JP2017104044A - Method for improving catalytic activity - Google Patents

Method for improving catalytic activity Download PDF

Info

Publication number
JP2017104044A
JP2017104044A JP2015240029A JP2015240029A JP2017104044A JP 2017104044 A JP2017104044 A JP 2017104044A JP 2015240029 A JP2015240029 A JP 2015240029A JP 2015240029 A JP2015240029 A JP 2015240029A JP 2017104044 A JP2017104044 A JP 2017104044A
Authority
JP
Japan
Prior art keywords
group
substituent
formula
optionally substituted
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015240029A
Other languages
Japanese (ja)
Other versions
JP6678442B2 (en
Inventor
栄虎 山村
Shigetora Yamamura
栄虎 山村
和也 津崎
Kazuya Tsuzaki
和也 津崎
浩一 和田
Koichi Wada
浩一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Pharma Chemical Co Ltd
Original Assignee
Kyowa Pharma Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Pharma Chemical Co Ltd filed Critical Kyowa Pharma Chemical Co Ltd
Priority to JP2015240029A priority Critical patent/JP6678442B2/en
Publication of JP2017104044A publication Critical patent/JP2017104044A/en
Application granted granted Critical
Publication of JP6678442B2 publication Critical patent/JP6678442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for improving the catalytic activity of a plant processed product in an asymmetric ring-opening reaction.SOLUTION: The present invention provides a method for improving the catalytic activity of a plant processed product that promotes the reaction for obtaining a compound represented by formula (3) by the reaction between a compound represented by formula (1) and a compound represented by formula (2), the method including the step for subjecting the plant processed product to an enzyme treatment (where X is -O- or -NR-, R is a hydrogen atom and the like, R, R, Rand Rindependently represent a hydrogen atom and the like, Y is -O-, -NR- or -S-, Rand Rindependently represent a hydrogen atom and the like, where, the compound represented by formula (2) is not water or hydrogen sulfide).SELECTED DRAWING: None

Description

本発明は、触媒活性の向上方法に関する。   The present invention relates to a method for improving catalytic activity.

式(Z)で表される化合物(以下、「化合物(Z)」ともいう。)は、連続する2つの炭素原子に、それぞれ酸素原子または窒素原子が結合した化合物であり、1分子中に少なくとも2つの不斉炭素を有するため、複数の光学異性体が存在する。光学活性な化合物(Z)は、医薬品または農薬の開発の分野において汎用される化学構造の1つであり、不斉反応で使用する遷移金属触媒のリガンドとしても使用できる。

Figure 2017104044

なお、式中、Xは−O−または−NR−を示し、Yは−O−、−NR−または−S−を示し、R、R、R、R、R、RおよびRは、それぞれ独立に水素原子または有機基を示し、アスタリスクはその炭素原子が不斉炭素であることを示す。 The compound represented by the formula (Z) (hereinafter, also referred to as “compound (Z)”) is a compound in which an oxygen atom or a nitrogen atom is bonded to two consecutive carbon atoms, and at least in one molecule. Since it has two asymmetric carbons, there are multiple optical isomers. The optically active compound (Z) is one of chemical structures widely used in the field of pharmaceutical or agricultural chemical development, and can also be used as a ligand for a transition metal catalyst used in an asymmetric reaction.
Figure 2017104044

In the formula, X represents —O— or —NR f —, Y represents —O—, —NR g — or —S—, and R a , R b , R c , R d , R e , R f and R g each independently represent a hydrogen atom or an organic group, and an asterisk indicates that the carbon atom is an asymmetric carbon.

化合物(Z)は、具体的には、例えば、1,2−ジオール(XおよびYがともに−O−である場合)、1,2−アミノアルコール(Xが−O−かつYが−NH−である場合、または、Xが−NH−かつYが−O−である場合)、1,2−ジアミン(XおよびYがともに−NH−である場合)、1,2−メルカプトアルコール(Xが−O−かつYが−S−である場合)、1,2−メルカプトアミン(Xが−NH−かつYが−S−である場合)である。   Specifically, the compound (Z) includes, for example, 1,2-diol (when X and Y are both —O—), 1,2-aminoalcohol (where X is —O— and Y is —NH—). Or X is —NH— and Y is —O—), 1,2-diamine (when both X and Y are —NH—), 1,2-mercaptoalcohol (where X is -O- and Y is -S-), 1,2-mercaptoamine (when X is -NH- and Y is -S-).

現在までに、光学活性な化合物(Z)の製造方法について、多くの検討が行われている。なかでも、入手が容易なエポキシド構造またはアジリジン構造を有する化合物に求核剤を反応させ、立体選択的に開環することにより光学活性な化合物(Z)を得る方法は、原子効率が高く有用である。   To date, many studies have been conducted on methods for producing optically active compounds (Z). Among them, a method of obtaining an optically active compound (Z) by reacting a compound having an epoxide structure or an aziridine structure, which is readily available, with a nucleophile, and performing stereoselective ring opening has high atomic efficiency and is useful. is there.

例えば、エポキシド構造を有する化合物に求核剤を反応させて、光学活性な化合物(Z)を得る方法としては、(A)ラセミ体を光学分割する方法(例えば、特許文献1〜3、非特許文献1、2)、(B)他の位置に不斉炭素を導入し、生じたジアステレオマーを分離する方法(例えば、特許文献4、非特許文献3)、(C)光学活性な触媒の存在下でエポキシド構造を有する化合物と求核剤の不斉開環反応を行う方法(例えば、特許文献5、非特許文献4〜6)等がある。特に、(A)の方法としては、分割剤として光学活性な酸を用いる方法、光学活性な充填剤を利用したカラムクラマトグラフィーを用いて分離する方法、および動物または微生物に由来する酵素を利用する方法などが知られている。   For example, as a method of obtaining an optically active compound (Z) by reacting a compound having an epoxide structure with a nucleophile, (A) a method of optically resolving a racemate (for example, Patent Documents 1 to 3, Non-Patent Documents) Documents 1, 2), (B) a method of introducing an asymmetric carbon at another position and separating the resulting diastereomers (for example, Patent Document 4, Non-Patent Document 3), (C) Optically active catalyst There are methods for performing an asymmetric ring-opening reaction between a compound having an epoxide structure and a nucleophile in the presence (for example, Patent Document 5, Non-Patent Documents 4 to 6). In particular, as the method (A), a method using an optically active acid as a resolving agent, a method using a column chromatography using an optically active filler, and an enzyme derived from an animal or a microorganism are used. Methods are known.

また、アジリジン構造を有する化合物に求核剤を反応させて、化合物(Z)を得る方法としては、(D)ラセミ体を光学分割する方法(例えば、特許文献6)、(E)光学活性な触媒の存在下でアジリジン構造を有する化合物と求核剤の不斉開環反応を行う方法(例えば、非特許文献7,8)等がある。   Further, as a method of obtaining a compound (Z) by reacting a compound having an aziridine structure with a nucleophile, (D) a method of optically resolving a racemate (for example, Patent Document 6), (E) an optically active compound There are methods for performing asymmetric ring-opening reaction between a compound having an aziridine structure and a nucleophile in the presence of a catalyst (for example, Non-Patent Documents 7 and 8).

特許第4406483号公報Japanese Patent No. 4406483 特許第4406482号公報Japanese Patent No. 4406482 米国特許第5981267号明細書US Pat. No. 5,981,267 特開平9−157258号公報JP-A-9-157258 特開2003−206266号公報JP 2003-206266 A 特開2011−83934号公報JP 2011-83934 A 特許第3331870号公報Japanese Patent No. 3331870 特許第3018622号公報Japanese Patent No. 3018622

Tetrahedron,56,9773−9779(2000)Tetrahedron, 56, 9773-9779 (2000) Synth.Commun.,29,1369−1377(1999)Synth. Commun. , 29, 1369-1377 (1999) J.Med.Chem.41,38−45(1998)J. et al. Med. Chem. 41, 38-45 (1998) Tetrahedron:Asymmetry,9,1747−1752(1998)Tetrahedron: Asymmetry, 9, 1747-1752 (1998) Bull.Chem.Soc.Jpn.,61,1213−1220(1988)Bull. Chem. Soc. Jpn. 61, 1213-1220 (1988). Chemistry Letters,36,34−35(2007)Chemistry Letters, 36, 34-35 (2007) Org.Biomol.Chem.,9,6205−6207(2011)Org. Biomol. Chem. , 9, 6205-6207 (2011) J.Org.Chem.,68,5160−5167(2003)J. et al. Org. Chem. 68, 5160-5167 (2003) Biosci.Biotechnol.Biochem.60(12),2028−2031,1996Biosci. Biotechnol. Biochem. 60 (12), 2028-2031, 1996 Biosci.Biotechnol.Biochem.65(10),2249−2258,2001Biosci. Biotechnol. Biochem. 65 (10), 2249-2258, 2001 Biosci.Biotechnol.Biochem.66(5),1155−1158,2002Biosci. Biotechnol. Biochem. 66 (5), 1155-1158, 2002 J.Agric.Food Chem.2004,52,5506−5512.J. et al. Agric. Food Chem. 2004, 52, 5506-5512. J.Agric.Food Chem.2007,55,502−509.J. et al. Agric. Food Chem. 2007, 55, 502-509. 食品工業,1994,71−76.Food industry, 1994, 71-76. 食品加工技術,Vol.19,No.4,1−8(1999).Food Processing Technology, Vol. 19, no. 4, 1-8 (1999). 日本食品科学工学会誌,第58巻,第11号,2011年11月,559−566.Journal of Japanese Society for Food Science and Technology, Vol.58, No.11, November 2011, 559-566. Jpn.J.Crop Sci.66(1),62−66(1997).Jpn. J. et al. Crop Sci. 66 (1), 62-66 (1997).

本発明者らは、式(1)で表される化合物(以下、「化合物(1)」等ともいう。)と化合物(2)を植物加工物、特に水溶性大豆多糖類の存在下で反応させることにより、立体選択的かつ効率的に反応が進行し、化合物(Z)に対応する化合物(3)を得ることができることを見出した。

Figure 2017104044
The present inventors react a compound represented by the formula (1) (hereinafter also referred to as “compound (1)”) and a compound (2) in the presence of a processed plant product, particularly a water-soluble soybean polysaccharide. It was found that the reaction proceeds stereoselectively and efficiently, and compound (3) corresponding to compound (Z) can be obtained.
Figure 2017104044

これまでに水溶性大豆多糖類の成分分析及びその食品機能剤として応用に関する報告があるが、上述の触媒活性に関する報告はない(例えば、特許文献7〜8、非特許文献9〜17)。   There have been reports on component analysis of water-soluble soybean polysaccharides and their application as food function agents, but there are no reports on the above-mentioned catalytic activity (for example, Patent Documents 7 to 8, Non-Patent Documents 9 to 17).

本発明の目的は、上記反応における植物加工物の触媒活性を向上させる方法を提供することである。   The objective of this invention is providing the method of improving the catalytic activity of the plant processed material in the said reaction.

本発明は、以下の[1]〜[12]を提供する。
[1] 式(1)で表される化合物と式(2)で表される化合物を反応させて式(3)で表される化合物を得る反応を促進する植物加工物の触媒活性を向上させる方法であって、
植物加工物を酵素処理する工程を含む、方法。

Figure 2017104044

(式中、Xは、−O−または−NR−であり、Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基であり、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(1b)で表される化合物となっていてもよく、Yは、−O−、−NR−または−S−であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルコキシ基、C6−10アリール基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(2a)で表される化合物となっていてもよく、ただし、式(2)で表される化合物は水または硫化水素ではない。)
Figure 2017104044

(式中、X、RおよびRは、上記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す。)
Figure 2017104044

(式中、Rは、RおよびRが互いに結合して形成される基を示す。)
[2] 酵素処理が、植物加工物を、脂質分解酵素、タンパク質分解酵素、糖分解酵素及び糖転移酵素から選択される少なくとも1種の酵素で処理することを含む、[1]に記載の方法。
[3] 植物加工物が、水溶性大豆多糖類、柑橘類粉末、ニンジン粉末、ウコン粉末、緑茶粉末を含む、[1]又は[2]に記載の方法。
[4] 式(1)で表される化合物と式(2)で表される化合物を反応させて式(3)で表される化合物を得る反応を促進する触媒であって、
植物加工物を酵素処理して得られる組成物を含む、触媒。
Figure 2017104044

(式中、Xは、−O−または−NR−であり、Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基であり、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(1b)で表される化合物となっていてもよく、Yは、−O−、−NR−または−S−であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルコキシ基、C6−10アリール基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(2a)で表される化合物となっていてもよく、ただし、式(2)で表される化合物は水または硫化水素ではない。)
Figure 2017104044

(式中、X、RおよびRは、上記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す。)
Figure 2017104044

(式中、Rは、RおよびRが互いに結合して形成される基を示す。)
[5] 酵素処理が、植物加工物を、脂質分解酵素、タンパク質分解酵素、糖分解酵素及び糖転移酵素から選択される少なくとも1種の酵素で処理することを含む、[4]に記載の触媒。
[6] 植物加工物が、水溶性大豆多糖類、柑橘類粉末、ニンジン粉末、ウコン粉末、緑茶粉末を含む、[4]又は[5]に記載の触媒。
[7] 植物加工物を酵素処理して得られる触媒の存在下、式(1)で表される化合物と式(2)で表される化合物を反応させる工程を含む、式(3)で表される化合物の製造方法。
Figure 2017104044

(式中、Xは、−O−または−NR−であり、Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基であり、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(1b)で表される化合物となっていてもよく、Yは、−O−、−NR−または−S−であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルコキシ基、C6−10アリール基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(2a)で表される化合物となっていてもよく、ただし、式(2)で表される化合物は水または硫化水素ではない。)
Figure 2017104044

(式中、X、RおよびRは、上記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す。)
Figure 2017104044

(式中、Rは、RおよびRが互いに結合して形成される基を示す。)
[8] 酵素処理が、植物加工物を、脂質分解酵素、タンパク質分解酵素、糖分解酵素及び糖転移酵素から選択される少なくとも1種の酵素で処理することを含む、[7]に記載の方法。
[9] 植物加工物が、水溶性大豆多糖類、柑橘類粉末、ニンジン粉末、ウコン粉末、緑茶粉末を含む、[7]又は[8]に記載の方法。
[10] 式(1)で表される化合物と式(2)で表される化合物を反応させて式(3)で表される化合物を得る反応を促進するための、植物加工物を酵素処理して得られる組成物の使用。
Figure 2017104044

(式中、Xは、−O−または−NR−であり、Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基であり、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(1b)で表される化合物となっていてもよく、Yは、−O−、−NR−または−S−であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルコキシ基、C6−10アリール基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(2a)で表される化合物となっていてもよく、ただし、式(2)で表される化合物は水または硫化水素ではない。)
Figure 2017104044

(式中、X、RおよびRは、上記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す。)
Figure 2017104044

(式中、Rは、RおよびRが互いに結合して形成される基を示す。)
[11] 酵素処理が、植物加工物を、脂質分解酵素、タンパク質分解酵素、糖分解酵素及び糖転移酵素から選択される少なくとも1種の酵素で処理することを含む、[10]に記載の使用。
[12] 植物加工物が、水溶性大豆多糖類、柑橘類粉末、ニンジン粉末、ウコン粉末、緑茶粉末を含む、[10]又は[11]に記載の使用。 The present invention provides the following [1] to [12].
[1] Improve the catalytic activity of the processed plant product that promotes the reaction of reacting the compound represented by formula (1) with the compound represented by formula (2) to obtain the compound represented by formula (3) A method,
A method comprising the step of enzyme-treating a processed plant product.
Figure 2017104044

(In the formula, X represents —O— or —NR—, and R represents a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a C 3-6 which may have a substituent. A cycloalkyl group, an optionally substituted C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, an optionally substituted C 2-6 alkynyl group, an optionally substituted C 6-10 aryl group, an optionally substituted C 1-6 alkylcarbonyl group, an optionally substituted C 6-10 arylcarbonyl group, a substituent A C 1-6 alkylsulfonyl group or a C 6-10 arylsulfonyl group which may have, and R 1 , R 2 , R 3 and R 4 may each independently have a hydrogen atom or a substituent. a C 1-6 alkyl group, an optionally substituted C 3-6 cycloalkyl group, Yes which may have a substituent C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, an optionally C 2-6 alkynyl group or a substituted group may have a substituent An optionally substituted C 6-10 aryl group, and the substituent is a C 1-4 alkyl group, a C 2-4 alkenyl group, a C 2-4 alkynyl group, a C 1-4 alkoxy group, an amino group, or an imino group. A group, a nitro group, a hydroxy group, an oxo group, a nitrile group, a mercapto group or a halogen atom, and R 2 and R 3 may be bonded to each other to form a compound represented by the formula (1b), Y is —O—, —NR 6 — or —S—, and R 5 and R 6 each independently represent a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a substituent. which may have a C 3-6 cycloalkyl group, substituted Which may C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, which may have a good C 2-6 alkynyl group or a substituted group may have a substituent C 6 -10 aryl group, wherein the substituents, C 1-4 alkoxy groups, C 6-10 aryl group, an amino group, an imino group, a nitro group, hydroxy group, oxo group, nitrile group, mercapto group or a halogen atom And R 5 and R 6 may be bonded to each other to form a compound represented by the formula (2a), provided that the compound represented by the formula (2) is not water or hydrogen sulfide.
Figure 2017104044

(In the formula, X, R 1 and R 4 are the same as defined above, and R 7 represents a group formed by bonding R 2 and R 3 to each other.)
Figure 2017104044

(In the formula, R 8 represents a group formed by combining R 5 and R 6 with each other.)
[2] The method according to [1], wherein the enzyme treatment includes treating the plant processed product with at least one enzyme selected from a lipolytic enzyme, a proteolytic enzyme, a glycolytic enzyme, and a glycosyltransferase. .
[3] The method according to [1] or [2], wherein the plant processed product contains water-soluble soybean polysaccharide, citrus powder, carrot powder, turmeric powder, and green tea powder.
[4] A catalyst that promotes a reaction in which a compound represented by formula (1) and a compound represented by formula (2) are reacted to obtain a compound represented by formula (3),
A catalyst comprising a composition obtained by enzymatic treatment of a processed plant product.
Figure 2017104044

(In the formula, X represents —O— or —NR—, and R represents a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a C 3-6 which may have a substituent. A cycloalkyl group, an optionally substituted C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, an optionally substituted C 2-6 alkynyl group, an optionally substituted C 6-10 aryl group, an optionally substituted C 1-6 alkylcarbonyl group, an optionally substituted C 6-10 arylcarbonyl group, a substituent A C 1-6 alkylsulfonyl group or a C 6-10 arylsulfonyl group which may have, and R 1 , R 2 , R 3 and R 4 may each independently have a hydrogen atom or a substituent. a C 1-6 alkyl group, an optionally substituted C 3-6 cycloalkyl group, Yes which may have a substituent C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, an optionally C 2-6 alkynyl group or a substituted group may have a substituent An optionally substituted C 6-10 aryl group, and the substituent is a C 1-4 alkyl group, a C 2-4 alkenyl group, a C 2-4 alkynyl group, a C 1-4 alkoxy group, an amino group, or an imino group. A group, a nitro group, a hydroxy group, an oxo group, a nitrile group, a mercapto group or a halogen atom, and R 2 and R 3 may be bonded to each other to form a compound represented by the formula (1b), Y is —O—, —NR 6 — or —S—, and R 5 and R 6 each independently represent a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a substituent. which may have a C 3-6 cycloalkyl group, substituted Which may C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, which may have a good C 2-6 alkynyl group or a substituted group may have a substituent C 6 -10 aryl group, wherein the substituents, C 1-4 alkoxy groups, C 6-10 aryl group, an amino group, an imino group, a nitro group, hydroxy group, oxo group, nitrile group, mercapto group or a halogen atom And R 5 and R 6 may be bonded to each other to form a compound represented by the formula (2a), provided that the compound represented by the formula (2) is not water or hydrogen sulfide.
Figure 2017104044

(In the formula, X, R 1 and R 4 are the same as defined above, and R 7 represents a group formed by bonding R 2 and R 3 to each other.)
Figure 2017104044

(In the formula, R 8 represents a group formed by combining R 5 and R 6 with each other.)
[5] The catalyst according to [4], wherein the enzyme treatment includes treating the plant processed product with at least one enzyme selected from a lipolytic enzyme, a proteolytic enzyme, a glycolytic enzyme, and a glycosyltransferase. .
[6] The catalyst according to [4] or [5], wherein the plant processed product contains water-soluble soybean polysaccharide, citrus powder, carrot powder, turmeric powder, and green tea powder.
[7] Represented by the formula (3), comprising a step of reacting the compound represented by the formula (1) and the compound represented by the formula (2) in the presence of a catalyst obtained by enzymatic treatment of a plant processed product. The manufacturing method of the compound made.
Figure 2017104044

(In the formula, X represents —O— or —NR—, and R represents a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a C 3-6 which may have a substituent. A cycloalkyl group, an optionally substituted C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, an optionally substituted C 2-6 alkynyl group, an optionally substituted C 6-10 aryl group, an optionally substituted C 1-6 alkylcarbonyl group, an optionally substituted C 6-10 arylcarbonyl group, a substituent A C 1-6 alkylsulfonyl group or a C 6-10 arylsulfonyl group which may have, and R 1 , R 2 , R 3 and R 4 may each independently have a hydrogen atom or a substituent. a C 1-6 alkyl group, an optionally substituted C 3-6 cycloalkyl group, Yes which may have a substituent C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, an optionally C 2-6 alkynyl group or a substituted group may have a substituent An optionally substituted C 6-10 aryl group, and the substituent is a C 1-4 alkyl group, a C 2-4 alkenyl group, a C 2-4 alkynyl group, a C 1-4 alkoxy group, an amino group, or an imino group. A group, a nitro group, a hydroxy group, an oxo group, a nitrile group, a mercapto group or a halogen atom, and R 2 and R 3 may be bonded to each other to form a compound represented by the formula (1b), Y is —O—, —NR 6 — or —S—, and R 5 and R 6 each independently represent a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a substituent. which may have a C 3-6 cycloalkyl group, substituted Which may C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, which may have a good C 2-6 alkynyl group or a substituted group may have a substituent C 6 -10 aryl group, wherein the substituents, C 1-4 alkoxy groups, C 6-10 aryl group, an amino group, an imino group, a nitro group, hydroxy group, oxo group, nitrile group, mercapto group or a halogen atom And R 5 and R 6 may be bonded to each other to form a compound represented by the formula (2a), provided that the compound represented by the formula (2) is not water or hydrogen sulfide.
Figure 2017104044

(In the formula, X, R 1 and R 4 are the same as defined above, and R 7 represents a group formed by bonding R 2 and R 3 to each other.)
Figure 2017104044

(In the formula, R 8 represents a group formed by combining R 5 and R 6 with each other.)
[8] The method according to [7], wherein the enzyme treatment includes treating the plant processed product with at least one enzyme selected from a lipolytic enzyme, a proteolytic enzyme, a glycolytic enzyme, and a glycosyltransferase. .
[9] The method according to [7] or [8], wherein the processed plant product contains water-soluble soybean polysaccharide, citrus powder, carrot powder, turmeric powder, and green tea powder.
[10] Enzymatic treatment of a plant processed product for promoting the reaction of reacting the compound represented by formula (1) with the compound represented by formula (2) to obtain the compound represented by formula (3) Use of the resulting composition.
Figure 2017104044

(In the formula, X represents —O— or —NR—, and R represents a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a C 3-6 which may have a substituent. A cycloalkyl group, an optionally substituted C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, an optionally substituted C 2-6 alkynyl group, an optionally substituted C 6-10 aryl group, an optionally substituted C 1-6 alkylcarbonyl group, an optionally substituted C 6-10 arylcarbonyl group, a substituent A C 1-6 alkylsulfonyl group or a C 6-10 arylsulfonyl group which may have, and R 1 , R 2 , R 3 and R 4 may each independently have a hydrogen atom or a substituent. a C 1-6 alkyl group, an optionally substituted C 3-6 cycloalkyl group, Yes which may have a substituent C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, an optionally C 2-6 alkynyl group or a substituted group may have a substituent An optionally substituted C 6-10 aryl group, and the substituent is a C 1-4 alkyl group, a C 2-4 alkenyl group, a C 2-4 alkynyl group, a C 1-4 alkoxy group, an amino group, or an imino group. A group, a nitro group, a hydroxy group, an oxo group, a nitrile group, a mercapto group or a halogen atom, and R 2 and R 3 may be bonded to each other to form a compound represented by the formula (1b), Y is —O—, —NR 6 — or —S—, and R 5 and R 6 each independently represent a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a substituent. which may have a C 3-6 cycloalkyl group, substituted Which may C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, which may have a good C 2-6 alkynyl group or a substituted group may have a substituent C 6 -10 aryl group, wherein the substituents, C 1-4 alkoxy groups, C 6-10 aryl group, an amino group, an imino group, a nitro group, hydroxy group, oxo group, nitrile group, mercapto group or a halogen atom And R 5 and R 6 may be bonded to each other to form a compound represented by the formula (2a), provided that the compound represented by the formula (2) is not water or hydrogen sulfide.
Figure 2017104044

(In the formula, X, R 1 and R 4 are the same as defined above, and R 7 represents a group formed by bonding R 2 and R 3 to each other.)
Figure 2017104044

(In the formula, R 8 represents a group formed by combining R 5 and R 6 with each other.)
[11] The use according to [10], wherein the enzyme treatment includes treating the plant product with at least one enzyme selected from a lipolytic enzyme, a proteolytic enzyme, a glycolytic enzyme, and a glycosyltransferase. .
[12] The use according to [10] or [11], wherein the processed plant product contains water-soluble soybean polysaccharide, citrus powder, carrot powder, turmeric powder, and green tea powder.

