JP2017104848A - Silicon nanoparticles and/or aggregate thereof, hydrogen generating material for organism and production method for the same, and hydrogen water and production method and production apparatus for the same - Google Patents

Silicon nanoparticles and/or aggregate thereof, hydrogen generating material for organism and production method for the same, and hydrogen water and production method and production apparatus for the same Download PDF

Info

Publication number
JP2017104848A
JP2017104848A JP2016162520A JP2016162520A JP2017104848A JP 2017104848 A JP2017104848 A JP 2017104848A JP 2016162520 A JP2016162520 A JP 2016162520A JP 2016162520 A JP2016162520 A JP 2016162520A JP 2017104848 A JP2017104848 A JP 2017104848A
Authority
JP
Japan
Prior art keywords
hydrogen
silicon fine
water
fine particles
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016162520A
Other languages
Japanese (ja)
Inventor
小林 光
Hikaru Kobayashi
光 小林
悠輝 小林
Yuki Kobayashi
悠輝 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kit KK
Original Assignee
Kit KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015237328A external-priority patent/JP2016155118A/en
Application filed by Kit KK filed Critical Kit KK
Publication of JP2017104848A publication Critical patent/JP2017104848A/en
Priority to JP2017135940A priority Critical patent/JP6889055B2/en
Priority to JP2018535516A priority patent/JPWO2018037752A1/en
Priority to CN201780051862.9A priority patent/CN110225890A/en
Priority to CN202110806702.9A priority patent/CN113426312A/en
Priority to PCT/JP2017/025570 priority patent/WO2018037752A1/en
Priority to CN201780052364.6A priority patent/CN110191699A/en
Priority to PCT/JP2017/027173 priority patent/WO2018037818A1/en
Priority to CN201780051870.3A priority patent/CN110191860A/en
Priority to JP2018535548A priority patent/JP6916184B2/en
Priority to EP17843305.8A priority patent/EP3505491A4/en
Priority to JP2018535547A priority patent/JP6592725B2/en
Priority to PCT/JP2017/027174 priority patent/WO2018037819A1/en
Priority to EP17843304.1A priority patent/EP3505151A4/en
Priority to US16/327,782 priority patent/US11707063B2/en
Priority to US16/327,794 priority patent/US11583483B2/en
Priority to TW109140194A priority patent/TWI779399B/en
Priority to TW110131758A priority patent/TWI783650B/en
Priority to TW106125642A priority patent/TWI728158B/en
Priority to TW109140195A priority patent/TWI776280B/en
Priority to TW106125643A priority patent/TWI728159B/en
Priority to TW111110408A priority patent/TWI831156B/en
Priority to TW110102396A priority patent/TWI757064B/en
Priority to TW106125644A priority patent/TWI728160B/en
Priority to TW111110407A priority patent/TW202229161A/en
Priority to JP2019131994A priority patent/JP2020007310A/en
Priority to JP2019181958A priority patent/JP2020037554A/en
Priority to JP2019181957A priority patent/JP2020037553A/en
Priority to JP2021101920A priority patent/JP2021178320A/en
Priority to US18/147,254 priority patent/US20230157934A1/en
Priority to JP2023062241A priority patent/JP2023111907A/en
Priority to US18/329,422 priority patent/US20230320348A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To provide hydrogen water having a prescribed hydrogen concentration at a low cost, safely, and on site by generating hydrogen by contacting silicon nanoparticles and/or silicon nanoparticles having a portion thereof aggregated with or dispersing the same in water or an aqueous solution.SOLUTION: Hydrogen water having a prescribed and controlled hydrogen concentration in aqueous solution is obtained by generating hydrogen by contacting silicon nanoparticles, or silicon nanoparticles pulverized in ethanol solvent by a bead mill, and/or silicon nanoparticles having a portion thereof aggregated, in which a portion or all of surface silicon oxide film is treated with hydrogen peroxide aqueous solution, with or dispersing the same in water or an aqueous solution in a sealed vessel. In the production method of hydrogen water, use of silicon nanoparticles as a starting material enables safe and efficient production of hydrogen water containing dissolved hydrogen in a concentration and amount sufficient for practical use.SELECTED DRAWING: Figure 9b

Description

本発明は、シリコン微細ナノ粒子及び/又はその凝集体及び生体用水素発生材及びその製造方法並びに水素水とその製造方法及び製造装置に関する。 The present invention relates to silicon fine nanoparticles and / or aggregates thereof, a biogenic hydrogen generating material, a production method thereof, hydrogen water, a production method thereof, and a production apparatus.

水素を水に溶解させた水素水は、1ppm以上の溶存水素濃度が必要とされ、活性酸素を除去することが可能となり、健康飲料水、洗顔水、入浴水、医療分野や電子部品の洗浄水また植物の生育促進水などの多方面の利用が進みつつあるが、水素水の製造技術や製造装置としては、水素ガスを水に導入することや水の電気分解法によって行われている(例えば、特許文献1)。 Hydrogen water in which hydrogen is dissolved in water requires a dissolved hydrogen concentration of 1 ppm or more, and it is possible to remove active oxygen. Health drinking water, facial wash water, bath water, medical field and electronic component washing water Moreover, the utilization of various fields such as plant growth promoting water is progressing, but hydrogen water production technology and production equipment are carried out by introducing hydrogen gas into water or by electrolysis of water (for example, Patent Document 1).

特許文献1:特開2006−95389号公報     Patent Document 1: Japanese Patent Laid-Open No. 2006-95389

しかしながら、従来技術で開示されている水素水を製造する技術においては、水素ガスを直接導入する過程を要し、その制御及び取扱いに課題がある。更に、低コストで生体及び生体内への安全性の高い水素発生材料を用いて、オンサイトで簡便な水素水、その製造方法及びその製造装置が求められている。  However, the technique for producing hydrogen water disclosed in the prior art requires a process of directly introducing hydrogen gas, and there are problems in its control and handling. Furthermore, there is a need for a simple on-site hydrogen water, a method for producing the same, and a device for producing the same by using a hydrogen generating material that is low in cost and highly safe for living bodies.

本発明は、上述の技術課題の少なくとも1つを解消し、シリコン微細粒子を有効活用し、安全性、経済性及び工業性に優れた製造方法により水素発生を行うことにより、簡単かつ安全な水素水の製造及びその製造装置に大いに貢献するものである。 The present invention eliminates at least one of the above technical problems, makes effective use of silicon fine particles, and generates hydrogen by a production method excellent in safety, economy, and industriality, thereby providing a simple and safe hydrogen. It greatly contributes to water production and its production equipment.

本願発明者らは、半導体や発光素子において、シリコン微細粒子の有効活用に着眼し研究を進めてきた。一方、かかるシリコン微細粒子から、実用性及び工業性に優れた水素の製造技術について、鋭意研究に取り組んだ。その結果、室温で温和な条件下であっても、低コストで安全な材料であるシリコン微細粒子を水中に分散して、その水中から水素を発生し得ることを見出し、この水素を水中で溶存させ、制御された水素濃度を有する水素水を実現できることを見出した。 The inventors of the present application have been researching effective use of silicon fine particles in semiconductors and light emitting devices. On the other hand, intensive research was carried out on hydrogen production technology with excellent practicality and industriality from such silicon fine particles. As a result, it was found that even under mild conditions at room temperature, silicon fine particles, which are low-cost and safe materials, can be dispersed in water to generate hydrogen from the water, and this hydrogen is dissolved in water. And have found that hydrogen water having a controlled hydrogen concentration can be realized.

本発明は、上述の視点に基づいて創出されたものである。 The present invention has been created based on the above viewpoint.

本発明の1つは、シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細粒子(以下、シリコン微細ナノ粒子と呼ぶ)及び/又はその凝集体を水中に接触もしくは分散させて発生の水素を、直接的に前記水中に溶存させて容器に密封した水素水である。 One aspect of the present invention is that silicon fine particles or silicon fine particles obtained by further pulverizing silicon fine particles (hereinafter referred to as silicon fine nanoparticles) and / or aggregates thereof are contacted or dispersed in water to generate generated hydrogen, Hydrogen water directly dissolved in the water and sealed in a container.

本発明の1つの水素水の製造装置は、シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子を形成する粉砕部とそのシリコン微細ナノ粒子及び/又はその凝集体を水又は水溶液内で接触もしくは分散させて直接的に前記水中に溶存させて密封する水素水発生部とを備える。 One apparatus for producing hydrogen water according to the present invention comprises a pulverized portion for forming silicon fine particles or silicon fine nanoparticles obtained by further pulverizing silicon fine particles, and the silicon fine nanoparticles and / or aggregates thereof in water or an aqueous solution. And a hydrogen water generating unit that is dissolved in the water and sealed by contact or dispersion.

この水素水の製造装置によれば、シリコン微細ナノ粒子及び/又はその凝集体を密封容器中で水又は水溶液中に接触もしくは分散させて、実用に耐え得る水素濃度と量の水素水を確度高く低コストで安全にオンサイトで製造することが可能である。この水素水の製造装置によれば、水素水の製造における工業生産性を格段に向上させることができる。 According to this hydrogen water production apparatus, silicon fine nanoparticles and / or aggregates thereof are brought into contact with or dispersed in water or an aqueous solution in a sealed container, so that the hydrogen concentration and amount of hydrogen water that can withstand practical use are highly accurate. It can be manufactured on-site safely at low cost. According to this hydrogen water production apparatus, industrial productivity in the production of hydrogen water can be significantly improved.

また、本発明の1つの水素水の製造方法は、シリコン微細粒子を形成する粉砕工程と、シリコン微細ナノ粒子及び/又はその凝集体を水又は水溶液で接触もしくは分散させて水素を発生し、その水素を前記水中に溶存させて密封する水素水の生成工程を含む。 Further, one method for producing hydrogen water according to the present invention includes a pulverization step for forming silicon fine particles, silicon fine nanoparticles and / or aggregates thereof are contacted or dispersed with water or an aqueous solution, and hydrogen is generated. A step of generating hydrogen water in which hydrogen is dissolved in the water and sealed.

