JP2017104870A - Method for producing strongly acidic water and strongly alkaline water - Google Patents
Method for producing strongly acidic water and strongly alkaline water Download PDFInfo
- Publication number
- JP2017104870A JP2017104870A JP2017059936A JP2017059936A JP2017104870A JP 2017104870 A JP2017104870 A JP 2017104870A JP 2017059936 A JP2017059936 A JP 2017059936A JP 2017059936 A JP2017059936 A JP 2017059936A JP 2017104870 A JP2017104870 A JP 2017104870A
- Authority
- JP
- Japan
- Prior art keywords
- water
- raw water
- strongly
- electrical conductivity
- raw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 155
- 230000002378 acidificating effect Effects 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 28
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000011780 sodium chloride Substances 0.000 claims abstract description 14
- 239000003957 anion exchange resin Substances 0.000 claims abstract description 11
- 239000003729 cation exchange resin Substances 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 2
- 238000011282 treatment Methods 0.000 abstract description 15
- 239000000126 substance Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000003673 groundwater Substances 0.000 description 8
- 238000005342 ion exchange Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000003912 environmental pollution Methods 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000008239 natural water Substances 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- -1 Hydrogen ions Chemical class 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 235000014413 iron hydroxide Nutrition 0.000 description 2
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000021962 pH elevation Effects 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
本発明は、強酸性水および強アルカリ性水の製造方法に関する。 The present invention relates to a method for producing strongly acidic water and strongly alkaline water.
酸性水やアルカリ性水は、排水や土壌などを所望のpH値に調節するためのpH調整水として、また、金属や回路基板などに付着した汚れ(有機物、錆など)を分解して洗浄するための洗浄水として、使用されている。このような用途には塩酸や硫酸などの薬品を使用することが効果的ではあるが、その保管・運搬・取扱時の危険性や、処理後の廃棄による環境汚染の問題などを考慮すると、安全で無害な酸性水・アルカリ性水の使用が好ましい。 Acidic and alkaline water is used as pH-adjusted water for adjusting drainage and soil to a desired pH value, and for decomposing and cleaning dirt (organic matter, rust, etc.) adhering to metals and circuit boards. It is used as washing water. It is effective to use chemicals such as hydrochloric acid and sulfuric acid for such applications, but considering the dangers of storage, transportation and handling, and environmental pollution problems due to disposal after treatment, And harmless acidic water and alkaline water are preferred.
酸性水やアルカリ性水の製造方法としては、下記特許文献1に記載されるように、原水をイオン交換樹脂に通水してイオン交換させる方法が知られている。すなわち、原水を強酸性カチオン交換樹脂を用いた塔に通水させると、原水中のCa+、Mg+、Na+、K+などのカチオンが強酸性カチオン交換樹脂に電着されているH+(水素イオン)を置換するので、通水後の処理済水のH+が増加して酸性水が得られる。また、原水を強アルカリ性アニオン交換樹脂を用いた塔に通水させると、原水中のCl−、NO3 −、SO4 2−、HCO3 −などのアニオンが強酸性アニオン交換樹脂に電着されているOH−(水酸化イオン)を置換するので、通水後の処理済水のOH−が増加してアルカリ性水が得られる。 As a method for producing acidic water or alkaline water, a method is known in which raw water is passed through an ion exchange resin for ion exchange as described in Patent Document 1 below. That is, when is passed through the column using a strongly acidic cation exchange resin raw water, the raw water Ca +, Mg +, Na + , cations such as K + is electrodeposited on a strongly acidic cation exchange resin H + Since (hydrogen ion) is replaced, H + of treated water after passing water is increased and acidic water is obtained. In addition, when raw water is passed through a tower using a strong alkaline anion exchange resin, anions such as Cl − , NO 3 − , SO 4 2− and HCO 3 − in the raw water are electrodeposited onto the strongly acidic anion exchange resin. Since OH − (hydroxide ion) is substituted, OH − of the treated water after passing water is increased, and alkaline water is obtained.
ところが、この従来法によると、イオン交換塔を通水させた後に得られる処理済水のpHは、酸性水の場合でpH3程度、アルカリ性水の場合でpH11程度が限界であり、それ以上の強酸性水・強アルカリ性水を得ることができなかった。このため、前述のpH調整や洗浄の効果が必ずしも十分ではなかった。 However, according to this conventional method, the pH of the treated water obtained after passing water through the ion exchange tower is limited to about pH 3 in the case of acidic water, and about pH 11 in the case of alkaline water. Water or strong alkaline water could not be obtained. For this reason, the effects of pH adjustment and cleaning described above are not always sufficient.