本発明によれば、上記反応における植物加工物の触媒活性を向上させることができる。   According to the present invention, the catalytic activity of the processed plant product in the above reaction can be improved.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

式(1)で表される化合物と式(2)で表される化合物を反応させて式(3)で表される化合物を得る反応は、以下に示すスキームにより表される不斉開環反応である。

Figure 2017104044
The reaction of obtaining the compound represented by the formula (3) by reacting the compound represented by the formula (1) and the compound represented by the formula (2) is an asymmetric ring-opening reaction represented by the scheme shown below. It is.
Figure 2017104044

<式(1)で表される化合物(化合物(1))>
式(1)において、Xは、−O−または−NR−である。すなわち、化合物(1)は、エポキシド構造を有する化合物またはアジリジン構造を有する化合物を意味する。

Figure 2017104044
<Compound represented by Formula (1) (Compound (1))>
In the formula (1), X is —O— or —NR—. That is, the compound (1) means a compound having an epoxide structure or a compound having an aziridine structure.
Figure 2017104044

Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基である。 R is a hydrogen atom, a C 1-6 alkyl group which may have a substituent, a C 3-6 cycloalkyl group which may have a substituent, or a C 2-6 alkenyl which may have a substituent. Group, C 3-6 cycloalkenyl group which may have a substituent, C 2-6 alkynyl group which may have a substituent, C 6-10 aryl group which may have a substituent, substituent A C 1-6 alkylcarbonyl group which may have a substituent, a C 6-10 arylcarbonyl group which may have a substituent, a C 1-6 alkylsulfonyl group which may have a substituent or a C 6-10 An arylsulfonyl group.

また、R、R、RおよびRは、それぞれ独立に、水素原子、C1−6アルキル基、C3−6シクロアルキル基、C2−6アルケニル基、C3−6シクロアルケニル基、C2−6アルキニル基またはC6−10アリール基である。 R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a C 1-6 alkyl group, a C 3-6 cycloalkyl group, a C 2-6 alkenyl group, or a C 3-6 cycloalkenyl. A group, a C 2-6 alkynyl group or a C 6-10 aryl group.

1−6アルキル基とは、炭素数1〜6のアルキル基を意味する。C1−6アルキル基としては、例えば、メチル基、エチル基、プロパン−1−イル基、プロパン−2−イル基(イソプロピル基)、ブタン−1−イル基、ブタン−2−イル基、ペンタン−1−イル基、ペンタン−2−イル基、ペンタン−3−イル基、ヘキサン−1−イル基、ヘキサン−2−イル基および3−ヘキシル基が挙げられる。 The C 1-6 alkyl group means an alkyl group having 1 to 6 carbon atoms. Examples of the C 1-6 alkyl group include a methyl group, an ethyl group, a propan-1-yl group, a propan-2-yl group (isopropyl group), a butan-1-yl group, a butan-2-yl group, and pentane. Examples include a -1-yl group, a pentan-2-yl group, a pentan-3-yl group, a hexane-1-yl group, a hexane-2-yl group, and a 3-hexyl group.

3−6シクロアルキル基とは、炭素数3〜6のシクロアルキル基を意味する。C3−6シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。 The C 3-6 cycloalkyl group means a cycloalkyl group having 3 to 6 carbon atoms. Examples of the C 3-6 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.

2−6アルケニル基とは、炭素数2〜6のアルケニル基を意味する。C2−6アルケニル基としては、例えば、ビニル基、1−プロペン−1−イル基、2−プロペン−1−イル基、プロペン−2−イル基、2−ブテン−1−イル基、2−ブテン−2−イル基、3−ブテン−1−イル基、2−ペンテン−1−イル基、3−ペンテン−1−イル基、2−ヘキセン−1−イル基、3−ヘキセン−1−イル基、4−ヘキセン−1−イル基および5−ヘキセン−1−イル基が挙げられる。 The C 2-6 alkenyl group means an alkenyl group having 2 to 6 carbon atoms. Examples of the C 2-6 alkenyl group include a vinyl group, 1-propen-1-yl group, 2-propen-1-yl group, propen-2-yl group, 2-buten-1-yl group, 2- Buten-2-yl group, 3-buten-1-yl group, 2-penten-1-yl group, 3-penten-1-yl group, 2-hexen-1-yl group, 3-hexen-1-yl Groups, 4-hexen-1-yl group and 5-hexen-1-yl group.

3−6シクロアルケニル基とは、炭素数3〜6のシクロアルケニル基を意味する。C3−6シクロアルケニル基としては、例えば、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基が挙げられる。 The C 3-6 cycloalkenyl group means a cycloalkenyl group having 3 to 6 carbon atoms. Examples of the C 3-6 cycloalkenyl group include a cyclobutenyl group, a cyclopentenyl group, and a cyclohexenyl group.

2−6アルキニル基とは、炭素数2〜6のアルキニル基を意味する。C2−6アルキニル基としては、例えば、エチニル基、プロパルギル基および3−ブチン−1−イル基が挙げられる。 The C 2-6 alkynyl group means an alkynyl group having 2 to 6 carbon atoms. Examples of the C 2-6 alkynyl group include an ethynyl group, a propargyl group, and a 3-butyn-1-yl group.

6−10アリール基とは、炭素数6〜10のアリール基を意味する。C6−10アリール基としては、例えば、フェニル基およびナフチル基が挙げられる。 The C 6-10 aryl group means an aryl group having 6 to 10 carbon atoms. Examples of the C 6-10 aryl group include a phenyl group and a naphthyl group.

1−6アルキル基、C3−6シクロアルキル基、C2−6アルケニル基、C3−6シクロアルケニル基、C2−6アルキニル基およびC6−10アリール基は、それぞれ無置換であっても、置換基を有していてもよい。置換基としては、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子が挙げられる。C1−4アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基およびブトキシ基が挙げられる。 The C 1-6 alkyl group, C 3-6 cycloalkyl group, C 2-6 alkenyl group, C 3-6 cycloalkenyl group, C 2-6 alkynyl group and C 6-10 aryl group were each unsubstituted. Alternatively, it may have a substituent. Examples of the substituent include a C 1-4 alkyl group, a C 2-4 alkenyl group, a C 2-4 alkynyl group, a C 1-4 alkoxy group, an amino group, an imino group, a nitro group, a hydroxy group, an oxo group, and a nitrile group. , A mercapto group or a halogen atom. Examples of the C 1-4 alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butoxy group.

化合物(1)としては、例えば、Cis−2,3−エポキシブタンが挙げられる。   Examples of compound (1) include Cis-2,3-epoxybutane.

また、化合物(1)の代わりに、Xが−S−であるチイラン構造を有する化合物を用いてもよい。チイラン構造を有する化合物を用いた場合、1,2−メルカプトアミン、1,2−メルカプトアルコール、1,2−ジチオールを得ることができる。   Further, instead of the compound (1), a compound having a thiirane structure in which X is —S— may be used. When a compound having a thiirane structure is used, 1,2-mercaptoamine, 1,2-mercaptoalcohol, and 1,2-dithiol can be obtained.

また、化合物(1)は、化合物(1b)であってもよい。

Figure 2017104044

式中、X、RおよびRは、上記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す。 In addition, the compound (1) may be the compound (1b).
Figure 2017104044

In the formula, X, R 1 and R 4 are the same as defined above, and R 7 represents a group formed by combining R 2 and R 3 with each other.

式(1b)中、Xは、−O−または−NR−を示し、Rは、RおよびRが互いに結合して形成される基を示す。RおよびRが互いに結合して形成される基とは、RまたはRが置換基を有している場合、当該置換基を介して接続されるように結合してもよい。すなわち、Rは、C1−6アルキレン基、C2−6アルケニレン基、C2−6アルキニレン基およびC6−10アリーレン基だけでなく、RとRとが置換基を介して結合して形成される態様も包含する。 In formula (1b), X represents —O— or —NR—, and R 7 represents a group formed by combining R 2 and R 3 with each other. The groups R 2 and R 3 are bonded to each other to form, when R 2 or R 3 has a substituent, may be coupled to be connected via the substituent. That is, R 7 is not only a C 1-6 alkylene group, a C 2-6 alkenylene group, a C 2-6 alkynylene group and a C 6-10 arylene group, but R 2 and R 3 are bonded via a substituent. The aspect formed as above is also included.

1−6アルキレン基、C2−6アルケニレン基、C2−6アルキニレン基およびC6−10アリーレン基とは、それぞれ式(1)で定義されたC1−6アルキル基、C2−6アルケニル基、C2−6アルキニル基およびC6−10アリール基からさらに水素原子を1つ除いてなる基である。 A C 1-6 alkylene group, a C 2-6 alkenylene group, a C 2-6 alkynylene group and a C 6-10 arylene group are each a C 1-6 alkyl group defined by the formula (1), C 2-6 A group obtained by further removing one hydrogen atom from an alkenyl group, a C 2-6 alkynyl group and a C 6-10 aryl group.

とRが置換基を介して結合して形成される態様とは、例えば、2−オキサプロピレン基(−CHOCH−)、3−オキサペンチレン基(−CHCHOCHCH−)、3−オキソペンチレン基(−CHCHC(=O)CHCH−)が挙げられる。 Examples of the mode in which R 2 and R 3 are bonded via a substituent include, for example, 2-oxapropylene group (—CH 2 OCH 2 —), 3-oxapentylene group (—CH 2 CH 2 OCH 2 CH 2 -), 3- oxo pentylene group (-CH 2 CH 2 C (= O) CH 2 CH 2 -) and the like.

式(1b)で表される化合物の具体例としては、6−オキサビシクロ[3.1.0]ヘキサン、7−オキサビシクロ[4.1.0]ヘプタン、8−オキサビシクロ[5.1.0]オクタンおよび3,6−ジオキサビシクロ[3.1.0]ヘキサンが挙げられる。   Specific examples of the compound represented by the formula (1b) include 6-oxabicyclo [3.1.0] hexane, 7-oxabicyclo [4.1.0] heptane, 8-oxabicyclo [5.1. 0] octane and 3,6-dioxabicyclo [3.1.0] hexane.

<式(2)で表される化合物(化合物(2))>
式(2)において、Yは、−O−、−NR−または−S−である。すなわち、化合物(2)は、アルコール、アミンまたはチオールを意味する。ただし、水および硫化水素は、化合物(2)の範囲から除かれる。

Figure 2017104044
<Compound represented by formula (2) (compound (2))>
In the formula (2), Y is —O—, —NR 6 — or —S—. That is, the compound (2) means alcohol, amine or thiol. However, water and hydrogen sulfide are excluded from the range of the compound (2).
Figure 2017104044

また、RおよびRは、それぞれ独立に、水素原子、C1−6アルキル基、C3−6シクロアルキル基、C2−6アルケニル基、C3−6シクロアルケニル基、C2−6アルキニル基またはC6−10アリール基である。 R 5 and R 6 are each independently a hydrogen atom, a C 1-6 alkyl group, a C 3-6 cycloalkyl group, a C 2-6 alkenyl group, a C 3-6 cycloalkenyl group, or a C 2-6. An alkynyl group or a C 6-10 aryl group.

1−6アルキル基としては、例えば、メチル基、エチル基、プロパン−1−イル基、プロパン−2−イル基(イソプロピル基)、ブタン−1−イル基、ブタン−2−イル基、ペンタン−1−イル基、ペンタン−2−イル基、ペンタン−3−イル基、ヘキサン−1−イル基、ヘキサン−2−イル基および3−ヘキシル基が挙げられる。 Examples of the C 1-6 alkyl group include a methyl group, an ethyl group, a propan-1-yl group, a propan-2-yl group (isopropyl group), a butan-1-yl group, a butan-2-yl group, and pentane. Examples include a -1-yl group, a pentan-2-yl group, a pentan-3-yl group, a hexane-1-yl group, a hexane-2-yl group, and a 3-hexyl group.

3−6シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。 Examples of the C 3-6 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.

2−6アルケニル基としては、例えば、ビニル基、1−プロペン−1−イル基、2−プロペン−1−イル基、プロペン−2−イル基、2−ブテン−1−イル基、2−ブテン−2−イル基、3−ブテン−1−イル基、2−ペンテン−1−イル基、3−ペンテン−1−イル基、2−ヘキセン−1−イル基、3−ヘキセン−1−イル基、4−ヘキセン−1−イル基および5−ヘキセン−1−イル基が挙げられる。 Examples of the C 2-6 alkenyl group include a vinyl group, 1-propen-1-yl group, 2-propen-1-yl group, propen-2-yl group, 2-buten-1-yl group, 2- Buten-2-yl group, 3-buten-1-yl group, 2-penten-1-yl group, 3-penten-1-yl group, 2-hexen-1-yl group, 3-hexen-1-yl Groups, 4-hexen-1-yl group and 5-hexen-1-yl group.

3−6シクロアルケニル基としては、例えば、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基が挙げられる。 Examples of the C 3-6 cycloalkenyl group include a cyclobutenyl group, a cyclopentenyl group, and a cyclohexenyl group.

2−6アルキニル基としては、例えば、エチニル基、プロパルギル基および3−ブチン−1−イル基が挙げられる。 Examples of the C 2-6 alkynyl group include an ethynyl group, a propargyl group, and a 3-butyn-1-yl group.

6−10アリール基としては、例えば、フェニル基およびナフチル基が挙げられる。 Examples of the C 6-10 aryl group include a phenyl group and a naphthyl group.

1−6アルキル基、C3−6シクロアルキル基、C2−6アルケニル基、C3−6シクロアルケニル基、C2−6アルキニル基およびC6−10アリール基は、それぞれ無置換であっても、置換基を有していてもよい。置換基としては、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C6−10アリール基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子が挙げられる。C1−4アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基およびブトキシ基が挙げられる。 The C 1-6 alkyl group, C 3-6 cycloalkyl group, C 2-6 alkenyl group, C 3-6 cycloalkenyl group, C 2-6 alkynyl group and C 6-10 aryl group were each unsubstituted. Alternatively, it may have a substituent. Examples of the substituent include a C 1-4 alkyl group, a C 2-4 alkenyl group, a C 2-4 alkynyl group, a C 6-10 aryl group, a C 1-4 alkoxy group, an amino group, an imino group, a nitro group, and a hydroxy group. Group, oxo group, nitrile group, mercapto group or halogen atom. Examples of the C 1-4 alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butoxy group.

化合物(2)の具体例としては、メタノール、エタノール、1−プロパノール、2−プロパノール(イソプロパノール)、1−ブタノール、2−ブタノール、1−ペンタノール、2−ペンタノール、フェノール、アンモニア、メチルアミン、エチルアミン、プロピルアミン、2−プロピルアミン(イソプロピルアミン)、2−ペンチルアミン、3−ペンチルアミン、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミン、tert−ブチルアミン、アリルアミン、プロパルギルアミン、ベンジルアミン、2−フェニルエチルアミン、アニリン、ジメチルアミン、ジエチルアミン、3−メトキシプロピルアミン、3−エトキシプロピルアミン、メタンチオール、エタンチオール、1−プロパンチオール、2−プロパンチオール、ブタンチオールが挙げられる。   Specific examples of the compound (2) include methanol, ethanol, 1-propanol, 2-propanol (isopropanol), 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, phenol, ammonia, methylamine, Ethylamine, propylamine, 2-propylamine (isopropylamine), 2-pentylamine, 3-pentylamine, cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, tert-butylamine, allylamine, propargylamine, benzylamine, 2 -Phenylethylamine, aniline, dimethylamine, diethylamine, 3-methoxypropylamine, 3-ethoxypropylamine, methanethiol, ethanethiol, 1-propanethiol, - propanethiol include butanethiol.

また、化合物(2)は、化合物(2a)であってもよい。

Figure 2017104044

式中、Rは、RおよびRが互いに結合して形成される基を示す。 In addition, the compound (2) may be the compound (2a).
Figure 2017104044

In the formula, R 8 represents a group formed by combining R 5 and R 6 with each other.

式(2a)中、Rは、RおよびRが互いに結合して形成される基を示す。RおよびRが互いに結合して形成される基とは、RまたはRが置換基を有している場合、当該置換基を介して接続されるように結合してもよい。すなわち、Rは、C1−6アルキレン基、C3−6シクロアルキレン基、C2−6アルケニレン基、C3−6シクロアルケニレン基、C2−6アルキニレン基およびC6−10アリーレン基だけでなく、RとRが置換基を介して結合して形成される態様も包含する。 In formula (2a), R 8 represents a group formed by combining R 5 and R 6 with each other. The groups R 5 and R 6 are bonded to each other to form, when R 5 or R 6 has a substituent may be attached so as to be connected via the substituent. That is, R 8 is a C 1-6 alkylene group, a C 3-6 cycloalkylene group, a C 2-6 alkenylene group, a C 3-6 cycloalkenylene group, a C 2-6 alkynylene group and a C 6-10 arylene group only. In addition, an embodiment in which R 5 and R 6 are bonded via a substituent is also included.

1−6アルキレン基、C3−6シクロアルキレン基、C2−6アルケニレン基、C3−6シクロアルケニレン基、C2−6アルキニレン基およびC6−10アリーレン基とは、それぞれ式(2)で定義されたC1−6アルキル基、C2−6アルケニル基、C2−6アルキニル基およびC6−10アリール基からさらに水素原子を1つ除いてなる基である。 C 1-6 alkylene group, C 3-6 cycloalkylene group, C 2-6 alkenylene group, C 3-6 cycloalkenylene group, C 2-6 alkynylene group and C 6-10 arylene group are each represented by the formula (2 And a C 1-6 alkyl group, a C 2-6 alkenyl group, a C 2-6 alkynyl group and a C 6-10 aryl group defined in (1) above.

とRが置換基を介して結合して形成される態様とは、例えば、2−オキサプロピレン基(−CHOCH−)、3−オキサペンチレン基(−CHCHOCHCH−)、3−オキソペンチレン基(−CHCHC(=O)CHCH−)が挙げられる。 Examples of the mode in which R 5 and R 6 are bonded through a substituent include, for example, 2-oxapropylene group (—CH 2 OCH 2 —), 3-oxapentylene group (—CH 2 CH 2 OCH 2 CH 2 -), 3- oxo pentylene group (-CH 2 CH 2 C (= O) CH 2 CH 2 -) and the like.

化合物(2a)の具体例としては、ピロリジン、ピペリジン、モルホリン、ピペラジン、ホモピペラジン、チオモルホリンである。   Specific examples of the compound (2a) are pyrrolidine, piperidine, morpholine, piperazine, homopiperazine, and thiomorpholine.

<式(3)で表される化合物(化合物(3))>
化合物(3)とは、式(3)で表される化合物であり、式中、X、Y、R、R、R、R、R、R、RおよびRは、上記定義と同一である。

Figure 2017104044
<Compound represented by formula (3) (compound (3))>
The compound (3) is a compound represented by the formula (3), in which X, Y, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are Is the same as defined above.
Figure 2017104044

また、化合物(1)が化合物(1b)である場合、化合物(2)が化合物(2a)である場合を考慮すると、化合物(3)には化合物(3a)〜(3c)が包含される。

Figure 2017104044
Moreover, when the compound (1) is the compound (1b) and the case where the compound (2) is the compound (2a) is considered, the compound (3) includes the compounds (3a) to (3c).
Figure 2017104044

化合物(3)の具体例としては、1,2−ジオール(XおよびYがともに−O−である場合)、1,2−アミノアルコール(Xが−O−かつYが−NH−である場合、または、Xが−NH−かつYが−O−である場合)、1,2−ジアミン(XおよびYがともに−NH−である場合)、1,2−メルカプトアルコール(Xが−O−かつYが−S−である場合)、1,2−メルカプトアミン(Xが−NH−かつYが−S−である場合)が挙げられる。   Specific examples of the compound (3) include 1,2-diol (when both X and Y are —O—), 1,2-amino alcohol (when X is —O— and Y is —NH—). Or X is —NH— and Y is —O—), 1,2-diamine (when both X and Y are —NH—), 1,2-mercaptoalcohol (X is —O—). And Y is -S-), 1,2-mercaptoamine (when X is -NH- and Y is -S-).

