65.5%
Humidity outside drying device at the end of drying: 64.5%
Moreover, the conditions of the drying apparatus of 1st Embodiment of FIG. 3 are as follows.
Dimensions: 500mm wide, 645mm deep, 520mm long
6 surfaces of ceiling, wall and floor: Water vapor flow control structure Carbide particles 1a: Granular carbide particles obtained by carbonizing cedar chips at 400 ° C. Thickness of carbide particle layer 1: 25 mm
Moisture-permeable sheet: Polyester sheet Mesh member: Iron round bar with a diameter of 2.5 mm painted with melamine Baking material: Cedar material with a thickness of 10 mm

市販乾燥装置については、図4の(A)に示す結果が得られ、図3の乾燥装置については、図4の(B)に示す結果が得られた。すなわち、水分減少率は、市販乾燥装置については、0.80であり、図3の乾燥装置については、0.68であった。他方、乾燥に要した消費電力量は、市販乾燥装置については、2.37kWhであり、図3の乾燥装置については、0.94kWhであった。ここで、水分減少率の増加と消費電力量とが比例すると仮定すると、同一の水分減少率0.8を実現するのに、図3の乾燥装置の消費電力量は市販乾燥装置の消費電力量の(0.94/2.37)×(0.80/0.68)=0.47倍となり、大きな消費電力低減効果が認められた。
[実施例2]
The results shown in FIG. 4 (A) were obtained for the commercial drying apparatus, and the results shown in FIG. 4 (B) were obtained for the drying apparatus of FIG. That is, the moisture reduction rate was 0.80 for the commercial drying device and 0.68 for the drying device of FIG. On the other hand, the power consumption required for drying was 2.37 kWh for the commercial drying apparatus and 0.94 kWh for the drying apparatus of FIG. Here, assuming that the increase in moisture reduction rate and power consumption are proportional, the power consumption of the drying device in FIG. 3 is the power consumption of the commercial drying device to achieve the same water reduction rate of 0.8. (0.94 / 2.37) × (0.80 / 0.68) = 0.47 times, and a large power consumption reduction effect was recognized.
[Example 2]

第2の従来の乾燥装置と図3に示す第1の実施の形態の乾燥装置との比較を行った。共通の条件は次の通りである。
設定乾燥温度:45℃
乾燥時間:17時間
被乾燥試料(1個当り):直径40−70mm、幅10mmの輪切り野菜
乾燥開始時乾燥装置外温度:18℃
乾燥終了時乾燥装置外温度:13.8℃
乾燥開始時乾燥装置外湿度:22.0%
乾燥終了時乾燥装置外湿度:25.5%
また、第2の従来の乾燥装置は次の通りである。
寸法:横560mm、奥行き670mm、縦590mm
天井、壁、床面の6面:25mm厚さの杉材
さらに、図3の第1の実施の形態の乾燥装置の条件は次の通りである。
天井、壁、床面の6面:水蒸気流制御構造
炭化物粒子1a:杉チップを400℃で炭化した顆粒状炭化物粒子
炭化物粒子層1の厚さ:25mm
透湿性シート:ポリエステルシート
メッシュ部材:メラミン焼き付け塗装した直径2.5mmの鉄丸棒
枠材料:厚さ10mmの杉材
A comparison was made between the second conventional drying apparatus and the drying apparatus according to the first embodiment shown in FIG. The common conditions are as follows.
Set drying temperature: 45 ° C
Drying time: 17 hours Samples to be dried (per one): Round cut vegetables with a diameter of 40-70 mm and a width of 10 mm Drying outside temperature at the start of drying: 18 ° C.
Drying device external temperature at the end of drying: 13.8 ° C
Humidity outside drying device at the start of drying: 22.0%
Humidity outside drying device at the end of drying: 25.5%
The second conventional drying apparatus is as follows.
Dimensions: 560mm wide, 670mm deep, 590mm long
Ceiling, wall, floor surface: cedar wood with a thickness of 25 mm Further, the conditions of the drying apparatus of the first embodiment in FIG. 3 are as follows.
6 surfaces of ceiling, wall and floor: Water vapor flow control structure Carbide particles 1a: Granular carbide particles obtained by carbonizing cedar chips at 400 ° C. Thickness of carbide particle layer 1: 25 mm
Moisture-permeable sheet: Polyester sheet Mesh member: Iron round bar with a diameter of 2.5 mm painted with melamine Baking material: Cedar material with a thickness of 10 mm