したがって、本発明が解決しようとする課題は、pH1.5以下の強酸性水およびpH12.5以上の強アルカリ性水を効率的に製造することができる新規な方法を提供することである。 Therefore, the problem to be solved by the present invention is to provide a novel method capable of efficiently producing strongly acidic water having a pH of 1.5 or less and strongly alkaline water having a pH of 12.5 or more.
ここで、本発明者は、原水の電気伝導度に着目した。特許文献1にも記載されるように、原水をイオン交換塔に通水させて酸性化またはアルカリ性化の処理を行うと徐々に電着イオン(H+またはOH−)が失われていくので、薬剤(HCl,NaOHなど)を投入して電着イオン量を増大させる操作(再生)を行う必要があるが、原水の電気伝導度が高いと再生を頻繁に行わなければならず、処理効率が低下する。このため、従来は、原水の電気伝導度を積極的に増大させることは当業者の技術常識に反するものであった。本発明者は、この技術常識に反して原水の電気伝導度を増大させることによってより強酸化・強アルカリ化を実現できることを見出し、この知見に基いてさらに試験と研究を重ねた結果、本発明に到達した。 Here, this inventor paid attention to the electrical conductivity of raw | natural water. As described in Patent Document 1, when the raw water is passed through an ion exchange tower and subjected to acidification or alkalinization treatment, electrodeposited ions (H + or OH − ) are gradually lost. It is necessary to perform an operation (regeneration) to increase the amount of electrodeposited ions by adding a chemical (HCl, NaOH, etc.), but if the raw water has a high electrical conductivity, the regeneration must be performed frequently, and the processing efficiency is increased. descend. For this reason, conventionally, it has been contrary to the technical common sense of those skilled in the art to actively increase the electrical conductivity of raw water. The present inventor found that it is possible to realize stronger oxidation and stronger alkalinity by increasing the electrical conductivity of raw water against this technical common sense, and as a result of further testing and research based on this finding, the present invention Reached.
すなわち、上記課題を解決するための手段として、請求項1に係る本発明は、電気伝導度が250μS/cm以下である原水にNaCl、K(OH)またはCa(OH)のいずれか一または任意混合液を溶解させ、あるいは、電気伝導度が250μS/cm以下である原水にNa金属を溶解させることにより、前記原水の電気伝導度を10,000〜15,000μS/cmに増大させる予備処理を行った後に、これを強酸性カチオン交換樹脂に通水させてpH1.5以下の酸性水を製造することを特徴とする、酸性水の製造方法である。 That is, as means for solving the above-mentioned problems, the present invention according to claim 1 is directed to any one or any of NaCl, K (OH) and Ca (OH) in raw water having an electric conductivity of 250 μS / cm or less. mixture dissolved, or by electrical conductivity dissolving Na metal to the raw water or less 250 [mu] S / cm, the pretreatment increasing the electrical conductivity of the raw water to 10,000~15,000μS / cm This is a method for producing acidic water, characterized in that, after being carried out, this is passed through a strongly acidic cation exchange resin to produce acidic water having a pH of 1.5 or lower.
(削除) (Delete)
(削除) (Delete)
請求項2に係る本発明は、電気伝導度が250μS/cm以下である原水にNaClを溶解させ、あるいは、電気伝導度が250μS/cm以下である原水に塩素ガスを溶解させることにより、前記原水の電気伝導度を10,000〜15,000μS/cmに増大させる予備処理を行った後に、これを強アルカリ性アニオン交換樹脂に通水させてpH12.5以上のアルカリ性水を製造することを特徴とする、アルカリ性水の製造方法である。 The present invention according to claim 2, electrical conductivity is dissolved NaCl in raw water or less 250 [mu] S / cm, or, by electrical conductivity dissolved chlorine gas in the raw water is not more than 250 [mu] S / cm, the raw water After conducting a pretreatment to increase the electrical conductivity of the resin to 10,000 to 15,000 μS / cm, it is passed through a strong alkaline anion exchange resin to produce alkaline water having a pH of 12.5 or more. This is a method for producing alkaline water.
