JP2006061828A - Method for producing acid water and alkaline water - Google Patents

Method for producing acid water and alkaline water Download PDF

Info

Publication number
JP2006061828A
JP2006061828A JP2004247357A JP2004247357A JP2006061828A JP 2006061828 A JP2006061828 A JP 2006061828A JP 2004247357 A JP2004247357 A JP 2004247357A JP 2004247357 A JP2004247357 A JP 2004247357A JP 2006061828 A JP2006061828 A JP 2006061828A
Authority
JP
Japan
Prior art keywords
water
exchange column
anion
treated water
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004247357A
Other languages
Japanese (ja)
Inventor
Isao Midorikawa
川 勲 緑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004247357A priority Critical patent/JP2006061828A/en
Publication of JP2006061828A publication Critical patent/JP2006061828A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing acid (alkaline) water which can be obtained immediately at a site without purchasing/treating with a chemical including a powerful medicine and used for cleaning a metal, a resin, a circuit board or the like or adjusting the pH of soil, waste water, cement, mortar or the like. <P>SOLUTION: This method for producing acid (alkaline) water comprises a step of setting a transportable new or regenerated cation (anion) exchange column, a step of supplying raw water having the pH of ≥6 and ≤8 to the cation (anion) exchange column, a step of using the acid (alkaline) treated water obtained from the cation (anion) exchange column as a cleaning agent or a pH adjusting agent, a step of discriminating the pH of the treated water and a plurality of steps of opening/closing predetermined valves, supplying a strong acid (base) to the cation (anion) exchange column by injection and regenerating the function of the cation (anion) exchange column when the pH value of the treated water is outside a stipulated range. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸性水及びアルカリ性水の製造方法に係り、特に、金属、樹脂、もしくは回路基板等の洗浄の現場で、又は、土壌、排(廃)水、セメント、もしくはモルタル等のpH調節の現場で、通常に入手できる補給水を用いて即座に実行可能な、酸性水及びアルカリ性水の製造方法に関するものである。   The present invention relates to a method for producing acidic water and alkaline water, and in particular, at the site of cleaning metals, resins, circuit boards, etc., or pH adjustment of soil, waste (waste) water, cement, mortar, etc. The present invention relates to a method for producing acidic water and alkaline water that can be immediately performed using makeup water that is usually available on site.

金属製品、樹脂製品、又は回路基板等金属と樹脂を複合したものの洗浄に際しては、対象物の汚れの性質に合わせたpHを有する洗浄水が必要であるが、洗浄水としては、pHが所望の範囲にあれば、特定の物質に関する純度等他の性質は必ずしもクリティカルではない。   When cleaning metal products, resin products, or circuit boards and other composites of metals and resins, cleaning water having a pH suitable for the nature of the soiling of the object is required. If within range, other properties such as purity for a particular substance are not necessarily critical.

また、土壌、排(廃)水、セメント、又はモルタル等のpH調節に際しては、対象物の元のpHをキャンセルして中和(pHを約7にする)できるpH調節水が必要であるが、pH調節水としては、pHが所望の範囲にあれば、特定の物質に関する純度等他の性質はクリティカルではない。   Moreover, when adjusting the pH of soil, waste (waste) water, cement, mortar, etc., pH-adjusted water that can neutralize (can be adjusted to about pH 7) by canceling the original pH of the object is necessary. As pH-adjusted water, other properties such as purity with respect to a specific substance are not critical as long as the pH is in a desired range.

従来は、そのような場合でも、一定のpHと特定の物質に関する純度等他の性質に関する一定の特性を有する酸性水又はアルカリ性水を前もって準備して保管しておき、現場に持ち込むか、現場に原料を持ち込んで何らかの化学反応又は溶解反応により、所定のpHを有する酸性水又はアルカリ性水を生成する必要があった。   Conventionally, even in such a case, acid water or alkaline water having certain characteristics related to other properties such as a certain pH and purity with respect to a specific substance is prepared and stored in advance and brought to the site or on site. It has been necessary to produce acidic water or alkaline water having a predetermined pH by bringing in raw materials and performing some chemical reaction or dissolution reaction.

これらの酸性水、アルカリ性水、又はその原料の保管、運搬、反応等に際しては、薬品として購入して処理しなければならず、さらに劇薬としての取扱いが必要な場合があり、購入及び取扱いに手間がかかる上に高価についていた。   When storing, transporting, or reacting these acidic water, alkaline water, or their raw materials, they must be purchased and treated as chemicals, and handling as powerful drugs may be necessary. It was expensive and expensive.

本発明の目的は、上記の問題を解決するため、劇薬を含む薬品の購入、処理が不要で、現場で即座に実行可能な、金属、樹脂、及び回路基板等の洗浄用の酸性水、並びに、土壌、排(廃)水、セメント、及びモルタル等のpH調節用の酸性水の製造方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems, and it is not necessary to purchase and process chemicals including powerful drugs, and can be immediately performed on site, and can be performed immediately on the spot, for washing acidic water for cleaning metals, resins, circuit boards and the like, and Another object of the present invention is to provide a method for producing acidic water for adjusting pH, such as soil, waste (waste) water, cement, and mortar.

本発明の他の目的は、上記の問題を解決するため、劇薬を含む薬品の購入、処理が不要で、現場で即座に実行可能な、金属、樹脂、及び回路基板等の洗浄用の、アルカリ性水、並びに、土壌、排(廃)水、セメント、及びモルタル等のpH調節用のアルカリ性水の製造方法を提供することにある。   Another object of the present invention is to solve the above-mentioned problems, and it is not necessary to purchase and process chemicals including powerful drugs, and can be immediately executed on site, for washing metals, resins, circuit boards and the like, alkaline. It is to provide a method for producing water and alkaline water for adjusting pH of soil, waste (waste) water, cement, mortar and the like.

