JP2017104901A - Method for manufacturing metallic press-molded body - Google Patents

Method for manufacturing metallic press-molded body Download PDF

Info

Publication number
JP2017104901A
JP2017104901A JP2016106015A JP2016106015A JP2017104901A JP 2017104901 A JP2017104901 A JP 2017104901A JP 2016106015 A JP2016106015 A JP 2016106015A JP 2016106015 A JP2016106015 A JP 2016106015A JP 2017104901 A JP2017104901 A JP 2017104901A
Authority
JP
Japan
Prior art keywords
press
mold
molded body
die
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016106015A
Other languages
Japanese (ja)
Other versions
JP6145537B1 (en
Inventor
加代 戸屋
Kayo Toya
加代 戸屋
隆 中辻
Takashi Nakatsuji
中辻  隆
橋爪 良博
Yoshihiro Hashizume
良博 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakatsuji Kanagata Kogyo Co Ltd
SWANY CO Ltd
Original Assignee
Nakatsuji Kanagata Kogyo Co Ltd
SWANY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakatsuji Kanagata Kogyo Co Ltd, SWANY CO Ltd filed Critical Nakatsuji Kanagata Kogyo Co Ltd
Application granted granted Critical
Publication of JP6145537B1 publication Critical patent/JP6145537B1/en
Publication of JP2017104901A publication Critical patent/JP2017104901A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To simply and inexpensively obtain a plurality of metallic molded bodies that are free from cracking, warpage, scratches and molding die marks and have the same shape and the same size using a resin molding die three-dimensionally shaped by a three-dimensional printer without structurally damaging the resin molding die, and to prevent magnetization of the metallic molded body, industrially impart a crimp pattern onto the appearance surface of the molded body, and improve appearance of the molded body.SOLUTION: A metallic press-molded body is a resin molding die of which an upper die and a lower die are three-dimensionally shaped using a three-dimensional printer, a material to be processed is a metal plate having a thickness in a range of 0.1-6.0 mm, and thicknesses of the deepest portions each of the upper die and the lower die is at least 5 mm. Preferably, the resin molding die is shaped by an optical laminate shaping method, lamination directions of each of photocurable compositions of the upper die and the lower die are perpendicular to a vertical motion direction of the upper die, a bottom dead point position of a slide is corrected to 0.5-2.0 mm below a reference set position, and the material to be processed is press-molded.SELECTED DRAWING: Figure 1

Description

本発明は、三次元印刷機器(いわゆる三次元プリンター、3Dプリンター又は三次元造形機等と言われるもの)で作られた樹脂製成形型を用いて金属製のプレス成形体を製造する方法に関する。   The present invention relates to a method of manufacturing a metal press-molded body using a resin mold formed by a three-dimensional printing apparatus (what is called a three-dimensional printer, a three-dimensional printer, or a three-dimensional modeling machine).

プレス成形法は、一般的に、平坦な金属シートの被加工材を金型の間に挟み込み、強い力を伴った上下動により被加工材を金型表面に押し付けて金型と同じ最終形状を作り出す方法である。プレス成形では、所望の最終形状が被加工材の塑性変形によって作り出され、切削のような器具を使用しない。このため、プレス加工は他の機械加工と比較して、生産性が高いことから大量生産に向いている。この金型には、一般に耐摩耗性、耐衝撃性、耐チッピング性等の耐久性が要求され、超硬合金、鋳鉄、鋳鋼、鍛鋼などの工具鋼が使用される(例えば特許文献1、2参照。)。   In the press molding method, generally, a work piece of a flat metal sheet is sandwiched between molds, and the work piece is pressed against the mold surface by vertical movement with a strong force to form the same final shape as the mold. It is a way of creating. In press molding, the desired final shape is created by plastic deformation of the workpiece, and no tools such as cutting are used. For this reason, press work is suitable for mass production because it has higher productivity than other machining processes. The mold generally requires durability such as wear resistance, impact resistance, and chipping resistance, and tool steels such as cemented carbide, cast iron, cast steel, and forged steel are used (for example, Patent Documents 1 and 2). reference.).

特開2005−152961号公報(段落[0002]、段落[0004])JP 2005-152961 A (paragraph [0002], paragraph [0004]) 特開2004−306119号公報(段落[0023])JP 2004-306119 A (paragraph [0023])

しかしながら、従来の工具鋼を使用した金型で複雑な形状の金属製のプレス成形体を製造する場合、金型の材質、被加工材の材質、被加工材の厚さ等に起因して、所望の形状と寸法の成形体にならなかったり、成形体にひび割れやキズが発生するなどのプレス成形性に劣ることがあった。この不具合を解消するために、例えば、金型の表面にステンレス溶接肉盛を行うか、或いは金型表面を機械加工、電解加工、ワイヤー放電加工等を行う必要があった。特に従来の金型で絞り加工や曲げ加工をする場合、成形性とキズを防止するために、プレス時に油を使用するか、金型表面に化学蒸着(CVD)処理加工や物理蒸着(PVD)処理加工などのコーティング処理を施していた。こうした事情から、一般的に、プレス成形法は、金属製の成形型である金型を作製するのに多大の製作日数と製作コストを要し、量産品を製造する前段階で、このプレス成形法により試作品を製造することが製作日数と製作コストの観点からできなかった。また工具鋼の厚み以上にダイハイトを下げることができず、成形体の厚み以上の圧力をかけられないという理由により、成形体に反りが発生することがあり、プレス成形後に金型から取り出したプレス成形体の反りをなくすための修正工程を必要としていた。   However, when manufacturing a metal press-molded body having a complicated shape with a mold using conventional tool steel, due to the material of the mold, the material of the workpiece, the thickness of the workpiece, etc. In some cases, the molded product does not have a desired shape and dimensions, or the molded product is inferior in press formability such as cracks and scratches. In order to solve this problem, for example, it was necessary to perform stainless steel welding on the surface of the mold, or to perform machining, electrolytic processing, wire electric discharge machining, or the like on the surface of the mold. Especially when drawing or bending with conventional molds, oil is used during pressing or chemical vapor deposition (CVD) treatment or physical vapor deposition (PVD) on the mold surface to prevent moldability and scratches. Coating processing such as processing was performed. For these reasons, in general, the press molding method requires a large number of production days and production costs to produce a metal mold, and this press molding is performed before the mass production. Prototype production by the law was not possible from the viewpoint of production days and production costs. Also, because the die height cannot be lowered beyond the thickness of the tool steel and the pressure beyond the thickness of the molded body cannot be applied, the molded body may be warped, and the press taken out from the mold after press molding. The correction process for eliminating the curvature of a molded object was required.

また、従来の工具鋼を使用した金型でプレス加工を続け、プレス加工品がある数量を超えると、金型が磁気化し、被加工材が磁性体の場合、プレス成形体が磁気を帯びる問題があった。磁気を帯びると性能を損なう電子製品の筐体や機材にプレス成形体を使用する場合には、予め帯磁したプレス成形体を脱磁しておく必要があり、煩わしかった。   In addition, if pressing continues with a mold using conventional tool steel and the number of pressed products exceeds a certain number, the mold becomes magnetized, and if the workpiece is a magnetic material, the press molded body becomes magnetized. was there. When a press-molded body is used for a casing or equipment of an electronic product that deteriorates performance when magnetized, it is troublesome because it is necessary to demagnetize the pre-magnetized press-molded body in advance.