(削除) (Delete)
(削除) (Delete)
本発明によれば、pH1.5以下の強酸性水を効率的に製造することができる。この強酸性水は、排水や土壌などを所望のpH値に調節するためのpH調整水として、また、金属やスライムなどに付着・混入した汚れ(たんぱく質などの有機物)を分解して洗浄するための洗浄水として好適に用いることができる。また、この強酸性水は、安価で入手容易な地下水や水道水などを原水に用い、この原水を強酸性カチオン交換樹脂に通水することで該イオン交換樹脂に電着されているH+(水素イオン)をイオン交換を介して増大させるものであるため、安価且つ効率的に大量生産することが可能である。さらに、この強酸性水は、人の肌に触れても全く無害であり、刺激や臭気もほとんど無いので、その保管・運搬・取扱時の危険性がなく、処理後の廃棄による環境汚染の問題も生じない。 According to the present invention, strongly acidic water having a pH of 1.5 or less can be efficiently produced. This strongly acidic water is used as pH-adjusted water for adjusting drainage, soil, etc. to a desired pH value, and for decomposing and washing dirt (proteins and other organic substances) adhering to and mixed in metals and slimes. The washing water can be suitably used. In addition, the strongly acidic water is H + (which is electrodeposited on the ion exchange resin by using inexpensive and easily available ground water or tap water as raw water and passing the raw water through the strongly acidic cation exchange resin. Hydrogen ions) are increased through ion exchange, and therefore, mass production can be performed inexpensively and efficiently. Furthermore, this strongly acidic water is completely harmless even if it touches human skin, and there is almost no irritation or odor, so there is no danger in storage, transportation and handling, and there is a problem of environmental pollution due to disposal after treatment. Does not occur.
また、本発明によれば、pH12.5以上の強アルカリ性水を効率的に製造することができる。この強アルカリ性水は、排水や土壌などを所望のpH値に調節するためのpH調整水として、また、金属に発生した錆をOH−(水酸化イオン)との接触による化学反応で水酸化被膜を形成するための錆除去水として好適に用いることができる。また、この強アルカリ性水は、安価で入手容易な地下水や水道水などを原水に用い、この原水を強アルカリ性アニオン交換樹脂に通水することで該イオン交換樹脂に電着されているOH−(水酸化イオン)をイオン交換を介して増大させるものであるため、安価且つ効率的に大量生産することが可能である。さらに、この強アルカリ性水は、人の肌に触れても全く無害であり、刺激や臭気もほとんど無いので、その保管・運搬・取扱時の危険性がなく、処理後の廃棄による環境汚染の問題も生じない。 Further, according to the present invention, strong alkaline water having a pH of 12.5 or more can be efficiently produced. This strongly alkaline water is used as a pH-adjusted water for adjusting drainage, soil, etc. to a desired pH value, and the rust generated on the metal is subjected to a chemical reaction by contact with OH − (hydroxide ion). It can be suitably used as rust-removed water for forming. In addition, the strongly alkaline water is made of OH − (which is electrodeposited on the ion exchange resin by using inexpensive and easily available ground water or tap water as raw water and passing the raw water through the strongly alkaline anion exchange resin. (Hydroxide ion) is increased through ion exchange, so that mass production can be performed inexpensively and efficiently. In addition, this strongly alkaline water is completely harmless even if it touches human skin, and there is almost no irritation or odor, so there is no danger of storage, transportation and handling, and environmental pollution problems caused by disposal after treatment. Does not occur.
<強酸性水の製造>
本発明による強酸性水の製造方法について説明する。原水には純水を用いても良いが、地下水や水道水、河川水など安価で入手容易なものを使用すると低コストで強酸性水を製造することができるので好ましい。通常、これらの水はpH6〜8程度であり、電気伝導度は250μS/cm以下である。
<Manufacture of strong acid water>
A method for producing strongly acidic water according to the present invention will be described. Pure water may be used as the raw water, but it is preferable to use inexpensive and easily available materials such as ground water, tap water, and river water because strong acid water can be produced at low cost. Usually, these waters have a pH of about 6 to 8 and an electric conductivity of 250 μS / cm or less.