上記目的を達成するため、請求項1の本発明による酸性水の製造方法は、可搬なカチオン(陽イオン)交換塔の新品もしくは再生品をセットするステップと、所定の弁を開閉して、pHが6以上で8以下の原水を前記カチオン交換塔に供給するステップと、前記カチオン交換塔から得られた酸性の処理済水を、洗浄又はpH調節を目的として使うステップと、前記処理済水のpHを判定するステップと、前記処理済水のpH値が規定範囲外になると、所定の弁を開閉して、薬注用強酸を前記カチオン交換塔に供給して、前記カチオン交換塔の機能を再生する複数のステップと、を含むことを特徴とする。   In order to achieve the above object, the method for producing acidic water according to the first aspect of the present invention includes the step of setting a new or regenerated product of a portable cation (cation) exchange tower, opening and closing a predetermined valve, supplying raw water having a pH of 6 or more and 8 or less to the cation exchange column, a step of using the acidic treated water obtained from the cation exchange column for the purpose of washing or pH adjustment, and the treated water And determining the pH of the treated water, and when the pH value of the treated water is out of a specified range, opens and closes a predetermined valve to supply a strong acid for chemical injection to the cation exchange column, and the function of the cation exchange column And a plurality of steps for reproducing.

また、請求項2の本発明によるアルカリ性水の製造方法は、可搬なアニオン(陰イオン)交換塔の新品もしくは再生品をセットするステップと、所定の弁を開閉して、pHが6以上で8以下の原水を前記アニオン交換塔に供給するステップと、前記アニオン交換塔から得られたアルカリ性の処理済水を、洗浄又はpH調節を目的として使うステップと、前記処理済水のpHを判定するステップと、
前記処理済水のpH値が規定範囲外になると、所定の弁を開閉し、薬注用強アルカリを前記アニオン交換塔に供給して、前記アニオン交換塔の機能を再生する複数のステップと、を含むことを特徴とする。
Further, the method for producing alkaline water according to the second aspect of the present invention comprises a step of setting a new or regenerated portable anion (anion) exchange column, opening and closing a predetermined valve, and a pH of 6 or more. A step of supplying raw water of 8 or less to the anion exchange column, a step of using the alkaline treated water obtained from the anion exchange column for the purpose of washing or pH adjustment, and determining the pH of the treated water Steps,
When the pH value of the treated water is out of a specified range, a plurality of steps for regenerating the function of the anion exchange column by opening and closing a predetermined valve and supplying a strong alkali for chemical injection to the anion exchange column; It is characterized by including.

本発明による、酸性水の製造方法によれば、通常に入手できる補給水を用いて、現場で即座に必要な量だけ酸性水を得ることができるので、薬品の保管、運搬、又は劇薬としての危険な取扱い作業の必要がなく、安価かつ安全に金属、樹脂、及び回路基板等を洗浄し、土壌、排(廃)水、セメント、及びモルタル等のpH調節を行うことができる。   According to the method for producing acidic water according to the present invention, it is possible to obtain acid water in a necessary amount immediately at the site using makeup water that is usually available. There is no need for dangerous handling work, and metals, resins, circuit boards, and the like can be washed inexpensively and safely, and the pH of soil, waste (waste) water, cement, mortar, etc. can be adjusted.

本発明による、アルカリ性水の製造方法によれば、通常に入手できる補給水を用いて、現場で即座に必要な量だけアルカリ水を得ることができるので、薬品の保管、運搬、又は劇薬としての危険な取扱い作業の必要がなく、安価かつ安全に金属、樹脂、又は回路基板等を洗浄し、土壌、排(廃)水、セメント、又はモルタル等のpH調節を行うことができる。   According to the method for producing alkaline water according to the present invention, it is possible to obtain alkaline water in a necessary amount immediately on site using makeup water that is usually available. There is no need for dangerous handling work, and metal, resin, circuit board, etc. can be washed inexpensively and safely, and pH adjustment of soil, waste (waste) water, cement, mortar, etc. can be performed.

以下、本発明に係る実施の形態を、図面を参照して具体的に説明する。   Embodiments according to the present invention will be specifically described below with reference to the drawings.

図1、図2は、本発明による第1の実施例である、酸性水の製造方法を説明する図であり、図1はフローチャート、図2は対応する装置の模式図である。   1 and 2 are diagrams for explaining a method for producing acidic water according to a first embodiment of the present invention. FIG. 1 is a flowchart, and FIG. 2 is a schematic diagram of a corresponding apparatus.

図2において、未使用又は使用途中の強酸性カチオン(陽イオン)交換樹脂22を内蔵するカチオン交換塔20に対して、後述の図1のステージ2を通す、即ち、HCl(塩酸)、HSO(硫酸)等の化学薬品を用いると、強酸性カチオン交換樹脂に結合しているCa、Mg、Na、K、等の陽イオンをHイオンで置換する、即ちカチオン交換樹脂の特徴であるHイオンを強酸性カチオン交換樹脂に電着させ、カチオン交換塔を新品相当の再生品とすることができる。 In FIG. 2, a cation exchange column 20 containing a strong acid cation (cation) exchange resin 22 that is not used or is being used is passed through stage 2 in FIG. 1 described later, that is, HCl (hydrochloric acid), H 2. When chemicals such as SO 4 (sulfuric acid) are used, cations such as Ca + , Mg + , Na + , K + , etc. bound to the strongly acidic cation exchange resin are replaced with H + ions, that is, cation exchange. The H + ion, which is a characteristic of the resin, can be electrodeposited onto a strongly acidic cation exchange resin, so that the cation exchange tower can be made into a recycled product equivalent to a new product.