<植物加工物>
本明細書において、植物加工物とは、植物の一部を加工して得られる粉末または抽出物である。植物としては、例えば、食用植物である。
<Processed plant products>
In this specification, a plant processed material is a powder or extract obtained by processing a part of a plant. An example of a plant is an edible plant.

上記「食用植物」とは、ヒトがその一部を食べることができる植物として、一般的に知られた植物を意味する。食用植物としては、例えば、穀類、豆類、野菜、果物またはいも類に分類される植物であり、食用植物の一部とは、果実全体、果肉、果皮、茎、種子、胚芽、根、球根および葉から適宜選択することができる。食用植物としては、具体的には、マメ科(例えば、大豆、黒豆、赤インゲンマメ、エンドウマメ)、モクセイ科(例えば、オリーブ)、バショウ科(例えば、バナナ)、イネ科(例えば、小麦)、ウリ科(例えば、カボチャ)、ナス科(例えば、トマト、ジャガイモ)、ウルシ科(例えば、ピスタチオ、カシューナッツ)、ショウガ科(例えば、ウコン)、ツバキ科(例えば、茶)、ミカン科(例えば、ナツミカン、柚子、花柚子、ブンタン)、ヒガンバナ科(例えば、ニンニク)、セリ科(例えば、ニンジン)、アブラナ科(例えば、ダイコン)、ハス科(例えば、レンコン)、マタタビ科(例えば、キウイ)、バラ科(例えば、リンゴ)およびネギ科(例えば、ネギ)の植物が挙げられる。食用植物としては、マメ科(例えば、大豆、黒豆、赤インゲンマメ、エンドウマメ)、ツバキ科(例えば、茶)、セリ科(例えば、ニンジン)、マタタビ科(例えば、キウイ)およびユリ科(例えば、ネギ)からなる群から選択されることが好ましい。なお、ネギは、ネギ科として分類される場合もある。   The above “edible plant” means a plant generally known as a plant that a human can eat a part of. The edible plant is, for example, a plant classified into cereals, beans, vegetables, fruits or potatoes, and part of the edible plant is the whole fruit, pulp, pericarp, stem, seed, germ, root, bulb and It can be appropriately selected from leaves. Specific examples of edible plants include legumes (for example, soybeans, black beans, red kidney beans, peas), oleaceae (for example, olives), salamanders (for example, bananas), gramineae (for example, wheat), Cucurbitaceae (eg, pumpkin), solanaceae (eg, tomato, potato), urushiaceae (eg, pistachio, cashew nut), ginger (eg, turmeric), camellia family (eg, tea), citrus (eg, nutmican) , Eggplant, flower bud, buntan), Amaryllidaceae (eg, garlic), celery family (eg, carrot), Brassicaceae (eg, radish), lotus family (eg, lotus root), matabidae (eg, kiwi), rose Plants of the family (eg apple) and leeks (eg leek) are mentioned. Edible plants include legumes (e.g., soybeans, black beans, red kidney beans, peas), camellia (e.g., tea), serpentaceae (e.g., carrots), matabidae (e.g., kiwi) and lily families (e.g., Preferably selected from the group consisting of leek). In addition, a leek may be classified as a leek family.

上記「加工」とは、必要に応じて、乾燥する、加熱する、火であぶる、焙煎する、油であげる、発酵させる、不要な部位を除去する等の処理を行った後、粉末状になるまで粉砕すること、あるいは成分を抽出することを意味する。また、上記植物加工物には、食用植物のエキスを抽出した後、乾燥したものを粉砕して得られる粉末も包含される。したがって、上記茶は、緑茶であってもよく、紅茶であってもよい。また、上記大豆は、きな粉であってもよく、納豆であってもよい。   The above-mentioned “processing” means, if necessary, processing such as drying, heating, baking, roasting, oiling, fermenting, removing unnecessary parts, etc. It means to pulverize until it becomes or to extract components. In addition, the processed plant product includes a powder obtained by extracting an extract of an edible plant and then pulverizing a dried product. Therefore, the tea may be green tea or black tea. In addition, the soybean may be kinako or natto.

植物加工物は、粉末状または液状に加工された状態で市販されたものを使用してもよく、加工された状態で市販されたものを適宜粉末状に粉砕して使用してもよい。市販されたものとしては、きな粉、脱脂大豆粉(例えば、フジプロF(不二製油(株)製、商品名)、サンリッチF(昭和産業(株)製、商品名)、ソーヤフラワーFT−N(日清オイリオ(株)製、商品名)、エスサンミート特等(味の素(株)製、商品名)、豊年ソイプロ(J−オイルミルズ(株)製、商品名)、水溶性大豆多糖類(例えば、ソヤファイブS−DN(不二製油(株)製、商品名)等の大豆加工物を用いることが好ましく、きな粉、ソーヤフラワーFT−NまたはソヤファイブS−DNを用いることがより好ましい。   As the processed plant product, a product marketed in a powdered or liquid state may be used, or a product marketed in a processed state may be appropriately pulverized into a powder and used. Examples of commercially available products include kina flour, defatted soybean flour (for example, Fujipro F (Fuji Oil Co., Ltd., trade name), Sunrich F (Showa Sangyo Co., Ltd., trade name), Soya Flower FT-N ( Nisshin Oilio Co., Ltd., trade name), Essan Meat Special (Ajinomoto Co., trade name), Toyotomi Soipro (J-Oil Mills Co., trade name), water-soluble soybean polysaccharide (for example, It is preferable to use processed soybeans such as Soya Five S-DN (product name, manufactured by Fuji Oil Co., Ltd.), and more preferably Kina Flour, Soya Flower FT-N or Soya Five S-DN.

<不斉開環反応>
化合物(2)の量は、経済性、回収性を考慮した任意の量を用いることができる。このような量としては、例えば、化合物(1)のモル数に対して0.01〜100当量、好ましくは0.1〜10当量、更に好ましくは0.5〜2当量である。
<Asymmetric ring opening reaction>
The amount of the compound (2) can be any amount in consideration of economy and recoverability. Such an amount is, for example, 0.01 to 100 equivalents, preferably 0.1 to 10 equivalents, more preferably 0.5 to 2 equivalents, relative to the number of moles of the compound (1).

植物加工物の量としては、経済性、回収性を考慮した任意の量を用いることができる。このような植物加工物の量としては、例えば、式(1)で表される化合物の質量に対して、質量比で0.01〜100倍量、好ましくは0.1〜10倍量、更に好ましくは1〜5倍量である。   As the amount of the processed plant product, any amount in consideration of economic efficiency and recoverability can be used. The amount of such processed plant product is, for example, 0.01 to 100 times, preferably 0.1 to 10 times, and more preferably 0.1 to 10 times the mass of the compound represented by formula (1). The amount is preferably 1 to 5 times.

不斉開環反応は、溶媒中で行ってもよい。溶媒中で行う場合は、化合物(1)および化合物(2)と反応しない溶媒であれば、通常、有機合成化学でよく知られた有機溶媒および水を使用することができる。このような有機溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ヘキサン、シクロヘキサン、ヘプタン等の炭化水素類;ジイソプロピルエーテル、テトラヒドロフラン、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、シクロペンチルメチルエーテル等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類が挙げられる。また、これらの溶媒は、単独で使用してもよく、2種以上を混合して用いてもよい。2種以上を混合して用いる場合は、有機溶媒と水を混合して用いることが好ましく、回収性、安全性、経済性の面からトルエンまたはヘプタンと水との混合溶媒を用いることが特に好ましい。   The asymmetric ring opening reaction may be performed in a solvent. When carried out in a solvent, an organic solvent well known in organic synthetic chemistry and water can be usually used as long as they do not react with the compound (1) and the compound (2). Examples of such organic solvents include aromatic hydrocarbons such as benzene, toluene, and xylene; hydrocarbons such as hexane, cyclohexane, and heptane; diisopropyl ether, tetrahydrofuran, methyl tert-butyl ether, ethyl tert-butyl ether, and cyclopentyl. Examples include ethers such as methyl ether; esters such as ethyl acetate and butyl acetate; and halogenated hydrocarbons such as dichloromethane and chloroform. These solvents may be used alone or in combination of two or more. When using a mixture of two or more, it is preferable to use a mixture of an organic solvent and water, and it is particularly preferable to use a mixed solvent of toluene or heptane and water from the viewpoint of recoverability, safety and economy. .

不斉開環反応に使用できる溶媒の量は、単独溶媒、混合溶媒のいずれにおいても経済性を考慮した量で用いることができる。このような溶媒の量は、例えば、化合物(1)の質量に対して、容量比で0〜100倍量、好ましくは0.5〜50倍量、更に好ましくは2〜10倍量である。   The amount of the solvent that can be used for the asymmetric ring-opening reaction can be used in consideration of economic efficiency in either a single solvent or a mixed solvent. The amount of such a solvent is, for example, 0 to 100 times, preferably 0.5 to 50 times, and more preferably 2 to 10 times the volume of the compound (1) by volume.

不斉開環反応に使用できる水の含量は、触媒に対して水を質量比で0.05〜1倍量の範囲とすることができ、触媒に対して水を0.20〜0.50倍量の範囲であることが更に好ましい。このような範囲であれば、反応の変換率および生成物の光学純度がより向上する。   The content of water that can be used in the asymmetric ring-opening reaction can be 0.05 to 1 times the mass of water with respect to the catalyst, and 0.20 to 0.50 of water with respect to the catalyst. More preferably, it is in the range of double amount. Within such a range, the conversion rate of the reaction and the optical purity of the product are further improved.

反応温度は−20℃〜100℃が好ましく、特に30℃〜50℃が好ましい。反応終了後、触媒をろ別することで、対応する化合物(3)を得ることができる。本発明の不斉開環反応を行う際に、ろ別によって回収された触媒を再利用することができる。   The reaction temperature is preferably -20 ° C to 100 ° C, particularly preferably 30 ° C to 50 ° C. After completion of the reaction, the corresponding compound (3) can be obtained by filtering off the catalyst. When carrying out the asymmetric ring-opening reaction of the present invention, the catalyst recovered by filtration can be reused.

反応時間は、経済性を考慮した任意の変換率が得られる時間まで反応を行うことができる。このような反応時間としては、例えば、1〜500時間、好ましくは1〜100時間、更に好ましくは1〜48時間である。   With respect to the reaction time, the reaction can be carried out until a time when an arbitrary conversion rate considering economic efficiency is obtained. Such a reaction time is, for example, 1 to 500 hours, preferably 1 to 100 hours, and more preferably 1 to 48 hours.

次に、上述の不斉開環反応において、植物加工物の触媒活性を向上させる方法について、説明する。   Next, a method for improving the catalytic activity of a processed plant product in the above-described asymmetric ring-opening reaction will be described.

植物加工物の触媒活性を向上させる方法は、植物加工物を酵素処理する工程を含む。   The method for improving the catalytic activity of a processed plant product includes a step of enzymatically treating the processed plant product.

植物加工物を酵素処理する工程は、植物加工物に酵素を接触させることにより、酵素処理物を得る工程である。   The step of enzyme-treating a plant processed product is a step of obtaining an enzyme-treated product by bringing an enzyme into contact with the plant processed product.

酵素は、脂質分解酵素、タンパク質分解酵素、糖分解酵素及び糖転移酵素からなる群から選択される1種以上の酵素であることが好ましい。   The enzyme is preferably one or more enzymes selected from the group consisting of lipolytic enzymes, proteolytic enzymes, glycolytic enzymes, and glycosyltransferases.

脂質分解酵素は、脂質を加水分解する酵素(リパーゼ)であってもよく、リン脂質を加水分解する酵素(ホスホリパーゼ)であってもよい。好ましい脂質分解酵素はリパーゼである。   The lipolytic enzyme may be an enzyme that hydrolyzes lipids (lipase) or an enzyme that hydrolyzes phospholipids (phospholipase). A preferred lipolytic enzyme is lipase.

タンパク質分解酵素は、エンドペプチダーゼであってもよく、エキソペプチダーゼであってもよい。また、タンパク質分解酵素は、セリンプロテイナーゼ、チオールプロテイナーゼ、金属プロテイナーゼ、アスパラギン酸プロテイナーゼ、酸性プロテイナーゼ、中性プロテイナーゼ又はアルカリ性プロテイナーゼであってもよい。タンパク質分解酵素としては、例えば、ペプシン、トリプシン、α−キモトリプシン、サブチリシン、パパイン、エラスターゼ、カルボキシペプチダーゼ、アミノペプチダーゼ等が挙げられる。タンパク質分解酵素は、レンネット等の酵素の混合物であってもよい。   The proteolytic enzyme may be an endopeptidase or an exopeptidase. The proteolytic enzyme may be a serine proteinase, a thiol proteinase, a metal proteinase, an aspartic proteinase, an acid proteinase, a neutral proteinase, or an alkaline proteinase. Examples of the proteolytic enzyme include pepsin, trypsin, α-chymotrypsin, subtilisin, papain, elastase, carboxypeptidase, aminopeptidase and the like. The proteolytic enzyme may be a mixture of enzymes such as rennet.

糖分解酵素としては、例えば、アミラーゼ、セルラーゼ、ヘミセルラーゼ、ペクチナーゼ、マルターゼ、ラクターゼ、サッカラーゼ、ヘスペリジナーゼ、ガラクトシダーゼ等が挙げられる。   Examples of the glycolytic enzyme include amylase, cellulase, hemicellulase, pectinase, maltase, lactase, saccharase, hesperidinase, galactosidase and the like.

糖転移酵素としては、例えば、シクロデキストリングルカノトランスフェラーゼ、グリコシルトランスフェラーゼ等が挙げられる。   Examples of the glycosyltransferase include cyclodextrin glucanotransferase, glycosyltransferase and the like.

酵素処理の温度は、使用する酵素が活性化される温度であればよく、例えば、0〜100℃である。酵素処理の時間は、実用性を考慮して、当業者が適宜設定することができ、例えば、0.1〜120時間である。   The temperature of enzyme treatment should just be the temperature by which the enzyme to be used is activated, for example, is 0-100 degreeC. The time for enzyme treatment can be appropriately set by those skilled in the art in consideration of practicality, and is, for example, 0.1 to 120 hours.

酵素処理は、緩衝液中で行ってもよい。pHを酵素反応に最適な範囲に維持できる緩衝液であれば、制限されない。緩衝液としては、ホウ酸緩衝液、トリス緩衝液、リン酸緩衝液が挙げられ、好ましくはリン酸緩衝液である。酵素処理に最適なpHの範囲は、使用する酵素の種類に合わせて設定すればよく、通常、1〜11である。   The enzyme treatment may be performed in a buffer solution. The buffer is not limited as long as it is a buffer that can maintain the pH within the optimum range for the enzyme reaction. Examples of the buffer include borate buffer, Tris buffer, and phosphate buffer, and phosphate buffer is preferable. What is necessary is just to set the range of pH optimal for enzyme treatment according to the kind of enzyme to be used, and it is 1-11 normally.

特定の時間、酵素処理した後、混合物中に残存する酵素を失活させて酵素処理物を得てもよい。酵素を失活させる手段としては、加熱する、酸を添加する、プロテイナーゼK等のタンパク質分解酵素を添加する等の手段がある。好ましい酵素の失活手段は、プロテイナーゼKを添加する方法である。   After the enzyme treatment for a specific time, the enzyme treatment product may be obtained by inactivating the enzyme remaining in the mixture. As means for inactivating the enzyme, there are means such as heating, adding an acid, and adding a proteolytic enzyme such as proteinase K. A preferred enzyme deactivation means is a method of adding proteinase K.

得られた酵素処理物は、そのまま不斉開環反応の触媒として使用してもよく、乾燥して固形物として保管した後に使用してもよい。   The obtained enzyme-treated product may be used as it is as a catalyst for an asymmetric ring-opening reaction, or may be used after being dried and stored as a solid.

酵素処理物は植物加工物に比べて、上記不斉開環反応の触媒活性が向上するだけでなく、粘性がより低下する。酵素処理物は植物加工物に比べて、容器への付着がより少なく、ろ過性が向上し、不斉開環反応の後処理がより容易となる。   The enzyme-treated product not only improves the catalytic activity of the asymmetric ring-opening reaction but also lowers the viscosity as compared with the processed plant product. Compared with processed plant products, the enzyme-treated product has less adhesion to the container, improves filterability, and facilitates post-treatment of the asymmetric ring-opening reaction.

酵素を失活させた後、限外濾過膜などを用いて濾過精製を行ってもよい。濾過精製を行うことにより酵素処理物から不要物を除去することができ、単位重量あたりの触媒活性をより高めることができ、不斉開環反応中における触媒の分散性もより向上する。   After inactivating the enzyme, filtration purification may be performed using an ultrafiltration membrane or the like. By performing filtration purification, unnecessary substances can be removed from the enzyme-treated product, the catalytic activity per unit weight can be further increased, and the dispersibility of the catalyst during the asymmetric ring-opening reaction is further improved.

また、酵素処理物は、さらにゲルろ過クロマトグラフィーで精製してもよい。ゲルろ過クロマトグラフィーによる精製は、例えば、示差屈折計で測定して得られるクロマトグラムにおいて、ピークが観測されたフラクションを回収する方法が挙げられる。ゲルろ過クロマトグラフィーで酵素処理物を精製することにより、単位重量あたりの触媒活性をさらに高めることができる。   Further, the enzyme-treated product may be further purified by gel filtration chromatography. Purification by gel filtration chromatography includes, for example, a method of collecting a fraction in which a peak is observed in a chromatogram obtained by measurement with a differential refractometer. By purifying the enzyme-treated product by gel filtration chromatography, the catalytic activity per unit weight can be further increased.

本明細書において、「触媒活性が向上する」という語は、植物加工物をそのまま使用した場合と比較して、不斉開環反応の変換率が増加する、不斉開環反応の選択率が増加する、または、不斉開環反応の反応速度が増加するという意味で使用される。   In this specification, the term “catalytic activity is improved” means that the conversion rate of the asymmetric ring-opening reaction is increased as compared to the case where the processed plant product is used as it is, and the selectivity of the asymmetric ring-opening reaction is increased. Used to mean that the reaction rate of the asymmetric ring-opening reaction increases or increases.

以下、本発明を実施例、参考例により具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a reference example demonstrate this invention concretely, this invention is not limited to a following example, unless the summary is exceeded.

合成した化合物は、テトラメチルシランを内部標準としたH−NMRおよび13C−NMRスペクトルにより、その構造式を決定した。データは、内部標準として用いたTMS(テトラメチルシラン)を0ppmとしたときの化学シフト値(δ)を記載した。また、水酸基およびアミノ基等の幅広いピークの場合は、記載していない。 The structural formula of the synthesized compound was determined by 1 H-NMR and 13 C-NMR spectra using tetramethylsilane as an internal standard. The data described the chemical shift value (δ) when TMS (tetramethylsilane) used as an internal standard was 0 ppm. In addition, in the case of broad peaks such as a hydroxyl group and an amino group, it is not described.

明細書中で用いられる「変換率」とは、下記式に基づいて算出した値である。変換率の算出方法は、具体的には、次のとおりである。まず、植物加工物の存在下、化合物(1)と化合物(2)との反応を行った際の反応液を少量採取する。次に、ガスクロマトグラフィーを用いて採取した反応液を測定し、化合物(1)および化合物(3)の各ピーク面積を得る。得られた各ピーク面積から、有効炭素数法(ECN)によって化合物(1)と化合物(3)のモル比を算出し、下記式に基づいて算出した値である。なお、有効炭素数法(ECN)とは、例えば、Gas Chromatography,Academic Press,NewYork,1962,p207および分析化学便覧改訂5版(村田誠四郎、日本分析化学会編、丸善(株))に記載の方法である。例えば、7−オキサビシクロ[4.1.0]ヘプタンの有効炭素数は、5.00であり、2−シクロプロピルアミノ−1−シクロヘキサノールの有効炭素数は、7.50である。
変換率(%)=100×化合物(3)のモル数/(化合物(1)のモル数+化合物(3)のモル数)
The “conversion rate” used in the specification is a value calculated based on the following formula. Specifically, the conversion rate calculation method is as follows. First, a small amount of a reaction solution is collected when the reaction between the compound (1) and the compound (2) is performed in the presence of the processed plant product. Next, the reaction solution collected using gas chromatography is measured to obtain the peak areas of compound (1) and compound (3). From the obtained peak areas, the molar ratio of the compound (1) and the compound (3) is calculated by the effective carbon number method (ECN), and is a value calculated based on the following formula. The effective carbon number method (ECN) is described in, for example, Gas Chromatography, Academic Press, New York, 1962, p207 and the Analytical Chemistry Handbook 5th edition (Seishiro Murata, edited by Japan Analytical Chemical Society, Maruzen Co., Ltd.) It is a method. For example, the effective carbon number of 7-oxabicyclo [4.1.0] heptane is 5.00, and the effective carbon number of 2-cyclopropylamino-1-cyclohexanol is 7.50.
Conversion rate (%) = 100 × number of moles of compound (3) / (number of moles of compound (1) + number of moles of compound (3))

光学純度は、鏡像体過剰率(%ee)を算出して記載した。測定条件は以下のとおりである。   The optical purity was described by calculating the enantiomeric excess (% ee). The measurement conditions are as follows.