この原水にNaCl、K(OH)またはCa(OH)のいずれか一または任意混合液を溶解させることにより、原水の電気伝導度を上昇させる予備処理を行った後、常法により強酸性カチオン交換樹脂に通水させることによって、原水中のNa+、K+、Ca+などのカチオンが、強酸性カチオン交換樹脂に電着されているH+(水素イオン)を置換し、通水後の処理済水のH+が増加してpH値が低下していく。中でもNaClは、安価で入手容易であり、原水に良く溶けて無色透明であり、イオン交換後も沈殿物を生じないので、NaClを用いて予備処理を行うことが好ましい。 After conducting a pretreatment to increase the electrical conductivity of raw water by dissolving any one or any mixed solution of NaCl, K (OH) or Ca (OH) in this raw water, strong acidic cation exchange is performed by a conventional method. By passing water through the resin, cations such as Na + , K + , and Ca + in the raw water replace H + (hydrogen ions) electrodeposited on the strongly acidic cation exchange resin, and the treatment after the water flow pH value H + increases the already water decreases. Of these, NaCl is inexpensive and easily available, dissolves well in raw water, is colorless and transparent, and does not produce a precipitate even after ion exchange. Therefore, pretreatment with NaCl is preferable.
本発明者は、強酸性カチオン交換樹脂に通水させる時点の原水の電気伝導度と、通水後の処理済水のpH値との関係を調べるための試験を行った。原水として、電気伝導度が0〜250μS/cmの範囲で様々に異なる地下水(pH7.2〜7.8)を用意し、各原水100リットルにNaCl水溶液の添加量を変えることにより、原水の電気伝導度を500μS/cm、1,000μS/cm、3,000μS/cm、5,000μS/cm、8,000μS/cm、10,000μS/cm、15,000μS/cm、18,000μS/cm、20,000μS/cmおよび25,000μS/cmとする予備処理を行った。予備処理後の原水を強酸性カチオン交換樹脂(三菱化学「ダイヤイオン(登録商標)SK−1B」再生済)に通水線速度LV20m/hで通水させ、その処理済水のpHを測定した。結果は表1に示す通りであった。 This inventor conducted the test for investigating the relationship between the electrical conductivity of the raw | natural water at the time of passing water through a strong acid cation exchange resin, and the pH value of the treated water after water flow. As raw water, various different groundwaters (pH 7.2 to 7.8) having electrical conductivity in the range of 0 to 250 μS / cm are prepared, and the amount of NaCl aqueous solution added to 100 liters of each raw water is changed. Conductivity of 500 μS / cm, 1,000 μS / cm, 3,000 μS / cm, 5,000 μS / cm, 8,000 μS / cm, 10,000 μS / cm, 15,000 μS / cm, 18,000 μS / cm, 20 Preliminary treatments of 5,000 μS / cm and 25,000 μS / cm were performed. The raw water after the pretreatment was passed through a strongly acidic cation exchange resin (Mitsubishi Chemical “Diaion (registered trademark) SK-1B” regenerated) at a water passage speed of LV 20 m / h, and the pH of the treated water was measured. . The results were as shown in Table 1.
この結果から、原水の電気伝導度を上昇させるにつれて処理済水のpHを低下させて強酸化させることができ、電気伝導度を10,000μS/cmまで上昇させるとpH1.5の強酸性水を得ることができるが、15,000μS/cmを超えてさらに電気伝導度を上昇させてもpHを低下させる効果がほぼ頭打ちになることが分かった。また、後述するように、pH1.5の強酸性水は、きわめて短時間で有機物を溶解除去する能力を発揮することが確認された。したがって、コストや処理効率を考慮すれば、強酸性カチオン交換樹脂に通水させる前に行う予備処理は、原水の電気伝導度を10,000〜15,000μS/cmに上昇させることが好ましい。 From this result, as the electrical conductivity of the raw water is increased, the pH of the treated water can be lowered and strongly oxidized, and when the electrical conductivity is increased to 10,000 μS / cm, strongly acidic water having a pH of 1.5 is obtained. Although it can be obtained, it has been found that even if the electric conductivity is further increased beyond 15,000 μS / cm, the effect of lowering the pH almost reaches its peak. Further, as will be described later, it was confirmed that strongly acidic water having a pH of 1.5 exhibits the ability to dissolve and remove organic substances in a very short time. Therefore, in consideration of cost and treatment efficiency, it is preferable to increase the electrical conductivity of the raw water to 10,000 to 15,000 μS / cm in the preliminary treatment performed before passing through the strongly acidic cation exchange resin.