市水、井水、工水、中水、海水等、通常の現場にある補給水のpHは約6〜8である。
ただし海水は、実際には例えば他の補給水で希釈しないと、イオン交換樹脂のイオン交換能力がすぐ失われてしまうので、一般には実用的ではない。
しかし、例えば海水に漬かった物体の水洗洗浄排水など、海水の混合した補給水については、本実施例の原水として使うことができる。
The pH of make-up water in a normal field such as city water, well water, industrial water, middle water, seawater, etc. is about 6-8.
However, seawater is not practical in general since the ion exchange capacity of the ion exchange resin is lost immediately unless actually diluted with other make-up water, for example.
However, for example, replenishing water mixed with seawater, such as washing, washing and drainage of objects immersed in seawater, can be used as raw water in this embodiment.

図2において、この補給水を原水40とする。
図1のステージ1(原水処理)に示すように、ステップ1において、カチオン交換塔の新品もしくは再生品をセットし、ステップ2において図2の弁1、2、3、4、5を開け、弁6、7、8、9、10を閉じる。
そうすると図2において、原水40はカチオン交換塔20に供給され、薬注用強酸(HCl又はHSO)30はカチオン交換塔20に供給されないので、原水のみが強酸性カチオン交換樹脂に、例えば通水線速度LV20m/時にて通水される。
In FIG. 2, this makeup water is referred to as raw water 40.
As shown in stage 1 (raw water treatment) of FIG. 1, in step 1, a new or regenerated cation exchange tower is set, and in step 2, valves 1, 2, 3, 4, 5 of FIG. Close 6, 7, 8, 9, 10.
Then, in FIG. 2, raw water 40 is supplied to the cation exchange column 20, and the chemical injection strong acid (HCl or H 2 SO 4 ) 30 is not supplied to the cation exchange column 20, so only the raw water is converted into a strongly acidic cation exchange resin, for example, Water is passed at a water passage speed of LV 20 m / hour.

原水中に中性塩、又はアルカリの形で含有されていた、Ca、Mg、Na、K、等のカチオンが、強酸性カチオン樹脂に電着させてあったH(水素イオン)を置換し、通水後の処理済水中にはH+が、中性塩の形で含有されていたCa、Mg、Na、K、等のカチオンの電荷当量に大よそ相当する分だけ増加する。 H + (Hydrogen ion), which was contained in a neutral salt or alkali form in the raw water, and a cation such as Ca + , Mg + , Na + , K + , etc. was electrodeposited on a strongly acidic cation resin ) And H + in the treated water after passing water roughly corresponds to the charge equivalent of cations such as Ca + , Mg + , Na + , K + , etc. contained in the form of neutral salts Increase by minutes.

この結果、集水板24を経た処理済水は原水のpHに拘わらず酸性になり、処理済水50のpHはpH測定計93でモニタすると、例えば標準的な強酸性カチオン交換樹脂である、イオン交換基としてスルホ基(−SOH)を備えたスチレン−DVB(Di−Vinyl−Benzene)共重合体の場合、2.9〜3.4を示す。 As a result, the treated water that has passed through the water collecting plate 24 becomes acidic regardless of the pH of the raw water, and when the pH of the treated water 50 is monitored by a pH meter 93, for example, it is a standard strongly acidic cation exchange resin. In the case of a styrene-DVB (Di-Vinyl-Benzene) copolymer having a sulfo group (—SO 3 H) as an ion exchange group, 2.9 to 3.4 are shown.

生産した処理済水50中のHイオンは安定に存在し、例えば、生産日より6ヶ月後にpH=2.9、1年後にpH=3.2と、長時間経過してもpHが若干しか変動しないという特徴がある。 The H + ions in the produced treated water 50 exist stably, for example, pH = 2.9 after 6 months from the production date, pH = 3.2 after 1 year, and the pH is slightly even after a long time. It has the feature that it only fluctuates.

pHが時間経過と共に若干上昇するのは、処理水中に含まれる炭酸として含まれるCOが徐々に気化することにより、酸性度が低下するからである。
このように、一旦生産した処理済水50は酸性を呈し、そのpHは安定している。
The reason why the pH slightly increases with the passage of time is that the acidity decreases due to the gradual evaporation of CO 2 contained as carbonic acid contained in the treated water.
Thus, the treated water 50 once produced exhibits acidity and its pH is stable.

図1のステージ1のステップ3Aを参照すると、洗浄を目的として、有機物又は金属等の表面に付着した酸溶解性物質を含む対象物を、処理済水50中に浸漬する、又は上記対象物に処理済水を吹きかけると、Hが上記有機物又は酸溶解性物質と反応し始める。
上記反応の結果、有機物は分解され、酸溶解性物質は処理済水に分解されて溶解する。
Referring to step 3A of stage 1 in FIG. 1, for the purpose of cleaning, an object containing an acid-soluble substance attached to the surface of an organic substance or a metal is immersed in treated water 50 or in the object. When treated water is sprayed, H + begins to react with the organic or acid soluble material.
As a result of the above reaction, the organic substance is decomposed, and the acid-soluble substance is decomposed and dissolved in the treated water.

実例として、pH=2.9の処理済水50中に通常使用している10円硬貨を投入し、3時間〜6時間〜12時間と観察を続けると、目視で確認できる範囲で硬貨の表面が下記のように変化し、処理済水のpHが下記のように変化した。   As an example, when the 10-yen coin normally used in the treated water 50 having a pH of 2.9 is put and observation is continued for 3 hours to 6 hours to 12 hours, the surface of the coin can be visually confirmed. Changed as follows, and the pH of the treated water changed as follows.