この水素水の製造方法によれば、シリコン微細粒子を出発材料として、実用に耐え得る水素濃度と量の水素水を製造することが可能であり、この水素水の製造方法は、シリコン微細ナノ粒子を有効活用し、環境保護に大きく貢献するのみならず、飲料水等ともなる。その水素水の製造コストを大幅に削減することができ、工業生産性を格段に向上させることができる。 According to this method for producing hydrogen water, it is possible to produce hydrogen water having a hydrogen concentration and amount that can withstand practical use using silicon fine particles as a starting material. Effective use of water makes a great contribution to environmental protection, as well as drinking water. The production cost of the hydrogen water can be greatly reduced, and industrial productivity can be significantly improved.

また、本発明の1つの水素水の製造に使用するシリコン微細ナノ粒子及び/又はその凝集体は、その結晶子径の分布が100nm(ナノメートル)以下、好ましくは50nm以下の範囲であることが、水中で水素を発生し、その水素を前記水中に溶存させて容器に密封する,水素水の生成に好適である。 The fine silicon nanoparticles and / or aggregates thereof used for the production of one hydrogenous water of the present invention have a crystallite size distribution of 100 nm (nanometers) or less, preferably 50 nm or less. It is suitable for the production of hydrogen water in which hydrogen is generated in water, the hydrogen is dissolved in the water and sealed in a container.

なお、シリコン微細ナノ粒子の中でも、化学的処理(代表的には、後述する各実施形態における、フッ酸水溶液及び/又はフッ化アンモ二ウム水溶液による酸化膜の除去処理)されたものは、水素水の製造用シリコン微細ナノ粒子として好適な一例であり、本発明の1つの水素水の製造方法は、シリコン微細ナノ粒子を形成する粉砕工程を含む。 Among the silicon fine nanoparticles, those that have been chemically treated (typically, removal of the oxide film with a hydrofluoric acid aqueous solution and / or an ammonium fluoride aqueous solution in each embodiment described later) are hydrogen. It is an example suitable as silicon fine nanoparticles for water production, and one method for producing hydrogen water of the present invention includes a pulverization step for forming silicon fine nanoparticles.

なお、シリコン微細ナノ粒子の中でも、化学的処理(代表的には、後述する各実施形態における、過酸化水素水溶液による加熱処理)されたものは、生体及び生体内での水素水の製造用シリコン微細ナノ粒子として好適な一例であり、本発明の1つの水素水の製造方法は、シリコン微細ナノ粒子を形成するエタノール中での粉砕工程を含む。 In addition, among the silicon fine nanoparticles, those subjected to chemical treatment (typically heat treatment with an aqueous hydrogen peroxide solution in each embodiment described later) are silicon for producing living body and hydrogen water in the living body. It is an example suitable as a fine nanoparticle, and one manufacturing method of hydrogen water of the present invention includes a crushing process in ethanol which forms a silicon fine nanoparticle.

上述の水素水製造用シリコン微細ナノ粒子、及びその製造方法によれば、シリコン微細ナノ粒子及び/又はその凝集体が、実用に耐え得る水素濃度と量の水素水を効率よく製造するための生体安全性を有する材料として提供される。 According to the above-mentioned silicon fine nanoparticles for producing hydrogen water and the production method thereof, the living body for efficiently producing hydrogen water having a hydrogen concentration and quantity that can be practically used by the silicon fine nanoparticles and / or aggregates thereof. It is provided as a material having safety.

本発明の1つの水素水の製造装置及び本発明の1つの水素水の製造方法によれば、シリコン微細ナノ粒子が、水素水生成の出発材料として、実用に耐え得る水素濃度と量の水素水を確度高く低コストで安全に、オンサイトで製造することに利用される。したがって、シリコン微細ナノ粒子及び/又はその凝集体が有効活用されて、環境保護や生体安全性に貢献するとともに、水素水の製造コストの大幅削減に貢献する。 According to one hydrogen water production apparatus of the present invention and one hydrogen water production method of the present invention, hydrogen fine water particles having a hydrogen concentration and amount that can be practically used as a starting material for the production of hydrogen water. Is used for on-site manufacturing with high accuracy, low cost and safety. Therefore, silicon fine nanoparticles and / or aggregates thereof are effectively used to contribute to environmental protection and biological safety, and to greatly reduce the production cost of hydrogen water.

実施例における一段階粉砕後のシリコン微細ナノ粒子の結晶構造例を示す断面TEM(透過型電子顕微鏡)写真図である。It is a cross-sectional TEM (transmission electron microscope) photograph figure which shows the crystal structure example of the silicon | silicone fine nanoparticle after the one-step grinding | pulverization in an Example. 個別のシリコン微細ナノ粒子に着目した拡大TEM写真図であるFIG. 4 is an enlarged TEM photograph focusing on individual silicon fine nanoparticles. 実施例の1段階粉砕で得られるシリコン微細ナノ粒子のX線回折装置(XRD)による結晶子径分布図である。It is a crystallite diameter distribution map by the X-ray-diffraction apparatus (XRD) of the silicon | silicone fine nanoparticle obtained by the one-step grinding | pulverization of an Example. 実施例の2段階粉砕で得られるシリコン微細ナノ粒子のXRDによる結晶子径分布図である。It is a crystallite size distribution map by XRD of the silicon fine nanoparticle obtained by the two-step grinding | pulverization of an Example. 実施例で得られる水素水中の溶存水素濃度特性図である。It is a dissolved hydrogen concentration characteristic figure in hydrogen water obtained in an example. 実施例で得られる水素水中の溶存水素濃度特性図である。It is a dissolved hydrogen concentration characteristic figure in hydrogen water obtained in an example. 実施例で得られる水素水中の溶存水素濃度特性図である。It is a dissolved hydrogen concentration characteristic figure in hydrogen water obtained in an example. 実施例で得られる水素水中の溶存水素濃度特性図である。It is a dissolved hydrogen concentration characteristic figure in hydrogen water obtained in an example. 他の実施例で得られる水素水中の溶存水素濃度特性図及び水素発生量特性図である。It is the dissolved hydrogen concentration characteristic figure and hydrogen generation amount characteristic figure in the hydrogen water obtained in another Example. 他の実施例で得られる水素水中の水素発生量特性図で、Si1g当たりに換算した水素発生量ある。In the hydrogen generation amount characteristic diagram in hydrogen water obtained in other examples, there is a hydrogen generation amount converted per gram of Si.

本発明の実施形態を、添付する図面に基づいて詳細に述べる。 Embodiments of the present invention will be described in detail with reference to the accompanying drawings.

シリコン微細粒子には、市販の高純度シリコン(Si)粉末(高純度化学社製 粒度分布 <φ;0.5μm、純度99.9%、i型シリコン))と、高純度Si粉末からビーズミル法で作製したシリコン微細ナノ粒子を用いて、水溶液にはpH8の弱アルカリのほう酸カリウムバッファー溶液混合の水溶液、pH7の超純水、並びにpH7.1〜7.3の標準的な水道水を個別に選択して用いて、密閉容器内で反応させる。 For silicon fine particles, commercially available high-purity silicon (Si) powder (particle size distribution <φ; 0.5 μm, purity 99.9%, i-type silicon, manufactured by High-Purity Chemical Co., Ltd.) and bead mill method from high-purity Si powder Using the fine silicon nanoparticles prepared in step 1, the aqueous solution was mixed with a weakly alkaline potassium borate buffer solution at pH 8; ultrapure water at pH 7; and standard tap water at pH 7.1 to 7.3. Select and use in a sealed container.

上述のシリコン微細ナノ粒子は、ビーズミル装置(アイメックス株式会社製:RMB型バッジ式レディーミル)を用いて、高純度Si粉末15gを99%以上のイソプロピルアルコール(IPA)300mlに分散させ、φ;0.5μmのジルコニア製ビーズ(容量300ml)を加えて4時間、回転数2500rpmで粉砕(一段階粉砕)を行い、X線回折装置(XRD)による測定により、平均結晶子径(体積分布)20.0nmを得た。それをさらにφ;0.3mmのジルコニア製ビーズ(容量300ml)を用いて、4時間、回転数2500rpmで粉砕(二段階粉砕)を行い、XRDによる測定により平均結晶子径(体積分布)10.9nmを得た。 The above-mentioned silicon fine nanoparticles were dispersed in 300 ml of 99% or more of isopropyl alcohol (IPA) using a bead mill apparatus (IMEX Co., Ltd .: RMB type badge-type ready mill), φ: 0 .5 μm zirconia beads (capacity 300 ml) were added and pulverized at a rotational speed of 2500 rpm (one-stage pulverization) for 4 hours, and the average crystallite diameter (volume distribution) was measured by X-ray diffractometer (XRD). 0 nm was obtained. Further, φ: 0.3 mm zirconia beads (capacity: 300 ml) were pulverized at a rotational speed of 2500 rpm (two-stage pulverization) for 4 hours, and the average crystallite diameter (volume distribution) was measured by XRD. 9 nm was obtained.