通水処理済液の洗浄能力を確認するために、次の試験を行った。すなわち、上記サンプル番号6の通水処理済液200ccをビーカーに取り、ここに有機物(たんぱく質)が付着して汚れている10円玉を投入したところ、30〜60秒で10円玉の端の部分から有機物が溶解し始め、60〜180秒経過した時点で10円玉全体に有機物の溶解が拡がり、全体的に銅本来の色に戻った。同様の試験を上記サンプル番号4および5の通水処理済液についても行ったが、有機物が溶解し始めるまでに1時間以上を要し、ほぼ完全に洗浄するまでに10時間以上を要した。この結果から、強酸性水として十分な洗浄能力を発揮するためにはpH1.5以下であることが好ましいことが分かった。 In order to confirm the cleaning ability of the water-treated liquid, the following test was performed. That is, when 200 cc of the water-treated solution of sample number 6 is taken in a beaker and a 10-yen coin contaminated with organic matter (protein) is added thereto, the end of the 10-yen coin is removed in 30 to 60 seconds. The organic matter started to dissolve from the portion, and when 60 to 180 seconds passed, the dissolution of the organic matter spread over the entire 10-yen coin, and the entire color returned to the original color of copper. The same test was conducted on the water-treated liquids of Sample Nos. 4 and 5, however, it took 1 hour or more until the organic substance started to dissolve, and 10 hours or more until it was almost completely washed. From this result, it was found that the pH is preferably 1.5 or less in order to exhibit sufficient washing ability as strongly acidic water.
上記試験においてはNaCl水溶液を原水に溶解させることで電気伝導度を増大させる予備処理を行ったが、これに代えて、Na金属を原水に溶解させることで電気伝導度を増大させる予備処理を行うことについても試験を行った。すなわち、上記と同様に、電気伝導度が0〜250μS/cmの範囲で様々に異なる原水(pH7.2〜7.8の地下水)各100リットルにNa金属を溶解させることにより、原水の電気伝導度を500μS/cm、1,000μS/cm、3,000μS/cm、5,000μS/cm、8,000μS/cm、10,000μS/cm、15,000μS/cm、18,000μS/cm、20,000μS/cmおよび25,000μS/cmとする予備処理を行った。予備処理後の原水を強酸性カチオン交換樹脂(三菱化学「ダイヤイオン(登録商標)SK−1B」再生済)に通水線速度LV20m/hで通水させ、その処理済水のpHを測定したところ、表1と同じ結果が得られた。 In the above test, a pretreatment for increasing the electrical conductivity by dissolving the NaCl aqueous solution in the raw water was performed. Instead, a pretreatment for increasing the electric conductivity by dissolving the Na metal in the raw water is performed. This was also tested. That is, similarly to the above, by dissolving Na metal in each 100 liters of raw water (ground water having a pH of 7.2 to 7.8) having different electrical conductivities in the range of 0 to 250 μS / cm, The degree is 500 μS / cm, 1,000 μS / cm, 3,000 μS / cm, 5,000 μS / cm, 8,000 μS / cm, 10,000 μS / cm, 15,000 μS / cm, 18,000 μS / cm, 20,000 Pretreatment was performed at 000 μS / cm and 25,000 μS / cm. The raw water after the pretreatment was passed through a strongly acidic cation exchange resin (Mitsubishi Chemical “Diaion (registered trademark) SK-1B” regenerated) at a water passage speed of LV 20 m / h, and the pH of the treated water was measured. However, the same results as in Table 1 were obtained.
(強アルカリ水の製造)
本発明による強アルカリ性水の製造方法について説明する。原水には純水を用いても良いが、地下水や水道水、河川水など安価で入手容易なものを使用すると低コストで強酸性水を製造することができるので好ましい。通常、これらの水はpH6〜8程度であり、電気伝導度は250μS/cm以下である。
(Manufacture of strong alkaline water)
A method for producing strongly alkaline water according to the present invention will be described. Pure water may be used as the raw water, but it is preferable to use inexpensive and easily available materials such as ground water, tap water, and river water because strong acid water can be produced at low cost. Usually, these waters have a pH of about 6 to 8 and an electric conductivity of 250 μS / cm or less.
この原水にNaClを溶解させることにより、原水の電気伝導度を上昇させる予備処理を行った後、常法により強アルカリ性アニオン交換樹脂に通水させることによって、原水中のCl−が強アルカリ性アニオン交換樹脂に電着されているOH−(水酸化イオン)を置換し、通水後の処理済水のOH−が増加してpH値が上昇していく。NaClは、安価で入手容易であり、原水に良く溶けて無色透明であり、イオン交換後も沈殿物を生じない。 After pretreatment for increasing the electrical conductivity of raw water by dissolving NaCl in the raw water, water is passed through a strong alkaline anion exchange resin by a conventional method, whereby Cl − in the raw water is subjected to strong alkaline anion exchange. The OH − (hydroxide ion) electrodeposited on the resin is replaced, and the OH − of the treated water after passing water increases to increase the pH value. NaCl is inexpensive and readily available, dissolves well in raw water, is colorless and transparent, and does not produce a precipitate even after ion exchange.