更に、一般的にプレス成形体の外観の装飾性や意匠性(以下、見栄えという。)を向上したり、滑り防止のために、プレス成形体の外観表面にシボ(皺)模様を形成することが知られているが、プレス成形体が金属製である場合、使用する工具鋼の上型又は下型の表面に転写用シボをマシニング等の切削機で機械加工して形成することが極めて難しいため、工業的に金属製のプレス成形体の表面にシボ模様を付与することが期待されていた。   Furthermore, in general, to improve the decorativeness and design of the appearance of the press-molded body (hereinafter referred to as “appearance”) and to form a wrinkle pattern on the exterior surface of the press-molded body in order to prevent slippage. However, when the press-molded body is made of metal, it is extremely difficult to form a transfer texture on the surface of the upper or lower mold of the tool steel used by machining with a cutting machine such as machining. For this reason, it has been expected to provide a texture pattern on the surface of a metal press-molded body industrially.

本発明の第1の目的は、三次元印刷機器を用いて立体的に造形された樹脂製成形型を用いて、ひび割れ、反り、キズ及び成形型跡のない金属製のプレス成形体を簡便にかつ安価に製造する方法を提供することにある。本発明の第2の目的は、成形体を繰り返し製造しても樹脂製成形型を構造上損傷させることなく同形同大の複数の形状の金属製のプレス成形体を製造する方法を提供することにある。本発明の第3の目的は、金属製のプレス成形体を電子部品用のプレス加工品として用いる場合にも、脱磁する必要のない金属製のプレス成形体を製造する方法を提供することにある。本発明の第4の目的は、成形体の外観表面にシボ模様を付与して成形体の外観の見栄えを良くする金属製のプレス成形体を工業的に製造する方法を提供することにある。   The first object of the present invention is to use a resin molding die that is three-dimensionally shaped using a three-dimensional printing device, and to easily form a metal press-molded body free from cracks, warpage, scratches, and molding die traces. Another object is to provide a method for manufacturing at low cost. The second object of the present invention is to provide a method for producing a metal press-molded body having a plurality of shapes having the same shape and the same size without structurally damaging the resin mold even if the molded body is repeatedly produced. There is. The third object of the present invention is to provide a method for producing a metal press-formed body that does not need to be demagnetized even when the metal press-formed body is used as a pressed product for an electronic component. is there. The fourth object of the present invention is to provide a method for industrially producing a metal press-molded body that gives a texture pattern on the exterior surface of the molded body to improve the appearance of the molded body.

本発明者らは、金属製の成形型である金型に代わって、三次元印刷機器を用いて所定の厚さを有する樹脂製成形型を作り、被加工材の厚さを所定の厚さに選定して、プレス成形を繰り返し行えば、成形性に優れ、所定の寸法通りに金属製のプレス成形体を製造できること、及び多量のプレス加工品を製造しても帯磁しない金属製のプレス成形体を製造できること、更に金属製の成形体の外観表面にシボ模様を付与できることに着目し、本発明に到達した。   The present inventors made a resin mold having a predetermined thickness using a three-dimensional printing apparatus instead of a metal mold, which is a metal mold, and set the thickness of the workpiece to a predetermined thickness. If it is selected and repeated press forming, it is excellent in formability, and a metal press-formed body can be manufactured according to a predetermined dimension, and metal press forming that does not become magnetized even if a large amount of press-processed products are manufactured. The present invention has been achieved by paying attention to the fact that a body can be produced, and that a texture pattern can be imparted to the external surface of a metal molded body.

本発明の第1の観点は、プレス装置の上下動するスライドに取付けられた上型とボルスタに固定された下型の間に被加工材を配置し、前記上型を前記下型に押し付けて前記被加工材をプレス成形することによりプレス成形体を製造する方法において、前記上型及び前記下型がともに三次元印刷機器を用いて立体的に造形された樹脂製成形型であって、前記被加工材の厚さが0.1〜6.0mmの範囲内の金属板であって、前記樹脂製成形型からなる前記上型及び前記下型のそれぞれの最深部における前記上型及び前記下型の各厚さが少なくとも5mmであることを特徴とする。   According to a first aspect of the present invention, a work material is disposed between an upper mold attached to a vertically moving slide of a press device and a lower mold fixed to a bolster, and the upper mold is pressed against the lower mold. In the method of manufacturing a press-molded body by press-molding the workpiece, the upper mold and the lower mold are both resin molds that are three-dimensionally modeled using a three-dimensional printing device, A metal plate having a thickness of a workpiece in the range of 0.1 to 6.0 mm, wherein the upper mold and the lower mold at the deepest part of each of the upper mold and the lower mold made of the resin mold Each thickness of the mold is at least 5 mm.

本発明の第2の観点は、第1の観点に基づく発明であって、前記樹脂製成形型が光積層造形法により光硬化性組成物を積層して立体的に造形され、かつ前記樹脂製成形型からなる前記上型及び前記下型の各光硬化性組成物の積層方向が前記上型の上下動方向に直角であることを特徴とする。   A second aspect of the present invention is an invention based on the first aspect, wherein the resin mold is three-dimensionally formed by laminating a photocurable composition by an optical lamination modeling method, and the resin The lamination direction of each photocurable composition of the upper mold and the lower mold made of a mold is perpendicular to the vertical movement direction of the upper mold.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、上死点位置と下死点位置との間を上下動する前記スライドの前記下死点位置をその基準設定位置より0.5〜2.0mm下方に補正して前記被加工材をプレス成形することを特徴とする。   A third aspect of the present invention is an invention based on the first or second aspect, wherein the bottom dead center position of the slide that moves up and down between a top dead center position and a bottom dead center position is a reference. The workpiece is press-molded with a correction of 0.5 to 2.0 mm below the set position.

本発明の第4の観点は、第1ないし第3の観点のうち、いずれか1つの観点に基づく発明であって、前記樹脂製成形型の前記上型又は前記下型のいずれか一方又は双方の型表面に三次元印刷機器を用いて転写用シボが造形されたことを特徴とする。   A fourth aspect of the present invention is an invention based on any one of the first to third aspects, and is one or both of the upper mold and the lower mold of the resin mold. A transfer texture is formed on the mold surface using a three-dimensional printing machine.

本発明の第5の観点は、第4の観点の金属製のプレス成形体の製造方法に用いる樹脂製成形型である。   A fifth aspect of the present invention is a resin mold used in the method for producing a metal press-molded body according to the fourth aspect.

本発明の第1の観点の金属製のプレス成形体の製造方法では、三次元印刷機器で作られた樹脂製成形型を用いてプレス成形体を製造するため、従来機械加工、電解加工、ワイヤー放電加工で製作していた高価な金型と比較して、簡便にかつ安価に成形体を製造できる。特に三次元印刷機器では、求められる製品の形状が複雑かつ微細であってもその形状に忠実かつ精密に合致させて樹脂製成形型の形状を作り出すことができる。この結果、被加工材の厚さが0.1〜6.0mmの範囲内の金属板であって、上型及び下型の各最深部における厚さが少なくとも5mmあれば、樹脂製成形型がプレス時に弾性変形し、脱圧後に原型に復帰するため、樹脂製成形型を構造上損傷させずに、繰り返し成形を行うことができ、同形同大の数個から500個程度の数のプレス成形体をひび割れ、反り、キズ及び成形型の型跡なしで製造することができる。これにより玩具、日用雑貨品、自動車部品、電気部品などの試作品用又は量産品用のプレス成形体を手軽に製造することができる。樹脂製成形型を用いて多量のプレス加工品を製造した場合でも、成形型自体が樹脂製であって帯磁しないため、金属製のプレス成形体を帯磁させることなく製造することができる。これにより、金属製のプレス成形体を電子部品の筐体や機材に用いる場合にも、脱磁する必要がない。   In the method for producing a metal press-molded body according to the first aspect of the present invention, since a press-molded body is produced using a resin mold produced by a three-dimensional printing machine, conventional machining, electrolytic processing, wire Compared to an expensive mold manufactured by electric discharge machining, a molded body can be manufactured easily and inexpensively. In particular, in a three-dimensional printing machine, even if the required product shape is complicated and fine, the shape of the resin mold can be created by matching the shape faithfully and precisely. As a result, when the thickness of the workpiece is a metal plate in the range of 0.1 to 6.0 mm and the thickness at each deepest part of the upper mold and the lower mold is at least 5 mm, the resin mold is Since it is elastically deformed during pressing and returns to its original shape after depressurization, it can be repeatedly molded without damaging the resin mold due to its structure. The molded body can be produced without cracks, warpage, scratches and mold traces. Thereby, it is possible to easily manufacture a press-molded body for a prototype or a mass-produced product such as a toy, a daily miscellaneous goods, an automobile part, and an electrical part. Even when a large amount of a press-formed product is manufactured using a resin mold, the mold itself is made of resin and does not become magnetized, so that it can be manufactured without magnetizing the metal press-molded body. This eliminates the need for demagnetization even when a metal press-molded body is used for a housing or equipment for an electronic component.