図1は、本実施例におけるビーズミルの一段階粉砕工程後で得られたシリコン微細ナノ粒子の結晶構造例を示す断面TEM(透過型電子顕微鏡)写真である。図1は、シリコン微細ナノ粒子が一部凝集して、不定形の0.5μm程度以下のやや大きな微粒子が形成されている状態を示している。また、図2は、個別のシリコン微細ナノ粒子に着目して拡大したTEM写真図である。図2中の白線で囲んで示すように、約5nmから10nmの大きさのシリコン微細ナノ粒子が確認された。また、このシリコン微細粒子は結晶性((111)面)を有していることが確認された。外観は不定形の形状で、一部にはシリコン微細ナノ粒子の凝集体も見られる。図示していないが、二段階粉砕後のTEM解析により、一段階粉砕後の約1/2程度以下の結晶性((111)面)を有するシリコン微細ナノ粒子が得られた。 FIG. 1 is a cross-sectional TEM (transmission electron microscope) photograph showing an example of the crystal structure of silicon fine nanoparticles obtained after the one-step grinding process of the bead mill in this example. FIG. 1 shows a state in which silicon fine nanoparticles are partially agglomerated to form irregularly large particles of about 0.5 μm or less. FIG. 2 is an enlarged TEM photograph focusing on individual silicon fine nanoparticles. As shown by being surrounded by a white line in FIG. 2, silicon fine nanoparticles having a size of about 5 nm to 10 nm were confirmed. Further, it was confirmed that the silicon fine particles had crystallinity ((111) plane). The appearance is irregular, and some silicon agglomerates are also found. Although not shown, TEM analysis after two-stage pulverization yielded silicon fine nanoparticles having a crystallinity (about (111) plane) of about ½ or less after one-stage pulverization.

図3は、一段階粉砕での実施例で得られたシリコン微細ナノ粒子の結晶子径分布をX線回折装置(リガク電機製スマートラボ)によって、測定解析した結果を示す図である。図3では、横軸が結晶子径(nm)を表し、縦軸は、頻度を表している。また、実線は個数分布基準の結晶子径分布を示し、破線は体積分布基準の結晶子径分布を示している。個数分布においては、モード径が0.29nm、メジアン径(50%結晶子径)が0.75nm、平均径が1.2nmであった。また、体積分布においては、モード径が4.9nm、メジアン径が12.5nm、平均径が上述したように20.0nmであった。 FIG. 3 is a diagram showing the results of measurement and analysis of the crystallite size distribution of the silicon fine nanoparticles obtained in the example by one-step pulverization using an X-ray diffractometer (Smart Lab manufactured by Rigaku Electric Co., Ltd.). In FIG. 3, the horizontal axis represents the crystallite diameter (nm), and the vertical axis represents the frequency. The solid line indicates the crystallite size distribution based on the number distribution, and the broken line indicates the crystallite size distribution based on the volume distribution. In the number distribution, the mode diameter was 0.29 nm, the median diameter (50% crystallite diameter) was 0.75 nm, and the average diameter was 1.2 nm. In the volume distribution, the mode diameter was 4.9 nm, the median diameter was 12.5 nm, and the average diameter was 20.0 nm as described above.

図4は、二段階粉砕での実施例で得られたシリコン微細ナノ粒子の結晶子径分布をX線回折装置によって、測定解析した結果を示す図である。図4では、横軸が結晶子径(nm)を表し、縦軸は、頻度を表している。また、実線は個数分布基準の結晶子径分布を示し、破線は体積分布基準の結晶子径分布を示している。個数分布においては、モード径が0.14nm、メジアン径(50%結晶子径)が0.37nm、平均径が0.6nmであった。また、体積分布においては、モード径が2.6nm、メジアン径が6.7nm、平均径が上述したように10.9nmであった。これらの結果により、二段階粉砕後に得られるシリコン微細ナノ粒子は、一段階粉砕より、約1/2以下の微細化が達成されていることが分かった。これらのビーズミル法での粉砕処理で結晶子径が、100nm以下の範囲で、特に50nm以下に分布しているシリコン微細ナノ粒子が得られることが確認された。 FIG. 4 is a diagram showing the result of measurement and analysis of the crystallite size distribution of the silicon fine nanoparticles obtained in the example in the two-stage pulverization using an X-ray diffractometer. In FIG. 4, the horizontal axis represents the crystallite diameter (nm), and the vertical axis represents the frequency. The solid line indicates the crystallite size distribution based on the number distribution, and the broken line indicates the crystallite size distribution based on the volume distribution. In the number distribution, the mode diameter was 0.14 nm, the median diameter (50% crystallite diameter) was 0.37 nm, and the average diameter was 0.6 nm. In the volume distribution, the mode diameter was 2.6 nm, the median diameter was 6.7 nm, and the average diameter was 10.9 nm as described above. From these results, it was found that the silicon fine nanoparticles obtained after the two-stage pulverization had a fineness of about ½ or less achieved by the one-stage pulverization. It was confirmed that fine silicon nanoparticles having a crystallite size in the range of 100 nm or less, particularly 50 nm or less, can be obtained by the pulverization treatment by these bead mill methods.

以下、一段階粉砕と二段階粉砕で作製されたシリコン微細ナノ粒子を用いた水素水の
生成とその溶存水素濃度の制御について詳細に述べる。
Hereinafter, the generation of hydrogen water using silicon fine nanoparticles produced by one-step pulverization and two-step pulverization and control of the dissolved hydrogen concentration will be described in detail.

上述の一段階粉砕と二段階粉砕で作製されたビーズを含むシリコン微細ナノ粒子は、ビーズ分離容器(アイメックス株式会社製)に装着したSUSフィルター(φ:0.5mmのビーズの場合はフィルターのメッシュは0.35mm、φ:0.3mmのビーズの場合はメッシュ0.06mmを使用)を用いて、その上部からビーズを含むシリコン微細ナノ粒子を含むイソプロピールアルコール(IPA)溶液を注いで、分級処理して、吸引濾過しビーズを分離して、シリコン微細ナノ粒子を含むIPA溶液を得た。その後、減圧蒸発装置を用いて、40℃でIPAを蒸発処理して、シリコン微細ナノ粒子を得た。 Silicon fine nanoparticles containing beads prepared by the above-mentioned one-stage grinding and two-stage grinding are SUS filters (φ: 0.5 mm beads in the case of beads of φ: 0.5 mm) attached to a bead separation container (made by Imex Co., Ltd.). Is 0.35 mm, φ: 0.3 mm beads are used, and mesh 0.06 mm is used), and an isopropyl alcohol (IPA) solution containing silicon fine nanoparticles containing beads is poured from the top to classify the particles. After processing, suction filtration was performed to separate the beads to obtain an IPA solution containing silicon fine nanoparticles. Thereafter, IPA was evaporated at 40 ° C. using a vacuum evaporator to obtain silicon fine nanoparticles.

次いで、フッ酸処理を行う場合は以下の処理を追加した。得られたシリコン微細ナノ粒子を5%濃度のフッ酸溶液中に10分間浸漬させた。その後、100nmのフッ素樹脂製のメンブレンフィルターで大気中濾過処理を行い、シリコン微細ナノ粒子をメンブレンフィルター上にトラップし層状に残存させた。このメンブレンフィルター上のシリコン微細ナノ粒子をフッ素樹脂製ビーカー上に保持して、フッ酸処理を行った場合はその上からエタノールを滴下して、フッ酸成分を除去した。メンブレンフルター上のシリコン微細ナノ粒子を空気中で30分程度乾燥処理し、フッ酸処理したシリコン微細ナノ粒子を得た。 Next, when the hydrofluoric acid treatment was performed, the following treatment was added. The obtained silicon fine nanoparticles were immersed in a 5% concentration hydrofluoric acid solution for 10 minutes. Thereafter, filtration in air was performed with a 100 nm fluororesin membrane filter, and silicon fine nanoparticles were trapped on the membrane filter and left in layers. When the silicon fine nanoparticles on the membrane filter were held on a fluororesin beaker and hydrofluoric acid treatment was performed, ethanol was dropped from above to remove the hydrofluoric acid component. Silicon fine nanoparticles on the membrane filter were dried in air for about 30 minutes to obtain hydrofluoric acid-treated silicon fine nanoparticles.

これらのシリコン微細ナノ粒子表面のシリコン酸化膜厚の測定をXPS法により実施した。フッ酸処理しない場合は膜厚が1.6nm程度のシリコン酸化膜を有している。フッ酸処理をした場合は酸化膜がエッチング除去され、0.07nm以下となり、酸化膜をほとんど有していないことが分かった。 The silicon oxide film thickness on the surface of these silicon fine nanoparticles was measured by XPS method. When hydrofluoric acid treatment is not performed, a silicon oxide film having a thickness of about 1.6 nm is provided. In the case of hydrofluoric acid treatment, the oxide film was removed by etching, and the thickness was 0.07 nm or less, and it was found that the oxide film was hardly present.

得られたシリコン微細ナノ粒子10mgを容量30mlのガラス瓶(硼ケイ酸ガラス厚さ1mm程度、ASONE社製ラボランスクリュー管瓶)に入れて、その後、エタノール1mlを投入して、分散させ、全量が30mlになるように所定の水溶液約29mlを加え、ガラス瓶の口まで一杯にして、空気が入らないように内蓋をして、キャップ(長さ1cm)をし、完全密封をした。キャップはポリプロピレン(厚さ2mm)で、内蓋はポリエチレンとポリプロピレンの多層フィルター製を用いた。これらにより、発生する水素の透過や漏れを充分に抑えることができた。 10 mg of the obtained silicon fine nanoparticles were put into a glass bottle with a capacity of 30 ml (borosilicate glass thickness of about 1 mm, Labone screw tube manufactured by ASONE), and then 1 ml of ethanol was added and dispersed, About 29 ml of a predetermined aqueous solution was added so that the volume became 30 ml, the mouth of the glass bottle was filled up, the inner lid was closed so as not to enter air, a cap (length 1 cm) was attached, and the bottle was completely sealed. The cap was polypropylene (thickness 2 mm), and the inner lid was made of polyethylene and polypropylene multilayer filters. By these, the permeation | transmission and leakage of the generated hydrogen were fully suppressed.

この状態に保ったままで、室温にて、密閉したガラス瓶中でシリコン微細ナノ粒子から徐々に水素が発生し、水溶液中に所定の濃度を有する水素を溶存させることができ、安全な水素水を得ることができた。 While maintaining this state, hydrogen is gradually generated from the silicon fine nanoparticles in a closed glass bottle at room temperature, and hydrogen having a predetermined concentration can be dissolved in the aqueous solution to obtain safe hydrogen water. I was able to.