「選択率(%ee)」は、特記しない限り、ガスクロマトグラフィー(GC)を用いて測定した後、ピーク面積の比から、下記式に基づいて計算した。すなわち、選択率が負の値の場合は、「短いGC保持時間のピーク面積」の値が「長いGC保持時間のピーク面積」の値より大きかったことを示す。なお、「選択率(R,R)%ee」と記載されている場合は、(R,R)体の選択率を示す。
選択率(%ee)=100×{(保持時間が長いピークのピーク面積)−(保持時間が短いピークのピーク面積)}/{(保持時間が長いピークのピーク面積)+(保持時間が短いピークのピーク面積)}
The “selectivity (% ee)” was calculated based on the following formula from the ratio of peak areas after measurement using gas chromatography (GC) unless otherwise specified. That is, when the selectivity is a negative value, it indicates that the value of “peak area of short GC holding time” is larger than the value of “peak area of long GC holding time”. When “selectivity (R, R)% ee” is described, the selectivity for (R, R) isomers is indicated.
Selectivity (% ee) = 100 × {(peak area of peak with long retention time) − (peak area of peak with short retention time)} / {(peak area of peak with long retention time) + (short retention time) Peak area)}

分析条件
(1)ガスクロマトグラフィー法
得られた化合物の分析条件は、表1に記載の条件で測定した。なお、全ての分析条件に共通する事項は、下記共通条件に記載のとおりである。
共通条件
キャリアガス:ヘリウム
検出器:水素炎イオン化検出器
圧力:94kPa
気化室温度:220℃
検出器温度:300℃
スプリット比: 1:150
注入量:0.5μL
サンプル前処理:試料約1mgをジクロロメタンに溶解し、塩化トリメチルシランとトリエチルアミンを加え撹拌し、不溶物をろ過した。
カラム:
BETADEX 120(長さ:30m、内径:0.25μm、Supelco社製)
CP−CHIRASIL−DEX CB(長さ:25m、内径:0.25mm、膜厚:0.25μm、VARIAN社製)

Figure 2017104044
Analysis Conditions (1) Gas Chromatography Method The analysis conditions of the obtained compound were measured under the conditions described in Table 1. Items common to all analysis conditions are as described in the following common conditions.
Common conditions Carrier gas: Helium detector: Hydrogen flame ionization detector Pressure: 94 kPa
Vaporization chamber temperature: 220 ° C
Detector temperature: 300 ° C
Split ratio: 1: 150
Injection volume: 0.5 μL
Sample pretreatment: About 1 mg of a sample was dissolved in dichloromethane, trimethylsilane chloride and triethylamine were added and stirred, and insoluble matter was filtered off.
column:
BETADEX 120 (length: 30 m, inner diameter: 0.25 μm, manufactured by Supelco)
CP-CHIRASIL-DEX CB (length: 25 m, inner diameter: 0.25 mm, film thickness: 0.25 μm, manufactured by Varian)
Figure 2017104044

(2)液体クロマトグラフィー法
得られた化合物の分析条件は、表2に記載の条件で測定した。なお、全ての分析条件に共通する事項は、下記共通条件に記載のとおりである。
共通条件
注入量:5μL
検出器:紫外吸光検出器(波長254nm)
カラム:
CHIRALCEL OB−H(4.6×250mm、株式会社ダイセル製)
CHIRALPAK AS−RH(4.6×150mm、株式会社ダイセル製)
CHIRALCEL OD−H(4.6×250mm、株式会社ダイセル製)

Figure 2017104044
(2) Liquid Chromatography Method The analysis conditions of the obtained compound were measured under the conditions described in Table 2. Items common to all analysis conditions are as described in the following common conditions.
Common condition injection volume: 5 μL
Detector: UV absorption detector (wavelength 254 nm)
column:
CHIRALCEL OB-H (4.6 × 250mm, manufactured by Daicel Corporation)
CHIRALPAK AS-RH (4.6 x 150 mm, manufactured by Daicel Corporation)
CHIRALCEL OD-H (4.6 x 250 mm, manufactured by Daicel Corporation)
Figure 2017104044

分析の為のラセミ体合成と分析方法は、以下の参考例に示した。   The racemic synthesis and analysis method for analysis are shown in the following reference examples.

参考例1 trans−2−(イソプロピルアミノ)シクロヘキサノール合成
50mLナスフラスコに7−オキサビシクロ[4.1.0]ヘプタン 1.45gとイソプロピルアミン0.87gを量りとり、メタノール8mLと水2mL、塩化リチウム0.13gを加え、50℃で48時間反応した。反応後、減圧下に濃縮し、粗体を得た。粗体は柴田科学社製ガラスチューブオーブンGTO−250RS(クーゲルロール)で減圧蒸留し、trans−2−(イソプロピルアミノ)シクロヘキサノールを1.26g得た。(外浴温度135−140℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.82−0.94(m,1H), 1.00(d,J=6.31Hz,3H), 1.06(d,J=6.31Hz,3H), 1.20−1.31(m,3H), 1.69−1.73(m,2H), 2.06−2.10(m,2H), 2.18−2.26(m,1H), 2.96(sep,J=6.31Hz,1H),3.09(m,1H)
13C−NMR(75.45MHz,CDCl) δ 22.79(CH3), 24.28(CH2), 24.73(CH3), 25.36(CH2), 31.29(CH2), 32.98(CH2), 45.05(CH), 60.64(CH), 73.87(CH)
分析条件A 保持時間 12.9分、13.2分
Reference Example 1 trans-2- (isopropylamino) cyclohexanol synthesis 1.45 g of 7-oxabicyclo [4.1.0] heptane and 0.87 g of isopropylamine were weighed into a 50 mL eggplant flask, 8 mL of methanol, 2 mL of water, and chloride. 0.13 g of lithium was added and reacted at 50 ° C. for 48 hours. After the reaction, the reaction mixture was concentrated under reduced pressure to obtain a crude product. The crude product was distilled under reduced pressure in a glass tube oven GTO-250RS (Kugel Roll) manufactured by Shibata Kagaku Co., Ltd. to obtain 1.26 g of trans-2- (isopropylamino) cyclohexanol. (Outer bath temperature 135-140 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.82-0.94 (m, 1H), 1.00 (d, J = 6.31 Hz, 3H), 1.06 (d, J = 6 .31 Hz, 3H), 1.20-1.31 (m, 3H), 1.69-1.73 (m, 2H), 2.06-2.10 (m, 2H), 2.18-2 .26 (m, 1H), 2.96 (sep, J = 6.31 Hz, 1H), 3.09 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 22.79 (CH 3 ), 24.28 (CH 2), 24.73 (CH 3), 25.36 (CH 2), 31.29 (CH 2), 32. 98 (CH2), 45.05 (CH), 60.64 (CH), 73.87 (CH)
Analysis condition A Retention time 12.9 minutes, 13.2 minutes

参考例2 trans−2−(シクロプロピルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、シクロプロピルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.19−0.55(m、4H),0.94−1.07(m,1H),1.18−1.30(m,3H),1.71−1.76(m,2H),2.00−2.06(m,1H),2.19−2.36(m,3H),3.06−3.14(m,1H)
13C−NMR(75.45MHz,CDCl) δ 5.69(CH2),7.22(CH2),24.19(CH2),24.85(CH2),27.50(CH),30.71(CH2),33.26(CH2),63.54(CH),72.94(CH)
分析条件B 保持時間 (S,S)体:26.9分、(R,R)体:27.4分
Reference Example 2 synthesis of trans-2- (cyclopropylamino) cyclohexanol All operations were performed in the same manner as Reference Example 1 except that cyclopropylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.19-0.55 (m, 4H), 0.94-1.07 (m, 1H), 1.18-1.30 (m, 3H) ), 1.71-1.76 (m, 2H), 2.00-2.06 (m, 1H), 2.19-2.36 (m, 3H), 3.06-3.14 (m) , 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 5.69 (CH 2), 7.22 (CH 2), 24.19 (CH 2), 24.85 (CH 2), 27.50 (CH), 30. 71 (CH2), 33.26 (CH2), 63.54 (CH), 72.94 (CH)
Analysis condition B Retention time (S, S) isomer: 26.9 minutes, (R, R) isomer: 27.4 minutes

参考例3 trans−2−(プロピルアミノ)シクロヘキサンノール合成
イソプロピルアミンに代えて、プロピルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度115−120℃、圧力0.2mmHg)
H−NMR(300.4MHz,CDCl) δ 0.90−0.99(m,4H),1.21−1.29(m,3H),1.42−1.55(m,2H),1.71−1.73(m,2H),2.02−2.22(m,3H),2.39−2.47(m,1H),2.70−2.79(m,1H),3.10−3.18(m,1H)
13C−NMR(75.45MHz,CDCl) δ 11.69(CH3),23.60(CH2),24.39(CH2),25.03(CH2),30.43(CH2),33.52(CH2),48.54(CH2),63.47(CH), 73.46(CH)
分析条件B 保持時間 20.0分、20.3分
Reference Example 3 synthesis of trans-2- (propylamino) cyclohexaneanol All operations were performed in the same manner as in Reference Example 1 except that propylamine was used instead of isopropylamine. (Outer bath temperature 115-120 ° C., pressure 0.2 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.90-0.99 (m, 4H), 1.21-1.29 (m, 3H), 1.42-1.55 (m, 2H) ), 1.71-1.73 (m, 2H), 2.02-2.22 (m, 3H), 2.39-2.47 (m, 1H), 2.70-2.79 (m , 1H), 3.10-3.18 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 11.69 (CH 3 ), 23.60 (CH 2), 24.39 (CH 2), 25.03 (CH 2), 30.43 (CH 2), 33. 52 (CH2), 48.54 (CH2), 63.47 (CH), 73.46 (CH)
Analysis condition B Retention time 20.0 minutes, 20.3 minutes

参考例4 trans−2−(3−ペンチルアミノ)シクロヘキサノール合成
イソプロピルアミンに替えて、3−アミノペンタンを用いる他は全て参考例1と同様に操作した。(外浴温度150−155℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.83−0.94(m,7H),1.20−1.56(m,7H),1.69−1.73(m,2H),2.05−2.09(m,2H),2.14−2.22(m,1H),2.44−2.52(m,1H),3.02−3.10(m,1H)
13C−NMR(75.45MHz,CDCl) δ 8.99(CH3),10.26(CH3),24.28(CH2),25.40(CH2),26.19(CH2),26.89(CH2),31.41(CH2),32.89(CH2),56.76(CH),61.14(CH),74.12(CH)
分析条件B 保持時間 30.3分、31.3分
Reference Example 4 synthesis of trans-2- (3-pentylamino) cyclohexanol All operations were performed in the same manner as Reference Example 1 except that 3-aminopentane was used instead of isopropylamine. (Outer bath temperature 150-155 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.83-0.94 (m, 7H), 1.20-1.56 (m, 7H), 1.69-1.73 (m, 2H) ), 2.05 to 2.09 (m, 2H), 2.14 to 2.22 (m, 1H), 2.44 to 2.52 (m, 1H), 3.02 to 3.10 (m) , 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 8.99 (CH 3 ), 10.26 (CH 3), 24.28 (CH 2), 25.40 (CH 2), 26.19 (CH 2), 26. 89 (CH2), 31.41 (CH2), 32.89 (CH2), 56.76 (CH), 61.14 (CH), 74.12 (CH)
Analysis condition B Retention time 30.3 minutes, 31.3 minutes

参考例5 trans−2−(tert−ブチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、tert−ブチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度100−105℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.90−1.19(m,1H),1.13(s,9H),1.24−1.32(m,3H),1.67−1.71(m,2H),1.98−2.07(m,2H),2.19−2.27(m,1H),2.89−2.97(m,1H)
13C−NMR(75.45MHz,CDCl) δ 24.47(CH2),25.88(CH2),30.63(CH3),32.64(CH2),34.88(CH2),50.68(C),58.13(CH),74.31(CH)
分析条件B 保持時間 15.6分、16.0分
Reference Example 5 synthesis of trans-2- (tert-butylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that tert-butylamine was used instead of isopropylamine. (Outer bath temperature 100-105 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.90-1.19 (m, 1H), 1.13 (s, 9H), 1.24-1.32 (m, 3H), 1. 67-1.71 (m, 2H), 1.98-2.07 (m, 2H), 2.19-2.27 (m, 1H), 2.89-2.97 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 24.47 (CH2), 25.88 (CH2), 30.63 (CH3), 32.64 (CH2), 34.88 (CH2), 50. 68 (C), 58.13 (CH), 74.31 (CH)
Analysis condition B retention time 15.6 minutes, 16.0 minutes

参考例6 trans−2−(アリルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、アリルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.92−1.04(m,1H),1.19−1.31(m,3H),1.70−1.72(m,2H), 1.97−2.07(m,2H),2.24−2.32(m,1H),3.11−3.26(m,2H),3.36−3.42(m,1H),5.06−5.22(m,2H),5.84−5.97(m,1H)
13C−NMR(75.45MHz,CDCl) δ 24.28(CH2),24.71(CH2),30.07(CH2),33.62(CH2),49.17(CH2),62.65(CH),73.27(CH),115.61(CH2),136.85(CH)
分析条件A 保持時間 34.8分、35.2分
Reference Example 6 synthesis of trans-2- (allylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that allylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.92-1.04 (m, 1H), 1.19-1.31 (m, 3H), 1.70-1.72 (m, 2H) ), 1.97-2.07 (m, 2H), 2.24-2.32 (m, 1H), 3.11-3.26 (m, 2H), 3.36-3.42 (m) , 1H), 5.06-5.22 (m, 2H), 5.84-5.97 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 24.28 (CH2), 24.71 (CH2), 30.07 (CH2), 33.62 (CH2), 49.17 (CH2), 62. 65 (CH), 73.27 (CH), 115.61 (CH2), 136.85 (CH)
Analysis condition A Retention time 34.8 minutes, 35.2 minutes

参考例7 trans−2−(プロパルギルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、プロパルギルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.92−1.05(m,1H),1.21−1.38(m,3H),1.68−1.73(m,2H),1.96−2.08(m,2H),2.24(t,J=2.40Hz,1H),2.40−2.48(m,1H),3.21−3.29(m,1H),3.47(dq,J1=16.82Hz,J2=2.40Hz,2H)
13C−NMR(75.45MHz,CDCl) δ 24.31(CH2),24.56(CH2),29.79(CH2),33.80(CH2),35.35(CH2),62.01(CH),71.30(C),73.61(CH),82.22(CH)
分析条件C 保持時間 47.1分、47.6分
Reference Example 7 synthesis of trans-2- (propargylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that propargylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.92-1.05 (m, 1H), 1.21-1.38 (m, 3H), 1.68-1.73 (m, 2H) ), 1.96-2.08 (m, 2H), 2.24 (t, J = 2.40 Hz, 1H), 2.40-2.48 (m, 1H), 3.21-3.29. (M, 1H), 3.47 (dq, J1 = 16.82 Hz, J2 = 2.40 Hz, 2H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 24.31 (CH2), 24.56 (CH2), 29.79 (CH2), 33.80 (CH2), 35.35 (CH2), 62. 01 (CH), 71.30 (C), 73.61 (CH), 82.22 (CH)
Analysis condition C Retention time 47.1 minutes, 47.6 minutes

参考例8 trans−2−(シクロペンチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、シクロペンチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度170−175℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.87−0.95(m,1H),1.20−1.38(m,5H),1.50−1.87(m,8H),2.01−2.22(m,3H),3.01−3.09(m,1H),3.19−3.27(m,1H)
13C−NMR(75.45MHz,CDCl3)δ 23.59(CH2),23.79(CH2),24.31(CH2),25.27(CH2),30.91(CH2),33.08(CH2),33.12(CH2),34.59(CH2),56.14(CH),61.86(CH),73.75(CH)
分析条件D 保持時間 24.7分、25.1分
Reference Example 8 synthesis of trans-2- (cyclopentylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that cyclopentylamine was used instead of isopropylamine. (Outer bath temperature 170-175 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.87-0.95 (m, 1H), 1.20-1.38 (m, 5H), 1.50-1.87 (m, 8H) ), 2.01-2.22 (m, 3H), 3.01-3.09 (m, 1H), 3.19-3.27 (m, 1H)
13 C-NMR (75.45 MHz, CDCl3) δ 23.59 (CH2), 23.79 (CH2), 24.31 (CH2), 25.27 (CH2), 30.91 (CH2), 33.08 (CH2), 33.12 (CH2), 34.59 (CH2), 56.14 (CH), 61.86 (CH), 73.75 (CH)
Analysis condition D Retention time 24.7 minutes, 25.1 minutes

参考例9 trans−2−(シクロヘキシルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、シクロヘキシルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度170−175℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.83−1.04(m,2H),1.08−1.36(m,7H),1.62−1.73(m,6H),1.90(d,J=12.32Hz,1H),1.97−2.08(m,2H),2.21−2.30(m,1H),2.51−2.60(m,1H),3.01−3.09(m,1H)
13C−NMR(75.45MHz,CDCl3) δ 24.29(CH2),24.56(CH2),25.06(CH2),25.29(CH2),26.00(CH2),31.47(CH2),33.04(CH2),33.50(CH2),35.19(CH2),53.18(CH),60.26(CH),73.77(CH)
分析条件E 保持時間 31.4分、31.9分
Reference Example 9 trans-2- (Cyclohexylamino) cyclohexanol synthesis All operations were performed in the same manner as Reference Example 1 except that cyclohexylamine was used instead of isopropylamine. (Outer bath temperature 170-175 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.83-1.04 (m, 2H), 1.08-1.36 (m, 7H), 1.62-1.73 (m, 6H) ), 1.90 (d, J = 12.32 Hz, 1H), 1.97-2.08 (m, 2H), 2.21-2.30 (m, 1H), 2.51-2.60. (M, 1H), 3.01-3.09 (m, 1H)
13 C-NMR (75.45 MHz, CDCl3) δ 24.29 (CH2), 24.56 (CH2), 25.06 (CH2), 25.29 (CH2), 26.00 (CH2), 31.47 (CH2), 33.04 (CH2), 33.50 (CH2), 35.19 (CH2), 53.18 (CH), 60.26 (CH), 73.77 (CH)
Analysis condition E Retention time 31.4 minutes, 31.9 minutes

参考例10 trans−2−(ジメチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、ジメチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度70−75℃、圧力0.2mmHg)
H−NMR(300.4MHz,CDCl) δ 1.03−1.31(m,4H),1.69−1.78(m,3H),2.07−2.33(m,8H),3.27−3.35(m,1H)
13C−NMR(75.45MHz,CDCl) δ 20.16(CH2),23.97(CH2),25.14(CH2),33.05(CH2),39.98(CH3),69.11(CH),69.36(CH)
分析条件F 保持時間 46.5分、47.1分
Reference Example 10 synthesis of trans-2- (dimethylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that dimethylamine was used instead of isopropylamine. (Outer bath temperature 70-75 ° C., pressure 0.2 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.03-1.31 (m, 4H), 1.69-1.78 (m, 3H), 2.07-2.33 (m, 8H) ), 3.27-3.35 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.16 (CH 2), 23.97 (CH 2), 25.14 (CH 2), 33.05 (CH 2), 39.98 (CH 3), 69. 11 (CH), 69.36 (CH)
Analysis condition F Retention time 46.5 minutes, 47.1 minutes

参考例11 trans−2−(ジエチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、ジエチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度80−85℃、圧力0.2mmHg)
H−NMR(300.4MHz,CDCl) δ 1.04(t,J=6.91Hz,6H),1.13−1.31(m,4H),1.69−1.77(m,3H),2.10−2.14(m,1H),2.26−2.42(m,3H),2.57−2.69(m,2H),3.26−3.34(m,1H)
13C−NMR(75.45MHz,CDCl) δ 14.58(CH3),22.69(CH2),24.04(CH2),25.61(CH2),33.07(CH2),43.08(CH2),66.05(CH),68.89(CH)
分析条件G 保持時間 29.7分、30.6分
Reference Example 11 synthesis of trans-2- (diethylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that diethylamine was used instead of isopropylamine. (Outer bath temperature 80-85 ° C., pressure 0.2 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.04 (t, J = 6.91 Hz, 6H), 1.13-1.31 (m, 4H), 1.69-1.77 (m 3H), 2.10-2.14 (m, 1H), 2.26-2.42 (m, 3H), 2.57-2.69 (m, 2H), 3.26-3.34. (M, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 14.58 (CH 3 ), 22.69 (CH 2), 24.04 (CH 2), 25.61 (CH 2), 33.07 (CH 2), 43. 08 (CH2), 66.05 (CH), 68.89 (CH)
Analysis condition G Retention time 29.7 minutes, 30.6 minutes

参考例12 trans−2−(1−ピロリジニル)シクロヘキサノール合成
イソプロピルアミンに代えて、ピロリジンを用いる他は全て参考例1と同様に操作した。(外浴温度100−105℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.17−1.27(m,4H),1.69−1.78(m,7H),2.05−2.15(m,1H),2.42−2.59(m,3H),2.64−2.71(m,2H),3.29−3.37(m,1H)
13C−NMR(75.45MHz,CDCl) δ 20.99(CH2),23.43(CH2),24.03(CH2),25.16(CH2),33.13(CH2),47.03(CH2),64.78(CH),70.51(CH)
分析条件H 保持時間 23.0分、23.2分
Reference Example 12 synthesis of trans-2- (1-pyrrolidinyl) cyclohexanol All operations were performed in the same manner as Reference Example 1 except that pyrrolidine was used instead of isopropylamine. (Outer bath temperature 100-105 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.17-1.27 (m, 4H), 1.69-1.78 (m, 7H), 2.05-2.15 (m, 1H) ), 2.4-2.59 (m, 3H), 2.64-2.71 (m, 2H), 3.29-3.37 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.99 (CH2), 23.43 (CH2), 24.03 (CH2), 25.16 (CH2), 33.13 (CH2), 47. 03 (CH2), 64.78 (CH), 70.51 (CH)
Analysis condition H Retention time 23.0 minutes, 23.2 minutes

参考例13 trans−2−(1−ピペリジニル)シクロヘキサノール合成
イソプロピルアミンに代えて、ピペリジンを用いる他は全て参考例1と同様に操作した。(外浴温度105−115℃、圧力0.2mmHg)
H−NMR(300.4MHz,CDCl) δ 1.12−1.26(m,4H),1.43−1.79(m,9H),2.10−2.17(m,2H),2.31−2.34(m,2H),2.63−2.70(m,2H),3.31−3.39(m,2H)
13C−NMR(75.45MHz,CDCl3) δ 22.06(CH2),24.04(CH2),24.79(CH2),25.56(CH2),26.67(CH2),33.19(CH2),49.63(CH2),68.45(CH),70.93(CH)
分析条件H 保持時間 35.6分、35.8分
Reference Example 13 trans-2- (1-piperidinyl) cyclohexanol synthesis All operations were performed in the same manner as Reference Example 1 except that piperidine was used instead of isopropylamine. (Outer bath temperature 105-115 ° C., pressure 0.2 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.12-1.26 (m, 4H), 1.43-1.79 (m, 9H), 2.10-2.17 (m, 2H) ), 2.31-2.34 (m, 2H), 2.62-2.70 (m, 2H), 3.31-3.39 (m, 2H)
13 C-NMR (75.45 MHz, CDCl3) δ 22.06 (CH2), 24.04 (CH2), 24.79 (CH2), 25.56 (CH2), 26.67 (CH2), 33.19 (CH2), 49.63 (CH2), 68.45 (CH), 70.93 (CH)
Analysis condition H Retention time 35.6 minutes, 35.8 minutes