3時間経過後、10円硬貨の表面の汚れ(有機物)が徐々に剥離し、その際のpHは3.8を示した。
6時間経過後、10円硬貨の表面の汚れ(有機物)が全体の60%程度剥離し、その際のpHは4.5を示した。
12時間経過後、10円硬貨の表面の汚れ(有機物)が全体の99%剥離し、その際のpHは5.9を示した。
After 3 hours had passed, the dirt (organic matter) on the surface of the 10-yen coin gradually peeled off, and the pH at that time was 3.8.
After 6 hours, about 60% of the dirt (organic matter) on the surface of the 10 yen coin was peeled off, and the pH at that time was 4.5.
After 12 hours had passed, 99% of the dirt (organic matter) on the surface of the 10-yen coin was peeled off, and the pH at that time was 5.9.

これを考察するに、pH=2.9の酸性水は、金属の表面に付着した有機物等と反応し、有機物を分解し、そのため有機物は硬貨から剥離した。
その証明として、処理済水のpHは除々に上昇した、即ち有機物の分解が進むにつれ、処理済水の酸性度は低下した。
In consideration of this, acidic water having a pH of 2.9 reacted with an organic substance or the like attached to the metal surface to decompose the organic substance, so that the organic substance was peeled from the coin.
As proof, the pH of the treated water gradually increased, that is, the acidity of the treated water decreased as the decomposition of organic matter progressed.

処理済水50の最終的なpHが国及び各都道府県の排水の基準pH域に達した場合は、そのまま放流しても問題がない。   When the final pH of the treated water 50 reaches the standard pH range of the wastewater of the country and each prefecture, there is no problem even if it is discharged as it is.

図1のステージ1のステップ3Bを参照すると、pH調節を目的として、上記のように生産した酸性の処理済水50は、土壌、排(廃)水、セメント、及びモルタル等の対象物のpH調節に際して、アルカリ性の対象物のpHをモニタしながら、より中性側、中和、又は酸性側の所望の値に調節したい場合に使うことができる。   Referring to step 3B of stage 1 in FIG. 1, the acidic treated water 50 produced as described above for the purpose of pH adjustment is the pH of objects such as soil, waste (waste) water, cement, and mortar. When adjusting, it can be used to adjust to a desired value on the neutral side, neutralization, or acidic side while monitoring the pH of the alkaline object.

強酸性カチオン交換樹脂は、原水をある一定量だけ通水すると、酸性の処理済水50を生産する能力が失われ、原水がそのまま、処理済水として出てくる。
この限界点は、図1のステージ1のステップ4に示すように、処理済水50のpHを図2のpH測定計93によりモニタすることにより把握できる。
図1のステージ2(カチオン交換樹脂再生)を参照すると、限界点に達した強酸性カチオン交換樹脂は、HCl(塩酸)、H2SO4(硫酸)等の化学薬品を用いることにより再生でき、繰り返して使える。
When a certain amount of raw water is passed through the strongly acidic cation exchange resin, the ability to produce acidic treated water 50 is lost, and the raw water comes out as it is as treated water.
This limit point can be grasped by monitoring the pH of the treated water 50 with a pH meter 93 in FIG. 2, as shown in step 4 of stage 1 in FIG.
Referring to Stage 2 (Cation Exchange Resin Regeneration) in FIG. 1, a strongly acidic cation exchange resin that has reached the limit point can be regenerated by using chemicals such as HCl (hydrochloric acid), H2SO4 (sulfuric acid), and can be used repeatedly. .

即ち、ステージ2では、ステップ5(再生ライン)で、図2の弁1、7、3、6を開け、原水の残液を排水ピット95、96に排出する。
ステップ6(沈静)で、全弁1〜10を閉じた後、ステップ7(薬注ライン)で、弁1、2、8、9、3、4、10を開け、弁6、7、5を閉じる。
最後のステップ7において、薬注用強酸(HCl又はHSO)30がカチオン交換塔20に、弁8、9、及びエゼクター(吸引バルブ)91を介して注入され、強酸性カチオン交換樹脂22を再生する。
That is, in stage 2, in step 5 (regeneration line), the valves 1, 7, 3, 6 of FIG. 2 are opened, and the remaining raw water is discharged to the drain pits 95, 96.
In step 6 (sedation), all the valves 1 to 10 are closed, and then in step 7 (medication line), valves 1, 2, 8, 9, 3, 4, 10 are opened, and valves 6, 7, 5 are opened. close.
In the final step 7, a strong acid for injection (HCl or H 2 SO 4 ) 30 is injected into the cation exchange column 20 through the valves 8 and 9 and the ejector (suction valve) 91, and the strongly acidic cation exchange resin 22 is injected. Play.

このようにすると、劇薬である薬注用強酸を現場で直接希釈して所望のpHの酸性水を得る場合に比べて、発熱を伴う危険な希釈作業を省くことができる。   In this way, it is possible to omit a dangerous dilution operation with exothermic heat as compared with a case where strong acid for pouring as a powerful drug is directly diluted on site to obtain acidic water having a desired pH.

ステップ6の終了後にカチオン交換塔20を予備の新品(再生品)に取替え、使用済みのカチオン交換塔を持ち返って、ステップ7を専門工場で実施すると、劇薬である薬注用強酸を現場で取り扱うという危険な作業を省くことができる。   After step 6, the cation exchange column 20 is replaced with a spare new product (recycled product), the used cation exchange column is brought back, and step 7 is carried out in a specialized factory. The dangerous work of handling can be omitted.

図3、図4は、本発明による第2の実施例である、アルカリ性水の製造方法を説明する図であり、図3はフローチャート、図4は対応する装置の模式図である。   3 and 4 are diagrams for explaining a method for producing alkaline water according to a second embodiment of the present invention. FIG. 3 is a flowchart, and FIG. 4 is a schematic diagram of a corresponding apparatus.