水溶液中の溶存水素濃度の反応時間依存性の測定には東亜DKK社製のポータブル溶存水素濃度計を使用した。まず、図5にフッ酸処理しない場合のシリコン微細ナノ粒子を用いたpH7の超純水の場合の測定結果を示す。 A portable dissolved hydrogen concentration meter manufactured by Toa DKK was used to measure the reaction time dependence of the dissolved hydrogen concentration in the aqueous solution. First, FIG. 5 shows the measurement result in the case of ultrapure water at pH 7 using fine silicon nanoparticles without hydrofluoric acid treatment.

図5の超純水溶液中の溶存水素濃度は、未粉砕高純度Si粉末、一段階粉砕(平均結晶粒子径20.0nm)と二段階粉砕(平均結晶粒子径10.9nm)での測定値を示す。粒子径(結晶子径)が小さくなることにより、シリコン微細ナノ粒子の表面積が増大し、表面で反応発生する水素が増加し、溶存水素濃度が増加していることが分かる。また、反応時間の増加とともに得られる溶存水素濃度が大きくなり、400分(約7時間)程度の反応で、超純水中でも0.4ppm程度の溶存水素濃度を達成した。
1ppm以上の溶存水素濃度を得るためには、シリコン微細ナノ粒子の量を増やせば良い。
The dissolved hydrogen concentration in the ultrapure aqueous solution in FIG. 5 is the measured value in unground high-purity Si powder, one-stage pulverization (average crystal particle diameter 20.0 nm) and two-stage pulverization (average crystal particle diameter 10.9 nm). Show. It can be seen that as the particle size (crystallite size) decreases, the surface area of the silicon fine nanoparticles increases, the amount of hydrogen generated on the surface increases, and the dissolved hydrogen concentration increases. Moreover, the dissolved hydrogen concentration obtained with the increase in the reaction time increased, and the dissolved hydrogen concentration of about 0.4 ppm was achieved even in ultrapure water by the reaction of about 400 minutes (about 7 hours).
In order to obtain a dissolved hydrogen concentration of 1 ppm or more, the amount of silicon fine nanoparticles may be increased.

また、水溶液中の溶存水素濃度は、水溶液のpH値にも依存性が見られ、pH値8.0にすると、水溶液中の溶存水素濃度が超純水に比べて、大きく増大することも明確になった。 The dissolved hydrogen concentration in the aqueous solution also depends on the pH value of the aqueous solution. When the pH value is 8.0, it is clear that the dissolved hydrogen concentration in the aqueous solution is greatly increased compared to ultrapure water. Became.

図6に、一段階粉砕(平均結晶子径20.0nm)のシリコン微細ナノ粒子を、フッ酸溶液中に浸漬して酸化膜を除去した場合とそうでない場合を比較して示す。 FIG. 6 shows a comparison between a case where a silicon fine nanoparticle of one-step pulverization (average crystallite diameter 20.0 nm) is immersed in a hydrofluoric acid solution to remove an oxide film and a case where it is not.

フッ酸処理をしたシリコン微細ナノ粒子を用いた場合、20分程度で1ppmを超え、100分で1.4ppmを超える溶存水素濃度を達成した。更に短時間化したい場合はシリコン微細ナノ粒子の投入量を増加すれば良い。 When silicon fine nanoparticles treated with hydrofluoric acid were used, a dissolved hydrogen concentration exceeding 1 ppm in about 20 minutes and exceeding 1.4 ppm in 100 minutes was achieved. If it is desired to further shorten the time, the amount of silicon fine nanoparticles added may be increased.

また、標準的な飲料可能な水道水(pH値7.1〜7.3程度)を使用して、一段階粉砕(平均結晶子径20.0nm)のフッ酸処理しない場合のシリコン微細ナノ粒子を水道水に混合して水素水を作製した。図7にその測定値を示す。 In addition, using fine drinking tap water (pH value of about 7.1 to 7.3), silicon fine nanoparticles without hydrofluoric acid treatment of one-step pulverization (average crystallite diameter of 20.0 nm) Was mixed with tap water to prepare hydrogen water. FIG. 7 shows the measured values.

図7に示すように、超純水(pH値7.0)に混合したときの溶存水素濃度よりも顕著な増大を示し、200分程度で1ppmを達成した。 As shown in FIG. 7, it showed a marked increase over the dissolved hydrogen concentration when mixed with ultrapure water (pH value 7.0), and achieved 1 ppm in about 200 minutes.

なお、シリコン微細ナノ粒子として、二段階粉砕(平均結晶子径10.9nm)のものを水道水に混合して水素水を作製したところ、図示していないが、一段階粉砕のシリコン微細ナノ粒子を用いた場合の溶存水素濃度よりも更に1.4〜1.6倍程度は増加することが分かった。 In addition, when silicon water was prepared by mixing two-stage pulverized silicon nanoparticles (average crystallite diameter 10.9 nm) with tap water, although not shown, one-stage pulverized silicon fine nanoparticles It was found that the concentration increased by about 1.4 to 1.6 times the concentration of dissolved hydrogen when using.

水道水を用いて、フッ酸処理しないで、低コストで安全な水素濃度1ppm以上の水素水を得ることが可能であることが分かった。更に短時間化したい場合はシリコン微細ナノ粒子の投入量を増やせば良い。 It has been found that it is possible to obtain hydrogen water having a hydrogen concentration of 1 ppm or more at low cost without using hydrofluoric acid treatment using tap water. If it is desired to further shorten the time, the amount of silicon fine nanoparticles to be charged can be increased.

図8に一段階粉砕のシリコン微細ナノ粒子を用いて、超純水(pH値7.0)に分散したときの溶存水素濃度の長時間での測定結果を示す。フッ酸処理をした場合は20時間で1ppmを達成した。フッ酸処理しない場合には、160時間以上で(1週間程度)で1ppmを達成した。 FIG. 8 shows the measurement results of dissolved hydrogen concentration over a long period of time when dispersed in ultrapure water (pH value 7.0) using one-step pulverized silicon fine nanoparticles. In the case of hydrofluoric acid treatment, 1 ppm was achieved in 20 hours. When hydrofluoric acid treatment was not performed, 1 ppm was achieved in 160 hours or more (about 1 week).

これは、フッ酸処理をしていない場合のシリコン微細ナノ粒子による超純水中での水素発生反応は表面にシリコン酸化膜があるため、シリコン酸化膜が超純水中に徐々に溶け出しながら、極めてゆっくり起こるため、水素濃度が長時間増大しながら持続すると考えられることを示している。 This is because the hydrogen generation reaction in the ultrapure water by the silicon fine nanoparticles without hydrofluoric acid treatment has a silicon oxide film on the surface, so the silicon oxide film is gradually dissolved in the ultrapure water. , Which occurs very slowly, indicating that the hydrogen concentration is expected to persist for an extended period of time.

本発明の他の実施形態(実施例2)を、添付する図面に基づいて詳細に述べる。 Another embodiment (Example 2) of the present invention will be described in detail with reference to the accompanying drawings.

シリコン微細ナノ粒子は、ビーズミル装置(アイメックス株式会社製:RMB型バッジ式レディーミル)を用いて、高純度シリコン(Si)粉末(高純度化学社製 粒度分布 <φ0.5μm、純度99.9%、i型シリコン))60gを99・5wt%のエタノール250mlに分散させ、φ;0.5μmのジルコニア製ビーズ(容量300ml)を加えて4時間、回転数2500rpmで粉砕(一段階粉砕)を行い作製した。 Silicon fine nanoparticles can be obtained by using a bead mill (IMEX Co., Ltd .: RMB type badge-type ready mill) and using high-purity silicon (Si) powder (manufactured by High-Purity Chemical Co., Ltd., particle size distribution <φ0.5 μm, purity 99.9%. , I-type silicon))) is dispersed in 250 ml of 99.5 wt% ethanol, φ: 0.5 μm zirconia beads (capacity: 300 ml) are added, and pulverization (one-step pulverization) is performed at 2500 rpm for 4 hours. Produced.

本実施例におけるビーズミルの一段階粉砕工程後で得られた体積分布やシリコン微細ナノ粒子の結晶構造は実施例1とほとんど同様の結果が得られると考えられる。 The volume distribution obtained after the one-step grinding process of the bead mill in this example and the crystal structure of the silicon fine nanoparticles are considered to give almost the same results as in Example 1.

以下、エタノール中の一段階粉砕で作製され、過酸化水素処理されたシリコン微細ナノ粒子を用いた水素水の生成とその溶存水素濃度及び水素発生量の制御について詳細に述べる。 Hereinafter, the generation of hydrogen water using silicon fine nanoparticles prepared by one-step pulverization in ethanol and treated with hydrogen peroxide, and the control of the dissolved hydrogen concentration and the amount of hydrogen generation will be described in detail.

上述のエタノール中の一段階粉砕で作製されたビーズを含むシリコン微細ナノ粒子は、ビーズ分離容器(アイメックス株式会社製)に装着したSUSフィルター(φ:0.5mmのビーズの場合はフィルターのメッシュは0.35mm、φ:0.3mmのビーズの場合はメッシュ0.06mmを使用)を用いて、その上部からビーズを含むシリコン微細ナノ粒子を含むエタノール溶液を注いで、分級処理して、吸引濾過しビーズを分離して、シリコン微細ナノ粒子を含むエタノール溶液を得た。その後、減圧蒸発装置を用いて、30℃〜35℃でエタノールを蒸発処理して、シリコン微細ナノ粒子及び/又はその凝集体(以下シリコン微細ナノ粒子ともいう)を得た。 Silicon fine nanoparticles containing beads produced by one-step grinding in ethanol as described above are SUS filters (φ: 0.5 mm beads in the case of beads of φ: 0.5 mm) attached to a bead separation container (made by Imex Corporation). 0.35mm, φ: Use a mesh of 0.06mm in the case of 0.3mm mm), and pour an ethanol solution containing fine silicon nanoparticles containing beads from the top, classify and suction filter The beads were separated to obtain an ethanol solution containing fine silicon nanoparticles. Then, ethanol was evaporated at 30 ° C. to 35 ° C. using a vacuum evaporator to obtain silicon fine nanoparticles and / or aggregates thereof (hereinafter also referred to as silicon fine nanoparticles).