本発明者は、強アルカリ性アニオン交換樹脂に通水させる時点の原水の電気伝導度と、通水後の処理済水のpH値との関係を調べるための試験を行った。原水として、電気伝導度が0〜250μS/cmの範囲で様々に異なる地下水(pH7.2〜7.8)を用意し、各原水100リットルにNaCl水溶液の添加量を変えることにより、その電気伝導度を500μS/cm、1,000μS/cm、3,000μS/cm、5,000μS/cm、8,000μS/cm、10,000μS/cm、15,000μS/cm、18,000μS/cm、20,000μS/cmおよび25,000μS/cmとする予備処理を行った。予備処理後の原水を強アルカリ性アニオン交換樹脂(三菱化学「ダイヤイオン(登録商標)SA−20A」)に通水線速度LV20m/hで通水させ、その処理済水のpHを測定した。結果は表2に示す通りであった。 This inventor conducted the test for investigating the relationship between the electrical conductivity of the raw | natural water at the time of passing water through a strong alkaline anion exchange resin, and the pH value of the treated water after water flow. As raw water, various groundwaters (pH 7.2 to 7.8) having electrical conductivity in the range of 0 to 250 μS / cm are prepared, and the electric conductivity is changed by changing the amount of NaCl aqueous solution added to 100 liters of each raw water. The degree is 500 μS / cm, 1,000 μS / cm, 3,000 μS / cm, 5,000 μS / cm, 8,000 μS / cm, 10,000 μS / cm, 15,000 μS / cm, 18,000 μS / cm, 20,000 Pretreatment was performed at 000 μS / cm and 25,000 μS / cm. The raw water after the preliminary treatment was passed through a strongly alkaline anion exchange resin (Mitsubishi Chemical “Diaion (registered trademark) SA-20A”) at a water flow rate of LV 20 m / h, and the pH of the treated water was measured. The results were as shown in Table 2.
この結果から、原水の電気伝導度を上昇させるにつれて処理済水のpHを上昇させて強アルカリ化させることができ、電気伝導度を10,000μS/cmまで上昇させるとpH12.5の強アルカリ性水を得ることができるが、15,000μS/cmを超えてさらに電気伝導度を上昇させてもpHを上昇させる効果がほぼ頭打ちになることが分かった。また、後述するように、pH12.5の強アルカリ性水は、きわめて短時間で錆を除去する能力を発揮することが確認された。したがって、コストや処理効率を考慮すれば、強アルカリ性アニオン交換樹脂に通水させる前に行う予備処理は、原水の電気伝導度を10,000〜15,000μS/cmに上昇させることが好ましい。 From this result, as the electrical conductivity of the raw water is increased, the pH of the treated water can be increased to make it strongly alkaline, and when the electrical conductivity is increased to 10,000 μS / cm, the strongly alkaline water having a pH of 12.5 can be obtained. However, it has been found that the effect of increasing the pH almost reaches its peak even if the electric conductivity is further increased beyond 15,000 μS / cm. Further, as will be described later, it was confirmed that strong alkaline water having a pH of 12.5 exhibits the ability to remove rust in a very short time. Therefore, in consideration of cost and treatment efficiency, it is preferable to increase the electrical conductivity of the raw water to 10,000 to 15,000 μS / cm in the preliminary treatment performed before water is passed through the strongly alkaline anion exchange resin.