図4において、未使用又は使用途中の強アルカリ性アニオン(陰イオン)交換樹脂23を内蔵するアニオン交換塔21に対して、後述の図3のステージ2を通す、即ち、NaOH(苛性ソーダ)等の化学薬品を用いると、強アルカリ性アニオン交換樹脂に結合しているCl、NO 、SO 2−、HCO 、等の陰イオンをOHイオンで置換する、即ちアニオン交換樹脂の特徴であるOHイオンを強アルカリ性アニオン交換樹脂に電着させ、アニオン交換塔を新品相当の再生品とすることができる。 In FIG. 4, the anion exchange column 21 containing a strong alkaline anion (anion) exchange resin 23 that is not used or is being used is passed through the stage 2 of FIG. 3 described later, that is, chemicals such as NaOH (caustic soda). When chemicals are used, anions such as Cl , NO 3 , SO 4 2− , HCO 3 , etc. bound to the strongly alkaline anion exchange resin are replaced with OH ions. A certain OH - ion can be electrodeposited onto a strongly alkaline anion exchange resin, and the anion exchange tower can be made into a recycled product equivalent to a new product.

市水、井水、工水、中水、海水等、通常の現場にある補給水のpHは約6〜8である。
ただし海水は、実際には例えば他の補給水で希釈しないと、イオン交換樹脂のイオン交換能力がすぐ失われてしまうので、一般には実用的ではない。
しかし、例えば海水に漬かった物体の水洗洗浄排水など、海水の混合した補給水については、本実施例の原水として使うことができる。
The pH of make-up water in a normal field such as city water, well water, industrial water, middle water, seawater, etc. is about 6-8.
However, seawater is not practical in general since the ion exchange capacity of the ion exchange resin is lost immediately unless actually diluted with other make-up water, for example.
However, for example, replenishing water mixed with seawater, such as washing, washing and drainage of objects immersed in seawater, can be used as raw water in this embodiment.

図4において、この補給水を原水40とする。
図3のステージ1(原水処理)に示すように、ステップ1において、アニオン交換塔の新品もしくは再生品をセットし、ステップ2において図4の弁1、2、3、4、5を開け、弁6、7、8、9、10を閉じる。
そうすると図4において、原水40はアニオン交換塔21に供給され、薬注用強アルカリ(NaOH)31はアニオン交換塔21に供給されないので、原水のみが強アルカリ性アニオン交換樹脂に、例えば通水線速度LV20m/時にて通水される。
In FIG. 4, this makeup water is designated as raw water 40.
As shown in stage 1 (raw water treatment) of FIG. 3, in step 1, a new or regenerated anion exchange tower is set, and in step 2, valves 1, 2, 3, 4, 5 of FIG. Close 6, 7, 8, 9, 10.
Then, in FIG. 4, raw water 40 is supplied to the anion exchange column 21, and chemical injection strong alkali (NaOH) 31 is not supplied to the anion exchange column 21, so that only the raw water is converted into a strong alkaline anion exchange resin, for example, a water passage speed. Water is passed at LV20m / hour.

原水中に中性塩、又は酸の形で含有されていた、Cl、NO 、SO 2−、HCO 、等のアニオンが、強アルカリ性アニオン樹脂に電着させてあったOH(水酸化イオン)を置換し、通水後の処理済水中にはOHが、中性塩の形で含有されていたCl、NO 、SO 2−、HCO 、等のアニオンの電荷当量に大よそ相当する分だけ増加する。 OH in which the anions such as Cl , NO 3 , SO 4 2− , HCO 3 , etc., which were contained in the form of neutral salts or acids in the raw water, were electrodeposited on the strongly alkaline anion resin - replacing (hydroxide ion), the treated water after passing water OH - is, Cl was contained in the form of a neutral salt -, NO 3 -, SO 4 2-, HCO 3 -, etc. It increases by an amount roughly corresponding to the charge equivalent of the anion.

この結果、集水板24を経た処理済水は原水のpHに拘わらずアルカリ性になり、処理済水51のpHはpH測定計93でモニタすると、例えば標準的な強酸性アニオン交換樹脂である、イオン交換基として4級アンモニウム基(−N(CH・OH)を備えたスチレン−DVB共重合体の場合、10.5〜11.2を示す。 As a result, the treated water that has passed through the water collecting plate 24 becomes alkaline regardless of the pH of the raw water, and the pH of the treated water 51 is, for example, a standard strongly acidic anion exchange resin when monitored by a pH meter 93. In the case of a styrene-DVB copolymer having a quaternary ammonium group (—N (CH 2 ) 2 .OH) as an ion exchange group, 10.5 to 11.2 is shown.

生産した処理済水51中のOHイオンは安定に存在し、例えば、生産日より6ヶ月後にpH=10.5、1年後にpH=9.8と、pHが時間経過と共に若干しか変動しないという特徴がある。 The OH ions in the produced treated water 51 exist stably, for example, pH = 10.5 after 6 months from the date of production, pH = 9.8 after one year, and pH slightly changes with time. There is a feature.

pHが時間経過と共に若干減少するのは、大気中の酸素Oと処理済水中のHCO3塩基の反応の結果、COが徐々に気化することにより、アルカリ性度が低下するからである。
このように、一旦生産した処理済水51はアルカリ性を呈し、そのpHは安定している。
The pH is slightly decreased with elapsed time of the processed water and the oxygen O 2 in the atmosphere HCO3 - result of the reaction of a base, by the CO 2 is gradually vaporized, because alkalinity is reduced.
Thus, the treated water 51 once produced exhibits alkalinity and its pH is stable.