第2の従来の乾燥装置については、図5の(A)に示す結果が得られ、図3の乾燥装置については、図5の(B)に示す結果が得られた。すなわち、水分減少率は、第2の従来の乾燥装置については、0.86であり、図3の乾燥装置については、0.87であった。他方、乾燥に要した消費電力量は、第2の従来の乾燥装置については、1.82kWhであり、図3の乾燥装置については、1.38kWhであった。ここで、水分減少率の増加と消費電力量とが比例すると仮定すると、同一の水分減少率0.87を実現するのに、図3の乾燥装置の消費電力量は第2の従来の乾燥装置の消費電力量の(1.38/1.82)×(0.86/0.87)=0.75倍となり、大きな消費電力低減効果が認められた。   For the second conventional drying apparatus, the result shown in FIG. 5A was obtained, and for the drying apparatus of FIG. 3, the result shown in FIG. 5B was obtained. That is, the moisture reduction rate was 0.86 for the second conventional drying device and 0.87 for the drying device of FIG. On the other hand, the power consumption required for drying was 1.82 kWh for the second conventional drying device and 1.38 kWh for the drying device of FIG. Here, assuming that the increase in the moisture reduction rate is proportional to the power consumption, the power consumption of the drying device of FIG. 3 is the second conventional drying device to achieve the same moisture reduction rate of 0.87. (1.38 / 1.82) × (0.86 / 0.87) = 0.75 times the power consumption amount, and a large power consumption reduction effect was recognized.

尚、上述の図3に示す第1の実施の形態においては、天井11、壁12、床13及び開閉扉を図1の水蒸気流制御構造によって構成しているが、天井11、壁12、床13及び開閉扉の少なくとも一部を図1の水蒸気流制御構造によって構成すればよい。   In the first embodiment shown in FIG. 3 described above, the ceiling 11, the wall 12, the floor 13, and the open / close door are configured by the water vapor flow control structure of FIG. 1, but the ceiling 11, the wall 12, the floor What is necessary is just to comprise at least one part of 13 and an opening-and-closing door by the water vapor flow control structure of FIG.

また、上述の図3に示す乾燥装置においては、送風ファン16−1、16−2を設けずに空気の流れは自然対流としてもよい。   Moreover, in the drying apparatus shown in FIG. 3 described above, the air flow may be natural convection without providing the blower fans 16-1 and 16-2.

さらに、上述の図3に示す乾燥装置はロータリーキルン(円筒)式乾燥室を有する乾燥装置にも適用できる。ロータリーキルン式乾燥室は横向き円筒形をなしており、おから等の乾燥に適する。この場合には、ロータリーキルン式乾燥室の円筒壁の少なくとも一部を図1の水蒸気流制御構造によって構成する。   Furthermore, the drying apparatus shown in FIG. 3 can be applied to a drying apparatus having a rotary kiln (cylindrical) drying chamber. The rotary kiln type drying chamber has a horizontal cylindrical shape and is suitable for drying okara and the like. In this case, at least a part of the cylindrical wall of the rotary kiln type drying chamber is constituted by the water vapor flow control structure of FIG.

図6は本発明に係る乾燥装置の第2の実施の形態を示す概略図である。   FIG. 6 is a schematic view showing a second embodiment of the drying apparatus according to the present invention.

図6において、乾燥装置は、主乾燥室20、主乾燥室20内に設けられた減圧乾燥室30、及び制御ユニット(マイクロコンピュータ)40よりなる。   In FIG. 6, the drying device includes a main drying chamber 20, a vacuum drying chamber 30 provided in the main drying chamber 20, and a control unit (microcomputer) 40.