得られたシリコン微細ナノ粒子を、過酸化水素水(3.5wt%100ml)を入れた耐熱性ガラス中に投入し、30分間加熱処理(温度約75℃)した。処理したシリコン微細ナノ粒子を遠沈管に移し替えて、遠心分離処理で、固液分離し、液体を廃棄して、新たにエタノール(3.5%100ml)を投入し、シリコン微細ナノ粒子を撹拌して、同様の遠心分離を行い、同様の処理をした。その後、同じく、同量のエタノールを加えて、同様の遠心分離処理を行い、シリコン微細ナノ粒子を得た。
その後、自然乾燥を1日程度長時間行った。この状態で、エタノールや過酸化水素水は完全に除去されていると考えられる。また、過酸化水素水60分間加熱処理(温度約75℃)し、同様の遠心分離処理し、シリコン微細粒子を得た。
The obtained silicon fine nanoparticles were put into a heat-resistant glass containing hydrogen peroxide (3.5 wt%, 100 ml) and subjected to a heat treatment (temperature: about 75 ° C.) for 30 minutes. The treated silicon fine nanoparticles are transferred to a centrifuge tube, separated into solid and liquid by centrifugation, the liquid is discarded, and ethanol (3.5% 100ml) is newly added to stir the silicon fine nanoparticles. Then, the same centrifugation was performed and the same treatment was performed. Thereafter, similarly, the same amount of ethanol was added and the same centrifugation treatment was performed to obtain silicon fine nanoparticles.
Then, natural drying was performed for about a day for a long time. In this state, it is considered that ethanol and hydrogen peroxide water are completely removed. Further, a hydrogen peroxide solution was heat-treated for 60 minutes (temperature: about 75 ° C.), and the same centrifugal separation treatment was performed to obtain silicon fine particles.

得られたシリコン微細ナノ粒子11mg(過酸化水素水30分処理)を容量115mlのガラス瓶(硼ケイ酸ガラス厚さ1mm程度、ASONE社製ラボランスクリュー管瓶)に入れて、分散させ、全量が115mlになるように所定の水溶液約115mlと炭酸水素ナトリウム(日本薬局方準拠のもの約20g投入し1.88wt%とし、pH約8.3を得た)を加え、ガラス瓶の口まで一杯にして、空気が入らないように内蓋をして、キャップ(長さ1cm)をし、完全密封をした。キャップはポリプロピレン(厚さ2mm)で、内蓋はポリエチレンとポリプロピレンの多層フィルター製を用いた。これらにより、発生する水素の透過や漏れを充分に抑えることができた。シリコン微細ナノ粒子はそのままで均一に水溶液全体に混ざった状態となった。これは過酸化水素処理により、シリコン微細ナノ粒子が有効に親水性となってためと考えられる。
過酸化水素水60分処理はシリコン微細ナノ粒子5mgを用いて、水素発生の実験を行った。
11 mg of the obtained silicon nano-particles (hydrogen peroxide solution treated for 30 minutes) was placed in a glass bottle with a capacity of 115 ml (borosilicate glass thickness of about 1 mm, Labone screw tube manufactured by ASONE) and dispersed. Add about 115 ml of a predetermined aqueous solution and sodium bicarbonate (about 20 g of Japanese Pharmacopoeia compliant to make 1.88 wt% and obtain pH of about 8.3) so that it reaches 115 ml. Then, the inner lid was closed so that air could not enter, and the cap (length 1 cm) was put on, which was completely sealed. The cap was polypropylene (thickness 2 mm), and the inner lid was made of polyethylene and polypropylene multilayer filters. By these, the permeation | transmission and leakage of the generated hydrogen were fully suppressed. The silicon fine nanoparticles were mixed uniformly in the entire aqueous solution as they were. This is thought to be because the silicon fine nanoparticles are effectively made hydrophilic by the hydrogen peroxide treatment.
In the hydrogen peroxide solution treatment for 60 minutes, hydrogen generation experiment was conducted using 5 mg of silicon fine nanoparticles.

この状態に保ったままで、室温にて、密閉したガラス瓶中でシリコン微細ナノ粒子から徐々に水素が発生し、水溶液中に所定の濃度を有する水素を溶存させることができ、実施例1のようにIPAやフッ酸を使用していないため、生体や生体内でより安全安心な薬液とプロセス処理によりシリコン微細ナノ粒子及び水素水を得ることができたことは特筆に値する。 While maintaining this state, hydrogen is gradually generated from the silicon fine nanoparticles in a sealed glass bottle at room temperature, and hydrogen having a predetermined concentration can be dissolved in the aqueous solution, as in Example 1. Since IPA and hydrofluoric acid are not used, it is worthy of special mention that silicon fine nanoparticles and hydrogen water can be obtained by a safer and safer chemical solution and process in the living body and in vivo.

水溶液中の溶存水素濃度の反応時間依存性の測定には東亜DKK社製のポータブル溶存水素濃度計を使用した。図9aと図9bの各図では、過酸化水素水処理しない場合のシリコン微細ナノ粒子、過酸化水素水で30分処理したシリコン微細ナノ粒子、並びに過酸化水素水で60分処理したシリコン微細ナノ粒子を用いた溶存水素濃度の測定結果を示し、また、図9bではSi1g当たりに換算した水素発生量でそれぞれを示す。図9a、図9bとも、縦軸は溶存水素濃度、横軸は反応時間(h:時間)を示す。過酸化水素水処理により、水素発生が加速増大することが示された。これはシリコン微細ナノ粒子が親水性となり、水溶液に均一に分散されたためである。過酸化水素水30分処理で、2時間で400ppb、4時間で1000ppm近くの特筆すべき濃度を得た。24時間で2000ppmに達した。60分処理では水素発生量は30分より、低減された。60分処理により、シリコン微細ナノ粒子の表面酸化膜が30分より膜厚が厚く、水素発生量が抑圧されたと考えられる。図示していないが、15分処理で同様の実験を行ったが、30分とほとんど同一の実験結果を得た。1分〜2分処理では処理無と同程度で有効な水素発生が得られなかった。従って、過酸化水素水処理時間は5分〜30分が適当である。炭酸水素ナトリウムを混入することは、通常生体の小腸のpH状態に匹敵し、体内で有効な水素発生が起こることになる。図9bはSi1g当たりに換算した水素発生量を示している。縦軸はSi1g当たりの水素発生量(ml)、横軸は反応時間(h:時間)を示す。30分の処理で極めて有効な水素発生量(40ml)が2時間以上で継続的に得られている。
本実験結果から、IPA やフッ酸を用いずに、生体に用いても、より安全で安心なシリコン微細ナノ粒子を作製でき、生体内で安全に水素発生させることが可能となる。更に、
このシリコン微細ナノ粒子を用いて、公知の添加剤や食品に含有させて生体用水素発生材を作製することが可能となる。
反応時間数時間以内で1ppm以上の溶存水素濃度を得るためには、シリコン微細ナノ粒子の量を増やせば良い。
A portable dissolved hydrogen concentration meter manufactured by Toa DKK was used to measure the reaction time dependence of the dissolved hydrogen concentration in the aqueous solution. In each of FIGS. 9a and 9b, silicon fine nanoparticles without hydrogen peroxide solution treatment, silicon fine nanoparticles treated with hydrogen peroxide solution for 30 minutes, and silicon fine nanoparticles treated with hydrogen peroxide solution for 60 minutes are shown. The measurement results of the dissolved hydrogen concentration using the particles are shown, and in FIG. 9b, each is shown by the amount of hydrogen generation converted per gram of Si. 9a and 9b, the vertical axis represents the dissolved hydrogen concentration, and the horizontal axis represents the reaction time (h: time). Hydrogen peroxide treatment has been shown to accelerate and increase hydrogen generation. This is because the silicon fine nanoparticles became hydrophilic and were uniformly dispersed in the aqueous solution. Treatment with hydrogen peroxide for 30 minutes gave a remarkable concentration of 400 ppb in 2 hours and nearly 1000 ppm in 4 hours. It reached 2000 ppm in 24 hours. In the 60-minute treatment, the hydrogen generation amount was reduced from 30 minutes. It is considered that the surface oxide film of silicon fine nanoparticles was thicker than 30 minutes by the 60-minute treatment, and the amount of hydrogen generation was suppressed. Although not shown in the figure, the same experiment was performed with a 15-minute treatment, but almost the same experimental result as that obtained for 30 minutes was obtained. The treatment for 1 minute to 2 minutes did not produce hydrogen as effectively as no treatment. Therefore, the hydrogen peroxide treatment time is suitably 5 minutes to 30 minutes. Incorporation of sodium hydrogen carbonate is usually comparable to the pH state of the small intestine of a living body, and effective hydrogen generation occurs in the body. FIG. 9b shows the hydrogen generation amount converted per gram of Si. The vertical axis represents the amount of hydrogen generated per gram of Si (ml), and the horizontal axis represents the reaction time (h: time). A very effective hydrogen generation amount (40 ml) is continuously obtained in 2 hours or longer after 30 minutes of treatment.
From this experimental result, even if it is used for a living body without using IPA or hydrofluoric acid, safer and more reliable silicon fine nanoparticles can be produced, and hydrogen can be safely generated in the living body. Furthermore,
Using these silicon fine nanoparticles, it is possible to produce a biogenic hydrogen generating material by adding it to a known additive or food.
In order to obtain a dissolved hydrogen concentration of 1 ppm or more within a reaction time of several hours, the amount of silicon fine nanoparticles may be increased.