図3のステージ1のステップ3Aを参照すると、洗浄を目的として、油脂又は金属等の表面に付着した酸不溶性物質を含む対象物を、処理済水51中に浸漬する、又は上記対象物に処理済水を吹きかけると、OHが上記有機物又は酸不溶性物質と反応し始める。
上記反応の結果、油脂は分解され、酸不溶性物質は処理済水に分解されて溶解し、脱脂現象が起きる。
Referring to step 3A of stage 1 in FIG. 3, for the purpose of cleaning, an object containing an acid-insoluble substance attached to the surface of oil or metal or the like is immersed in treated water 51 or treated in the object. When the spent water is sprayed, OH starts to react with the organic substance or the acid-insoluble substance.
As a result of the above reaction, fats and oils are decomposed, and acid-insoluble substances are decomposed and dissolved in treated water, and a degreasing phenomenon occurs.

実例として、pH=11.2の処理済水中に通常使用しているプリント基板を投入し、3時間〜6時間〜12時間と観察を続けると、目視で確認できる範囲でプリント基板の表面が下記のように変化し、処理済水51のpHが下記のように変化した。   As an example, when the printed circuit board normally used in the treated water of pH = 11.2 is introduced and the observation is continued for 3 hours to 6 hours to 12 hours, the surface of the printed circuit board is within the range that can be confirmed visually. The pH of the treated water 51 was changed as follows.

3時間経過後、プリント基板の表面の汚れ(ハンダ付け用油脂を含む有機物)が徐々に剥離し、その際のpHは10.2を示した。
6時間経過後、プリント基板の表面の汚れ(有機物)が全体の60%程度剥離し、その際のpHは9.5を示した。
12時間経過後、プリント基板の表面の汚れ(有機物)が全体の98%剥離し、その際のpHは8.1を示した。
After 3 hours, stains on the surface of the printed circuit board (organic matter containing soldering oil) gradually peeled off, and the pH at that time was 10.2.
After the elapse of 6 hours, about 60% of the entire surface of the printed board was soiled (organic matter), and the pH at that time was 9.5.
After 12 hours, 98% of the entire surface of the printed circuit board was soiled (organic matter), and the pH at that time was 8.1.

これを考察するに、pH=11.2のアルカリ性水は、金属の表面に付着した有機物等と反応し、有機物を分解し、そのため有機物は硬貨から剥離した。
その証明として、処理済水のpHは除々に上昇下降した、即ち有機物の分解が進むにつれ、処理済水のアルカリ性度は低下した。
In consideration of this, alkaline water having pH = 11.2 reacted with an organic substance or the like attached to the metal surface to decompose the organic substance, so that the organic substance was peeled from the coin.
As proof, the pH of the treated water gradually increased and decreased, that is, the alkalinity of the treated water decreased as the decomposition of organic matter progressed.

処理済水51の最終的なpHが国及び各都道府県の排水の基準pH域に達した場合は、そのまま放流しても問題がない。
従来、プリント基板等の脱脂には、かつてはフロンが良く使われ、環境問題を抑えるためイソプロピル系のアルコールが主流になっているが、本処理済水51は、その安価な代替品となることができる。
When the final pH of the treated water 51 reaches the standard pH range of the wastewater of the country and each prefecture, there is no problem even if it is discharged as it is.
Conventionally, chlorofluorocarbons are often used for degreasing printed circuit boards and the like, and isopropyl alcohol has been the mainstream to suppress environmental problems. However, the treated water 51 should be an inexpensive alternative. Can do.

図3のステージ1のステップ3Bを参照すると、pH調節を目的として、上記のように生産したアルカリ性処理済水51は、土壌、排(廃)水、セメント、及びモルタル等の対象物のpH調節に際して、酸性の対象物のpHをモニタしながら、より中性側、中和、又はアルカリ性側の所望の値に調節したい場合に使うことができる。   Referring to step 3B of stage 1 in FIG. 3, for the purpose of pH adjustment, alkaline treated water 51 produced as described above is used for pH adjustment of objects such as soil, waste (waste) water, cement, and mortar. In this case, it can be used when it is desired to adjust to a desired value on the neutral side, neutralization, or alkaline side while monitoring the pH of the acidic object.

例えば、酸性土壌の土質改良、排(廃)水の中和が、特別な化学薬品を用意しなくても、現場にある補給水を利用して可能になる。   For example, it is possible to improve the soil quality of acidic soil and neutralize waste (waste) water by using makeup water on site without preparing special chemicals.

また、セメントの凝固に際しては、酸化カルシウムCaOを水HOと反応させて水酸化カルシウムCa(OH)に変える必要がある。
この凝固反応の触媒として、過去においては、Clイオンを含む海水が用いられたこともあったが、鉄筋などの腐食を招いてしまうので、一般には用いることができない。
Further, when the cement is solidified, it is necessary to react calcium oxide CaO with water H 2 O to change to calcium hydroxide Ca (OH) 2 .
In the past, seawater containing Cl - ions has been used as a catalyst for this coagulation reaction. However, it cannot be generally used because it causes corrosion of reinforcing bars.

本発明によるアルカリ性処理済水は、その水酸基OHがセメント凝固の触媒役としてのClを代替し、鉄筋の腐食の原因となるカソード反応を抑制し、常にアノード反応をしているので、鉄筋の腐食を防止し、凝固性を向上できる。
さらに、海水等を含む砂、砂利等の表面に付着しているClを洗浄、中和も同時に行うので、凝固後の硬度劣化も防止できる。
In the alkaline treated water according to the present invention, the hydroxyl group OH replaces Cl as a catalyst for cement solidification, suppresses the cathode reaction that causes corrosion of the reinforcing bar, and always performs the anode reaction. Corrosion can be prevented and solidification can be improved.
Furthermore, since Cl adhering to the surface of sand, gravel, etc. containing seawater or the like is simultaneously washed and neutralized, it is possible to prevent hardness deterioration after solidification.