主乾燥室20は、天井11、壁12、床13及び開閉扉(図示せず)よりなる。   The main drying chamber 20 includes a ceiling 11, a wall 12, a floor 13, and an open / close door (not shown).

減圧乾燥室30には、非乾燥物を設定するための3段のトレー31−1、31−2、31−3、主乾燥室20との境界近傍に設けられた減圧ファン32及び循環ファン33、減圧乾燥室30の温度T及び圧力Pを検出する温度センサ34及び圧力センサ35が設けられている。   In the vacuum drying chamber 30, three-stage trays 31-1, 31-2, and 31-3 for setting non-dried materials, a vacuum fan 32 and a circulation fan 33 provided near the boundary with the main drying chamber 20. A temperature sensor 34 and a pressure sensor 35 for detecting the temperature T and pressure P of the vacuum drying chamber 30 are provided.

制御ユニット40は温度センサ34の温度T及び圧力センサ35の圧力Pに基づいて減圧ファン及び循環ファン33を制御する。   The control unit 40 controls the decompression fan and the circulation fan 33 based on the temperature T of the temperature sensor 34 and the pressure P of the pressure sensor 35.

図6において、主乾燥室20の天井21、壁22、床23及び開閉扉(図示せず)は図1の水蒸気流制御構造をなしている。従って、主乾燥室20は断熱されているので、減圧乾燥室30は断熱する必要がない。   In FIG. 6, the ceiling 21, the wall 22, the floor 23, and the open / close door (not shown) of the main drying chamber 20 form the water vapor flow control structure of FIG. Therefore, since the main drying chamber 20 is insulated, the vacuum drying chamber 30 does not need to be insulated.

減圧乾燥室30においては、減圧ファン32及び循環ファン33のオンオフ動作により減圧乾燥室30内の空気は主乾燥室20内に排気され、減圧乾燥室30内の圧力は減圧される。このとき、減圧ファン32及び循環ファン33から発生する熱により主乾燥室20から減圧乾燥室30内に吸入される空気の温度は上昇する。このようにして、減圧下での乾燥が行われる。   In the vacuum drying chamber 30, the air in the vacuum drying chamber 30 is exhausted into the main drying chamber 20 by the on / off operation of the vacuum fan 32 and the circulation fan 33, and the pressure in the vacuum drying chamber 30 is reduced. At this time, the temperature of the air sucked into the reduced pressure drying chamber 30 from the main drying chamber 20 is increased by the heat generated from the reduced pressure fan 32 and the circulation fan 33. In this way, drying under reduced pressure is performed.

図6の乾燥装置の動作を以下に説明する。   The operation of the drying apparatus in FIG. 6 will be described below.

始めに、被乾燥物たとえば野菜、薬草等をトレー31−1、31−2、31−3に載せる。次に、所定の温度T及び圧力Pを設定し、減圧ファン32及び循環ファン33を起動する。制御ユニット40は温度センサ34の温度Tが所定の温度Tとなるようにかつ圧力センサ35の圧力Pが所定圧力Pとなるように減圧ファン32及び循環ファン33をオンオフ制御する。この結果、主乾燥室20から吸入された空気は、太線矢印に示すごとく、トレー31−1、31−2、31−3内を通過して被乾燥物を乾燥させ、天井21、壁22に沿って下降して循環する。このとき、乾燥を終えた空気の水蒸気圧は上昇し、その空気に含まれる水蒸気は、細線矢印に示すごとく、天井21、壁22、床23及び開閉扉(図示せず)を構成する水蒸気流制御構造によって主乾燥室20の内側から外側へ排出される。 First, an object to be dried such as vegetables and herbs is placed on the trays 31-1, 31-2, 31-3. Next, a predetermined temperature T 0 and pressure P 0 are set, and the decompression fan 32 and the circulation fan 33 are started. The control unit 40 performs on / off control of the decompression fan 32 and the circulation fan 33 so that the temperature T of the temperature sensor 34 becomes a predetermined temperature T 0 and the pressure P of the pressure sensor 35 becomes a predetermined pressure P 0 . As a result, the air sucked from the main drying chamber 20 passes through the trays 31-1, 31-2, 31-3 as shown by thick arrows, and dries the object to be dried. Cycle down along the line. At this time, the water vapor pressure of the dried air rises, and the water vapor contained in the air flows as shown in the thin line arrows in the ceiling 21, the wall 22, the floor 23, and the open / close door (not shown). It is discharged from the inside to the outside of the main drying chamber 20 by the control structure.