シリコン微細粒子として、高純度シリコン(Si)末以外に、太陽電池グレードのシリコン基板の切削加工から発生するシリコン切粉や半導体グレードの研磨屑を利用しても、水素水の生成は可能である。また、i型のみならず、n型、p型でも使用可能である。 In addition to high-purity silicon (Si) powder as a silicon fine particle, hydrogen water can also be generated by using silicon chips generated from cutting of a solar cell grade silicon substrate or semiconductor grade polishing scraps. . Further, not only i-type but also n-type and p-type can be used.

本発明は、生体安全性を有するシリコン微細ナノ粒子を作製でき、それを有効活用して、安全性、実用性及び経済性に優れた水素水とその製造技術に展開できるものであり、特に、健康・医療用のシリコン微細ナノ粒子を含有した水素発生材(剤)や洗浄水や健康飲料水等の健康・医療食品、製品分野への利用が可能である。 The present invention can produce fine silicon nanoparticles having biosafety, and can be effectively utilized to develop hydrogen water excellent in safety, practicality and economics and its manufacturing technology, It can be used for hydrogen generating materials (agents) containing fine silicon nanoparticles for health and medical use, health and medical foods such as washing water and health drinking water, and product fields.

Claims (11)

シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその擬集体から水に接触及び/又は分散させて水素を発生させ、かつその水素を直接的に前記水中に溶存させて容器に密封したことを特徴とする水素水。 Silicon fine particles or silicon fine nanoparticles obtained by further pulverizing silicon fine particles and / or pseudo-aggregates thereof are brought into contact with and / or dispersed in water to generate hydrogen, and the hydrogen is directly dissolved in the water. Hydrogen water characterized by being sealed. シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその擬集体を水道水に接触及び/又は分散させて水素を発生させて、前記水道水中に水素を溶存させて容器に密封したことを特徴とする水素水。 Silicon fine particles or silicon fine nanoparticles obtained by further pulverizing silicon fine particles and / or pseudo-aggregates thereof are brought into contact with and / or dispersed in tap water to generate hydrogen, and the hydrogen is dissolved in the tap water and sealed in a container. Hydrogen water characterized by シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子を形成する工程、そのシリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその擬集体を水又は水溶液に接触もしくは分散させて、直接的に水素水を生成する工程を備える水素水の製造方法。 Silicon fine particles or silicon fine nanoparticles obtained by further pulverizing silicon fine particles, silicon fine particles obtained by further pulverizing silicon fine particles or silicon fine particles and / or pseudo-aggregates thereof are contacted or dispersed in water or an aqueous solution. And a method for producing hydrogen water, the method comprising directly generating hydrogen water. 前記シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその擬集体をフッ酸又はフッ化アンモニウム水溶液に接触させる表面シリコン酸化膜除去の工程をさらに備えた、請求項1および請求項2に記載の水素水の製造方法。 The silicon fine particles or the silicon fine nanoparticles obtained by further pulverizing the silicon fine particles or the silicon fine particles and / or the pseudo-aggregates thereof are further provided with a step of removing the surface silicon oxide film by contacting with hydrofluoric acid or ammonium fluoride aqueous solution. Item 3. A method for producing hydrogen water according to Item 2. シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子を形成する粉砕工程、前記シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその擬集体をpH7の中性水又はpH8〜9の水溶液に接触及び/又は分散させて水素を発生させて、前記中性水又は前記水溶液中に水素を溶存させる工程を含む、水素水の製造方法。 A pulverization step of forming silicon fine particles or silicon fine nanoparticles obtained by further pulverizing silicon fine particles, silicon fine particles obtained by further pulverizing the silicon fine particles or silicon fine particles and / or pseudo-aggregates thereof with neutral water of pH 7 or A method for producing hydrogen water, comprising the step of contacting and / or dispersing in an aqueous solution having a pH of 8 to 9 to generate hydrogen to dissolve the hydrogen in the neutral water or the aqueous solution. シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその擬集体を水道水に接触及び/又は分散させて水素を発生させて、前記水道水中に水素を溶存させる工程を含む水素水の製造方法。 Hydrogen comprising a step of dissolving hydrogen in the tap water by generating and generating silicon by contacting and / or dispersing silicon fine nanoparticles and / or pseudo-aggregates thereof finely pulverized with silicon fine particles or silicon fine particles. Water production method. シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその擬集体をpH7の中性水又はpH8〜9の水溶液又はpH7.1〜7.5の水道水に接触及び/又は分散させて水素を発生させて、前記中性水又は前記水溶液または水道水中に水素を溶存させたことを特徴とする水素水。 Contact and / or dispersion of silicon fine particles or fine silicon nanoparticles obtained by further pulverizing silicon fine particles and / or pseudo-aggregates thereof with neutral water of pH 7, aqueous solution of pH 8-9 or tap water of pH 7.1-7.5 Hydrogen water is generated by dissolving hydrogen in the neutral water, the aqueous solution, or tap water. シリコン微細ナノ粒子及び/又はその擬集体のXRDによる結晶子径分布が100nm
好ましくは50nm以下であることを特徴とする請求項1、請求項2、請求項7に記載の水素水
The crystallite size distribution by XRD of silicon fine nanoparticles and / or their pseudo-aggregates is 100 nm.
The hydrogen water according to claim 1, 2, or 7, preferably 50 nm or less.
シリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子を形成する粉砕部とそのシリコン微細粒子又はシリコン微細粒子を更に粉砕したシリコン微細ナノ粒子及び/又はその擬集体を水又は水溶液内で接触もしくは分散させて水素を発生させる水素発生部、かつその水素を直接的に前記水中に溶存させて容器に密封する水素水の製造装置。 Silicon fine particles or silicon fine nanoparticles obtained by further pulverizing silicon fine particles, and silicon fine nanoparticles obtained by further pulverizing the silicon fine particles or silicon fine particles and / or pseudo-aggregates thereof are contacted in water or an aqueous solution. Alternatively, a hydrogen generation unit that generates hydrogen by dispersing, and an apparatus for producing hydrogen water in which the hydrogen is directly dissolved in the water and sealed in a container. シリコン微細粒子又はシリコン微細粒子を更にエタノール中で粉砕し、過酸化水素水処理したシリコン微細ナノ粒子及び/又はその擬集体を水に接触及び/又は分散させて水素を発生させ、かつその水素を直接的に前記水中に溶存させて容器に密封したことを特徴とする水素水。 Silicon fine particles or silicon fine particles are further pulverized in ethanol, and hydrogen fine water-treated silicon fine nanoparticles and / or pseudo-aggregates thereof are brought into contact with and / or dispersed in water to generate hydrogen, and the hydrogen is removed. Hydrogen water characterized by being dissolved directly in the water and sealed in a container. シリコン微細粒子又はシリコン微細粒子を更にエタノール中で粉砕し、過酸化水素水処理したシリコン微細ナノ粒子及び/又はその凝集体並びにそれらを含有した生体用水素発生材

















Silicon fine particles or silicon fine particles obtained by further pulverizing silicon fine particles in ethanol and treating with hydrogen peroxide water, and / or aggregates thereof, and a biogenic hydrogen generating material containing them

















JP2016162520A 2015-02-24 2016-08-23 Silicon nanoparticles and/or aggregate thereof, hydrogen generating material for organism and production method for the same, and hydrogen water and production method and production apparatus for the same Pending JP2017104848A (en)

Priority Applications (31)

Application Number Priority Date Filing Date Title
JP2017135940A JP6889055B2 (en) 2015-12-04 2017-07-12 Manufacturing method of hydrogen generating material for living body and manufacturing method of food
JP2018535516A JPWO2018037752A1 (en) 2015-02-24 2017-07-13 Hydrogen-containing liquid, hydrogen-containing liquid manufacturing method, hydrogen-containing liquid manufacturing apparatus, and biogenic hydrogen generator
CN201780051862.9A CN110225890A (en) 2015-12-04 2017-07-13 The hydrogen containing hydrogen solution, the manufacturing method containing hydrogen solution, the manufacturing device containing hydrogen solution and living body generates material
CN202110806702.9A CN113426312A (en) 2015-12-04 2017-07-13 Hydrogen-containing solution, method for producing hydrogen-containing solution, apparatus for producing hydrogen-containing solution, and hydrogen generating material for living body
PCT/JP2017/025570 WO2018037752A1 (en) 2015-02-24 2017-07-13 Hydrogen-containing liquid, production method for hydrogen-containing liquid, and production device for hydrogen-containing liquid, and hydrogen generation material for living body
US16/327,794 US11583483B2 (en) 2016-08-23 2017-07-27 Hydrogen supply material and production therefor, and hydrogen supply method
US16/327,782 US11707063B2 (en) 2016-08-23 2017-07-27 Compound, production method therefor, and hydrogen supply method
CN201780052364.6A CN110191699A (en) 2016-08-23 2017-07-27 Hydrogen supplying material and its manufacturing method and method of supplying hydrogen
PCT/JP2017/027173 WO2018037818A1 (en) 2016-08-23 2017-07-27 Hydrogen supply material and production method therefor, and hydrogen supply method
CN201780051870.3A CN110191860A (en) 2016-08-23 2017-07-27 Composite and its manufacturing method and method of supplying hydrogen
JP2018535548A JP6916184B2 (en) 2016-08-23 2017-07-27 Formulation manufacturing method
EP17843305.8A EP3505491A4 (en) 2016-08-23 2017-07-27 Compound, production method therefor, and hydrogen supply method
JP2018535547A JP6592725B2 (en) 2016-08-23 2017-07-27 Hydrogen supply material, method for producing the same, and hydrogen supply method
PCT/JP2017/027174 WO2018037819A1 (en) 2016-08-23 2017-07-27 Compound, production method therefor, and hydrogen supply method
EP17843304.1A EP3505151A4 (en) 2016-08-23 2017-07-27 Hydrogen supply material and production method therefor, and hydrogen supply method
TW109140194A TWI779399B (en) 2016-08-23 2017-07-28 Hydrogen supply material and manufacturing method thereof, and hydrogen supply method
TW106125644A TWI728160B (en) 2016-08-23 2017-07-28 Hydrogen supply material and manufacturing method thereof, and hydrogen supply method
TW110131758A TWI783650B (en) 2015-02-24 2017-07-28 Hydrogen-containing liquid, method for manufacturing hydrogen-containing liquid, apparatus for manufacturing hydrogen-containing liquid, and biological hydrogen generating material
TW111110407A TW202229161A (en) 2016-08-23 2017-07-28 Hydrogen supply material and manufacturing method thereof, and hydrogen supply method
TW106125642A TWI728158B (en) 2015-02-24 2017-07-28 Hydrogen-containing liquid, method for manufacturing hydrogen-containing liquid, apparatus for manufacturing hydrogen-containing liquid, and biological hydrogen generating material
TW109140195A TWI776280B (en) 2016-08-23 2017-07-28 Composition and manufacturing method thereof, and hydrogen supply method
TW106125643A TWI728159B (en) 2016-08-23 2017-07-28 Composition and manufacturing method thereof, and hydrogen supply method
TW111110408A TWI831156B (en) 2016-08-23 2017-07-28 Application of composition
TW110102396A TWI757064B (en) 2015-02-24 2017-07-28 Hydrogen-containing liquid, method for manufacturing hydrogen-containing liquid, apparatus for manufacturing hydrogen-containing liquid, and biological hydrogen generating material
JP2019131994A JP2020007310A (en) 2015-12-04 2019-07-17 Method for producing hydrogen supply material and silicon fine particles having hydrogen supply ability and/or aggregate of silicon fine particles
JP2019181957A JP2020037553A (en) 2015-12-04 2019-10-02 Hydrogen supply material and production method therefor, and hydrogen supply method
JP2019181958A JP2020037554A (en) 2015-12-04 2019-10-02 Hydrogen supply material and production method therefor, and hydrogen supply method
JP2021101920A JP2021178320A (en) 2016-08-23 2021-06-18 Formulation, its manufacturing method, and hydrogen supply method
US18/147,254 US20230157934A1 (en) 2016-08-23 2022-12-28 Hydrogen supply material and production method therefor, and hydrogen supply method
JP2023062241A JP2023111907A (en) 2016-08-23 2023-04-06 Compound
US18/329,422 US20230320348A1 (en) 2016-08-23 2023-06-05 Compound, production method therefor, and hydrogen supply method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015237328 2015-12-04
JP2015237328A JP2016155118A (en) 2015-02-24 2015-12-04 Hydrogen water, and method and apparatus for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017135940A Division JP6889055B2 (en) 2015-12-04 2017-07-12 Manufacturing method of hydrogen generating material for living body and manufacturing method of food