さて、強アルカリ性アニオン交換樹脂は、原水をある一定量だけ通水すると、アルカリ性の処理済水を生産する能力が失われ、原水がそのまま、処理済水として出てくる。
この限界点は、図3のステージ1のステップ4に示すように、処理済水51のpHを図4のpH測定計93によりモニタすることにより把握できる。
図3のステージ2(アニオン交換樹脂再生)を参照すると、限界点に達した強アルカリ性アニオン交換樹脂は、NaOH(苛性ソーダ)等の化学薬品を用いることにより再生でき、繰り返して使える。
When a strong alkaline anion exchange resin passes a certain amount of raw water, the ability to produce alkaline treated water is lost, and the raw water comes out as treated water as it is.
This limit point can be grasped by monitoring the pH of the treated water 51 with a pH meter 93 in FIG. 4 as shown in step 4 of stage 1 in FIG.
Referring to stage 2 (anion exchange resin regeneration) in FIG. 3, a strongly alkaline anion exchange resin that has reached the limit point can be regenerated by using a chemical such as NaOH (caustic soda) and can be used repeatedly.

即ち、ステージ2では、ステップ5(再生ライン)で、図4の弁1、7、3、6を開け、原水の残液を排水ピット95、96に排出する。
ステップ6(沈静)で、全弁1〜10を閉じた後、ステップ7(薬注ライン)で、弁1、2、8、9、3、4、10を開け、弁6、7、5を閉じる。
最後のステップ7において、薬注用強アルカリ(NaOH)31がアニオン交換塔21に弁8、9、及びエゼクター(吸引バルブ)91を介して注入され、強アルカリ性アニオン樹脂23を再生する。
That is, in stage 2, in step 5 (regeneration line), the valves 1, 7, 3, 6 of FIG. 4 are opened, and the remaining raw water is discharged to the drain pits 95, 96.
In step 6 (sedation), all the valves 1 to 10 are closed, and then in step 7 (medication line), valves 1, 2, 8, 9, 3, 4, 10 are opened, and valves 6, 7, 5 are opened. close.
In the final step 7, a strong alkali (NaOH) 31 for chemical injection is injected into the anion exchange tower 21 through the valves 8 and 9 and the ejector (suction valve) 91 to regenerate the strong alkaline anion resin 23.

このようにすると、劇薬である薬注用強アルカリを現場で直接希釈して所望のpHのアルカリ性水を得る場合に比べて、発熱を伴う危険な希釈作業を省くことができる。   In this way, it is possible to omit a dangerous diluting operation accompanied by heat generation as compared with the case of directly diluting a strong alkali for drug injection, which is a powerful drug, to obtain alkaline water having a desired pH.

ステップ6の終了後にアニオン交換塔21を予備の新品(再生品)に取替え、使用済みのアニオン交換塔を持ち返って、ステップ7を専門工場で実施すると、劇薬である薬注用強アルカリを現場で取り扱うという危険な作業を省くことができる。   After step 6 is completed, the anion exchange tower 21 is replaced with a spare new one (recycled product), the used anion exchange tower is brought back, and step 7 is carried out in a specialized factory. The dangerous work of handling in can be omitted.

本発明による第1の実施例におけるフローチャートである。It is a flowchart in 1st Example by this invention. 本発明による第1の実施例における、対応する装置の模式図である。FIG. 2 is a schematic view of a corresponding device in the first embodiment according to the present invention. 本発明による第2の実施例におけるフローチャートである。It is a flowchart in 2nd Example by this invention. 本発明による第2の実施例における、対応する装置の模式図である。FIG. 6 is a schematic view of a corresponding apparatus in the second embodiment according to the present invention.

符号の説明Explanation of symbols

1、2、3、4、5,6、7、8、9、10 弁(バルブ)
20 カチオン(陽イオン)交換塔
21 アニオン(陰イオン)交換塔
22 強酸性カチオン交換樹脂
23 強アルカリ性アニオン交換樹脂
24 集水板
30 薬注用強酸(HCl又はHSO
31 薬注用強アルカリ(NaOH)
40 原水
50、51 処理済水
91 エゼクター(吸引バルブ)
93 pH測定計
95、96 排水ピット
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Valve (valve)
20 Cation (Cation) Exchange Tower 21 Anion (Anion) Exchange Tower 22 Strong Acid Cation Exchange Resin 23 Strong Alkaline Anion Exchange Resin 24 Water Collection Plate 30 Chemical Injection Strong Acid (HCl or H 2 SO 4 )
31 Strong alkali (NaOH) for chemical injection
40 Raw water 50, 51 Treated water 91 Ejector (suction valve)
93 pH meter 95, 96 Drainage pit

Claims (2)