このように、図6に示す第2の実施の形態においては、従来の減圧乾燥装置において必要としていた減圧乾燥室の断熱が不要となった分、製造コストを低減できる。また、吸気と排気との間の熱変換が不要となった分、消費電力を低くできる。   As described above, in the second embodiment shown in FIG. 6, the manufacturing cost can be reduced by the amount that the heat insulation of the vacuum drying chamber required in the conventional vacuum drying apparatus becomes unnecessary. In addition, power consumption can be reduced because heat conversion between intake air and exhaust gas is no longer necessary.

尚、上述の図6に示す第2の実施の形態においては、減圧ファン32のみで減圧乾燥室30の圧力及び温度を制御できれば、循環ファン33は不要となる。   In the second embodiment shown in FIG. 6 described above, if the pressure and temperature of the reduced pressure drying chamber 30 can be controlled only by the reduced pressure fan 32, the circulation fan 33 becomes unnecessary.

また、本発明は上述の実施の形態の自明の範囲内でのいかなる変更にも適用できる。   Further, the present invention can be applied to any change within the obvious range of the above-described embodiment.

本発明に係る水蒸気流制御構造は、野菜、薬草等の乾燥装置の外、木材の乾燥装置、防水装置等に利用できる。   The water vapor flow control structure according to the present invention can be used for a drying device for wood, a waterproof device, and the like in addition to drying devices for vegetables, herbs, and the like.

1:炭化物粒子層
1a:炭化物粒子
2−1、2−2:透湿性シート
2a:孔
3−1、3−2:メッシュ状部材
4:ユニット
10:乾燥室
11:天井
12:壁
13:床
14−1、14−2、14−3:トレー
15:ヒータ
16−1、16−2:送風ファン
17:温度センサ
18:制御ユニット
20:主乾燥室
21:天井
22:壁
23:床
30:減圧乾燥室
31−1、31−2、31−3:トレー
32:減圧ファン
33:循環ファン
34:温度センサ
35:圧力センサ
40:制御ユニット
1: Carbide particle layer 1a: Carbide particles 2-1, 2-2: Moisture permeable sheet 2a: Hole 3-1, 3-2: Mesh member
4: Unit 10: Drying room
11: Ceiling 12: Wall 13: Floor
14-1, 14-2, 14-3: Tray
15: Heater 16-1, 16-2: Blower fan 17: Temperature sensor 18: Control unit 20: Main drying room 21: Ceiling 22: Wall 23: Floor
30: Vacuum drying chambers 31-1, 31-2, 31-3: tray
32: decompression fan 33: circulation fan 34: temperature sensor 35: pressure sensor 40: control unit

また、真空ポンプ、減圧ファン、循環ファン、ヒートポンプ等の機器を用いない第2の従来の乾燥装置においては、乾燥室の天井、壁、床等の躯体を板材で構成し、さらに、熱を発生する加熱手段及び加熱手段からの熱を乾燥室に送り込む送風手段を設けている(参照:特許文献2)。これにより、内側の水蒸気を外側へ放出する透湿性を確保できる。 In addition, in the second conventional drying apparatus that does not use equipment such as a vacuum pump, a decompression fan , a circulation fan, and a heat pump, the ceiling, wall, floor, etc. of the drying chamber are made of plate materials, and further generate heat. The heating means to perform and the ventilation means to send the heat from the heating means into the drying chamber are provided (see Patent Document 2). Thereby, the moisture permeability which discharge | releases water vapor | steam inside can be ensured.