参考例14 trans−2−(フェニルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、アニリンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.98−1.11(m,1H),1.24−1.47(m,3H),1.70−1.79(m,2H),2.10−2.14(m,2H),3.10−3.18(m,1H),3.31−3.39(m,1H),6.70−6.77(m,3H),7.15−7.25(m,2H)
13C−NMR(75.45MHz,CDCl3) δ 24.15(CH2),24.82(CH2),31.42(CH2),33.09(CH2),59.89(CH),74.25(CH),114.17(CH),118.07(CH),129.18(CH),147.73(C)
分析条件α 保持時間 27.5分、29.7分
Reference Example 14 synthesis of trans-2- (phenylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that aniline was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.98-1.11 (m, 1H), 1.24-1.47 (m, 3H), 1.70-1.79 (m, 2H) ), 2.10-2.14 (m, 2H), 3.10-3.18 (m, 1H), 3.31-3.39 (m, 1H), 6.70-6.77 (m) , 3H), 7.15-7.25 (m, 2H)
13 C-NMR (75.45 MHz, CDCl 3) δ 24.15 (CH 2), 24.82 (CH 2), 31.42 (CH 2), 33.09 (CH 2), 59.89 (CH), 74.25 (CH), 114.17 (CH), 118.07 (CH), 129.18 (CH), 147.73 (C)
Analysis condition α Retention time 27.5 minutes, 29.7 minutes

参考例15 trans−2−(2−フェニルエチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、2−フェニルエチルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.84−0.96(m,1H),1.18−1.32(m,3H),1.67−1.71(m,2H),1.99−2.07(m,2H),2.16−2.25(m,1H),2.70−2.86(m,3H),3.00−3.15(m,2H),7.18−7.32(m,5H)
13C−NMR(75.45MHz,CDCl) δ 24.29(CH2),25.15(CH2),30.55(CH2),33.25(CH2),37.01(CH2),47.89(CH2),63.55(CH),73.62(CH),126.06(CH),128.36(CH),128.63(CH),140.06(C)
分析条件α 保持時間 25.0分、35.0分
Reference Example 15 synthesis of trans-2- (2-phenylethylamino) cyclohexanol All operations were performed in the same manner as Reference Example 1 except that 2-phenylethylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.84-0.96 (m, 1H), 1.18-1.32 (m, 3H), 1.67-1.71 (m, 2H) ), 1.99-2.07 (m, 2H), 2.16-2.25 (m, 1H), 2.70-2.86 (m, 3H), 3.00-3.15 (m , 2H), 7.18-7.32 (m, 5H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 24.29 (CH 2), 25.15 (CH 2), 30.55 (CH 2), 33.25 (CH 2), 37.01 (CH 2), 47. 89 (CH2), 63.55 (CH), 73.62 (CH), 126.06 (CH), 128.36 (CH), 128.63 (CH), 140.06 (C)
Analysis condition α Retention time 25.0 minutes, 35.0 minutes

参考例16 trans−2−(ベンジルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、ベンジルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度175−180℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.91−1.05(m,1H),1.16−1.35(m,3H),1.71−1.74(m,2H),2.01−2.07(m,1H),2.15−2.21(m,1H),2.25−2.33(m,1H),3.16−3.24(m,1H),3.69(d,J=12.92Hz,1H),3.96(d,J=12.92Hz,1H),7.22−7.36(m,5H)
13C−NMR(75.45MHz,CDCl) δ 24.25(CH2),24.85(CH2),30.20(CH2),33.40(CH2),50.68(CH2),62.89(CH),73.41(CH),126.81(CH),127.96(CH),128.25(CH),140.32(C)
分析条件α 保持時間 16.9分、26.9分
Reference Example 16 synthesis of trans-2- (benzylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that benzylamine was used instead of isopropylamine. (Outer bath temperature 175-180 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.91-1.05 (m, 1H), 1.16-1.35 (m, 3H), 1.71-1.74 (m, 2H) ), 2.01-2.07 (m, 1H), 2.15-2.21 (m, 1H), 2.25-2.33 (m, 1H), 3.16-3.24 (m) , 1H), 3.69 (d, J = 12.92 Hz, 1H), 3.96 (d, J = 12.92 Hz, 1H), 7.22-7.36 (m, 5H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 24.25 (CH2), 24.85 (CH2), 30.20 (CH2), 33.40 (CH2), 50.68 (CH2), 62. 89 (CH), 73.41 (CH), 126.81 (CH), 127.96 (CH), 128.25 (CH), 140.32 (C)
Analysis condition α Retention time 16.9 minutes, 26.9 minutes

参考例17 trans−2−(3−エトキシプロピルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、3−エトキシプロピルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体は、そのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.91−1.03(m,1H),1.15−1.30(m,6H),1.70−1.79(m,4H),1.99−2.09(m,2H),2.17−2.25(m,1H),2.52−2.61(m,1H),2.82−2.91(m,1H),3.14−3.22(m,1H),3.43−3.51(m,4H)
13C−NMR(75.45MHz,CDCl) δ 14.98(CH3),24.26(CH2),24.86(CH2),30.21(CH2),30.33(CH2),33.42(CH2),43.90(CH2),63.35(CH),65.98(CH2),68.80(CH2),73.27(CH)
分析条件AA 保持時間 25.6分、25.8分
Reference Example 17 synthesis of trans-2- (3-ethoxypropylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that 3-ethoxypropylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.91-1.03 (m, 1H), 1.15-1.30 (m, 6H), 1.70-1.79 (m, 4H) ), 1.99-2.09 (m, 2H), 2.17-2.25 (m, 1H), 2.52-2.61 (m, 1H), 2.82-2.91 (m) , 1H), 3.14-3.22 (m, 1H), 3.43-3.51 (m, 4H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 14.98 (CH3), 24.26 (CH2), 24.86 (CH2), 30.21 (CH2), 30.33 (CH2), 33. 42 (CH2), 43.90 (CH2), 63.35 (CH), 65.98 (CH2), 68.80 (CH2), 73.27 (CH)
Analysis condition AA Retention time 25.6 minutes, 25.8 minutes

参考例18 trans−2−(イソプロピルアミノ)シクロペンタノール合成
エポキシドとして6−オキサビシクロ[3.1.0]ヘキサンを用いる他は参考例1同様に操作した。(外浴温度95−100℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.05−1.10(m、6H),1.21−1.31(m、1H),1.48−1.78(m、3H),1.88−2.08(m、2H),2.67−2.95(m、2H),3.78−3.85(m、1H)
13C−NMR(75.45MHz,CDCl) δ 20.03(CH2),22.44(CH3),23.85(CH3),30.41(CH2),32.18(CH2),47.03(CH),63.90(CH),77.78(CH)
分析条件I 保持時間 14.3分、14.7分
Reference Example 18 synthesis of trans-2- (isopropylamino) cyclopentanol The same operation as in Reference Example 1 was performed except that 6-oxabicyclo [3.1.0] hexane was used as the epoxide. (Outer bath temperature 95-100 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.05-1.10 (m, 6H), 1.21-1.31 (m, 1H), 1.48-1.78 (m, 3H ), 1.88-2.08 (m, 2H), 2.67-2.95 (m, 2H), 3.78-3.85 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.03 (CH2), 22.44 (CH3), 23.85 (CH3), 30.41 (CH2), 32.18 (CH2), 47. 03 (CH), 63.90 (CH), 77.78 (CH)
Analysis condition I Retention time 14.3 minutes, 14.7 minutes

参考例19 trans−2−(シクロプロピルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、シクロプロピルアミン用いる他は全て参考例18と同様に操作した。(外浴温度105−110℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.31−0.52(m,4H),1.27−1.40(m,1H),1.48−1.79(m,3H),1.88−1.99(m,1H),2.03−2.19(m,2H),2.90−2.97(m,1H),3.85(q,J=6.31Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 5.89(CH2),6.46(CH2),20.08(CH2),29.30(CH),30.13(CH2),32.12(CH2),66.95(CH),77.21(CH)
分析条件J 保持時間 15.5分、15.7分
Reference Example 19 synthesis of trans-2- (cyclopropylamino) cyclopentanol All operations were performed in the same manner as in Reference Example 18 except that cyclopropylamine was used instead of isopropylamine. (Outer bath temperature 105-110 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.31-0.52 (m, 4H), 1.27-1.40 (m, 1H), 1.48-1.79 (m, 3H) ), 1.88-1.99 (m, 1H), 2.03-2.19 (m, 2H), 2.90-2.97 (m, 1H), 3.85 (q, J = 6) .31Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 5.89 (CH 2), 6.46 (CH 2), 20.08 (CH 2), 29.30 (CH), 30.13 (CH 2), 32. 12 (CH2), 66.95 (CH), 77.21 (CH)
Analysis condition J Retention time 15.5 minutes, 15.7 minutes

参考例20 trans−2−(プロピルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、プロピルアミン用いる他は全て参考例18と同様に操作した。(外浴温度100−105℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.71(t,J=7.51Hz,3H),1.22−1.35(m,1H),1.45−1.78(m,5H),1.88−2.11(m,2H),2.50−2.66(m,2H),2.78−2.86(m,1H),3.85(q,J=6.61Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 11.66(CH3),20.15(CH2),23.22(CH2),29.93(CH2),32.53(CH2),50.41(CH2),66.57(CH),77.43(CH)
分析条件K 保持時間 17.3分、17.6分
Reference Example 20 synthesis of trans-2- (propylamino) cyclopentanol All operations were performed in the same manner as in Reference Example 18 except that propylamine was used instead of isopropylamine. (Outer bath temperature 100-105 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.71 (t, J = 7.51 Hz, 3H), 1.22-1.35 (m, 1H), 1.45-1.78 (m , 5H), 1.88-2.11 (m, 2H), 2.50-2.66 (m, 2H), 2.78-2.86 (m, 1H), 3.85 (q, J = 6.61Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 11.66 (CH 3 ), 20.15 (CH 2), 23.22 (CH 2), 29.93 (CH 2), 32.53 (CH 2), 50. 41 (CH2), 66.57 (CH), 77.43 (CH)
Analysis condition K Retention time 17.3 minutes, 17.6 minutes

参考例21 trans−2−(アリルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、アリルアミン用いる他は全て参考例18と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.23−1.36(m,1H),1.48−1.78(m,3H),1.89−2.06(m,2H),2.82−2.90(m,1H),3.18−3.34(m,4H),3.83−3.89(m,1H),5.10(d,J=10.21Hz,1H),5.18(dd,J1=17.12Hz,J2=1.50Hz,1H),5.85−5.98(m,1H)
13C−NMR(75.45MHz,CDCl) δ 20.02(CH2),29.67(CH2),32.38(CH2),50.87(CH2),65.81(CH),77.31(CH),115.97(CH2),136.31(CH)
分析条件L 保持時間 32.9分、34.0分
Reference Example 21 synthesis of trans-2- (allylamino) cyclopentanol All operations were performed in the same manner as in Reference Example 18 except that allylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.23-1.36 (m, 1H), 1.48-1.78 (m, 3H), 1.89-2.06 (m, 2H) ), 2.82-2.90 (m, 1H), 3.18-3.34 (m, 4H), 3.83-3.89 (m, 1H), 5.10 (d, J = 10) .21 Hz, 1H), 5.18 (dd, J1 = 17.12 Hz, J2 = 1.50 Hz, 1H), 5.85-5.98 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.02 (CH 2), 29.67 (CH 2), 32.38 (CH 2), 50.87 (CH 2), 65.81 (CH), 77. 31 (CH), 115.97 (CH2), 136.31 (CH)
Analysis condition L Retention time 32.9 minutes, 34.0 minutes

参考例22 trans−2−(プロパルギルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、プロパルギルアミン用いる他は全て参考例18と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.25−1.37(m,1H),1.51−1.81(m,3H),1.89−2.07(m,2H),2.27−2.29(m,1H),3.01−3.08(m,1H),3.35−3.54(m,2H),3.89(q,J=6.31Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 20.12(CH2),29.39(CH2),32.48(CH2),36.57(CH2),64.97(CH),71.50(C),77.53(CH),81.89(CH)
分析条件M 保持時間 40.1分、41.9分
Reference Example 22 synthesis of trans-2- (propargylamino) cyclopentanol All operations were performed in the same manner as in Reference Example 18 except that propargylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.25-1.37 (m, 1H), 1.51-1.81 (m, 3H), 1.89-2.07 (m, 2H) ), 2.27-2.29 (m, 1H), 3.01-3.08 (m, 1H), 3.35-3.54 (m, 2H), 3.89 (q, J = 6) .31Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.12 (CH2), 29.39 (CH2), 32.48 (CH2), 36.57 (CH2), 64.97 (CH), 71. 50 (C), 77.53 (CH), 81.89 (CH)
Analysis condition M Retention time 40.1 minutes, 41.9 minutes

参考例23 trans−2−(シクロペンチルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、シクロペンチルアミン用いる他は全て参考例18と同様に操作した。(外浴温度165−170℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.22−1.36(m,3H),1.47−1.77(m,7H),1.82−2.06(m,4H),2.82−2.89(m,1H),3.11(quin,J=7.21Hz,1H),3.81(q,J=6.91Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 19.83(CH2),23.57(CH2),23.66(CH2),29.98(CH2),32.10(CH2),32.63(CH2),33.65(CH2),58.34(CH),65.01(CH),77.25(CH)
分析条件N 保持時間 24.3分、24.5分
Reference Example 23 synthesis of trans-2- (cyclopentylamino) cyclopentanol All operations were performed in the same manner as in Reference Example 18 except that cyclopentylamine was used instead of isopropylamine. (Outer bath temperature 165-170 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.22-1.36 (m, 3H), 1.47-1.77 (m, 7H), 1.82-2.06 (m, 4H) ), 2.82-2.89 (m, 1H), 3.11 (quin, J = 7.21 Hz, 1H), 3.81 (q, J = 6.91 Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 19.83 (CH2), 23.57 (CH2), 23.66 (CH2), 29.98 (CH2), 32.10 (CH2), 32. 63 (CH2), 33.65 (CH2), 58.34 (CH), 65.01 (CH), 77.25 (CH)
Analysis condition N Retention time 24.3 minutes, 24.5 minutes

参考例24 trans−2−(1−ピロリジニル)シクロペンタノール合成
イソプロピルアミンに代えて、ピロリジン用いる他は全て参考例18と同様に操作した。(外浴温度125−130℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.46−1.83(m,8H),1.86−2.00(m,2H),2.41−2.48(m,1H),2.59−2.61(m,4H),4.06−4.12(m,1H)
13C−NMR(75.45MHz,CDCl) δ 21.34(CH2),22.96(CH2),29.70(CH2),34.51(CH2),52.46(CH2),73.19(CH),76.28(CH)
分析条件O 保持時間 19.9分、20.3分
Reference Example 24 synthesis of trans-2- (1-pyrrolidinyl) cyclopentanol All operations were performed in the same manner as in Reference Example 18 except that pyrrolidine was used instead of isopropylamine. (Outer bath temperature 125-130 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.46-1.83 (m, 8H), 1.86-2.00 (m, 2H), 2.41-2.48 (m, 1H) ), 2.59-2.61 (m, 4H), 4.06-4.12 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 21.34 (CH2), 22.96 (CH2), 29.70 (CH2), 34.51 (CH2), 52.46 (CH2), 73. 19 (CH), 76.28 (CH)
Analysis condition O Retention time 19.9 minutes, 20.3 minutes

参考例25 trans−2−(1−ピペリジニル)シクロペンタノール合成
イソプロピルアミンに代えて、ピペリジン用いる他は全て参考例18と同様に操作した。(外浴温度125−130℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.41−1.75(m,10H),1.80−1.97(m,2H),2.48−2.56(m,5H),4.10−4.16(m,1H)
13C−NMR(75.45MHz,CDCl) δ 21.71(CH2),24.29(CH2),25.76(CH2),26.92(CH2),34.36(CH2),52.14(CH2),74.38(CH),75.17(CH)
分析条件N 保持時間 23.1分、23.4分
Reference Example 25 synthesis of trans-2- (1-piperidinyl) cyclopentanol All operations were performed in the same manner as in Reference Example 18 except that piperidine was used instead of isopropylamine. (Outer bath temperature 125-130 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.41-1.75 (m, 10H), 1.80-1.97 (m, 2H), 2.48-2.56 (m, 5H) ), 4.10-4.16 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 21.71 (CH 2), 24.29 (CH 2), 25.76 (CH 2), 26.92 (CH 2), 34.36 (CH 2), 52. 14 (CH2), 74.38 (CH), 75.17 (CH)
Analysis condition N Retention time 23.1 minutes, 23.4 minutes

参考例26 trans−2−(フェニルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、アニリン用いる他は全て参考例18と同様に操作した。(外浴温度160−165℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.29−1.38(m,1H),1.41−2.02(m,4H),2.16−2.28(m,1H),3.52−3.58(m,1H),3.96−4.01(m,1H),6.62−6.73(m,3H),7.09−7.21(m,2H)
13C−NMR(75.45MHz,CDCl) δ 20.84(CH2),30.97(CH2),32.61(CH2),61.93(CH),77.97(CH),113.30(CH),117.42(CH),129.17(CH),147.64(C)
分析条件P 保持時間 51.3分、51.6分
Reference Example 26 synthesis of trans-2- (phenylamino) cyclopentanol All operations were performed in the same manner as in Reference Example 18 except that aniline was used instead of isopropylamine. (Outer bath temperature 160-165 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.29-1.38 (m, 1H), 1.41-2.02 (m, 4H), 2.16-2.28 (m, 1H) ), 3.52-3.58 (m, 1H), 3.96-4.01 (m, 1H), 6.62-6.73 (m, 3H), 7.09-7.21 (m , 2H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.84 (CH 2), 30.97 (CH 2), 32.61 (CH 2), 61.93 (CH), 77.97 (CH), 113. 30 (CH), 117.42 (CH), 129.17 (CH), 147.64 (C)
Analysis condition P Retention time 51.3 minutes, 51.6 minutes

参考例27 trans−2−(2−フェニルエチルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、2−フェニルエチルアミン用いる他は全て参考例18と同様に操作した。(外浴温度160−165℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.18−1.31(m,1H),1.47−1.76(m,3H),1.86−2.04(m,2H),2.72−2.96(m,5H),3.82(q,J=6.31Hz,1H),7.18−7.30(m,5H)
13C−NMR(75.45MHz,CDCl) δ 20.24(CH2),30.02(CH2),32.63(CH2),36.32(CH2),49.63(CH2),66.50(CH),77.61(CH),126.07(CH),128.36(CH),128.54(CH),139.69(C)
分析条件α 保持時間 13.6分、18.3分
Reference Example 27 synthesis of trans-2- (2-phenylethylamino) cyclopentanol All operations were performed in the same manner as in Reference Example 18 except that 2-phenylethylamine was used instead of isopropylamine. (Outer bath temperature 160-165 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.18-1.31 (m, 1H), 1.47-1.76 (m, 3H), 1.86-2.04 (m, 2H) ), 2.72-2.96 (m, 5H), 3.82 (q, J = 6.31 Hz, 1H), 7.18-7.30 (m, 5H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.24 (CH2), 30.02 (CH2), 32.63 (CH2), 36.32 (CH2), 49.63 (CH2), 66. 50 (CH), 77.61 (CH), 126.07 (CH), 128.36 (CH), 128.54 (CH), 139.69 (C)
Analysis condition α Retention time 13.6 minutes, 18.3 minutes

参考例28 trans−2−(ベンジルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、ベンジルアミン用いる他は全て参考例18と同様に操作した。(外浴温度160−165℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.23−1.36(m,1H),1.43−1.57(m,1H),1.59−1.75(m,2H),1.84−2.04(m,2H),2.81−2.88(m,1H),3.66−3.85(m,3H),7.20−7.32(m,5H)
13C−NMR(75.45MHz,CDCl) δ 20.22(CH2),29.96(CH2),32.46(CH2),52.45(CH2),66.03(CH),77.69(CH),126.88(CH),128.07(CH),128.30(CH),140.04(C)
分析条件β 保持時間 33.2分、34.9分
Reference Example 28 synthesis of trans-2- (benzylamino) cyclopentanol All operations were performed in the same manner as in Reference Example 18 except that benzylamine was used instead of isopropylamine. (Outer bath temperature 160-165 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.23-1.36 (m, 1H), 1.43-1.57 (m, 1H), 1.59-1.75 (m, 2H) ), 1.84-2.04 (m, 2H), 2.81-2.88 (m, 1H), 3.66-3.85 (m, 3H), 7.20-7.32 (m , 5H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.22 (CH2), 29.96 (CH2), 32.46 (CH2), 52.45 (CH2), 66.03 (CH), 77. 69 (CH), 126.88 (CH), 128.07 (CH), 128.30 (CH), 140.04 (C)
Analysis condition β retention time 33.2 minutes, 34.9 minutes

参考例29 trans−2−(3−エトキシプロピルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、3−エトキシプロピルアミン用いる他は全て参考例18と同様に操作した。得られた粗体は、そのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.19(t,J=6.91Hz,3H),1.26−1.36(m,1H),1.48−1.81(m,5H),1.89−2.07(m,2H),2.64−2.86(m,3H),3.35−3.51(m,4H),3.83−3.89(m,1H)
13C−NMR(75.45MHz,CDCl) δ 15.01(CH3),20.18(CH2),29.90(CH2),29.99(CH2),32.48(CH2),45.91(CH2),66.02(CH2),66.04(CH),68.98(CH2),77.42(CH)
分析条件γ 保持時間 23.6分、24.7分
Reference Example 29 synthesis of trans-2- (3-ethoxypropylamino) cyclopentanol All operations were performed in the same manner as in Reference Example 18 except that 3-ethoxypropylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.19 (t, J = 6.91 Hz, 3H), 1.26-1.36 (m, 1H), 1.48-1.81 (m , 5H), 1.89-2.07 (m, 2H), 2.64-2.86 (m, 3H), 3.35-3.51 (m, 4H), 3.83-3.89 (M, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 15.01 (CH3), 20.18 (CH2), 29.90 (CH2), 29.99 (CH2), 32.48 (CH2), 45. 91 (CH2), 66.02 (CH2), 66.04 (CH), 68.98 (CH2), 77.42 (CH)
Analysis condition γ Retention time 23.6 minutes, 24.7 minutes