可搬なカチオン(陽イオン)交換塔の新品もしくは再生品をセットするステップと、
所定の弁を開閉して、pHが6以上で8以下の原水を前記カチオン交換塔に供給するステップと、
前記カチオン交換塔から得られた酸性の処理済水を、洗浄又はpH調節を目的として使うステップと、
前記処理済水のpHを判定するステップと、
前記処理済水のpH値が規定範囲外になると、所定の弁を開閉し、薬注用強酸を前記カチオン交換塔に供給して、前記カチオン交換塔の機能を再生する複数のステップと、
を含むことを特徴とする酸性水の製造方法。
Setting a new or renewed portable cation (cation) exchange tower;
Supplying a raw water having a pH of 6 or more and 8 or less to the cation exchange column by opening and closing a predetermined valve;
Using acidic treated water obtained from the cation exchange column for washing or pH adjustment;
Determining the pH of the treated water;
When the pH value of the treated water is out of a specified range, a plurality of steps of opening and closing a predetermined valve and supplying a strong acid for chemical injection to the cation exchange column to regenerate the function of the cation exchange column;
The manufacturing method of acidic water characterized by including.
可搬なアニオン(陰イオン)交換塔の新品もしくは再生品をセットするステップと、
所定の弁を開閉して、pHが6以上で8以下の原水を前記アニオン交換塔に供給するステップと、
前記アニオン交換塔から得られたアルカリ性の処理済水を、洗浄又はpH調節を目的として使うステップと、
前記処理済水のpHを判定するステップと、
前記処理済水のpH値が規定範囲外になると、所定の弁を開閉し、薬注用強アルカリを前記アニオン交換塔に供給して、前記アニオン交換塔の機能を再生する複数のステップと、
を含むことを特徴とするアルカリ性水の製造方法。
Setting a new or renewed portable anion (anion) exchange tower;
Supplying a raw water having a pH of 6 or more and 8 or less to the anion exchange column by opening and closing a predetermined valve;
Using alkaline treated water obtained from the anion exchange column for washing or pH adjustment;
Determining the pH of the treated water;
When the pH value of the treated water is outside the specified range, a plurality of steps for opening and closing a predetermined valve and supplying a strong alkali for chemical injection to the anion exchange column to regenerate the function of the anion exchange column;
The manufacturing method of alkaline water characterized by including.
JP2004247357A 2004-08-26 2004-08-26 Method for producing acid water and alkaline water Pending JP2006061828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004247357A JP2006061828A (en) 2004-08-26 2004-08-26 Method for producing acid water and alkaline water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004247357A JP2006061828A (en) 2004-08-26 2004-08-26 Method for producing acid water and alkaline water

Publications (1)

Publication Number Publication Date
JP2006061828A true JP2006061828A (en) 2006-03-09

Family

ID=36108749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247357A Pending JP2006061828A (en) 2004-08-26 2004-08-26 Method for producing acid water and alkaline water

Country Status (1)

Country Link
JP (1) JP2006061828A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535322A (en) * 2010-07-26 2013-09-12 ビーダブリューティー アクティエンゲゼルシャフト Method and system for treating water
JP2013248552A (en) * 2012-05-31 2013-12-12 Kikuchi Namie Method for producing strong acid water and strong alkaline water
JP2015174048A (en) * 2014-03-17 2015-10-05 株式会社三進製作所 Ion exchange resin tower and method for regenerating ion exchange resin
JP2017104870A (en) * 2017-03-24 2017-06-15 菊地 奈美枝 Method for producing strongly acidic water and strongly alkaline water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216535A (en) * 1996-12-04 1998-08-18 Toto Ltd Regeneration device for cation exchange resin and method therefor
JP2000061462A (en) * 1998-08-19 2000-02-29 Toto Ltd Method of controlling ph and hardness of water
JP2000159641A (en) * 1998-11-25 2000-06-13 Sasaki Shoji Kk Conditioning water for hair treatment and apparatus for producing the same
JP2000262908A (en) * 1998-02-06 2000-09-26 Toto Ltd Cleaning method of composite material and self-cleaning composite material structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216535A (en) * 1996-12-04 1998-08-18 Toto Ltd Regeneration device for cation exchange resin and method therefor
JP2000262908A (en) * 1998-02-06 2000-09-26 Toto Ltd Cleaning method of composite material and self-cleaning composite material structure
JP2000061462A (en) * 1998-08-19 2000-02-29 Toto Ltd Method of controlling ph and hardness of water
JP2000159641A (en) * 1998-11-25 2000-06-13 Sasaki Shoji Kk Conditioning water for hair treatment and apparatus for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535322A (en) * 2010-07-26 2013-09-12 ビーダブリューティー アクティエンゲゼルシャフト Method and system for treating water
JP2013248552A (en) * 2012-05-31 2013-12-12 Kikuchi Namie Method for producing strong acid water and strong alkaline water
JP2015174048A (en) * 2014-03-17 2015-10-05 株式会社三進製作所 Ion exchange resin tower and method for regenerating ion exchange resin
JP2017104870A (en) * 2017-03-24 2017-06-15 菊地 奈美枝 Method for producing strongly acidic water and strongly alkaline water

Similar Documents

Publication Publication Date Title
TWI518323B (en) Method for minimizing corrosion, scale, and water consumption in cooling tower systems
TW201031601A (en) Systems and methods for wastewater treatment
JPH05115884A (en) Method for recovering ethylenediamine tetraacetate from evaporator cleaning liquid
JP2010522826A (en) Recycling method of electroless nickel waste
JP6499496B2 (en) Waste liquid treatment method and waste liquid treatment apparatus
JP2006061828A (en) Method for producing acid water and alkaline water
JP3348636B2 (en) Water treatment equipment containing inorganic pollutants
CN102071429B (en) Corrosion product chemical dissolution process
KR100839350B1 (en) Method of recycling a waste water and apparatus for performing the same
JP2002316175A (en) Wastewater treatment method and treatment apparatus using the same
NL8002882A (en) SALT CONSERVATION AT REGENERATION OF ION EXCHANGERS.
JP2005232517A (en) Method for recycling electroless nickel plating waste solution
JP3722233B2 (en) Anaerobic treatment
JP4473340B1 (en) Method for treating water containing arsenic
JP3423204B2 (en) How to remove scale
JP2004283759A (en) Method for treating fluorine-containing wastewater
JP3931258B2 (en) Ozone decomposition apparatus and decomposition method
US20130001167A1 (en) Process for water softening
FR2651222A1 (en) Method of denitration with direct recycling of the regeneration effluents as fertilizer
JP2004290860A (en) Method for neutralizing metal ion-containing acidic waste liquid
KR20060126290A (en) Regeneration of used ferric chloride cleaning solution
JP6580509B2 (en) Solids removal method
JPH09279371A (en) Chemically cleaning method
KR100313971B1 (en) Method for dissolving oxide adhered on metal plate
JP2004097861A (en) Treatment apparatus for fluorine or phosphorus-containing water

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928