上述の課題を解決するために、本発明に係る水蒸気流制御構造は、バイオマスを原料として産生された抗菌性成分を含む溶液に含浸させて乾燥させた炭化物粒子層と、炭化物粒子層を挟んだ第1、第2の透湿性シートとを具備し、炭化物粒子層の炭化物粒子の直径は第1、第2の透湿性シートの孔の直径より大きいものである。これにより、炭化物粒子層の炭化物粒子は第1、第2の透湿性シートによって漏れずに保持される。 In order to solve the above-described problem, the water vapor flow control structure according to the present invention sandwiches a carbide particle layer impregnated with a solution containing an antibacterial component produced using biomass as a raw material, and the carbide particle layer. The first and second moisture permeable sheets are provided, and the diameter of the carbide particles of the carbide particle layer is larger than the diameter of the holes of the first and second moisture permeable sheets. Thereby, the carbide particles of the carbide particle layer are held without leakage by the first and second moisture-permeable sheets.

図3において、乾燥装置は、天井11、壁12、床13及び開閉扉(図示せず)よりなる乾燥室10、乾燥物を設定するための3段のトレー14−1、14−2、14−3、ヒータ15、送風ファン16−1、16−2、乾燥室10の温度Tを検出する温度センサ17、及び温度センサ17の温度Tに基づいてヒータ15及び送風ファン16−1、16−2を制御する制御ユニット(マイクロコンピュータ)18よりなる。 In FIG. 3, the drying apparatus includes a drying chamber 10 including a ceiling 11, a wall 12, a floor 13, and an open / close door (not shown), three-stage trays 14-1 and 14-2 for setting an object to be dried, 14-3, heater 15, blower fans 16-1, 16-2, temperature sensor 17 for detecting the temperature T of the drying chamber 10, and heater 15 and blower fans 16-1, 16 based on the temperature T of the temperature sensor 17. 2 is a control unit (microcomputer) 18 for controlling -2.

減圧乾燥室30には、乾燥物を設定するための3段のトレー31−1、31−2、31−3、主乾燥室20との境界近傍に設けられた減圧ファン32及び循環ファン33、減圧乾燥室30の温度T及び圧力Pを検出する温度センサ34及び圧力センサ35が設けられている。
In the reduced-pressure drying chamber 30, three-stage trays 31-1, 31-2, and 31-3 for setting an object to be dried, a reduced-pressure fan 32 and a circulation fan 33 provided near the boundary with the main drying chamber 20. A temperature sensor 34 and a pressure sensor 35 for detecting the temperature T and pressure P of the vacuum drying chamber 30 are provided.

Claims (13)