本発明の第2の観点の金属製のプレス成形体の製造方法では、上型のプレス時に、樹脂弾性により、上型及び下型が積層方向である水平方向に延伸し、上型と下型で形成されるキャビティ内に被加工材をより隙間なく塑性変形させる。またプレス時には積層硬化により成形体の接触面が通常の樹脂よりも固くなっているため、従来の工具鋼を磨いて仕上げたとき以上の滑り又は油を使用したとき以上の滑りを生じ、被加工材をより良く塑性変形させる。この結果、求められる製品の形状が複雑かつ微細であってもプレス成形体をその形状により忠実かつより精密に合致させて製造することができる。   In the method for producing a metal press-molded body according to the second aspect of the present invention, when the upper die is pressed, the upper die and the lower die are stretched in the horizontal direction, which is the stacking direction, due to resin elasticity, and the upper die and the lower die. The material to be processed is plastically deformed without gaps in the cavity formed by the above. In addition, when pressed, the contact surface of the molded body is harder than ordinary resin due to lamination hardening, so slipping more than when finished with conventional tool steel or more slipping when using oil, work Better plastic deformation of the material. As a result, even if the required shape of the product is complicated and fine, the press-molded body can be manufactured by matching the shape more faithfully and more precisely.

本発明の第3の観点の金属製のプレス成形体の製造方法では、スライドの下死点位置をその基準設定位置より0.5〜2.0mm下方に補正することにより、上型が下型に押し込まれ、上型と下型で形成されるキャビティ内に被加工材をより一層確実に隙間なく塑性変形させることができ、求められる製品の形状が複雑かつ微細であってもプレス成形体をその形状により一層忠実かつより一層精密に合致させて製造することができるとともに、プレス成形後に樹脂製成形型から取り出した金属製のプレス成形体に反りを生じさせず、プレス成形後の反りを解消するための修正加工を必要としない。   In the method for producing a metal press-molded body according to the third aspect of the present invention, the upper die is lowered by correcting the bottom dead center position of the slide 0.5 to 2.0 mm below the reference set position. Can be plastically deformed without gaps in the cavity formed by the upper die and the lower die, and even if the required product shape is complex and fine, It can be manufactured with more faithful and more precise matching due to its shape, and the warp after press molding is eliminated without causing warp in the metal press-molded body taken out from the resin mold after press molding. There is no need for corrective processing.

本発明の第4の観点の金属製のプレス成形体の製造方法では、三次元印刷機器により転写用シボが上型又は下型のいずれか一方又は双方の型表面に造形されるため、成形体の外観表面にシボ模様を付与して成形体の外観の見栄えを良くしたり、或いは成形体に滑り止めを施した金属製のプレス成形体を工業的に製造することができる。   In the method for producing a metal press-molded body according to the fourth aspect of the present invention, the transfer texture is formed on the surface of one or both of the upper mold and the lower mold by a three-dimensional printing apparatus. It is possible to industrially produce a metal press-molded body in which a texture pattern is imparted to the outer surface of the mold to improve the appearance of the molded body, or the molded body is slip-proofed.

本発明の第5の観点の樹脂製成形型によれば、工業的にかつ簡便に金属製のプレス成形体の表面にシボ模様を付与することができる。   According to the resin mold of the fifth aspect of the present invention, a texture pattern can be imparted to the surface of a metal press-molded body industrially and easily.

本発明の実施形態に係る金属製のプレス成形体を製造する装置の構成図である。図1(a)はスライド及び上型が上死点位置で静止した状態を示し、図1(b)はスライド及び上型が下死点位置に到達した状態を示す。It is a block diagram of the apparatus which manufactures the metal press-molded body which concerns on embodiment of this invention. FIG. 1A shows a state where the slide and the upper mold are stationary at the top dead center position, and FIG. 1B shows a state where the slide and the upper mold reach the bottom dead center position. 本発明の実施形態に係る下型を製造するための光積層造形法を示す概略断面図である。図2(a)は所定の形状を有する第一の硬化薄層を形成する状態を示し、図2(b)はテーブルを僅かに下方に移動させて第二の硬化薄層を形成する状態を示し、図2(c)は所定の立体形状を有する光造形物である下型を形成する状態を示す。It is a schematic sectional drawing which shows the optical lamination molding method for manufacturing the lower mold | type which concerns on embodiment of this invention. FIG. 2A shows a state in which a first cured thin layer having a predetermined shape is formed, and FIG. 2B shows a state in which the table is moved slightly downward to form a second cured thin layer. FIG. 2C shows a state in which a lower mold, which is an optically shaped object having a predetermined three-dimensional shape, is formed. 本発明の別の実施形態に係る光積層造形法で作られた樹脂製成形型の図である。図3(a)は下型の平面図であり、図3(b)は上型の平面図であり、図3(c)はプレス時の上型及び下型の図3(a)のA−A線断面図である。It is a figure of the resin-made shaping | molding die made with the optical lamination molding method which concerns on another embodiment of this invention. 3 (a) is a plan view of the lower mold, FIG. 3 (b) is a plan view of the upper mold, and FIG. 3 (c) is A of FIG. 3 (a) of the upper mold and the lower mold during pressing. FIG.

次に本発明を実施するための形態について図面を参照して説明する。   Next, modes for carrying out the present invention will be described with reference to the drawings.

先ず、本発明の実施形態に係る金属製のプレス成形体を製造する装置(以下、プレス装置という。)について説明する。 図1に示すように、本実施形態に係るプレス装置10は、駆動モータからの回転エネルギーを蓄えるフライホイール11と、クランクシャフト12と、このクランクシャフト12にフライホイール11の回転力を伝達・遮断するクラッチ13と、クランクシャフト12の回転運動を直線運動に変化するコネクティングロッド14と、コネクティングロッド14の直線運動に伴い上死点位置と下死点位置の間で直線運動するスライド16とを備える。クランクシャフト12は、回転軸12aと、この回転軸12aに連結され回転軸12aに対して偏心した偏心軸12bとを有する。コネクティングロッド14は、ジョイント15を介して、偏心軸12bをスライド16に連結する。コネクティングロッド14は、偏心軸12bに対して回転可能に連結されている。   First, an apparatus (hereinafter referred to as a press apparatus) for producing a metal press-formed body according to an embodiment of the present invention will be described. As shown in FIG. 1, a press device 10 according to the present embodiment includes a flywheel 11 that stores rotational energy from a drive motor, a crankshaft 12, and transmits and blocks the rotational force of the flywheel 11 to the crankshaft 12. And a connecting rod 14 that changes the rotational motion of the crankshaft 12 to a linear motion, and a slide 16 that linearly moves between a top dead center position and a bottom dead center position in accordance with the linear motion of the connecting rod 14. . The crankshaft 12 has a rotating shaft 12a and an eccentric shaft 12b that is connected to the rotating shaft 12a and eccentric with respect to the rotating shaft 12a. The connecting rod 14 connects the eccentric shaft 12 b to the slide 16 through a joint 15. The connecting rod 14 is rotatably connected to the eccentric shaft 12b.