Publications (1)

Publication Number Publication Date
JP2017104848A true JP2017104848A (en) 2017-06-15

Family

ID=59061459

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2016162520A Pending JP2017104848A (en) 2015-02-24 2016-08-23 Silicon nanoparticles and/or aggregate thereof, hydrogen generating material for organism and production method for the same, and hydrogen water and production method and production apparatus for the same
JP2017135940A Active JP6889055B2 (en) 2015-12-04 2017-07-12 Manufacturing method of hydrogen generating material for living body and manufacturing method of food
JP2019131994A Pending JP2020007310A (en) 2015-12-04 2019-07-17 Method for producing hydrogen supply material and silicon fine particles having hydrogen supply ability and/or aggregate of silicon fine particles
JP2019181958A Pending JP2020037554A (en) 2015-12-04 2019-10-02 Hydrogen supply material and production method therefor, and hydrogen supply method
JP2019181957A Pending JP2020037553A (en) 2015-12-04 2019-10-02 Hydrogen supply material and production method therefor, and hydrogen supply method
JP2021063404A Active JP7085668B2 (en) 2015-12-04 2021-04-02 Bio-hydrogen generators, foods and medical foods, and food manufacturing methods
JP2022051528A Pending JP2022101559A (en) 2015-12-04 2022-03-28 Silicon fine nanoparticles, method for producing food, and method for producing additive

Family Applications After (6)

Application Number Title Priority Date Filing Date
JP2017135940A Active JP6889055B2 (en) 2015-12-04 2017-07-12 Manufacturing method of hydrogen generating material for living body and manufacturing method of food
JP2019131994A Pending JP2020007310A (en) 2015-12-04 2019-07-17 Method for producing hydrogen supply material and silicon fine particles having hydrogen supply ability and/or aggregate of silicon fine particles
JP2019181958A Pending JP2020037554A (en) 2015-12-04 2019-10-02 Hydrogen supply material and production method therefor, and hydrogen supply method
JP2019181957A Pending JP2020037553A (en) 2015-12-04 2019-10-02 Hydrogen supply material and production method therefor, and hydrogen supply method
JP2021063404A Active JP7085668B2 (en) 2015-12-04 2021-04-02 Bio-hydrogen generators, foods and medical foods, and food manufacturing methods
JP2022051528A Pending JP2022101559A (en) 2015-12-04 2022-03-28 Silicon fine nanoparticles, method for producing food, and method for producing additive

Country Status (2)

Country Link
JP (7) JP2017104848A (en)
CN (2) CN113426312A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037819A1 (en) 2016-08-23 2018-03-01 小林 光 Compound, production method therefor, and hydrogen supply method
WO2018037818A1 (en) * 2016-08-23 2018-03-01 小林 光 Hydrogen supply material and production method therefor, and hydrogen supply method
WO2019021769A1 (en) * 2017-07-27 2019-01-31 国立大学法人大阪大学 Drug and production method therefor
JP2019030871A (en) * 2017-06-16 2019-02-28 友達晶材股▲ふん▼有限公司AUO Crystal Corporation Filter, filtration equipment and water purification system
WO2019235577A1 (en) 2018-06-07 2019-12-12 国立大学法人大阪大学 Prophylactic or therapeutic agent for disease induced by oxidative stress
JP2019214556A (en) * 2018-06-07 2019-12-19 国立大学法人大阪大学 Prophylactic or therapeutic agent for disease induced by oxidative stress
JP2020007300A (en) * 2018-07-02 2020-01-16 国立大学法人大阪大学 Prophylactic or therapeutic agents for depressive disorder or state
JP2020007310A (en) * 2015-12-04 2020-01-16 小林 光 Method for producing hydrogen supply material and silicon fine particles having hydrogen supply ability and/or aggregate of silicon fine particles
TWI685372B (en) * 2017-10-30 2020-02-21 友達晶材股份有限公司 Filter material preparation method, filter material and water purification system
US10617712B2 (en) 2016-01-29 2020-04-14 Kit Co. Ltd. Solid preparation, method for producing solid reparation, and method for generating hydrogen
CN111320250A (en) * 2018-12-14 2020-06-23 友达晶材股份有限公司 Filter material, filter material assembly, water filtering device, water purifying system and biological water composition
JP7461007B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agents for visceral discomfort
JP7461011B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for hearing loss
JP7461006B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for arthritis
JP7461005B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for autism spectrum disorder
JP7461003B2 (en) 2018-11-13 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agents for Parkinson's disease
JP7461008B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for disorders or symptoms after spinal cord injury
JP7461004B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for memory disorders
JP7461009B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for diabetes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111483977B (en) * 2020-05-06 2022-07-05 深圳市霍沃科技有限公司 Compound capable of instantly generating high-concentration hydrogen by dissolving in water and preparation method thereof