炭化物粒子層と、
前記炭化物粒子層を挟んだ第1、第2の透湿性シートと
を具備し、
前記炭化物粒子層の炭化物粒子の直径は前記第1、第2の透湿性シートの孔の直径より大きい水蒸気流制御構造。
A carbide particle layer;
Comprising first and second moisture permeable sheets sandwiching the carbide particle layer,
The water vapor flow control structure in which the carbide particle diameter of the carbide particle layer is larger than the diameter of the holes of the first and second moisture-permeable sheets.
前記炭化物粒子の直径は0.1μm〜10mmであり、
前記透湿性シートの孔の直径は0.1μm〜100μmである請求項1に記載の水蒸気流制御構造。
The carbide particles have a diameter of 0.1 μm to 10 mm,
The water vapor flow control structure according to claim 1, wherein a diameter of the hole of the moisture-permeable sheet is 0.1 μm to 100 μm.
前記炭化物粒子層は炭化した顆粒状炭粒よりなる請求項1に記載の水蒸気流制御構造。   The water vapor flow control structure according to claim 1, wherein the carbide particle layer is made of carbonized granular carbon particles. 前記第1、第2の透湿性シートはポリエステルシートよりなる請求項1に記載の水蒸気流制御構造。   The water vapor flow control structure according to claim 1, wherein the first and second moisture-permeable sheets are made of a polyester sheet. 前記炭化物粒子は、バイオマスを原料として産生された抗菌性成分を含む溶液に含浸させて乾燥させた炭化物粒子である請求項1に記載の水蒸気流制御構造。   The water vapor flow control structure according to claim 1, wherein the carbide particles are carbide particles impregnated in a solution containing an antibacterial component produced using biomass as a raw material and dried. 前記溶液はフルボ酸溶液及び/又は酢液である請求項5に記載の水蒸気流制御構造。   The water vapor flow control structure according to claim 5, wherein the solution is a fulvic acid solution and / or a vinegar solution. 前記第1、第2の透湿性シートをメッシュ状部材で固定した請求項1に記載の水蒸気流制御構造。   The water vapor flow control structure according to claim 1, wherein the first and second moisture-permeable sheets are fixed with a mesh-like member. 所定サイズでユニット化した請求項1に記載の水蒸気流制御構造。   The water vapor flow control structure according to claim 1, wherein the water vapor flow control structure is unitized with a predetermined size. 乾燥室と、
前記乾燥室内に設けられた加熱手段と
を具備し、
前記乾燥室の天井、壁、床、開閉扉の少なくとも一部は請求項1〜8のいずれか1つに記載の水蒸気流制御構造によって構成された乾燥装置。
A drying chamber;
Heating means provided in the drying chamber,
The drying apparatus comprised by the water vapor flow control structure as described in any one of Claims 1-8 at least one part of the ceiling of the said drying chamber, a wall, a floor, and an opening-and-closing door.
さらに、送風ファンを具備する請求項9に記載の乾燥装置。   Furthermore, the drying apparatus of Claim 9 which comprises a ventilation fan. ロータリーキルン式乾燥室と、
前記ロータリーキルン式乾燥室内に設けられた加熱手段と
を具備し、
前記ロータリーキルン式乾燥室の円筒壁の少なくとも一部は請求項1〜8のいずれか1つに記載の水蒸気流制御構造によって構成された乾燥装置。
A rotary kiln drying chamber;
Heating means provided in the rotary kiln type drying chamber,
The at least one part of the cylindrical wall of the said rotary kiln type drying chamber is the drying apparatus comprised by the water vapor flow control structure as described in any one of Claims 1-8.
主乾燥室と、
前記主乾燥室内に設けられた減圧乾燥室と、
前記主乾燥室と前記減圧乾燥室との間の近傍に設けられた減圧ファンと
を具備し、
前記主乾燥室の天井、壁、床、開閉扉の少なくとも一部は請求項1〜8のいずれか1つに記載の水蒸気流制御構造によって構成された乾燥装置。
A main drying room;
A vacuum drying chamber provided in the main drying chamber;
A vacuum fan provided in the vicinity between the main drying chamber and the vacuum drying chamber;
Comprising
The drying apparatus comprised by the water vapor flow control structure as described in any one of Claims 1-8 at least one part of the ceiling of the said main drying chamber, a wall, a floor, and an opening-and-closing door.
さらに、前記主乾燥室と前記減圧乾燥室との間の近傍に設けられた循環ファンを具備する請求項12に記載の乾燥装置。   Furthermore, the drying apparatus of Claim 12 which comprises the circulation fan provided in the vicinity between the said main drying chamber and the said pressure reduction drying chamber.
JP2015240093A 2015-12-09 2015-12-09 Water vapor flow control structure and drying apparatus using the same Active JP5963101B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015240093A JP5963101B1 (en) 2015-12-09 2015-12-09 Water vapor flow control structure and drying apparatus using the same
CN201680071254.XA CN108307653B (en) 2015-12-09 2016-12-08 Steam flow control structure and drying device
PCT/JP2016/086541 WO2017099177A1 (en) 2015-12-09 2016-12-08 Water vapor flow control structure and drying device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240093A JP5963101B1 (en) 2015-12-09 2015-12-09 Water vapor flow control structure and drying apparatus using the same

Publications (2)

Publication Number Publication Date
JP5963101B1 JP5963101B1 (en) 2016-08-03
JP2017105047A true JP2017105047A (en) 2017-06-15

Family

ID=56558008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240093A Active JP5963101B1 (en) 2015-12-09 2015-12-09 Water vapor flow control structure and drying apparatus using the same

Country Status (3)