本実施形態におけるプレス装置10は、更にスライド16の両側面に設けられ上下方向に直線運動するようにスライド16を規制するフレーム17と、スライド16の下面に取り付けられた上型18と、この上型18に対向して下方に配置された下型19と、下型19が固定されるボルスタ20とを備える。   The press device 10 in this embodiment further includes a frame 17 that is provided on both side surfaces of the slide 16 and regulates the slide 16 so as to linearly move in the vertical direction, an upper mold 18 attached to the lower surface of the slide 16, A lower mold 19 disposed below the mold 18 and a bolster 20 to which the lower mold 19 is fixed are provided.

本実施形態の上型18及び下型19はともに樹脂製成形型であって、三次元印刷機器を用いて立体的に造形される。本実施形態では、光造形物である樹脂製成形型13は、光積層造形法で代表される光学的立体造形法により製造される。図2(a)〜(c)は、上記下型19を光積層造形法で造形する工程を示す。予め下型19に相当する造形物の三次元データを取得し、そのデータを計算上で等間隔で輪切りにしスライスデータとして記憶しておく。図2(a)に示すように、液状の光硬化性組成物21を収容した容器22液槽内に、液面23からわずかな距離だけ下方の地点に上面が位置するように、鉛直方向に移動可能なテーブル24を配置する。液状の光硬化性組成物は、(メタ)アクリル系モノマーなどのラジカル重合性化合物、エポキシ化合物などのカチオン重合化合物を含む重合性モノマー及び光重合開始剤などを含有する。テーブル24を配置した後、このテーブル24上の液状の光硬化性組成物24の薄層に、紫外線レーザ装置26から紫外線レーザ光27を上記記憶したデータに基づいた所定のパターンで走査して、所定の形状を有する第一の硬化薄層19aを形成させる。次いで、図2(b)に示すように、テーブル24の位置を僅かな距離だけ下方に移動させることによって、第一の硬化薄層19aの上に液状の光硬化性組成物24の薄層を形成させた後、この薄層に紫外線レーザ光27を上記記憶したデータに基づいた所定のパターンで走査して、所定の形状を有する第二の硬化薄層19bを形成させる。以後、同様の操作を繰り返して、最終的に、図2(c)に示すように、複数の硬化薄層19a、19b、・・・、19xの集合体である所定の立体形状を有する光造形物である下型19を得る。図示しないが、上型18も下型19と同様の方法で作製される。   The upper mold 18 and the lower mold 19 of the present embodiment are both resin molds and are three-dimensionally formed using a three-dimensional printing apparatus. In this embodiment, the resin mold 13 that is an optical modeling object is manufactured by an optical three-dimensional modeling method represented by an optical layered modeling method. 2A to 2C show a process of modeling the lower mold 19 by the optical layered modeling method. The three-dimensional data of the shaped object corresponding to the lower mold 19 is acquired in advance, and the data is cut into circles at equal intervals and stored as slice data. As shown in FIG. 2 (a), in the vertical direction so that the upper surface is located at a point slightly below the liquid surface 23 in the container 22 liquid tank containing the liquid photocurable composition 21. A movable table 24 is arranged. The liquid photocurable composition contains a radically polymerizable compound such as a (meth) acrylic monomer, a polymerizable monomer containing a cationically polymerizable compound such as an epoxy compound, a photopolymerization initiator, and the like. After placing the table 24, the thin layer of the liquid photocurable composition 24 on the table 24 is scanned with the ultraviolet laser beam 27 from the ultraviolet laser device 26 in a predetermined pattern based on the stored data, A first cured thin layer 19a having a predetermined shape is formed. Next, as shown in FIG. 2B, the thin layer of the liquid photocurable composition 24 is formed on the first cured thin layer 19a by moving the position of the table 24 downward by a small distance. After the formation, the ultraviolet laser beam 27 is scanned on the thin layer in a predetermined pattern based on the stored data to form the second cured thin layer 19b having a predetermined shape. Thereafter, the same operation is repeated, and finally, as shown in FIG. 2 (c), stereolithography having a predetermined three-dimensional shape that is an aggregate of a plurality of cured thin layers 19a, 19b,. The lower mold 19 is obtained. Although not shown, the upper die 18 is also produced by the same method as the lower die 19.

図2(c)から明らかなように、この実施形態では、上型も下型も各光硬化性組成物が図1(a)に示すように、上型18の上下動方向に直角の水平方向になるように積層される。なお、図示しないが、各光硬化性組成物の積層方向を上型及び下型がともに上型の上下動方向と同一の垂直方向にしてもよい。図1(a)に示すこの実施形態のように、上型18及び下型19がともに各光硬化性組成物の積層方向を上型の上下動方向に直角の水平方向にする方が、上型のプレス時に、樹脂弾性により、上型及び下型が積層方向である水平方向に延伸し、上型と下型で形成されるキャビティ内に被加工材を隙間なく塑性変形させることができる。即ち、プレス時には積層硬化により成形体の接触面が通常の樹脂よりも固くなっているため、従来の工具鋼を磨いて仕上げたとき以上の滑り又は油を使用したとき以上の滑りを生じ、被加工材をより良く塑性変形させる。この結果、求められる製品の形状が複雑かつ微細であっても金属製のプレス成形体をその形状により忠実かつより精密に合致させて製造することができる。   As is clear from FIG. 2 (c), in this embodiment, the photocurable composition of each of the upper mold and the lower mold is horizontally perpendicular to the vertical movement direction of the upper mold 18 as shown in FIG. 1 (a). Laminated so as to be in the direction. In addition, although not shown in figure, the lamination direction of each photocurable composition may be made into the perpendicular | vertical direction same as the up-and-down moving direction of both the upper mold | type and a lower mold | type. As in this embodiment shown in FIG. 1 (a), the upper mold 18 and the lower mold 19 both have their photocurable compositions laminated in the horizontal direction perpendicular to the vertical movement direction of the upper mold. When the die is pressed, the upper die and the lower die are stretched in the horizontal direction, which is the stacking direction, due to resin elasticity, and the workpiece can be plastically deformed without a gap in the cavity formed by the upper die and the lower die. In other words, the contact surface of the molded body becomes harder than ordinary resin due to lamination hardening at the time of pressing, so slipping occurs more than when the conventional tool steel is polished and finished, or more slipping when oil is used. Better plastic deformation of the workpiece. As a result, even if the shape of the required product is complicated and fine, a metal press-formed body can be manufactured by matching the shape more faithfully and more precisely.