通水処理済液の錆除去能力を確認するために、次の試験を行った。すなわち、上記サンプル番号16の通水処理済液200ccをビーカーに取り、ここに、錆びた鉄筋1個と、錆びた釘1個を紙やすりで軽く研磨したものを検体として投入したところ、30〜60分で錆びた鉄筋および釘の表面がそれぞれ黒色の水酸化鉄に変化し始め、180〜300分経過した時点で鉄筋および釘の表面に全体的に水酸化被膜が形成された。同様の試験を上記サンプル番号14および15の通水処理済液についても行ったが、検体の表面が水酸化鉄に変化し始めるまでに5時間以上を要し、ほぼ完全に洗浄するまでに10時間以上を要した。この結果から、強アルカリ性水として十分な錆除去能力を発揮するためにはpH12.5以上であることが好ましいことが分かった。 In order to confirm the rust removal capability of the water-treated liquid, the following test was conducted. That is, when 200 cc of the water flow-treated solution of the sample number 16 is taken in a beaker and one rusted reinforcing bar and one rusted nail lightly polished with sandpaper are put as samples, 30 to 30 In 60 minutes, the surfaces of the rusted reinforcing bars and nails started to change to black iron hydroxide, and when 180 to 300 minutes had elapsed, a hydroxide film was formed entirely on the surfaces of the reinforcing bars and nails. The same test was performed for the water-treated solutions of the above sample numbers 14 and 15, but it took 5 hours or more for the surface of the specimen to start to change into iron hydroxide, and 10 for the almost complete washing. It took more than an hour. From this result, it was found that the pH is preferably 12.5 or more in order to exhibit sufficient rust removing ability as strong alkaline water.
上記試験においてはNaCl水溶液を原水に溶解させることで電気伝導度を増大させる予備処理を行ったが、これに代えて、塩素ガスを原水に溶解させることで電気伝導度を増大させる予備処理を行うことについても試験を行った。すなわち、上記と同様に、電気伝導度が0〜250μS/cmの範囲で様々に異なる原水(pH7.2〜7.8の地下水)各100リットルに塩素ガスを溶解させることにより、原水の電気伝導度を500μS/cm、1,000μS/cm、3,000μS/cm、5,000μS/cm、8,000μS/cm、10,000μS/cm、15,000μS/cm、18,000μS/cm、20,000μS/cmおよび25,000μS/cmとする予備処理を行った。予備処理後の原水を強アルカリ性アニオン交換樹脂(三菱化学「ダイヤイオン(登録商標)SA−20A」)に通水線速度LV20m/hで通水させ、その処理済水のpHを測定したところ、表2と同じ結果が得られた。 In the above test, a pretreatment for increasing the electrical conductivity by dissolving the NaCl aqueous solution in the raw water was performed. Instead, a pretreatment for increasing the electric conductivity by dissolving the chlorine gas in the raw water is performed. This was also tested. That is, similarly to the above, by dissolving chlorine gas in each 100 liters of raw water (ground water having a pH of 7.2 to 7.8) having different electric conductivities in the range of 0 to 250 μS / cm, the electric conduction of the raw water The degree is 500 μS / cm, 1,000 μS / cm, 3,000 μS / cm, 5,000 μS / cm, 8,000 μS / cm, 10,000 μS / cm, 15,000 μS / cm, 18,000 μS / cm, 20,000 Pretreatment was performed at 000 μS / cm and 25,000 μS / cm. The raw water after the preliminary treatment was passed through a strongly alkaline anion exchange resin (Mitsubishi Chemical “Diaion (registered trademark) SA-20A”) at a water passage speed of LV 20 m / h, and the pH of the treated water was measured. The same results as in Table 2 were obtained.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017059936A JP2017104870A (en) | 2017-03-24 | 2017-03-24 | Method for producing strongly acidic water and strongly alkaline water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017059936A JP2017104870A (en) | 2017-03-24 | 2017-03-24 | Method for producing strongly acidic water and strongly alkaline water |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012123899A Division JP2013248552A (en) | 2012-05-31 | 2012-05-31 | Method for producing strong acid water and strong alkaline water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017104870A true JP2017104870A (en) | 2017-06-15 |
Family
ID=59058730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017059936A Pending JP2017104870A (en) | 2017-03-24 | 2017-03-24 | Method for producing strongly acidic water and strongly alkaline water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017104870A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0910769A (en) * | 1995-06-27 | 1997-01-14 | Tookemi:Kk | Production of electrolytic ion water |
JPH1073596A (en) * | 1996-09-02 | 1998-03-17 | Masao Karube | Method for detecting or measuring immunological active substance |
JPH1133546A (en) * | 1997-07-22 | 1999-02-09 | Kurita Water Ind Ltd | Apparatus for making dilution water for acidic beverage |
JPH1157702A (en) * | 1997-08-21 | 1999-03-02 | Taise:Kk | Easy production of ionized water and portable kit used therefor |
JP2000074877A (en) * | 1998-08-26 | 2000-03-14 | Noritz Corp | Device for measuring residual chlorine concentration |
JP2006061828A (en) * | 2004-08-26 | 2006-03-09 | Isao Midorikawa | Method for producing acid water and alkaline water |