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527854A (en) * 1978-08-18 1980-02-28 Nippon Telegr & Teleph Corp <Ntt> Production of silicon dioxide thin film
DE3738651A1 (en) * 1987-11-13 1989-05-24 Wacker Chemitronic METHOD FOR THE HYDROPHILIZING AND / OR REMOVAL OF SURFACE TREATMENT OF SILICONE WINDOWS
JPH0466189A (en) * 1990-07-06 1992-03-02 Asahi Chem Ind Co Ltd Storing method of silicon fine powder-containing waste water
US6638491B2 (en) * 2001-09-21 2003-10-28 Neptec Optical Solutions, Inc. Method of producing silicon metal particulates of reduced average particle size
JP2004115349A (en) * 2002-09-30 2004-04-15 Honda Motor Co Ltd Hydrogen generation process
US7850938B2 (en) * 2004-03-17 2010-12-14 Denki Kagaku Kogyo Kabushiki Kaisha Silicon particles, silicon particle superlattice and method for producing the same
GB0515353D0 (en) * 2005-07-27 2005-08-31 Psimedica Ltd Food
WO2007026533A1 (en) * 2005-08-30 2007-03-08 Tokyo Denki University Soluble tablet containing nanosilicon particles and process for production thereof
KR100644968B1 (en) * 2005-10-28 2006-11-14 한국과학기술연구원 Preparation method of biocompatible silicon nanoparticles
US7560091B2 (en) * 2005-12-05 2009-07-14 Hidemitu Hayashi Water reforming method and water reformer
AU2006338293B2 (en) * 2006-02-13 2010-11-25 Uop Llc Process for the production of hydrogen
DE102006035081A1 (en) * 2006-07-28 2008-01-31 Wacker Chemie Ag Method and apparatus for producing classified polycrystalline silicon fracture in high purity
JP2010265158A (en) * 2009-05-18 2010-11-25 Mitsubishi Electric Corp Method for producing silicon fine particle
JP2011026211A (en) * 2009-07-21 2011-02-10 Niigata Univ Method for producing microcapsule containing hydrogen-generating powder
GB0919830D0 (en) * 2009-11-12 2009-12-30 Isis Innovation Preparation of silicon for fast generation of hydrogen through reaction with water
JP2011218340A (en) * 2010-04-06 2011-11-04 Norihiko Kabayama Method for production of electronic water
JP5695842B2 (en) * 2010-06-02 2015-04-08 シャープ株式会社 Method for producing lithium-containing composite oxide
JP4744641B1 (en) * 2010-10-18 2011-08-10 ミズ株式会社 Device for adding hydrogen to biological fluids
CN102260894A (en) * 2010-10-25 2011-11-30 中国科学院理化技术研究所 Electrochemical method for preparing silicon nanometer structure material controllably
CN102126724A (en) * 2011-03-31 2011-07-20 上海交通大学 Method for preparing silicon nanowire array with smooth surface
CN103842288A (en) * 2011-09-30 2014-06-04 三菱瓦斯化学株式会社 Method for producing aqueous hydrogen peroxide solution
EP2807113A1 (en) * 2012-01-23 2014-12-03 King Abdullah University Of Science And Technology Hydrogen generation
DE102012200992A1 (en) * 2012-01-24 2013-07-25 Wacker Chemie Ag Low-doping polycrystalline silicon piece
JP2013228319A (en) * 2012-04-26 2013-11-07 Kurita Water Ind Ltd Method for evaluating water quality of pure water
KR101318939B1 (en) * 2012-09-20 2013-11-13 한국화학연구원 Method of preparing silicon nanoparticles and method for preparing dispersions containing silicon nanoparticles
GB201217525D0 (en) * 2012-10-01 2012-11-14 Isis Innovation Composition for hydrogen generation
JP2014084233A (en) * 2012-10-19 2014-05-12 Seiji Endo Dry sheet for generating hydrogen
CN103011067A (en) * 2012-12-28 2013-04-03 哈尔滨工业大学 Mesoporous silica nanomotor, and preparation method and application thereof
EP2941453B1 (en) * 2013-01-03 2019-07-17 Shin-Etsu Chemical Co., Ltd. Hydrophilized silicone particles and making method
CN103030100B (en) * 2013-01-09 2015-10-21 华北电力大学 A kind of preparation method with the sub-wavelength silicon nanowire array of antireflection characteristic
WO2015033815A1 (en) * 2013-09-05 2015-03-12 株式会社Kit Hydrogen production device, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production
JPWO2016010139A1 (en) * 2014-07-18 2017-04-27 株式会社ヴェルシーナ Cosmetic coating agent, method for producing cosmetic hydrogen filling, and cosmetic hydrogen filling
JP2016155118A (en) * 2015-02-24 2016-09-01 小林 光 Hydrogen water, and method and apparatus for producing the same
JP2017104848A (en) * 2015-12-04 2017-06-15 小林 光 Silicon nanoparticles and/or aggregate thereof, hydrogen generating material for organism and production method for the same, and hydrogen water and production method and production apparatus for the same
CN105152131B (en) * 2015-09-30 2018-05-22 林建凌 Molten hydrogen production device and molten hydrogen, hydrogen generating method occur for hydrogen
CN116159073A (en) * 2016-01-29 2023-05-26 株式会社Kit Solid preparation, preparation method of solid preparation and hydrogen evolution method
CN110191860A (en) * 2016-08-23 2019-08-30 小林光 Composite and its manufacturing method and method of supplying hydrogen
CN110191699A (en) * 2016-08-23 2019-08-30 小林光 Hydrogen supplying material and its manufacturing method and method of supplying hydrogen

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007310A (en) * 2015-12-04 2020-01-16 小林 光 Method for producing hydrogen supply material and silicon fine particles having hydrogen supply ability and/or aggregate of silicon fine particles
JP7085668B2 (en) 2015-12-04 2022-06-16 光 小林 Bio-hydrogen generators, foods and medical foods, and food manufacturing methods
JP2021121427A (en) * 2015-12-04 2021-08-26 光 小林 Hydrogen generation material for living body and production method thereof, and food and production method thereof
JP2020037553A (en) * 2015-12-04 2020-03-12 小林 光 Hydrogen supply material and production method therefor, and hydrogen supply method
JP2020037554A (en) * 2015-12-04 2020-03-12 小林 光 Hydrogen supply material and production method therefor, and hydrogen supply method
US11752170B2 (en) 2016-01-29 2023-09-12 Bosquet Silicon Corp. Solid preparation, method for producing solid preparation, and method for generating hydrogen
US11311572B2 (en) 2016-01-29 2022-04-26 Bosquet Silicon Corp. Preparation, method for producing preparation, and method for generating hydrogen
US10617712B2 (en) 2016-01-29 2020-04-14 Kit Co. Ltd. Solid preparation, method for producing solid reparation, and method for generating hydrogen
WO2018037818A1 (en) * 2016-08-23 2018-03-01 小林 光 Hydrogen supply material and production method therefor, and hydrogen supply method
US11583483B2 (en) 2016-08-23 2023-02-21 Bosquet Silicon Corp. Hydrogen supply material and production therefor, and hydrogen supply method
US11707063B2 (en) 2016-08-23 2023-07-25 Bosquet Silicon Corp. Compound, production method therefor, and hydrogen supply method
JPWO2018037818A1 (en) * 2016-08-23 2019-06-20 小林 光 Hydrogen supply material, method for producing the same, and method for supplying hydrogen
WO2018037819A1 (en) 2016-08-23 2018-03-01 小林 光 Compound, production method therefor, and hydrogen supply method
JP2019030871A (en) * 2017-06-16 2019-02-28 友達晶材股▲ふん▼有限公司AUO Crystal Corporation Filter, filtration equipment and water purification system
US11951125B2 (en) * 2017-07-27 2024-04-09 Osaka University Drug and production method therefor
JP2020073556A (en) * 2017-07-27 2020-05-14 国立大学法人大阪大学 Drug and production method therefor
CN110913869A (en) * 2017-07-27 2020-03-24 国立大学法人大阪大学 Medicament and method for producing same
EP3659610A4 (en) * 2017-07-27 2020-07-22 Osaka University Drug and production method therefor
JPWO2019021769A1 (en) * 2017-07-27 2019-08-08 国立大学法人大阪大学 Drug and production method thereof
WO2019021769A1 (en) * 2017-07-27 2019-01-31 国立大学法人大阪大学 Drug and production method therefor
US11103527B2 (en) * 2017-07-27 2021-08-31 Osaka University Enteric coated silicon drug and production method therefor
TWI685372B (en) * 2017-10-30 2020-02-21 友達晶材股份有限公司 Filter material preparation method, filter material and water purification system
WO2019235577A1 (en) 2018-06-07 2019-12-12 国立大学法人大阪大学 Prophylactic or therapeutic agent for disease induced by oxidative stress
US20210145865A1 (en) * 2018-06-07 2021-05-20 Osaka University Prophylactic or therapeutic agent for disease induced by oxidative stress
JP7333941B2 (en) 2018-06-07 2023-08-28 国立大学法人大阪大学 Preventive or therapeutic agent for diseases caused by oxidative stress
JP2019214556A (en) * 2018-06-07 2019-12-19 国立大学法人大阪大学 Prophylactic or therapeutic agent for disease induced by oxidative stress
JP7345824B2 (en) 2018-07-02 2023-09-19 国立大学法人大阪大学 Agents for preventing or treating depression or depressive state
JP2020007300A (en) * 2018-07-02 2020-01-16 国立大学法人大阪大学 Prophylactic or therapeutic agents for depressive disorder or state
JP7461003B2 (en) 2018-11-13 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agents for Parkinson's disease
JP2020116566A (en) * 2018-12-14 2020-08-06 友達晶材股▲ふん▼有限公司AUO Crystal Corporation Filter, filter assembly, filter apparatus and water purification system
CN111320250A (en) * 2018-12-14 2020-06-23 友达晶材股份有限公司 Filter material, filter material assembly, water filtering device, water purifying system and biological water composition
JP7461007B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agents for visceral discomfort
JP7461005B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for autism spectrum disorder
JP7461006B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for arthritis
JP7461008B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for disorders or symptoms after spinal cord injury
JP7461004B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for memory disorders
JP7461009B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for diabetes
JP7461011B2 (en) 2019-01-24 2024-04-03 国立大学法人大阪大学 Preventive or therapeutic agent for hearing loss

Also Published As

Publication number Publication date
JP2020037554A (en) 2020-03-12
JP2017225972A (en) 2017-12-28
CN113426312A (en) 2021-09-24
JP7085668B2 (en) 2022-06-16
JP2022101559A (en) 2022-07-06
JP2020007310A (en) 2020-01-16
JP6889055B2 (en) 2021-06-18
CN110225890A (en) 2019-09-10
JP2021121427A (en) 2021-08-26
JP2020037553A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP7085668B2 (en) Bio-hydrogen generators, foods and medical foods, and food manufacturing methods
WO2018037752A1 (en) Hydrogen-containing liquid, production method for hydrogen-containing liquid, and production device for hydrogen-containing liquid, and hydrogen generation material for living body
US20220175826A1 (en) Solid preparation, method for producing solid preparation, and method for generating hydrogen
JPWO2012017752A1 (en) Titanium oxide sol, its production method, ultrafine titanium oxide, its production method and use
JP6255471B1 (en) Silica particle dispersion and method for producing the same
JP6933976B2 (en) Silica-based particle dispersion and its manufacturing method
CN1273563A (en) Barium titanate powder
JP5942141B2 (en) Fluorine removing agent, treatment method for fluorine-containing liquid
CN105019012A (en) Method used for preparing subsize bismuth subcarbonate via hydrothermal method
JP2001048538A (en) Titanium oxide-forming solution and its production
KR101307647B1 (en) Transition metal doped TiO2 photocatalyst’s preparation method
KR101280153B1 (en) Method for preparing nano crystalline anatase titanium dioxide powder
Lavasani et al. Synthesis of well-ordered mesoporous nanoparticles of TiO2 from Ilmenite with enhanced photocatalytic activity
JP6075964B2 (en) Method for producing titanium oxide nanowire with reduced alkali metal content, and method for removing alkali metal content from titanium oxide nanowire
JP2019085312A (en) Manufacturing method of amorphous titanium oxide fine particle dispersion
JP2016132651A (en) Scrub agent, and method of using the same
TWI312794B (en) Non-spherical nano-composite polymer electrolyte
CN110605096B (en) Preparation method and application of carbon-doped rutile particles
JP2007038049A (en) Method for treating fluorine in mixed acid

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170629