図1(a)の一点鎖線で囲んだ拡大図に示すように、本実施形態の上型18及び下型19のそれぞれの最深部における上型及び下型の厚さd、dは、上型、下型のサイズ、型表面における凹凸の数、光硬化性組成物の種類、光硬化後の樹脂の硬度、弾力性等に応じて変化するが、少なくとも5mmは必要である。前記厚さが5mm未満である場合、樹脂製成形型からなる上型及び下型がプレス時に破損することがあり、その場合、所望の金属製のプレス成形体を製造することができない。好ましい最深部における上型及び下型の厚さd、dは、10mm以上500mm以下である。上限値を500mm以下にするのは、これ以上厚くしても、樹脂製成形型の耐久性は不変であり、光硬化性組成物材料の浪費を防ぐためである。 As shown in the enlarged view surrounded by the alternate long and short dash line in FIG. 1A, the thicknesses d 1 and d 2 of the upper mold and the lower mold in the deepest portions of the upper mold 18 and the lower mold 19 of this embodiment are Although it varies depending on the size of the upper mold, the lower mold, the number of irregularities on the mold surface, the type of the photocurable composition, the hardness of the resin after photocuring, the elasticity, etc., at least 5 mm is necessary. When the thickness is less than 5 mm, the upper and lower molds made of a resin mold may be damaged during pressing, and in this case, a desired metal press-molded body cannot be manufactured. The thicknesses d 1 and d 2 of the upper mold and the lower mold at the preferred deepest part are 10 mm or more and 500 mm or less. The reason why the upper limit is set to 500 mm or less is that the durability of the resin mold does not change even if the thickness is increased beyond this, and waste of the photocurable composition material is prevented.

なお、本発明の金属製のプレス成形体は、上記のモータの回転運動をクランクシャフトに伝えて直線運動に変える機械式プレス装置に限らず油圧をかけてスライドを動作させる油圧式プレス装置により成形してもよい。また機械式プレス装置は、上記のクランクプレスに限らず、クランクレスプレス、ナックルプレス、スクリュープレス、シェービングプレス、ウェッジプレス、カム式プレス、リンクプレス、サーボプレス等の各種プレス装置を含む。また本発明の造形物である樹脂製成形型からなる上型及び下型は、上記の光積層造形法に限らず、三次元プリンターによる、アクリル系光硬化樹脂を使用したインクジェット紫外線硬化方式のものや、ABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合合成樹脂)を使用した熱溶解積層方式のものや、パウダーを使用した粉末固着方式のもので製造してもよい。図3は三次元プリンターによる紫外線硬化樹脂により作製した別の実施形態の上型、下型である。   The metal press-formed body of the present invention is not limited to the mechanical press device that transmits the rotational motion of the motor to the crankshaft and changes it into a linear motion, but is formed by a hydraulic press device that operates the slide by applying hydraulic pressure. May be. The mechanical press device is not limited to the crank press described above, and includes various press devices such as a crankless press, a knuckle press, a screw press, a shaving press, a wedge press, a cam press, a link press, and a servo press. In addition, the upper mold and the lower mold made of the resin mold that is the molded article of the present invention are not limited to the above-described optical layered molding method, but those of an inkjet ultraviolet curing method using an acrylic photo-curing resin by a three-dimensional printer. Alternatively, it may be manufactured by a heat melting lamination method using ABS resin (acrylonitrile / butadiene / styrene copolymer synthetic resin) or a powder fixing method using powder. FIG. 3 shows an upper mold and a lower mold of another embodiment produced by an ultraviolet curable resin using a three-dimensional printer.

また、上述した所定の形状として、三次元印刷機器により、樹脂製成形型の上型又は下型のいずれか一方又は双方の型表面に転写用シボを形成するように、上記型表面部分に相応する硬化薄層を形成することもできる。ここで、シボとは、皮革、梨地、木目、岩目、砂目、布地、幾何学などの細かい凹凸形状の模様をいう。   In addition, the predetermined shape described above corresponds to the surface of the mold so that a transfer texture is formed on the surface of one or both of the upper mold and the lower mold of the resin mold by a three-dimensional printing machine. A cured thin layer can also be formed. Here, “texture” refers to a pattern with fine irregularities such as leather, pear texture, wood grain, rock grain, sand grain, fabric, and geometry.

図1(a)の一点鎖線で囲んだ拡大図に示すように、本実施形態の被加工材Wは0.1〜6.0mmの範囲内の厚さtを有する金属板である。金属板としては、アルミニウム板、スチール板、ステンレス板、銅板等が例示される。この厚さは金属の材質、成形体のサイズ、要求される成形体の凹凸度に応じて決められる。被加工材Wが0.1mm未満であると、三次元印刷機器が補償する精度に適合せず寸法通りに成形することができない。また6.0mmを超えると樹脂製成形型に割れが発生する等の不具合がある。好ましい被加工材Wの厚さは0.5〜4.0mmである。 As shown in the enlarged view surrounded by the alternate long and short dash line in FIG. 1A, the workpiece W of the present embodiment is a metal plate having a thickness t 1 within a range of 0.1 to 6.0 mm. Examples of the metal plate include an aluminum plate, a steel plate, a stainless steel plate, and a copper plate. This thickness is determined according to the metal material, the size of the molded body, and the required degree of unevenness of the molded body. If the workpiece W is less than 0.1 mm, it does not conform to the accuracy compensated by the three-dimensional printing apparatus and cannot be molded according to the dimensions. On the other hand, if it exceeds 6.0 mm, there is a problem such as cracking in the resin mold. A preferable thickness of the workpiece W is 0.5 to 4.0 mm.

次に、上記プレス装置10を用いて金属製のプレス成形体を製造する方法を説明する。図1(a)に示す、スライド16及び上型18が上死点位置で静止している状態で、被加工材Wを上型18と下型19の間に挟み込む。次いで、クラッチ13をフライホイール11に接続し、フライホイールの回転力を回転軸12aに伝達する。これによりクランクシャフト12の回転軸12a及び偏心軸12bが回転し、これに応じてスライド16及び上型18は上下方向に直線運動する。スライド16及び上型18が図1(b)に示す、下死点基準位置に到達すると、上型18により被加工材Wが下型19の表面に押し付けられ、被加工材Wが上型18と下型19とによりプレス成形され、金属製のプレス成形体Pが得られる。この実施形態では、上型18のプレス時に、樹脂弾性により、上型18及び下型19が積層方向である水平方向に延伸し、上型18と下型19で形成されるキャビティ内に被加工材Wをより隙間なく塑性変形させる。この結果、求められる製品の形状が複雑かつ微細であっても金属製のプレス成形体Pをその形状により忠実かつより精密に合致させて製造することができる。   Next, a method for producing a metal press-molded body using the press device 10 will be described. The workpiece W is sandwiched between the upper mold 18 and the lower mold 19 in a state where the slide 16 and the upper mold 18 are stationary at the top dead center position shown in FIG. Next, the clutch 13 is connected to the flywheel 11, and the rotational force of the flywheel is transmitted to the rotary shaft 12a. As a result, the rotation shaft 12a and the eccentric shaft 12b of the crankshaft 12 rotate, and the slide 16 and the upper mold 18 linearly move in the vertical direction accordingly. When the slide 16 and the upper mold 18 reach the bottom dead center reference position shown in FIG. 1B, the workpiece W is pressed against the surface of the lower mold 19 by the upper mold 18, and the workpiece W is moved to the upper mold 18. And the lower mold 19 are pressed to obtain a metal press-formed body P. In this embodiment, when the upper die 18 is pressed, the upper die 18 and the lower die 19 are stretched in the horizontal direction, which is the stacking direction, due to resin elasticity, and are processed into a cavity formed by the upper die 18 and the lower die 19. The material W is plastically deformed without gaps. As a result, even if the required shape of the product is complicated and fine, the metal press-formed product P can be manufactured by matching the shape more faithfully and more precisely.