JP2006068680A (en) * | 2004-09-03 | 2006-03-16 | Purearth Inc | Denitrating reductant composition and producing method therefor |
US20130192639A1 (en) * | 2011-12-13 | 2013-08-01 | Ecolab Usa Inc. | Acid regeneration of ion exchange resins for industrial applications |
-
2017
- 2017-03-24 JP JP2017059936A patent/JP2017104870A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0910769A (en) * | 1995-06-27 | 1997-01-14 | Tookemi:Kk | Production of electrolytic ion water |
JPH1073596A (en) * | 1996-09-02 | 1998-03-17 | Masao Karube | Method for detecting or measuring immunological active substance |
JPH1133546A (en) * | 1997-07-22 | 1999-02-09 | Kurita Water Ind Ltd | Apparatus for making dilution water for acidic beverage |
JPH1157702A (en) * | 1997-08-21 | 1999-03-02 | Taise:Kk | Easy production of ionized water and portable kit used therefor |
JP2000074877A (en) * | 1998-08-26 | 2000-03-14 | Noritz Corp | Device for measuring residual chlorine concentration |
JP2006061828A (en) * | 2004-08-26 | 2006-03-09 | Isao Midorikawa | Method for producing acid water and alkaline water |
JP2006068680A (en) * | 2004-09-03 | 2006-03-16 | Purearth Inc | Denitrating reductant composition and producing method therefor |
US20130192639A1 (en) * | 2011-12-13 | 2013-08-01 | Ecolab Usa Inc. | Acid regeneration of ion exchange resins for industrial applications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bond et al. | Disinfection by-product formation of natural organic matter surrogates and treatment by coagulation, MIEX® and nanofiltration | |
Aoudj et al. | HF wastewater remediation by electrocoagulation process | |
Simon et al. | Effects of chemical cleaning on the nanofiltration of pharmaceutically active compounds (PhACs) | |
Vasudevan et al. | A critical study on the removal of copper by an electrochemically assisted coagulation: equilibrium, kinetics, and thermodynamics | |
Rezaei et al. | Humic acid removal by electrocoagulation process from natural aqueous environments | |
Du et al. | An electro-oxidation reactor for treatment of nanofiltration concentrate towards zero liquid discharge | |
TW201641438A (en) | Method for removing boron from a boron-containing wastewater | |
Huang et al. | Highly efficient bromide removal from shale gas produced water by unactivated peroxymonosulfate for controlling disinfection byproduct formation in impacted water supplies | |
Timmes et al. | Electrocoagulation pretreatment of seawater prior to ultrafiltration: Bench-scale applications for military water purification systems | |
Behbahani et al. | PHOSPHATE REMOVAL BY ELECTROCOAGULATION PROCESS: OPTIMIZATION BY RESPONSE SURFACE METHODOLOGY METHOD. | |
JP4606299B2 (en) | Separation membrane modification method and apparatus, and separation membrane modified by the method | |
Tran et al. | Application of ferrate as coagulant and oxidant alternative for purifying Saigon river water | |
Kumar et al. | Optimization of removal of Cr (VI) from wastewater by electrocoagulation process using response surface methodology | |
Wahab et al. | Removal of ibuprofen residues from acidic aqueous solution by bulk liquid membrane | |
JP2017104870A (en) | Method for producing strongly acidic water and strongly alkaline water | |
Pensini et al. | Effect of salts and pH on the removal of perfluorooctanoic acid (PFOA) from aqueous solutions through precipitation and electroflocculation | |
Khor et al. | Physical and electrochemical characterization of aluminum electrodes during electrocoagulation | |
JP2013248552A (en) | Method for producing strong acid water and strong alkaline water | |
ATE494402T1 (en) | METHOD FOR OBTAINING DESALTED WATER FROM RINSING WATER CONTAINING ZIRCONIUM | |
Salih et al. | Removal of boron from simulated iraqi surface water by electrocoagulation method | |
JP4375744B2 (en) | Separation membrane modification method and separation membrane modified by the method | |
Acharya et al. | Nitrate removal from groundwater by electrocoagulation: process optimization through response surface method | |
Tien et al. | Electrochemical water treatment technology in Viet Nam: achievement &future development | |
Tamne et al. | Removal of nitroaniline from water/ethanol by electrocoagulation using Response Surface Methodology | |
Kiashemshaki et al. | Investigation of the efficiency of the conventional water treatment processes employed to eliminate TOC in Jalaliyeh water treatment plant, Tehran |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180704 |