参考例30 trans−4−(イソプロピルアミノ)−3−テトラヒドロフラン−3−オール合成
エポキシドとして3,6−ジオキサビシクロ[3.1.0]ヘキサンを用いる他は参考例1同様に操作した。(外浴温度120−125℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.08(d,J=6.31Hz,3H),1.08(d,J=6.31Hz,3H),2.86(sep,J=6.31Hz,1H),3.23−3.26(m,1H),3.55(dd,J1=9.01Hz,J2=3.91Hz,1H),3.62−3.66(m,1H),3.98(dd,J1=9.61Hz,J2=5.11Hz,1H),4.05(dd,J1=9.31Hz,J2=5.71Hz,1H),4.11−4.15(m,1H)
13C−NMR(75.45MHz,CDCl) δ 22.46(CH3),23.11(CH3),46.70(CH),63.73(CH),72.17(CH2),73.63(CH2),76.33(CH)
分析条件γ 保持時間 25.5分、25.7分
Reference Example 30 synthesis of trans-4- (isopropylamino) -3-tetrahydrofuran-3-ol The same operation as in Reference Example 1 was conducted except that 3,6-dioxabicyclo [3.1.0] hexane was used as the epoxide. (Outer bath temperature 120-125 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.08 (d, J = 6.31 Hz, 3H), 1.08 (d, J = 6.31 Hz, 3H), 2.86 (sep, J = 6.31 Hz, 1H), 3.23-3.26 (m, 1H), 3.55 (dd, J1 = 9.01 Hz, J2 = 3.91 Hz, 1H), 3.62-3.66 ( m, 1H), 3.98 (dd, J1 = 9.61 Hz, J2 = 5.11 Hz, 1H), 4.05 (dd, J1 = 9.31 Hz, J2 = 5.71 Hz, 1H), 4.11 -4.15 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 22.46 (CH3), 23.11 (CH3), 46.70 (CH), 63.73 (CH), 72.17 (CH2), 73. 63 (CH2), 76.33 (CH)
Analysis condition γ Retention time 25.5 minutes, 25.7 minutes

参考例31 trans−4−(シクロプロピルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、シクロプロピルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.41−0.53(m,4H), 2.12−2.19(m,1H), 3.27−3.31(m,1H), 3.61−3.68(m,2H), 3.97(dd,J1=9.61Hz,J2=4.81Hz,1H),4.06(dd,J1=9.01Hz,J2=5.41Hz,1H), 4.21(q,J=2.40Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 6.18(CH2),6.35(CH2),28.93(CH),66.57(CH),71.90(CH2),73.62(CH2),75.59(CH)
分析条件γ 保持時間 26.2分、28.2分
Reference Example 31 synthesis of trans-4- (cyclopropylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30 except that cyclopropylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.41-0.53 (m, 4H), 2.12-2.19 (m, 1H), 3.27-3.31 (m, 1H) ), 3.61-3.68 (m, 2H), 3.97 (dd, J1 = 9.61 Hz, J2 = 4.81 Hz, 1H), 4.06 (dd, J1 = 9.01 Hz, J2 = 5.41 Hz, 1H), 4.21 (q, J = 2.40 Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 6.18 (CH2), 6.35 (CH2), 28.93 (CH), 66.57 (CH), 71.90 (CH2), 73. 62 (CH2), 75.59 (CH)
Analysis condition γ Retention time 26.2 minutes, 28.2 minutes

参考例32 trans−4−(プロピルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、プロピルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度150−155℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.93(t,J=7.21Hz,3H),1.50(sext,J=7.21Hz,2H),2.58(t,J=7.21Hz,2H),3.13−3.15(m,1H),3.58(dd,J1=9.31Hz,J2=3.60Hz,1H),3.65(dd,J1=9.61Hz,J2=2.70Hz,1H),3.99(dd,J1=9.61Hz,J2=4.81Hz,1H),4.05(dd,J1=9.31Hz,J2=5.71Hz,1H),4.13−4.14(m,1H)
13C−NMR(75.45MHz,CDCl) δ 11.54(CH3),23.02(CH2),49.96(CH2),66.52(CH),71.96(CH2),73.80(CH2),75.98(CH)
分析条件Q 保持時間 18.3分、18.9分
Reference Example 32 synthesis of trans-4- (propylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30 except that propylamine was used instead of isopropylamine. (Outer bath temperature 150-155 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.93 (t, J = 7.21 Hz, 3H), 1.50 (sext, J = 7.21 Hz, 2H), 2.58 (t, J = 7.21 Hz, 2H), 3.13-3.15 (m, 1H), 3.58 (dd, J1 = 9.31 Hz, J2 = 3.60 Hz, 1H), 3.65 (dd, J1 = 9.61 Hz, J2 = 2.70 Hz, 1H), 3.99 (dd, J1 = 9.61 Hz, J2 = 4.81 Hz, 1H), 4.05 (dd, J1 = 9.31 Hz, J2 = 5. 71 Hz, 1H), 4.13-4.14 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 11.54 (CH3), 23.02 (CH2), 49.96 (CH2), 66.52 (CH), 71.96 (CH2), 73. 80 (CH2), 75.98 (CH)
Analysis condition Q Retention time 18.3 minutes, 18.9 minutes

参考例33 trans−4−(アリルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、アリルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 3.17−3.27(m,3H),3.56−3.68(m,2H),3.95−4.05(m,2H),4.10−4.16(m,1H)5.11−5.23(m,2H),5.81−5.95(m,1H)
13C−NMR(75.45MHz,CDCl) δ 50.39(CH2),65.59(CH),71.78(CH2),73.70(CH2),75.86(CH),116.58(CH2),135.67(CH)
分析条件R 保持時間 20.3分、20.7分
Reference Example 33 synthesis of trans-4- (allylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as Reference Example 30 except that allylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 3.17-3.27 (m, 3H), 3.56-3.68 (m, 2H), 3.95-4.05 (m, 2H) ), 4.10-4.16 (m, 1H) 5.11-5.23 (m, 2H), 5.81-5.95 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 50.39 (CH 2), 65.59 (CH), 71.78 (CH 2), 73.70 (CH 2), 75.86 (CH), 116. 58 (CH2), 135.67 (CH)
Analysis condition R Retention time 20.3 minutes, 20.7 minutes

参考例34 trans−4−(プロパルギルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、プロパルギルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 2.31(s,1H),3.37−3.52(m,3H),3.57−3.72(m,2H),3.97−4.18(m,3H)
13C−NMR(75.45MHz,CDCl) δ 36.28(CH2),64.88(CH),71.94(CH2),72.07(C),73.87(CH2),75.97(CH),81.48(CH)
分析条件S 保持時間 24.5分、25.1分
Reference Example 34 synthesis of trans-4- (propargylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30 except that propargylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 2.31 (s, 1H), 3.37-3.52 (m, 3H), 3.57-3.72 (m, 2H), 3. 97-4.18 (m, 3H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 36.28 (CH 2), 64.88 (CH), 71.94 (CH 2), 72.07 (C), 73.87 (CH 2), 75. 97 (CH), 81.48 (CH)
Analysis condition S Retention time 24.5 minutes, 25.1 minutes

参考例35 trans−4−(シクロペンチルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、シクロペンチルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度170−175℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.22−1.36(m,2H),1.53−1.74(m,4H),1.87−1.90(m,2H),3.06−3.22(m,2H),3.56(dd,J1=9.01Hz,J2=3.91Hz,1H),3.65(dd,J1=9.61Hz,J2=2.70Hz,1H),3.95−4.15(m,3H)
13C−NMR(75.45MHz,CDCl) δ 23.67(CH2),33.00(CH2),33.38(CH2),58.13(CH),65.27(CH),72.33(CH2),73.73(CH2),76.37(CH)
分析条件γ 保持時間 28.5分、28.7分
Reference Example 35 synthesis of trans-4- (cyclopentylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30 except that cyclopentylamine was used instead of isopropylamine. (Outer bath temperature 170-175 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.22-1.36 (m, 2H), 1.53-1.74 (m, 4H), 1.87-1.90 (m, 2H) ), 3.06-3.22 (m, 2H), 3.56 (dd, J1 = 9.01 Hz, J2 = 3.91 Hz, 1H), 3.65 (dd, J1 = 9.61 Hz, J2 = 2.70 Hz, 1H), 3.95-4.15 (m, 3H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 23.67 (CH 2), 33.00 (CH 2), 33.38 (CH 2), 58.13 (CH), 65.27 (CH), 72. 33 (CH2), 73.73 (CH2), 76.37 (CH)
Analysis condition γ Retention time 28.5 minutes, 28.7 minutes

参考例36 trans−4−(ジエチルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、ジエチルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度115−120℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.05(t,J=7.21Hz.6H),2.62(q,J=7.21Hz,4H),3.21(dt,J1=6.61Hz,J2=3.00Hz,1H),3.61−3.69(m,2H),3.93−4.03(m,2H),4.27−4.32(m,1H)
13C−NMR(75.45MHz,CDCl) δ 11.55(CH3),43.97(CH2),69.59(CH2),70.33(CH),74.48(CH),74.76(CH2)
分析条件T 保持時間 15.8分、16.1分
Reference Example 36 synthesis of trans-4- (diethylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30 except that diethylamine was used instead of isopropylamine. (Outer bath temperature 115-120 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.05 (t, J = 7.21 Hz. 6H), 2.62 (q, J = 7.21 Hz, 4H), 3.21 (dt, J1 = 6.61 Hz, J2 = 3.00 Hz, 1H), 3.61-3.69 (m, 2H), 3.93-4.03 (m, 2H), 4.27-4.32 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 11.55 (CH 3 ), 43.97 (CH 2), 69.59 (CH 2), 70.33 (CH), 74.48 (CH), 74. 76 (CH2)
Analysis condition T Retention time 15.8 minutes, 16.1 minutes

参考例37 trans−4−(1−ピペリジニル)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、ピペリジンを用いる他は全て参考例30と同様に操作した。(外浴温度150−155℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.47(d,J=4.81Hz,2H),1.56−1.63(m,4H),2.34−2.40(m,2H),2.54−2.57(m,2H),2.81(dt,J1=6.61Hz,J2=2.70Hz,1H),3.66−3.71(m,2H),3.95(dd,J1=9.61Hz,J2=5.71Hz,1H),4.02(dd,J1=9.01Hz,J2=7.21Hz,1H),4.32−4.36(m,1H)
13C−NMR(75.45MHz,CDCl) δ 23.99(CH2),25.48(CH2),52.39(CH2),69.63(CH2),74.11(CH),74.95(CH),75.13(CH2)
分析条件U 保持時間 16.6分、17.0分
Reference Example 37 synthesis of trans-4- (1-piperidinyl) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30 except that piperidine was used instead of isopropylamine. (Outer bath temperature 150-155 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.47 (d, J = 4.81 Hz, 2H), 1.56-1.63 (m, 4H), 2.34-2.40 (m , 2H), 2.54-2.57 (m, 2H), 2.81 (dt, J1 = 6.61 Hz, J2 = 2.70 Hz, 1H), 3.66-3.71 (m, 2H) 3.95 (dd, J1 = 9.61 Hz, J2 = 5.71 Hz, 1H), 4.02 (dd, J1 = 9.01 Hz, J2 = 7.21 Hz, 1H), 4.32-4.36 (M, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 23.99 (CH2), 25.48 (CH2), 52.39 (CH2), 69.63 (CH2), 74.11 (CH), 74. 95 (CH), 75.13 (CH2)
Analysis condition U Retention time 16.6 minutes, 17.0 minutes

参考例38 trans−4−(フェニルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、アニリンを用いる他は全て参考例30と同様に操作した。(外浴温度195−200℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDOD) δ 3.66−3.78(m,3H),3.95(dd,J1=9.61Hz,J2=3.91Hz,1H),4.16−4.21(m,2H),6.60−6.68(m,3H),7.08−7.13(m,2H)
13C−NMR(75.45MHz,CDOD) δ 62.66(CH),72.96(CH2),74.95(CH2),76.52(CH),114.11(CH),118.24(CH),130.07(CH),148.72(C)
分析条件V 保持時間 50.8分、51.2分
Reference Example 38 synthesis of trans-4- (phenylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30 except that aniline was used instead of isopropylamine. (Outer bath temperature 195-200 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CD 3 OD) δ 3.66-3.78 (m, 3H), 3.95 (dd, J1 = 9.61 Hz, J2 = 3.91 Hz, 1H), 4. 16-4.21 (m, 2H), 6.60-6.68 (m, 3H), 7.08-7.13 (m, 2H)
13 C-NMR (75.45 MHz, CD 3 OD) δ 62.66 (CH), 72.96 (CH 2), 74.95 (CH 2), 76.52 (CH), 114.11 (CH), 118 .24 (CH), 130.07 (CH), 148.72 (C)
Analysis condition V Retention time 50.8 minutes, 51.2 minutes

参考例39 trans−4−(2−フェニルエチルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、2−フェニルエチルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度190−195℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 2.76−2.90(m,4H),3.15(s,1H),3.51(dd,J1=9.01Hz,J2=3.30Hz,1H),3.63(dd,J1=9.61Hz,J2=1.80Hz,1H),3.93(dd,J1=9.61Hz,J2=4.81Hz,1H),4.00−4.08(m,2H),7.17−7.31(m,5H)
13C−NMR(75.45MHz,CDCl) δ 36.17(CH2),49.28(CH2),66.56(CH),72.17(CH2),73.92(CH2),76.28(CH),126.27(CH),128.47(CH),128.53(CH),139.34(C)
分析条件γ 保持時間 29.2分、29.4分
Reference Example 39 synthesis of trans-4- (2-phenylethylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30 except that 2-phenylethylamine was used instead of isopropylamine. (Outer bath temperature 190-195 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 2.76-2.90 (m, 4H), 3.15 (s, 1H), 3.51 (dd, J1 = 9.01 Hz, J2 = 3 .30 Hz, 1H), 3.63 (dd, J1 = 9.61 Hz, J2 = 1.80 Hz, 1H), 3.93 (dd, J1 = 9.61 Hz, J2 = 4.81 Hz, 1H), 4. 00-4.08 (m, 2H), 7.17-7.31 (m, 5H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 36.17 (CH2), 49.28 (CH2), 66.56 (CH), 72.17 (CH2), 73.92 (CH2), 76. 28 (CH), 126.27 (CH), 128.47 (CH), 128.53 (CH), 139.34 (C)
Analysis condition γ Retention time 29.2 minutes, 29.4 minutes

参考例40 trans−4−(ベンジルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、ベンジルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度185−190℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 3.15(s,1H),3.54(dd,J1=9.31Hz,J2=3.30Hz,1H),3.62(dd,J1=9.61Hz,J2=1.80Hz,1H),3.74(s,2H),3.94(dd,J1=9.61Hz,J2=4.51Hz,1H),4.00(dd,J1=9.31Hz,J2=5.71Hz,1H),4.08−4.10(m,1H),7.22−7.34(m,5H)
13C−NMR(75.45MHz,CDCl) δ 52.03(CH2),65.82(CH),72.08(CH2),73.82(CH2),76.18(CH),127.15(CH),128.07(CH),128.42(CH),139.37(C)
分析条件γ 保持時間 29.1分、29.3分
Reference Example 40 synthesis of trans-4- (benzylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30 except that benzylamine was used instead of isopropylamine. (Outer bath temperature 185-190 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 3.15 (s, 1H), 3.54 (dd, J1 = 9.31 Hz, J2 = 3.30 Hz, 1H), 3.62 (dd, J1 = 9.61 Hz, J2 = 1.80 Hz, 1H), 3.74 (s, 2H), 3.94 (dd, J1 = 9.61 Hz, J2 = 4.51 Hz, 1H), 4.00 (dd, J1 = 9.31 Hz, J2 = 5.71 Hz, 1H), 4.08-4.10 (m, 1H), 7.22-7.34 (m, 5H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 52.03 (CH2), 65.82 (CH), 72.08 (CH2), 73.82 (CH2), 76.18 (CH), 127. 15 (CH), 128.07 (CH), 128.42 (CH), 139.37 (C)
Analysis condition γ Retention time 29.1 minutes, 29.3 minutes

参考例41 trans−4−(3−エトキシプロピルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、3−エトキシプロピルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体は、そのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.19(t,J=6.91Hz,3H),1.76(quin,J=6.61Hz,2H),2.69−2.73(m,2H),3.13−3.17(m,1H),3.46−3.51(m,4H),3.57(dd,J1=9.01Hz,J2=3.30Hz,1H),3.66(dd,J1=9.61Hz,J2=2.40Hz,1H),3.98(dd,J1=9.61Hz,J2=4.81Hz,1H),4.06(dd,J1=9.01Hz,J2=5.41Hz,1H),4.14(quin,J=2.40Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 14.98(CH3),29.78(CH2),45.74(CH2),66.05(CH2),66.55(CH),68.89(CH2),72.08(CH2),73.84(CH2),75.91(CH)
分析条件ζ 保持時間 7.3分、9.1分
Reference Example 41 synthesis of trans-4- (3-ethoxypropylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30 except that 3-ethoxypropylamine was used instead of isopropylamine. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.19 (t, J = 6.91 Hz, 3H), 1.76 (quin, J = 6.61 Hz, 2H), 2.69-2.73 (M, 2H), 3.13-3.17 (m, 1H), 3.46-3.51 (m, 4H), 3.57 (dd, J1 = 9.01 Hz, J2 = 3.30 Hz, 1H), 3.66 (dd, J1 = 9.61 Hz, J2 = 2.40 Hz, 1H), 3.98 (dd, J1 = 9.61 Hz, J2 = 4.81 Hz, 1H), 4.06 (dd , J1 = 9.01 Hz, J2 = 5.41 Hz, 1H), 4.14 (quin, J = 2.40 Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 14.98 (CH3), 29.78 (CH2), 45.74 (CH2), 66.05 (CH2), 66.55 (CH), 68. 89 (CH2), 72.08 (CH2), 73.84 (CH2), 75.91 (CH)
Analysis condition ζ Retention time 7.3 minutes, 9.1 minutes

参考例42 trans−2−(イソプロピルアミノ)シクロヘプタノール合成
エポキシドとして8−オキサビシクロ[5.1.0]オクタンを用いる他は参考例1同様に操作した。得られた粗体は、そのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.02(d,J=6.01Hz,3H),1.06(d,J=6.01Hz,3H),1.36−1.72(m,8H),1.88−2.05(m,2H),2.23−2.31(m,1H),2.94(sep,J=6.01Hz,1H),3.08−3.14(m,1H)
13C−NMR(75.45MHz,CDCl) δ 22.35(CH3),22.56(CH2),24.07(CH3),24.38(CH2),26.50(CH2),30.69(CH2),32.96(CH2),45.56(CH),62.52(CH),75.09(CH)
分析条件W 保持時間 9.4分、9.5分
Reference Example 42 synthesis of trans-2- (isopropylamino) cycloheptanol The same operation as in Reference Example 1 was conducted except that 8-oxabicyclo [5.1.0] octane was used as the epoxide. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.02 (d, J = 6.01 Hz, 3H), 1.06 (d, J = 6.01 Hz, 3H), 1.36-1.72 (M, 8H), 1.88-2.05 (m, 2H), 2.23-2.31 (m, 1H), 2.94 (sep, J = 6.01 Hz, 1H), 3.08 -3.14 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 22.35 (CH 3 ), 22.56 (CH 2), 24.07 (CH 3), 24.38 (CH 2), 26.50 (CH 2), 30. 69 (CH2), 32.96 (CH2), 45.56 (CH), 62.52 (CH), 75.09 (CH)
Analysis condition W Retention time 9.4 minutes, 9.5 minutes

参考例43 trans−2−(シクロプロピルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、シクロプロピルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 0.22−0.56(m,4H),1.21−1.32(m,1H),1.39−1.71(m,7H),1.89−1.99(m,1H),2.07−2.14(m,1H),2.21−2.28(m,1H),2.33−2.41(m,1H),3.06−3.16(m,1H)
13C−NMR(75.45MHz,CDCl) δ 6.20(CH2),7.13(CH2),22.03(CH2),23.71(CH2),26.55(CH2),27.62(CH), 29.90(CH2),32.75(CH2),65.76(CH),74.90(CH)
分析条件γ 保持時間 25.8分、30.8分
Reference Example 43 synthesis of trans-2- (cyclopropylamino) cycloheptanol All operations were performed in the same manner as in Reference Example 42 except that cyclopropylamine was used instead of isopropylamine.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.22-0.56 (m, 4H), 1.21-1.32 (m, 1H), 1.39-1.71 (m, 7H) ), 1.89-1.99 (m, 1H), 2.07-2.14 (m, 1H), 2.21-2.28 (m, 1H), 2.33-2.41 (m , 1H), 3.06-3.16 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 6.20 (CH2), 7.13 (CH2), 22.03 (CH2), 23.71 (CH2), 26.55 (CH2), 27. 62 (CH), 29.90 (CH2), 32.75 (CH2), 65.76 (CH), 74.90 (CH)
Analysis condition γ Retention time 25.8 minutes, 30.8 minutes

参考例44 trans−2−(2−フェニルエチルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、2−フェニルエチルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.09−1.20(m,1H),1.33−1.67(m,7H),1.83−1.98(m,2H),2.24(dt,J1=9.31Hz,J2=2.70Hz,1H),2.67−3.07(m,5H),3.13−3.20(m,1H),7.15−7.29(m,5H)
13C−NMR(75.45MHz,CDCl) δ 21.95(CH2),23.80(CH2),26.52(CH2),29.27(CH2),33.25(CH2),36.55(CH2),47.99(CH2),65.39(CH),74.96(CH),125.83(CH),128.11(CH),128.34(CH),139.65(C)
分析条件β 保持時間 9.7分、12.4分
Reference Example 44 synthesis of trans-2- (2-phenylethylamino) cycloheptanol All operations were performed in the same manner as Reference Example 42 except that 2-phenylethylamine was used instead of isopropylamine.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.09-1.20 (m, 1H), 1.33-1.67 (m, 7H), 1.83-1.98 (m, 2H) ), 2.24 (dt, J1 = 9.31 Hz, J2 = 2.70 Hz, 1H), 2.67-3.07 (m, 5H), 3.13-3.20 (m, 1H), 7 .15-7.29 (m, 5H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 21.95 (CH2), 23.80 (CH2), 26.52 (CH2), 29.27 (CH2), 33.25 (CH2), 36. 55 (CH2), 47.99 (CH2), 65.39 (CH), 74.96 (CH), 125.83 (CH), 128.11 (CH), 128.34 (CH), 139.65 (C)
Analysis condition β retention time 9.7 minutes, 12.4 minutes

参考例45 trans−2−(ベンジルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、ベンジルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.17−1.30(m,1H), 1.34−1.72(m,7H), 1.89−2.02(m,2H), 2.32(dt,J1=9.31Hz,J2=3.00Hz,1H), 3.19−3.26(m,1H),3.64(d,J=12.62Hz,1H),3.90(d,J=12.62Hz,1H), 7.19−7.30(m,5H)
13C−NMR(75.45MHz,CDCl) δ 22.00(CH2),23.80(CH2),26.65(CH2),29.11(CH2),33.31(CH2),50.88(CH2),64.90(CH),75.22(CH),126.81(CH),127.97(CH),128.19(CH),139.89(C)
分析条件β 保持時間 8.1分、10.1分
Reference Example 45 synthesis of trans-2- (benzylamino) cycloheptanol All operations were performed in the same manner as in Reference Example 42 except that benzylamine was used instead of isopropylamine.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.17-1.30 (m, 1H), 1.34-1.72 (m, 7H), 1.89-2.02 (m, 2H) ), 2.32 (dt, J1 = 9.31 Hz, J2 = 3.00 Hz, 1H), 3.19-3.26 (m, 1H), 3.64 (d, J = 12.62 Hz, 1H) , 3.90 (d, J = 12.62 Hz, 1H), 7.19-7.30 (m, 5H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 22.00 (CH2), 23.80 (CH2), 26.65 (CH2), 29.11 (CH2), 33.31 (CH2), 50. 88 (CH2), 64.90 (CH), 75.22 (CH), 126.81 (CH), 127.97 (CH), 128.19 (CH), 139.89 (C)
Analysis condition β Retention time 8.1 minutes, 10.1 minutes