ここで、樹脂製成形型の弾性程度に応じて、スライド16の下死点位置をその基準設定位置より0.5〜2.0mm下方に補正しておくことが好ましい。こうすることにより、スライド16が下死点位置に到達したときに、上型18が下型19に押し込まれ、上型18と下型19で形成されるキャビティ内に被加工材Wをより一層確実に隙間なく塑性変形させることができ、求められる製品の形状が複雑かつ微細であっても金属製のプレス成形体Pをその形状により一層忠実かつより一層精密に合致させて製造することができるとともに、プレス成形後に樹脂製成形型から取り出した金属製のプレス成形体Pに反りを生じさせず、プレス成形後の反りを解消するための修正加工を必要としない。   Here, it is preferable that the bottom dead center position of the slide 16 is corrected 0.5 to 2.0 mm below the reference set position according to the degree of elasticity of the resin mold. By doing so, when the slide 16 reaches the bottom dead center position, the upper die 18 is pushed into the lower die 19, and the workpiece W is further placed in the cavity formed by the upper die 18 and the lower die 19. It can be reliably plastically deformed without gaps, and even if the required product shape is complex and fine, the metal press-molded product P can be manufactured by matching the shape more faithfully and more precisely. In addition, the metal press-molded body P taken out from the resin mold after press molding does not warp, and correction processing for eliminating the warp after press molding is not required.

図1(b)に示すプレス成形後、スライド16を上昇させ、上型18と下型19の間から金属製のプレス成形体Pを取り出す。上記操作を繰り返しても、樹脂製成形型からなる上型18及び下型19は、弾性変形可能な範囲内の応力を受けるだけであるため、構造上損傷しない。この結果、この操作を繰り返すことにより、複数の同形同大の金属製のプレス成形体を製造することができる。   After the press molding shown in FIG. 1B, the slide 16 is raised, and the metal press-molded body P is taken out between the upper mold 18 and the lower mold 19. Even if the above operation is repeated, the upper mold 18 and the lower mold 19 made of the resin mold are only subjected to stress within a range in which they can be elastically deformed, and thus are not structurally damaged. As a result, by repeating this operation, a plurality of metal press-molded bodies having the same shape and the same size can be manufactured.

また、三次元印刷機器により、樹脂製成形型の上型又は下型のいずれか一方又は双方の型表面に微細な転写用シボが形成された上型と下型でプレス成形すれば、この樹脂製成形型を用いて工業的にかつ簡便に金属製のプレス成形体の表面にシボ模様を付与することができる。これにより、金属製のプレス成形体の外観の見栄えを向上させたり、或いは金属製のプレス成形体に滑り止めの機能を付与することができる。   In addition, if a three-dimensional printing machine is used for press molding with an upper mold and a lower mold in which fine transfer textures are formed on the surface of either or both of the upper mold and the lower mold of the resin mold, this resin An embossed pattern can be imparted to the surface of a metal press-molded body industrially and simply using a mold. Thereby, the appearance of the appearance of the metal press-formed body can be improved, or a function of preventing slippage can be imparted to the metal press-formed body.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1〜4>
三次元印刷機器である三次元プリンターでそれぞれ造形した紫外線硬化樹脂からなる上型及び下型を用意した。上型の最深部の厚さは29mm、下型の最深部の厚さは11mmであった。この上型をプレス装置のスライドの下面に取付け、この下型を上型に対向してブレス装置のボルスタに固定した。表1に示す4種類の材質の厚さ0.5mmの被加工材をこれらの上型と下型の間に挟み込んでプレス成形した。このときのスライドの下死点位置をその基準設定位置より表4に示す値だけ下方に補正した。
<Examples 1-4>
An upper mold and a lower mold made of an ultraviolet curable resin each prepared by a three-dimensional printer, which is a three-dimensional printing apparatus, were prepared. The thickness of the deepest part of the upper mold was 29 mm, and the thickness of the deepest part of the lower mold was 11 mm. The upper die was attached to the lower surface of the slide of the press device, and the lower die was fixed to the bolster of the breath device facing the upper die. Work materials having a thickness of 0.5 mm of four kinds of materials shown in Table 1 were sandwiched between these upper molds and lower molds and press-molded. The bottom dead center position of the slide at this time was corrected downward from the reference set position by the value shown in Table 4.

<実施例5〜8>
最深部の厚さが19mmの上型及び最深部の厚さが21mmの下型を用いた以外、実施例1〜4と同様に表1に示す4種類の材質の厚さ0.5mmの被加工材を同一のプレス装置を用いてこれらの上型と下型でプレス成形した。このときのスライドの下死点位置をその基準設定位置より表4に示す値だけ下方に補正した。
<Examples 5 to 8>
Except for using an upper mold having a deepest part thickness of 19 mm and a lower mold having a deepest part thickness of 21 mm, four types of materials shown in Table 1 having a thickness of 0.5 mm were used in the same manner as in Examples 1 to 4. The processed material was press-molded with these upper mold and lower mold using the same press apparatus. The bottom dead center position of the slide at this time was corrected downward from the reference set position by the value shown in Table 4.

<実施例9〜12>
実施例1〜4と同様に三次元プリンターでそれぞれ作製された、最深部の厚さが5mmの上型及び最深部の厚さが15mmの下型を用い、表1に示す4種類の材質の厚さ0.1mmの被加工材を同一のプレス装置を用いてこれらの上型と下型でプレス成形した。このときのスライドの下死点位置はその基準設定位置のままで下方に補正しなかった。
<Examples 9 to 12>
Each of the four types of materials shown in Table 1 was prepared using an upper mold having a deepest part thickness of 5 mm and a lower mold having a deepest part thickness of 15 mm. A workpiece having a thickness of 0.1 mm was press-molded with these upper mold and lower mold using the same press apparatus. At this time, the bottom dead center position of the slide remained at the reference set position and was not corrected downward.

<実施例13〜21>
実施例1〜4と同様に三次元プリンターでそれぞれ作製された、最深部の厚さが110mmの上型及び最深部の厚さが50mmの下型を用い、表1に示す材質と厚さを有する被加工材を同一のプレス装置を用いてこれらの上型と下型でプレス成形した。このときのスライドの下死点位置をその基準設定位置より表4に示す値だけ下方に補正した。
<Examples 13 to 21>
The materials and thicknesses shown in Table 1 were prepared using the upper mold having the deepest part thickness of 110 mm and the deepest part having the thickness of 50 mm, respectively, which were respectively produced by a three-dimensional printer as in Examples 1 to 4. The workpiece to be processed was press-molded with these upper mold and lower mold using the same press apparatus. The bottom dead center position of the slide at this time was corrected downward from the reference set position by the value shown in Table 4.

<比較例1>
実施例1〜4と同様に三次元プリンターでそれぞれ作製された、最深部の厚さが29mmの上型及び最深部の厚さが11mmの下型を用い、アルミニウム製の厚さ0.08mmの被加工材を同一のプレス装置を用いてこれらの上型と下型でプレス成形した。このときのスライドの下死点位置はその基準設定位置のままで下方に補正しなかった。
<Comparative Example 1>
Using an upper mold having a deepest part thickness of 29 mm and a lower mold having a deepest part thickness of 11 mm, each produced by a three-dimensional printer in the same manner as in Examples 1 to 4, an aluminum thickness of 0.08 mm was used. The workpiece was press-molded with these upper and lower molds using the same press machine. At this time, the bottom dead center position of the slide remained at the reference set position and was not corrected downward.

<比較例2>
厚さ6.1mmのアルミニウム製の被加工材を用いた以外、比較例1と同様にプレス成形した。このときのスライドの下死点位置はその基準設定位置のままで下方に補正しなかった。
<Comparative example 2>
It was press-molded in the same manner as in Comparative Example 1 except that an aluminum workpiece having a thickness of 6.1 mm was used. At this time, the bottom dead center position of the slide remained at the reference set position and was not corrected downward.