Country Link
JP (1) JP5963101B1 (en)
CN (1) CN108307653B (en)
WO (1) WO2017099177A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7235236B2 (en) * 2017-11-30 2023-03-08 株式会社セルロンジャパン Solidified moisture-permeable structure and manufacturing method thereof
USD890662S1 (en) 2018-12-20 2020-07-21 Samsung Electronics Co., Ltd. Dashboard for vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948006A (en) * 1995-08-08 1997-02-18 Masayuki Wakizaka Carbide composite material and manufacture thereof
JP2004169547A (en) * 2002-11-05 2004-06-17 Yamaguchi Prefecture Thermal insulation material for construction, wooden building using the thermal insulation material for construction, and its construction method
JP2007277991A (en) * 2006-04-10 2007-10-25 Satoshi Ukita Plate-like building material
JP2012025138A (en) * 2010-07-22 2012-02-09 Nihon Funen Mokuzai Kk Drying machine for low carbon woods
JP2013541651A (en) * 2010-09-20 2013-11-14 ティーエムエイ コーポレイション プロプライエタリー リミテッド Compound termite barrier
JP2014184679A (en) * 2013-03-25 2014-10-02 Sekisui Nano Coat Technology Co Ltd Moisture-permeable waterproof sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003325385A (en) * 2002-05-10 2003-11-18 Yokosawa Kinzoku Kogyo Kk Rice chaff-containing disposable sheet mat with antibacterial deodorant
JP2004300128A (en) * 2003-03-31 2004-10-28 Hiroo Ninagawa Antibacterial carbonaceous substance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948006A (en) * 1995-08-08 1997-02-18 Masayuki Wakizaka Carbide composite material and manufacture thereof
JP2004169547A (en) * 2002-11-05 2004-06-17 Yamaguchi Prefecture Thermal insulation material for construction, wooden building using the thermal insulation material for construction, and its construction method
JP2007277991A (en) * 2006-04-10 2007-10-25 Satoshi Ukita Plate-like building material
JP2012025138A (en) * 2010-07-22 2012-02-09 Nihon Funen Mokuzai Kk Drying machine for low carbon woods
JP2013541651A (en) * 2010-09-20 2013-11-14 ティーエムエイ コーポレイション プロプライエタリー リミテッド Compound termite barrier
JP2014184679A (en) * 2013-03-25 2014-10-02 Sekisui Nano Coat Technology Co Ltd Moisture-permeable waterproof sheet

Also Published As

Publication number Publication date
JP5963101B1 (en) 2016-08-03
WO2017099177A1 (en) 2017-06-15
CN108307653B (en) 2020-09-08
CN108307653A (en) 2018-07-20

Similar Documents

Publication Publication Date Title
CN203949458U (en) The drying baker of working continuously circulates in two air channels of storage battery pole piece
CA2933823C (en) Dehumidifaction system and method used for drying fibers
CN104215041A (en) Moisture absorption hot air circular drying oven
JP5963101B1 (en) Water vapor flow control structure and drying apparatus using the same
WO2015083733A1 (en) Dehumidifier
CN201159577Y (en) Heated air circulation baking oven
SE0302277D0 (en) Method and Apparatus for Dehumidification
KR101601885B1 (en) a structure of agricultural products circulation chamber
JP2007225216A (en) Far infrared drier system
JP6099179B1 (en) Drying equipment
CN101957126B (en) Dryer
CN104101181A (en) Drying device
JP2022056327A (en) Steam stream control panel, and dryer using the same
CN205228101U (en) Microwave drying equipment waste heat utilization equipment
JP2005225103A (en) Wood drier
CN201672773U (en) Dryer
FI127141B (en) Tasokuivaaja
CN206593399U (en) A kind of efficient drying equipment
KR20130076909A (en) Dehumidifying apparatus for recycle silica-gel using fan heating
CN204346017U (en) A kind of novel drying chamber
CN202973776U (en) Circulation dryer
CN208050291U (en) A kind of water paint heating and dehumidification drying tunnel
CN117663670B (en) Refrigerator humidity control device and method
JP6206147B2 (en) Grain dryer
CN210089263U (en) Dehumidification device of vacuum freeze dryer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160617

R150 Certificate of patent or registration of utility model

Ref document number: 5963101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350