参考例46 trans−2−(プロパルギルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、プロパルギルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.20−1.31(m,1H),1.34−1.74(m,7H),1.81−1.98(m,2H),2.21−2.26(m,1H),2.44−2.52(m,1H),3.26−3.33(m,1H),3.38−3.55(m,2H)
13C−NMR(75.45MHz,CDCl) δ 22.00(CH2),23.54(CH2),26.76(CH2),28.63(CH2),33.69(CH2),35.65(CH2),64.42(CH),71.10(C),75.41(CH),82.03(CH)
分析条件X 保持時間 22.0分、22.3分
Reference Example 46 synthesis of trans-2- (propargylamino) cycloheptanol All operations were performed in the same manner as in Reference Example 42 except that propargylamine was used instead of isopropylamine.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.20-1.31 (m, 1H), 1.34-1.74 (m, 7H), 1.81-1.98 (m, 2H) ), 2.21-2.26 (m, 1H), 2.44-2.52 (m, 1H), 3.26-3.33 (m, 1H), 3.38-3.55 (m , 2H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 22.00 (CH2), 23.54 (CH2), 26.76 (CH2), 28.63 (CH2), 33.69 (CH2), 35. 65 (CH2), 64.42 (CH), 71.10 (C), 75.41 (CH), 82.03 (CH)
Analysis condition X Retention time 22.0 minutes, 22.3 minutes

参考例47 trans−2−(シクロペンチルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、シクロペンチルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.10−2.05(m,18H),2.23(dt,J1=9.31Hz,J2=3.00Hz,1H),3.07−3.14(m,1H),3.22(quin,J=6.01Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 22.28(CH2),23.47(CH2),23.69(CH2),24.03(CH2),26.49(CH2),30.15(CH2),32.77(CH2),33.03(CH2),34.26(CH2),56.33(CH),63.63(CH),75.09(CH)
分析条件Y 保持時間 21.0分、21.2分
Reference Example 47 synthesis of trans-2- (cyclopentylamino) cycloheptanol All operations were performed in the same manner as in Reference Example 42 except that cyclopentylamine was used instead of isopropylamine.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.10-2.05 (m, 18H), 2.23 (dt, J1 = 9.31 Hz, J2 = 3.00 Hz, 1H), 3.07 -3.14 (m, 1H), 3.22 (quin, J = 6.01 Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 22.28 (CH 2), 23.47 (CH 2), 23.69 (CH 2), 24.03 (CH 2), 26.49 (CH 2), 30. 15 (CH2), 32.77 (CH2), 33.03 (CH2), 34.26 (CH2), 56.33 (CH), 63.63 (CH), 75.09 (CH)
Analysis condition Y Retention time 21.0 minutes, 21.2 minutes

参考例48 trans−2−(ジエチルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、ジエチルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.09(t,J=7.21Hz,6H),1.19−1.78(m,9H),2.01−2.09(m,1H),2.34−2.52(m,3H),2.64−2.76(m,2H),3.38−3.45(m,1H)
13C−NMR(75.45MHz,CDCl) δ 14.08(CH3),22.00(CH2),22.47(CH2),24.74(CH2),26.90(CH2),33.52(CH2),43.59(CH2),67.37(CH),71.27(CH)
分析条件C 保持時間 21.0分、21.2分
Reference Example 48 synthesis of trans-2- (diethylamino) cycloheptanol All operations were performed in the same manner as in Reference Example 42 except that diethylamine was used instead of isopropylamine.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.09 (t, J = 7.21 Hz, 6H), 1.19-1.78 (m, 9H), 2.01-2.09 (m , 1H), 2.34-2.52 (m, 3H), 2.64-2.76 (m, 2H), 3.38-3.45 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 14.08 (CH3), 22.00 (CH2), 22.47 (CH2), 24.74 (CH2), 26.90 (CH2), 33. 52 (CH2), 43.59 (CH2), 67.37 (CH), 71.27 (CH)
Analysis condition C Retention time 21.0 minutes, 21.2 minutes

参考例49 trans−2−(1−ピペリジニル)シクロヘプタノール合成
イソプロピルアミンに代えて、ピペリジンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.14−1.26(m,1H),1.30−1.83(m,14H),2.01−2.08(m,1H),2.14−2.21(m,1H),2.31−2.33(m,2H),2.60−2.67(m,2H),3.33−3.41(m,1H)
13C−NMR(75.45MHz,CDCl) δ 21.46(CH2),21.67(CH2),24.02(CH2),24.40(CH2),26.22(CH2),26.44(CH2),33.03(CH2),48.96(CH2),70.60(CH),71.88(CH)
分析条件Z 保持時間 21.0分、21.2分
Reference Example 49 synthesis of trans-2- (1-piperidinyl) cycloheptanol All operations were performed in the same manner as Reference Example 42 except that piperidine was used instead of isopropylamine.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.14-1.26 (m, 1 H), 1.30-1.83 (m, 14 H), 2.01-2.08 (m, 1 H) ), 2.14-2.21 (m, 1H), 2.31-2.33 (m, 2H), 2.60-2.67 (m, 2H), 3.33-3.41 (m) , 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 21.46 (CH2), 21.67 (CH2), 24.02 (CH2), 24.40 (CH2), 26.22 (CH2), 26. 44 (CH2), 33.03 (CH2), 48.96 (CH2), 70.60 (CH), 71.88 (CH)
Analysis condition Z Retention time 21.0 minutes, 21.2 minutes

参考例50 trans−2−アミノシクロヘキサノール
trans−2−アミノシクロヘキサン−1−オールは、シグマアルドリッチ社製のものをそのまま用いた。
分析条件A 保持時間 (S,S)体:18.3分、(R,R)体:18.7分
Reference Example 50 trans-2-aminocyclohexanol Trans-2-aminocyclohexane-1-ol was used as it was by Sigma-Aldrich.
Analysis condition A Retention time (S, S) isomer: 18.3 minutes, (R, R) isomer: 18.7 minutes

参考例51 trans−3−シクロプロピルアミノ−2−ブタノール
Cis−2,3−エポキシブタンとシクロプロピルアミンを用いる他は、参考例1と同様に操作した。得られた粗体は、そのまま分析に用いた。(外浴温度135−140℃、圧力0.1mmHg)
分析条件G 保持時間 11.0分、11.3分
Reference Example 51 trans-3-cyclopropylamino-2-butanol The same operation as in Reference Example 1 was performed except that Cis-2,3-epoxybutane and cyclopropylamine were used. The obtained crude product was used for analysis as it was. (Outer bath temperature 135-140 ° C., pressure 0.1 mmHg)
Analysis condition G Retention time 11.0 minutes, 11.3 minutes

参考例52 trans−2−(2−プロピルチオ)シクロヘキサノール
50mLナスフラスコに7−オキサビシクロ[4.1.0]ヘプタン 2.00gと2−プロパンチオール1.70mLを量りとり、メタノール8mLと水2mL、トリエチルアミン2.84mLを加え、50℃で20時間反応した。反応後、減圧下に濃縮し、残渣3.12g得た。残渣1.00gを柴田科学社製ガラスチューブオーブンGTO−250RS(クーゲルロール)で減圧蒸留し、trans−2−(2−プロピルチオ)シクロヘキサン−1−オールを0.77g得た。(外浴温度140−150℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.20−1.51(m,4H),1.29(d,J=6.61Hz,3H),1.30(d,J=6.61Hz,3H),1.68−1.79(m,2H),2.07−2.15(m,2H),2.38−2.46(m,1H),3.03(sep.,J=6.61Hz,1H),3.26(dt,J1=4.51Hz,J2=9.91Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 24.24(CH3),24.31(CH2),24.39(CH3),26.23(CH2),33.67(CH2),34.05(CH2),35.08(CH),53.58(CH),72.56(CH)
分析条件AB 保持時間 17.6分,18.8分
Reference Example 52 trans-2- (2-propylthio) cyclohexanol 50 mL of 7-oxabicyclo [4.1.0] heptane and 1.70 mL of 2-propanethiol were weighed into a 50 mL eggplant flask, 8 mL of methanol, and 2 mL of water. Then, 2.84 mL of triethylamine was added and reacted at 50 ° C. for 20 hours. After the reaction, the reaction mixture was concentrated under reduced pressure to obtain 3.12 g of a residue. 1.00 g of the residue was distilled under reduced pressure in a glass tube oven GTO-250RS (Kugel Roll) manufactured by Shibata Kagaku Co., Ltd., to obtain 0.77 g of trans-2- (2-propylthio) cyclohexane-1-ol. (Outer bath temperature 140-150 ° C., pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.20-1.51 (m, 4H), 1.29 (d, J = 6.61 Hz, 3H), 1.30 (d, J = 6) .61 Hz, 3H), 1.68-1.79 (m, 2H), 2.07-2.15 (m, 2H), 2.38-2.46 (m, 1H), 3.03 (sep ., J = 6.61 Hz, 1H), 3.26 (dt, J1 = 4.51 Hz, J2 = 9.91 Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 24.24 (CH3), 24.31 (CH2), 24.39 (CH3), 26.23 (CH2), 33.67 (CH2), 34. 05 (CH2), 35.08 (CH), 53.58 (CH), 72.56 (CH)
Analysis condition AB Retention time 17.6 minutes, 18.8 minutes

参考例53 7−トシル−7−アザビシクロ[4.1.0]ヘプタン
温度計、攪拌子を設置した50mL四つ口フラスコに2−アミノシクロヘキサノール1.00g、THF15mL,トリエチルアミン1.81mLを加え、氷冷し、内温3℃で塩化トシル1.74gを加えた。この時内温は10℃まで上昇した。氷冷下で30分、室温(26℃)で30分攪拌した後、水20mL、トルエン20mLを加えて分液し、トルエン層を水10mLで2回洗浄した。洗浄後のトルエン層を硫酸ナトリウムで乾燥し、ロータリーエバポレーターで減圧濃縮した。得られたオイルを真空ポンプで乾燥しtrans−N−トシル−2−アミノシクロヘキサノール(結晶)を2.27g得た。
H−NMR(300.4MHz,CDCl) δ 1.10−1.30(m,4H),1.53−1.76(m,3H),2.00−2.04(m,1H),2.43(s,3H),2.65(d,J=3.30Hz,1H),2.80−2.90(m,1H),3.26−3.35(m,1H),4.96(d,J=6.91Hz,1H),7.32(d,J=8.11Hz,1H),7.80(d,J=8.11Hz,1H)
温度計、攪拌子、塩化カルシウム管を設置した50mL四つ口フラスコにtrans−N−トシル−2−アミノシクロヘキサノール2.17g、トリフェニルホスフィン2.75g、THF22mLを加え、氷冷し、内温2℃でアゾジカルボン酸ジイソプロピル(90.0+%)2.17gを滴下ロートを用いて10分かけて滴下した。このとき内温は5℃まで上昇した。氷冷下で80分、室温(26℃)で60分攪拌した後、水20mL、酢酸エチル30mLを加えて分液し、酢酸エチル層をロータリーエバポレーターで減圧濃縮し、残渣7.21gを得た。残渣をシリカゲル140g、展開溶媒トルエン:酢酸エチル=5:1を用いてカラムクロマトグラフィーを行い、7−トシル−7−アザビシクロ[4.1.0]ヘプタン1.33gを得た。
H−NMR(300.4MHz,CDCl) δ 1.15−1.27(m,2H),1.35−1.44(m,2H),1.79(t,J=5.11Hz,4H),2.44(s,3H),2.97−2.98(m,2H),7.32(d,J=8.11Hz,2H),7.82(d,J=8.11Hz,2H)
Reference Example 53 7-tosyl-7-azabicyclo [4.1.0] heptane To a 50 mL four-necked flask equipped with a thermometer and a stirrer was added 1.00 g of 2-aminocyclohexanol, 15 mL of THF, and 1.81 mL of triethylamine. The mixture was ice-cooled and 1.74 g of tosyl chloride was added at an internal temperature of 3 ° C. At this time, the internal temperature rose to 10 ° C. After stirring for 30 minutes under ice cooling and 30 minutes at room temperature (26 ° C.), 20 mL of water and 20 mL of toluene were added for liquid separation, and the toluene layer was washed twice with 10 mL of water. The toluene layer after washing was dried over sodium sulfate and concentrated under reduced pressure using a rotary evaporator. The obtained oil was dried with a vacuum pump to obtain 2.27 g of trans-N-tosyl-2-aminocyclohexanol (crystal).
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.10-1.30 (m, 4H), 1.53-1.76 (m, 3H), 2.00-2.04 (m, 1H) ), 2.43 (s, 3H), 2.65 (d, J = 3.30 Hz, 1H), 2.80-2.90 (m, 1H), 3.26-3.35 (m, 1H) ), 4.96 (d, J = 6.91 Hz, 1H), 7.32 (d, J = 8.11 Hz, 1H), 7.80 (d, J = 8.11 Hz, 1H)
To a 50 mL four-necked flask equipped with a thermometer, a stirrer, and a calcium chloride tube were added 2.17 g of trans-N-tosyl-2-aminocyclohexanol, 2.75 g of triphenylphosphine, and 22 mL of THF, and the mixture was cooled with ice and the internal temperature At 2 ° C., 2.17 g of diisopropyl azodicarboxylate (90.0 +%) was added dropwise using a dropping funnel over 10 minutes. At this time, the internal temperature rose to 5 ° C. After stirring for 80 minutes under ice cooling and 60 minutes at room temperature (26 ° C.), 20 mL of water and 30 mL of ethyl acetate were added for liquid separation, and the ethyl acetate layer was concentrated under reduced pressure using a rotary evaporator to obtain 7.21 g of a residue. . The residue was subjected to column chromatography using 140 g of silica gel and developing solvent toluene: ethyl acetate = 5: 1 to obtain 1.33 g of 7-tosyl-7-azabicyclo [4.1.0] heptane.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.15-1.27 (m, 2H), 1.35-1.44 (m, 2H), 1.79 (t, J = 5.11 Hz) , 4H), 2.44 (s, 3H), 2.97-2.98 (m, 2H), 7.32 (d, J = 8.11 Hz, 2H), 7.82 (d, J = 8 .11Hz, 2H)

参考例54 trans−N−トシル−(2−(2−フェニルエチルアミノ)シクロヘキシルアミン)
イソプロピルアミンに代えて、2−フェニルエチルアミンを、7−オキサビシクロ[4.1.0]ヘプタンに代えて、7−トシル−7−アザビシクロ[4.1.0]ヘプタンを用いる他はすべて参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.83−0.94(m,1H),1.06−1.25(m,3H),1.57−1.63(m,2H),1.97−2.07(m,2H),2.16−2.24(m,1H),2.38(s,3H),2.54−2.69(m,4H),2.78−2.87(m,1H),7.13−7.30(m,7H),7.70(d,J=8.11Hz,2H)
13C−NMR(75.45MHz,CDCl) δ 21.27(CH3),24.23(CH2),24.42(CH2),30.89(CH2),32.32(CH2),36.43(CH2),46.90(CH2),57.07(CH),60.11(CH),125.92(CH),126.97(CH),128.22(CH),128.39(CH),129.35(CH),137.09(C),139.68(C),142.89(C)
分析条件θ 保持時間:37.2分、40.6分
Reference Example 54 trans-N-tosyl- (2- (2-phenylethylamino) cyclohexylamine)
Reference Example except that 2-phenylethylamine is used in place of isopropylamine and 7-tosyl-7-azabicyclo [4.1.0] heptane is used in place of 7-oxabicyclo [4.1.0] heptane The same operation as in 1 was performed. The obtained crude product was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.83-0.94 (m, 1H), 1.06-1.25 (m, 3H), 1.57-1.63 (m, 2H) ), 1.97-2.07 (m, 2H), 2.16-2.24 (m, 1H), 2.38 (s, 3H), 2.54-2.69 (m, 4H), 2.78-2.87 (m, 1H), 7.13-7.30 (m, 7H), 7.70 (d, J = 8.11 Hz, 2H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 21.27 (CH3), 24.23 (CH2), 24.42 (CH2), 30.89 (CH2), 32.32 (CH2), 36. 43 (CH2), 46.90 (CH2), 57.07 (CH), 60.11 (CH), 125.92 (CH), 126.97 (CH), 128.22 (CH), 128.39 (CH), 129.35 (CH), 137.09 (C), 139.68 (C), 142.89 (C)
Analysis condition θ Retention time: 37.2 minutes, 40.6 minutes

<植物加工物調製例>
植物加工物は、以下のようにして入手した。
脱脂大豆粉、ペクチン(柑橘類由来)、水溶性大豆多糖類、カボチャ、レンコン、ジャガイモ、ニンジン、小麦胚芽、ウコンは、粉末状に加工されたものを入手した。
キウイ、ブンタン、ナツミカン、花柚子、ニンニク、大豆、ネギ、ピスタチオ、カシューナッツ、茶(紅茶、緑茶)、赤インゲンマメ、エンドウマメなど加工していない植物片は、必要に応じて加温されたデシケーターで乾燥し、約5gを小型粉砕器“粉砕くん”(柴田化学器械工業社製、SCM−40A)にて30秒間粉砕した後、ヘキサン50mLを加えて分散させ、ヘキサンを除去した後、得られた粉末を減圧下乾燥した。
<Examples of processed plant preparation>
The processed plant product was obtained as follows.
The defatted soybean powder, pectin (citrus-derived), water-soluble soybean polysaccharide, pumpkin, lotus root, potato, carrot, wheat germ, and turmeric were processed into powder.
Unprocessed plant pieces such as kiwi, buntan, natsum, flower aubergine, garlic, soy, leek, pistachio, cashew nut, tea (tea, green tea), red kidney beans, peas, etc. are heated in a desiccator if necessary. After drying, about 5 g was pulverized for 30 seconds with a small pulverizer “Crushing kun” (SCM-40A, manufactured by Shibata Chemical Instruments Co., Ltd.), dispersed by adding 50 mL of hexane, and obtained after removing hexane. The powder was dried under reduced pressure.

<参考例55〜81>
5mLの試験管に、表3に記載の植物加工物100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン48mg、シクロプロピルアミン34mg、水17mgを加えた。密閉し、37℃の温浴で16時間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。なお、カボチャとして「パンプキンパウダー」(こだま食品製)、ジャガイモとして「マッシュポテト」(三木食品製)、ニンジンとして「キャロットパウダー」(こだま食品製)、トマトとして「トマトパウダー」(こだま食品製)、ダイコンとして「乾燥大根おろし」(こだま食品製)、レンコンとして「れんこんパウダー」(こだま食品製)を粉末状に粉砕して使用した。また、ピスタチオは、脱脂した後に粉砕したものを使用した。

Figure 2017104044

Figure 2017104044

*:ペクチンとして、「ペクチン(柑橘類由来)」(関東化学製、Cat No.32536−32)を使用した。 <Reference Examples 55-81>
To a 5 mL test tube, 100 mg of the processed plant product described in Table 3 was weighed, and 0.4 mL of toluene, 48 mg of 7-oxabicyclo [4.1.0] heptane, 34 mg of cyclopropylamine, and 17 mg of water were added. Sealed and shaken in a 37 ° C. bath for 16 hours. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC. Pumpkin powder (made by Kodama Foods) as pumpkin, Mashed Potato (made by Miki Foods) as potato, Carrot Powder (made by Kodama Foods) as carrot, Tomato Powder (made by Kodama Foods) as tomato, Japanese radish “Dried radish grated” (manufactured by Kodama Foods) and “renkon powder” (manufactured by Kodama Foods) were ground and used as lotus root. The pistachio used was degreased and then pulverized.
Figure 2017104044

Figure 2017104044

*: “Pectin (derived from citrus fruits)” (Cat No. 32536-32, manufactured by Kanto Kagaku) was used as the pectin.

結果を表3に示した。参考例55〜81では、立体選択的に化合物(3)が得られた。特に、参考例55、56、65および67は、変換率、立体選択性ともに優れていた。   The results are shown in Table 3. In Reference Examples 55 to 81, the compound (3) was obtained stereoselectively. In particular, Reference Examples 55, 56, 65 and 67 were excellent in both conversion rate and stereoselectivity.

参考例82〜101
5mLの試験管に、表4に記載の植物加工物100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン48mg、イソプロピルアミン29mg、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。なお、カボチャとして「パンプキンパウダー」(こだま食品製)、ジャガイモとして「マッシュポテト」(三木食品製)、ニンジンとして「キャロットパウダー」(こだま食品製)、トマトとして「トマトパウダー」(こだま食品製)、ダイコンとして「乾燥大根おろし」(こだま食品製)、レンコンとして「れんこんパウダー」(こだま食品製)を粉末状に粉砕して使用し、ピスタチオは、脱脂した後に粉砕したものを使用した。
Reference Examples 82-101
To a 5 mL test tube, 100 mg of the processed plant product described in Table 4 was weighed, and 0.4 mL of toluene, 48 mg of 7-oxabicyclo [4.1.0] heptane, 29 mg of isopropylamine, and 17 mg of water were added. Sealed and shaken in a 40 ° C. bath for 6 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC. Pumpkin powder (made by Kodama Foods) as pumpkin, Mashed Potato (made by Miki Foods) as potato, Carrot Powder (made by Kodama Foods) as carrot, Tomato Powder (made by Kodama Foods) as tomato, Japanese radish “Dried radish grated” (manufactured by Kodama Foods), “Loren powder” (manufactured by Kodama Foods) as a lotus root was pulverized into a powder form, and pistachio was degreased and pulverized.

Figure 2017104044
Figure 2017104044

Figure 2017104044
Figure 2017104044

結果を表4に示した。実施例82〜101では、立体選択的に化合物(3)が得られた。特に、参考例82〜85,87,93,97および100は、変換率、立体選択性ともに優れていた。   The results are shown in Table 4. In Examples 82 to 101, compound (3) was obtained stereoselectively. In particular, Reference Examples 82 to 85, 87, 93, 97 and 100 were excellent in both conversion rate and stereoselectivity.

参考例102〜117
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS―DN)100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン48mg、表5に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Reference Examples 102-117
In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soya Five S-DN) is weighed, 0.4 mL of toluene, 48 mg of 7-oxabicyclo [4.1.0] heptane, compound (2) shown in Table 5 1.2 equivalents and 17 mg of water were added. Sealed and shaken in a 40 ° C. bath for 6 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC.