<比較例3>
実施例1〜4と同様に三次元プリンターでそれぞれ作製された、最深部の厚さが4mmの上型及び最深部の厚さが50mmの下型を用い、アルミニウム製の厚さ0.1mmの被加工材を同一のプレス装置を用いてこれらの上型と下型でプレス成形した。このときのスライドの下死点位置はその基準設定位置より0.5mm下方に補正した。
<Comparative Example 3>
Using an upper mold having a deepest part thickness of 4 mm and a lower mold having a deepest part thickness of 50 mm, each produced by a three-dimensional printer in the same manner as in Examples 1 to 4, an aluminum thickness of 0.1 mm The workpiece was press-molded with these upper and lower molds using the same press machine. The bottom dead center position of the slide at this time was corrected 0.5 mm below the reference set position.

<比較結果その1(プレス評価と型の破損有無)>
実施例1〜21及び比較例1〜3でプレス成形した成形体について、ひび割れ、キズ、成形型の型跡及び反りの有無を目視により判定した。また成形体が所定の寸法通りにプレス成形されているかノギス・ハイトゲージ・マイクロメータにより判定した。更に上型及び下型の破損の有無を目視により判定した。これらの結果を表2に示す。
<Comparison result 1 (Press evaluation and presence or absence of breakage of mold)>
About the molded object press-molded in Examples 1-21 and Comparative Examples 1-3, the presence or absence of cracks, scratches, mold traces, and warpage was visually determined. Further, whether or not the molded body was press-molded to a predetermined size was determined by a caliper, height gauge, or micrometer. Furthermore, the presence or absence of damage of the upper mold and the lower mold was determined visually. These results are shown in Table 2.

Figure 2017104901
Figure 2017104901

Figure 2017104901
Figure 2017104901

表1及び表2から明らかなように、比較例1では被加工材の厚さが0.08mmと薄過ぎるため、金属製のプレス成形体が寸法通りに成形ができず、また成形型の型跡が残った。また比較例2では被加工材の厚さが6.1mmと厚過ぎるため、下型に破損が見られた。更に比較例3では上型の最深部が4mmと小さ過ぎたため、上型に破損が見られた。これに対して実施例1〜21は、三次元プリンターでそれぞれ作製された紫外線硬化樹脂からなる上型及び下型を用いたにもかかわらず、被加工材の厚さが0.1〜6.0mmの範囲内にあって、上型又は下型の各最深部における厚さが少なくとも5mmであれば、プレス成形した成形体には、ひび割れ、キズ、成形型の型跡及び反りはなく、また成形体は所定の寸法通りにプレス成形されていた。更に上型及び下型には破損は見られなかった。   As is clear from Tables 1 and 2, in Comparative Example 1, the thickness of the workpiece is too thin at 0.08 mm, so that the metal press-molded body cannot be molded according to the dimensions. Traces remained. In Comparative Example 2, the workpiece was too thick at 6.1 mm, so that the lower mold was damaged. Furthermore, in the comparative example 3, since the deepest part of the upper mold was too small as 4 mm, the upper mold was damaged. On the other hand, in Examples 1-21, although the upper mold | type and lower mold | die which consist of the ultraviolet curable resin each produced with the three-dimensional printer were used, the thickness of a workpiece is 0.1-6. If it is within the range of 0 mm and the thickness at the deepest part of each of the upper die and the lower die is at least 5 mm, the press-molded molded article has no cracks, scratches, mold traces and warpage, and The molded body was press-molded according to predetermined dimensions. Further, no damage was observed in the upper mold and the lower mold.

<比較結果その2(量産性評価)>
実施例1と同一の上型及び下型を実施例1と同一のプレス装置に取付け、このプレス装置を用いて、実施例1と同一のアルミニウム製の500枚の被加工材を繰り返しプレス成形した。500回のプレス成形後、上型と下型について、ひび割れ、キズ、欠けなどを目視により検査した。また500枚のアルミニウム製のプレス成形体のひび割れ、キズ、成形型の型跡及び反りの有無を目視により判定した。また成形体が所定の寸法通りにプレス成形されているノギス・ハイトゲージ・マイクロメータにより判定した。その結果、500回プレス成形後の上型及び下型は、最初のプレス成形後と同一の外観を有し、ひび割れ、キズ、欠けは全く無かった。このことは、500枚目のアルミニウム製のプレス成形体が最初にプレスした成形体と同形同大で、上型、下型と同様にひび割れ、キズ、型跡が皆無であったことからも実証された。
<Comparison result 2 (mass productivity evaluation)>
The same upper die and lower die as in Example 1 were attached to the same press device as in Example 1, and 500 press-molded aluminum materials as in Example 1 were repeatedly press-molded using this press device. . After 500 times of press molding, the upper mold and the lower mold were visually inspected for cracks, scratches, chips, and the like. In addition, the presence or absence of cracks, scratches, mold traces, and warpage of 500 aluminum press-formed bodies was visually determined. Moreover, it determined with the caliper height gauge micrometer by which the molded object was press-molded according to a predetermined dimension. As a result, the upper die and the lower die after 500 times of press molding had the same appearance as after the first press molding, and there were no cracks, scratches or chips. This is because the 500th aluminum press-molded body was the same shape and size as the first pressed body, and there were no cracks, scratches, or traces as with the upper and lower molds. Proven.

<比較結果その3(帯磁性評価)>
実施例1と同一の上型及び下型を実施例1と同一のプレス装置に取付け、このプレス装置を用いて、スチール製の100枚の被加工材を繰り返しプレス成形した。100回プレス成形した後、100枚の被加工材すべてを鉄板に接触させたところ、すべて鉄板に吸着せず、すべての被加工材が帯磁していなかった。一方、実施例1とほぼ同形同大のダイス鋼SKD11の上型及び下型を実施例1と同一のプレス装置に取付け、このプレス装置を用いて、上記と同一のスチール製の100枚の被加工材を繰り返しプレス成形した。76回プレス成形した後、すべての76枚の被加工材を鉄板に接触させたところ、プレス加工回数が50回未満の被加工材は鉄板に吸着しなかったが、50回以上の被加工材は鉄板に吸着し、被加工材が帯磁していた。
<Comparison result 3 (magnetism evaluation)>
The same upper die and lower die as in Example 1 were attached to the same press device as in Example 1, and 100 steel workpieces were repeatedly press-molded using this press device. After 100 times of press forming, all 100 workpieces were brought into contact with the iron plate. As a result, all the workpieces were not attracted to the iron plate, and all the workpieces were not magnetized. On the other hand, the upper die and the lower die of the die steel SKD11 having the same shape and size as in Example 1 are attached to the same pressing device as in Example 1, and 100 pieces of the same steel as described above are used by using this pressing device. The workpiece was repeatedly press molded. After press forming 76 times, when all 76 workpieces were brought into contact with the iron plate, the workpiece with a press count of less than 50 was not adsorbed to the iron plate, but the workpiece more than 50 times. Adsorbed to the iron plate and the workpiece was magnetized.

10 金属製のプレス成形体を製造する装置(プレス装置)
11 フライホイール
12 クラッチ
13 クランクシャフト
14 コネクティングロッド
15 ジョイント
16 スライド
17 フレーム
18 上型
19 下型
20 ボルスタ
10 Equipment for producing metal press-formed bodies (press equipment)
11 Flywheel 12 Clutch 13 Crankshaft 14 Connecting rod 15 Joint 16 Slide 17 Frame 18 Upper mold 19 Lower mold 20 Bolster

本発明の金属製のプレス成形体の製造方法は、玩具、日用雑貨品、自動車部品、電気部品などの試作品用の成形体、又は磁気が性能に悪影響を及ぼす電子部品用のプレス加工品、或いはシボ模様を形成した成形体を簡便にかつ安価に製造するのに用いられる。   The method for producing a metal press-molded body according to the present invention includes a molded body for a prototype such as a toy, a daily miscellaneous goods, an automobile part, and an electric part, or a press-processed article for an electronic part in which magnetism adversely affects performance. Alternatively, it is used to easily and inexpensively produce a molded body on which a texture pattern is formed.

Claims (5)

プレス装置の上下動するスライドに取付けられた上型とボルスタに固定された下型の間に被加工材を配置し、前記上型を前記下型に押し付けて前記被加工材をプレス成形することによりプレス成形体を製造する方法において、
前記上型及び前記下型がともに三次元印刷機器を用いて立体的に造形された樹脂製成形型であって、
前記被加工材が厚さが0.1〜6.0mmの範囲内の金属板であって、
前記樹脂製成形型からなる前記上型及び前記下型のそれぞれの最深部における前記上型及び前記下型の各厚さが少なくとも5mmである
ことを特徴とする金属製のプレス成形体の製造方法。
A work material is arranged between an upper mold attached to a slide that moves up and down of a press device and a lower mold fixed to a bolster, and the upper mold is pressed against the lower mold to press the work material. In a method for producing a press-formed body by:
Both the upper mold and the lower mold are three-dimensionally molded resin molds using a three-dimensional printing device,
The workpiece is a metal plate having a thickness in the range of 0.1 to 6.0 mm,
The thickness of each of the upper mold and the lower mold in the deepest part of each of the upper mold and the lower mold made of the resin mold is at least 5 mm. A method for producing a metal press-molded body .
前記樹脂製成形型が光積層造形法により光硬化性組成物を積層して立体的に造形され、かつ前記樹脂製成形型からなる前記上型及び前記下型の各光硬化性組成物の積層方向が前記上型の上下動方向に直角である請求項1記載の金属製のプレス成形体の製造方法。   The resin mold is three-dimensionally modeled by laminating a photocurable composition by an optical layered modeling method, and the upper mold and the lower mold of the resin mold are stacked. The method for producing a metal press-formed body according to claim 1, wherein the direction is perpendicular to the vertical movement direction of the upper die. 上死点位置と下死点位置との間を上下動する前記スライドの前記下死点位置をその基準設定位置より0.5〜2.0mm下方に補正して前記被加工材をプレス成形する請求項1又は2記載の金属製のプレス成形体の製造方法。   The bottom dead center position of the slide that moves up and down between the top dead center position and the bottom dead center position is corrected to 0.5 to 2.0 mm below the reference set position, and the workpiece is press-molded. The manufacturing method of the metal press-molding body of Claim 1 or 2. 前記樹脂製成形型の前記上型又は前記下型のいずれか一方又は双方の型表面に三次元印刷機器を用いて転写用シボが造形された請求項1ないし3いずれか1項に記載の金属製のプレス成形体の製造方法。   The metal according to any one of claims 1 to 3, wherein a transfer texture is formed on a surface of one or both of the upper mold and the lower mold of the resin mold using a three-dimensional printing device. A method for producing a press-molded body. 請求項4記載の金属製のプレス成形体の製造方法に用いる樹脂製成形型。   A resin mold used in the method for producing a metal press-molded body according to claim 4.
JP2016106015A 2015-06-19 2016-05-27 Method for producing metal press-formed body Active JP6145537B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015123392 2015-06-19
JP2015123392 2015-06-19
JP2015237475 2015-12-04
JP2015237475 2015-12-04

Publications (2)

Publication Number Publication Date
JP6145537B1 JP6145537B1 (en) 2017-06-14
JP2017104901A true JP2017104901A (en) 2017-06-15

Family

ID=59058915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016106015A Active JP6145537B1 (en) 2015-06-19 2016-05-27 Method for producing metal press-formed body

Country Status (1)

Country Link
JP (1) JP6145537B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108043989A (en) * 2018-02-01 2018-05-18 绍兴厚道自动化设备有限公司 A kind of easily demoulding press device of mold
CN114454261A (en) * 2022-01-20 2022-05-10 东莞高绮印刷有限公司 UV die cutting machine and die cutting method adopting same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108454122A (en) * 2018-02-06 2018-08-28 濉溪县伊索工贸有限公司 A kind of ornaments ball machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507781A (en) * 2001-11-09 2005-03-24 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー Plastic tools
JP2006088185A (en) * 2004-09-22 2006-04-06 Toshiba Corp Press die, and its manufacturing method
JP2008189956A (en) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd Metal mold and its manufacturing method
JP3195350U (en) * 2014-08-06 2015-01-15 台湾保来得股▲ふん▼有限公司 Cooling structure for press dies
JP2015055626A (en) * 2013-09-13 2015-03-23 點晶科技股▲ふん▼有限公司 Three-dimensional printing system and three-dimensional printing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507781A (en) * 2001-11-09 2005-03-24 ハンツマン・アドヴァンスト・マテリアルズ・(スイッツランド)・ゲーエムベーハー Plastic tools
JP2006088185A (en) * 2004-09-22 2006-04-06 Toshiba Corp Press die, and its manufacturing method
JP2008189956A (en) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd Metal mold and its manufacturing method
JP2015055626A (en) * 2013-09-13 2015-03-23 點晶科技股▲ふん▼有限公司 Three-dimensional printing system and three-dimensional printing method
JP3195350U (en) * 2014-08-06 2015-01-15 台湾保来得股▲ふん▼有限公司 Cooling structure for press dies

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108043989A (en) * 2018-02-01 2018-05-18 绍兴厚道自动化设备有限公司 A kind of easily demoulding press device of mold
CN108043989B (en) * 2018-02-01 2019-06-04 绍兴厚道自动化设备有限公司 A kind of easily demoulding press device of mold
CN114454261A (en) * 2022-01-20 2022-05-10 东莞高绮印刷有限公司 UV die cutting machine and die cutting method adopting same

Also Published As

Publication number Publication date
JP6145537B1 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
US20170072602A1 (en) System and method for manufacturing an article
JP6145537B1 (en) Method for producing metal press-formed body
KR102145781B1 (en) Manufacturing method of 3D shape sculpture
Luo et al. A new sheet metal forming system based on incremental punching, part 2: machine building and experiment results
Nakagawa Advances in prototype and low volume sheet forming and tooling
CN110102768B (en) Method for manufacturing carving knife mold by increasing and decreasing materials and series of 3D printing metal powder
CN1231315C (en) Method for manufacturing of plate involving intermediate proforming and final shaping
US20110100085A1 (en) Press-molding mold, and press-molding method
CN1263497A (en) Impacting method and machine for forming compacts
CN110369581B (en) Forming method of convex curved platform piece
CN102716948A (en) U-shaped section steel bending and molding device and molding method utilizing same
Kuo et al. A cost-effective method for rapid manufacturing sheet metal forming dies
CN101992246A (en) Cold-pressed double-parabolic slab steel mould
CN104889259B (en) A kind of hole flanging compound die
CN109475919B (en) Method for producing a metal working tool and metal working tool produced thereby
CN102825111A (en) Fast molding mechanism for negative angle of die processing product
KR101647894B1 (en) Method for manufacturing porus pad using three dimensional metal-print
RU2373025C1 (en) Device for pressing workpieces made from powdered high-melting metals
CN105935863A (en) Manufacturing method for hard rapid die
CN105750399A (en) Blanking die for sheet part with high-precision axle hole
JP3460068B1 (en) Press molding equipment
CN105945653B (en) A kind of cutting dies of shop parts inner edge
CN206689300U (en) A kind of high-precision bending and molding diel
CN205732466U (en) A kind of blanking die of the sheet blanks with high accuracy axis hole
CN202933992U (en) Negative angle rapid molding mechanism for product machined through die

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170515

R150 Certificate of patent or registration of utility model

Ref document number: 6145537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250