Figure 2017104044
Figure 2017104044

結果を表5に示した。参考例102〜117では、立体選択的に化合物(3)が収率よく得られた。   The results are shown in Table 5. In Reference Examples 102 to 117, the compound (3) was obtained with good yield in a stereoselective manner.

参考例118〜130
5mLの試験管に、ニンジン100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン48mg、表6に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Reference Examples 118-130
To a 5 mL test tube, 100 mg of carrot was weighed, and 0.4 mL of toluene, 48 mg of 7-oxabicyclo [4.1.0] heptane, 1.2 equivalents of the compound (2) described in Table 6 and 17 mg of water were added. . Sealed and shaken in a 40 ° C. bath for 6 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC.

Figure 2017104044
Figure 2017104044

結果を表6に示した。参考例118〜130では、立体選択的に化合物(3)が得られた。特に、参考例123および129は、変換率、立体選択性ともに優れていた。   The results are shown in Table 6. In Reference Examples 118 to 130, compound (3) was obtained stereoselectively. In particular, Reference Examples 123 and 129 were excellent in both conversion rate and stereoselectivity.

参考例131〜142
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS―DN)100mgを量りとり、トルエン0.4mL、6−オキサビシクロ[3.1.0]ヘキサン41mg、表7に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Reference Examples 131-142
In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soya Five S-DN) is weighed, 0.4 mL of toluene, 41 mg of 6-oxabicyclo [3.1.0] hexane, compound (2) described in Table 7 1.2 equivalents and 17 mg of water were added. Sealed and shaken in a 40 ° C. bath for 6 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC.

Figure 2017104044
Figure 2017104044

結果を表7に示した。参考例131〜142は全て、立体選択性、収率ともに優れていた。   The results are shown in Table 7. All of Reference Examples 131 to 142 were excellent in both stereoselectivity and yield.

参考例143〜154
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS―DN)100mgを量りとり、トルエン0.4mL、3,6−ジオキサビシクロ[3.1.0]ヘキサン42mg、表8に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Reference Examples 143 to 154
In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soya Five S-DN) is weighed, 0.4 mL of toluene, 42 mg of 3,6-dioxabicyclo [3.1.0] hexane, and the compounds described in Table 8 (2) 1.2 equivalents and 17 mg of water were added. Sealed and shaken in a 40 ° C. bath for 6 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC.

Figure 2017104044
Figure 2017104044

結果を表8に示した。参考例143〜154は全て、立体選択性、収率ともに優れていた。   The results are shown in Table 8. All of Reference Examples 143 to 154 were excellent in both stereoselectivity and yield.

参考例155〜162
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS−DN)100mgを量りとり、トルエン0.4mL、8−オキサビシクロ[5.1.0]オクタン41mg、表9に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Reference examples 155 to 162
In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soya Five S-DN) was weighed, 0.4 mL of toluene, 41 mg of 8-oxabicyclo [5.1.0] octane, compound (2) shown in Table 9 1.2 equivalents and 17 mg of water were added. Sealed and shaken in a 40 ° C. bath for 6 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC.

Figure 2017104044
Figure 2017104044

結果を表9に示した。参考例155〜162は全て、立体選択的に化合物(3)を与えた。特に、実施例107は、変換率、立体選択性ともに優れていた。   The results are shown in Table 9. Reference Examples 155 to 162 all gave compound (3) stereoselectively. In particular, Example 107 was excellent in both conversion rate and stereoselectivity.

参考例163
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS−DN)1.1gを量りとり、トルエン2.87mL、Cis−2,3−エポキシブタン41mg、シクロプロピルアミン1.2当量、水390mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。その結果、変換率55%、選択率4%eeであった。
Reference Example 163
In a 5 mL test tube, 1.1 g of water-soluble soybean polysaccharide (Soya Five S-DN) is weighed, 2.87 mL of toluene, 41 mg of Cis-2,3-epoxybutane, 1.2 equivalents of cyclopropylamine, and 390 mg of water. added. Sealed and shaken in a 40 ° C. bath for 6 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC. As a result, the conversion was 55% and the selectivity was 4% ee.

参考例164〜168
攪拌機、温度計を装着した1L四つ口フラスコに、大豆加工物70.0g、トルエン198mL、水28.0mL、7−オキサビシクロ[4.1.0]ヘプタン35.0gおよびシクロプロピルアミン24.4gを加え、窒素雰囲気下にて、40℃で撹拌した。各実施例で使用した大豆加工物および反応時間を表1に示した。反応液を少量採取し、ガスクロマトグラフィーを用いて、所定の反応時間における変換率および選択率を算出した。
Reference examples 164 to 168
In a 1 L four-necked flask equipped with a stirrer and a thermometer, 70.0 g of processed soybean, 198 mL of toluene, 28.0 mL of water, 35.0 g of 7-oxabicyclo [4.1.0] heptane and 24. 4 g was added and stirred at 40 ° C. under a nitrogen atmosphere. Table 1 shows the processed soybean and reaction time used in each example. A small amount of the reaction solution was collected, and the conversion rate and selectivity at a predetermined reaction time were calculated using gas chromatography.

Figure 2017104044
Figure 2017104044

結果を表10に示した。参考例164〜168は全て、立体選択的に化合物(3)を与えた。特に、参考例166〜168は、変換率、立体選択性ともに優れていた。   The results are shown in Table 10. Reference Examples 164 to 168 all gave compound (3) stereoselectively. In particular, Reference Examples 166 to 168 were excellent in both conversion rate and stereoselectivity.

参考例169
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS−DN)100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン100mg、2−プロパンチオール109mg、水17mgを加えた。密閉し、50℃の温浴で5日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。その結果、変換率7%、選択率72%eeであった。
Reference Example 169
In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soya Five S-DN) is weighed, and 0.4 mL of toluene, 100 mg of 7-oxabicyclo [4.1.0] heptane, 109 mg of 2-propanethiol, and 17 mg of water are added. added. Sealed and shaken in a 50 ° C. bath for 5 days. After the reaction, the catalyst was filtered, and conversion and selectivity were measured by GC. As a result, the conversion rate was 7% and the selectivity rate was 72% ee.

参考例170
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS−DN)100mgを量りとり、トルエン0.4mL、7−トシル−7−アザビシクロ[4.1.0]ヘプタン100mg、2−フェニルエチルアミン58mg、水17mgを加えた。密閉し、50℃の温浴で5日間振とうした。反応後、触媒をろ過し、ろ液を濃縮し、trans−N−トシル(2−(2−フェニルエチルアミノ)シクロヘキシルアミン)の粗体120mgを得た。粗収率81%、選択率4%eeであった。
Reference Example 170
In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soya Five S-DN) is weighed, and 0.4 mL of toluene, 100 mg of 7-tosyl-7-azabicyclo [4.1.0] heptane, 58 mg of 2-phenylethylamine, 17 mg of water was added. Sealed and shaken in a 50 ° C. bath for 5 days. After the reaction, the catalyst was filtered, and the filtrate was concentrated to obtain 120 mg of a crude product of trans-N-tosyl (2- (2-phenylethylamino) cyclohexylamine). The crude yield was 81% and the selectivity was 4% ee.

参考例171 (1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールの合成
攪拌機、温度計を装着した1L四つ口フラスコに、ソヤファイブS−DN70.0g、トルエン198mL、水28.0mL、7−オキサビシクロ[4.1.0]ヘプタン35.0gおよびシクロプロピルアミン24.4gを加え、窒素雰囲気下にて、40℃で26時間撹拌した。ソヤファイブS−DNを、ヌッチェを用いてろ別し、トルエン140mLで洗浄した。得られたろ液を減圧下にて濃縮し、粗生成物として(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノール58.4g(含量51.0g、64%ee、収率92%)を得た。ここで、含量は、粗生成物のH−NMRスペクトルを測定し、2−(シクロプロピルアミノ)シクロヘキサノールとトルエンとのプロトンの積分比を用いて、粗生成物の質量を基に算出した値である。
攪拌機、温度計を装着した5L四つ口フラスコに、得られた粗生成物の(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノール317.5g(含量272.4g、64%ee)とイソプロパノール2724mLを加え、40℃に昇温した後、フマル酸61.1gと種晶A10mg、活性炭(精製白鷺(日本エンバイロケミカルズ社、商品名))27.2gを加え、30分間静置した。このとき、種晶Aには、ラセミ体の2−シクロプロピルアミノシクロヘキサノールフマル酸塩を用いた。室温まで冷却し、さらに60分間静置した後に、析出したラセミ体の2−(シクロプロピルアミノ)シクロヘキサノールフマル酸塩の結晶および活性炭を、ヌッチェを用いてろ別し、イソプロパノール272mLで結晶を洗浄した。得られたろ液をロータリーエバポレーターで減圧下、濃縮した。得られた(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールにトルエン1498mL、水34.5mLおよび水酸化カリウム40.3gを加えて、フリー体に変換し、トルエン層を分離した。得られたトルエン層を水68mLで3回洗浄し、ロータリーエバポレーターを用いて減圧下にて濃縮し、固形物154.1g(含量135.6g)を得た。攪拌機、温度計を装着した1L四つ口フラスコに、当該固形物154.1g(含量135.6g)とヘプタン407mLを加え、内温25℃に調整し、種晶B135mgを加え、30分間かけて静置した。このとき、種晶Bには、(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールを用いた。さらに、内温10〜15℃で60分間、0℃で60分間静置した後、析出した結晶をろ取した。得られた結晶を0℃のヘプタン68mLで洗浄し、室温で減圧乾燥し、白色の(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールの一次晶103.0g(100%ee)を得た。ろ液はロータリーエバポレーターで減圧下にて濃縮し、一次晶を得た時と同様の操作で二次晶11.0g(100%ee)を得た。粗生成物の(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールから、一次晶および二次晶を合わせた(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールの結晶を得る工程の収率は42%であった。
Reference Example 171 Synthesis of (1R, 2R) -2- (cyclopropylamino) cyclohexanol Into a 1 L four-necked flask equipped with a stirrer and a thermometer, 70.0 g of Soya Five S-DN, 198 mL of toluene, 28.0 mL of water, 7 -Oxabicyclo [4.1.0] heptane (35.0 g) and cyclopropylamine (24.4 g) were added, and the mixture was stirred at 40 ° C for 26 hours under a nitrogen atmosphere. Soya Five S-DN was filtered off using Nutsche and washed with 140 mL of toluene. The obtained filtrate was concentrated under reduced pressure, and (1R, 2R) -2- (cyclopropylamino) cyclohexanol 58.4 g (content 51.0 g, 64% ee, yield 92%) was obtained as a crude product. Obtained. Here, the content was calculated based on the mass of the crude product by measuring the 1 H-NMR spectrum of the crude product and using the integral ratio of protons of 2- (cyclopropylamino) cyclohexanol and toluene. Value.
In a 5 L four-necked flask equipped with a stirrer and a thermometer, 317.5 g (content 272.4 g, 64% ee) of (1R, 2R) -2- (cyclopropylamino) cyclohexanol of the obtained crude product was obtained. After adding 2724 mL of isopropanol and raising the temperature to 40 ° C., 61.1 g of fumaric acid, 10 mg of seed crystal A, and 27.2 g of activated carbon (refined birch (Nippon Enviro Chemicals, Inc., trade name)) were added and left for 30 minutes. At this time, racemic 2-cyclopropylaminocyclohexanol fumarate was used as seed crystal A. After cooling to room temperature and allowing to stand for another 60 minutes, the precipitated racemic 2- (cyclopropylamino) cyclohexanol fumarate crystals and activated carbon were filtered off using Nutsche, and the crystals were washed with 272 mL of isopropanol. . The obtained filtrate was concentrated under reduced pressure using a rotary evaporator. To the obtained (1R, 2R) -2- (cyclopropylamino) cyclohexanol, 1498 mL of toluene, 34.5 mL of water and 40.3 g of potassium hydroxide were added to convert to a free form, and the toluene layer was separated. The obtained toluene layer was washed with 68 mL of water three times and concentrated under reduced pressure using a rotary evaporator to obtain 154.1 g (content 135.6 g) of a solid. To a 1 L four-necked flask equipped with a stirrer and a thermometer, add 154.1 g (content 135.6 g) of the solid and 407 mL of heptane, adjust the internal temperature to 25 ° C., add 135 mg of seed crystal B, and take 30 minutes. Left to stand. At this time, (1R, 2R) -2- (cyclopropylamino) cyclohexanol was used as seed crystal B. Furthermore, after allowing to stand at an internal temperature of 10 to 15 ° C. for 60 minutes and at 0 ° C. for 60 minutes, the precipitated crystals were collected by filtration. The obtained crystals were washed with 68 mL of heptane at 0 ° C. and dried under reduced pressure at room temperature to obtain 103.0 g (100% ee) of primary crystals of white (1R, 2R) -2- (cyclopropylamino) cyclohexanol. It was. The filtrate was concentrated on a rotary evaporator under reduced pressure to obtain 11.0 g (100% ee) of secondary crystals in the same manner as when primary crystals were obtained. A step of obtaining crystals of (1R, 2R) -2- (cyclopropylamino) cyclohexanol, which are a combination of primary and secondary crystals, from the crude product (1R, 2R) -2- (cyclopropylamino) cyclohexanol The yield of was 42%.

参考例172 光学活性trans−2−(イソプロピルアミノ)シクロヘキサノールの合成
攪拌機、温度計を装着した1L四つ口フラスコに、ソヤファイブS−DN14.4g、ヘプタン36mL、水4.3mL、7−オキサビシクロ[4.1.0]ヘプタン12gおよびイソプロピルアミン8.7gを加え、窒素雰囲気下にて、40℃で49時間撹拌した。ソヤファイブS−DNを、ヌッチェを用いてろ別し、ヘプタン50mLで洗浄した。得られたろ液を減圧下にて濃縮し、再び36mLのヘプタンに溶解し、生じた結晶をろ過した。結晶を5mLのヘプタンで洗浄し、母液を濃縮して、光学活性trans−2−(イソプロピルアミノ)シクロヘキサノール11g(保持時間の長い異性体 82%ee)を得た。
Reference Example 172 Synthesis of optically active trans-2- (isopropylamino) cyclohexanol To a 1 L four-necked flask equipped with a stirrer and a thermometer, Soya Five S-DN 14.4 g, heptane 36 mL, water 4.3 mL, 7-oxabicyclo [4.1.0] 12 g of heptane and 8.7 g of isopropylamine were added, and the mixture was stirred at 40 ° C. for 49 hours under a nitrogen atmosphere. Soya Five S-DN was filtered off using Nutsche and washed with 50 mL of heptane. The obtained filtrate was concentrated under reduced pressure, dissolved again in 36 mL of heptane, and the resulting crystals were filtered. The crystals were washed with 5 mL of heptane, and the mother liquor was concentrated to obtain 11 g of optically active trans-2- (isopropylamino) cyclohexanol (isomer 82% ee with a long retention time).

参考例173 光学活性trans−2−(プロパルギルアミノ)シクロヘキサノールの合成
攪拌機、温度計を装着した50mL四つ口フラスコに、ソヤファイブS−DN1.2g、ヘプタン3mL、水0.36mL、7−オキサビシクロ[4.1.0]ヘプタン0.858gおよびプロパルギルアミン0.407gを加え、窒素雰囲気下にて、40℃で6日間撹拌した。トルエン3mLを加え攪拌し、ソヤファイブS−DNを、ヌッチェを用いてろ別し、トルエン3mLで洗浄した。得られたろ液を減圧下にて濃縮し、粗生成物として光学活性trans−2−(プロパルギルアミノ)シクロヘキサノール1.19g(45%ee、収率91%)を得た。
攪拌機、温度計を装着した50mL四つ口フラスコに、得られた粗生成物の光学活性trans−2−(プロパルギルアミノ)シクロヘキサノール1.19g(45%ee)とエタノール12mLを加え、40℃に昇温した後、フマル酸0.595gと種晶10mgを加え、30分間静置した。このとき、種晶には、ラセミ体のtrans−2−(プロパルギルアミノ)シクロヘキサノールフマル酸塩を用いた。室温まで冷却し、さらに60分間静置した後に、析出したラセミ体のtrans−2−(プロパルギルアミノ)シクロヘキサノールフマル酸塩の結晶を、ヌッチェを用いてろ別し、エタノール1mLで結晶を洗浄した。得られたろ液をロータリーエバポレーターで減圧下、濃縮した。得られた光学活性trans−2−(プロパルギルアミノ)シクロヘキサノールにトルエン10mL、水1mLおよび水酸化カリウム0.480gを加えて、フリー体に変換し、トルエン層を分離した。得られたトルエン層を水1mLで3回洗浄し、ロータリーエバポレーターを用いて減圧下にて濃縮し、光学活性trans−2−(プロパルギルアミノ)シクロヘキサノール0.440g(90%ee)を得た。この時の通算収率は31%であった。
Reference Example 173 Synthesis of optically active trans-2- (propargylamino) cyclohexanol In a 50 mL four-necked flask equipped with a stirrer and a thermometer, 1.2 g Soya Five S-DN, 3 mL heptane, 0.36 mL water, 7-oxabicyclo [4.1.0] Heptane (0.858 g) and propargylamine (0.407 g) were added, and the mixture was stirred at 40 ° C. for 6 days under a nitrogen atmosphere. Toluene (3 mL) was added and stirred, and Soya Five S-DN was filtered off using Nutsche and washed with toluene (3 mL). The obtained filtrate was concentrated under reduced pressure to obtain 1.19 g (45% ee, 91% yield) of optically active trans-2- (propargylamino) cyclohexanol as a crude product.
To a 50 mL four-necked flask equipped with a stirrer and a thermometer, 1.19 g (45% ee) of the optically active trans-2- (propargylamino) cyclohexanol of the obtained crude product and 12 mL of ethanol were added. After the temperature was raised, 0.595 g of fumaric acid and 10 mg of seed crystals were added and allowed to stand for 30 minutes. At this time, racemic trans-2- (propargylamino) cyclohexanol fumarate was used as a seed crystal. After cooling to room temperature and allowing to stand for another 60 minutes, the precipitated racemic trans-2- (propargylamino) cyclohexanol fumarate crystals were filtered off using Nutsche, and the crystals were washed with 1 mL of ethanol. The obtained filtrate was concentrated under reduced pressure using a rotary evaporator. To the obtained optically active trans-2- (propargylamino) cyclohexanol, 10 mL of toluene, 1 mL of water and 0.480 g of potassium hydroxide were added to convert to a free form, and the toluene layer was separated. The obtained toluene layer was washed 3 times with 1 mL of water and concentrated under reduced pressure using a rotary evaporator to obtain 0.440 g (90% ee) of optically active trans-2- (propargylamino) cyclohexanol. The total yield at this time was 31%.

実施例1 触媒S−G1の調製
水溶性大豆多糖類(ソヤファイブS―DN(商品名)、不二製油株式会社製、以下、「植物加工物S−O」と略す)が25mg/mL、コンチザイム(天野エンザイム株式会社製)が50mg/mL、リン酸ナトリウム緩衝液(pH7.0)が25mMの濃度になるように調製した溶液100mLを用意し、37℃で18時間、振盪反応させた。植物加工物S−Oを消化するのに使用した酵素を分解する為にプロテイナーゼ K(株式会社キアゲン製)を1mL添加し37℃で2時間以上振盪反応させ、溶液(触媒S−G1−G)を得た。
触媒S−G1−Gを分画分子量100kDaの孔径の限外濾過膜(VIVASPIN 20、ザルトリウス・ジャパン株式会社)を用いて、取り扱い説明書に従い脱塩・精製を行い、精製液(触媒S−G1)を得た。
Example 1 Preparation of Catalyst S-G1 Water-soluble soybean polysaccharide (Soya Five S-DN (trade name), manufactured by Fuji Oil Co., Ltd., hereinafter abbreviated as “plant processed product S-O”) was 25 mg / mL, Contizyme 100 mL of a solution prepared so that 50 mg / mL (manufactured by Amano Enzyme Co., Ltd.) and 25 mM sodium phosphate buffer (pH 7.0) could be prepared was prepared, and shaken at 37 ° C. for 18 hours. In order to decompose the enzyme used for digesting the processed plant product S-O, 1 mL of proteinase K (manufactured by Qiagen) was added and shaken at 37 ° C. for 2 hours or more to obtain a solution (catalyst S-G1-G). Got.
The catalyst S-G1-G was desalted and purified according to the instruction manual using an ultrafiltration membrane (VIVASPIN 20, Sartorius Japan Co., Ltd.) having a pore size of 100 kDa and a purified liquid (catalyst S-G1). )

実施例2 触媒S−G2の調製
コンチザイムが50mg/mLである代わりに、コンチザイムが50mg/mLであり、かつラクターゼF「アマノ」(天野エンザイム株式会社製)が5mg/mLになるように添加した以外は、触媒S−G1と同様な方法で、触媒S−G2を得た。
Example 2 Preparation of catalyst S-G2 Instead of the contigzyme being 50 mg / mL, the contizyme was added at 50 mg / mL and lactase F “Amano” (manufactured by Amano Enzyme Inc.) was added at 5 mg / mL. Except for the above, catalyst S-G2 was obtained in the same manner as catalyst S-G1.

実施例3 触媒S−G3の調製
コンチザイムが50mg/mLである代わりに、コンチザイムが50mg/mLであり、ラクターゼF「アマノ」が5mg/mLであり、かつ可溶性ヘスペリジナーゼ<タナベ>(田辺製薬株式会社製)が5mg/mLになるように添加した以外は、触媒S−G2と同様な方法で、触媒S−G3を得た。
Example 3 Preparation of Catalyst S-G3 Instead of the contizyme being 50 mg / mL, the contizyme was 50 mg / mL, lactase F “Amano” was 5 mg / mL, and soluble hesperidinase <Tanabe> (Tanabe Seiyaku Co., Ltd.) The catalyst S-G3 was obtained in the same manner as the catalyst S-G2, except that the product was added so as to be 5 mg / mL.

実施例4 触媒S−G4の調製
コンチザイムが50mg/mLである代わりに、コンチザイムが50mg/mLであり、ラクターゼF「アマノ」が5mg/mLであり、可溶性ヘスペリジナーゼ<タナベ>が5mg/mLであり、かつラクセルDJ(洛東化成工業株式会社製)が5mg/mLになるように添加した以外は、触媒S−G2の調製方法と同様な方法で、触媒S−G4を得た。
Example 4 Preparation of Catalyst S-G4 Instead of the contizyme being 50 mg / mL, the contizyme is 50 mg / mL, the lactase F “Amano” is 5 mg / mL, and the soluble hesperidinase <Tanabe> is 5 mg / mL And except that it added so that Luxel DJ (made by Toto Kasei Kogyo Co., Ltd.) might be 5 mg / mL, catalyst S-G4 was obtained by the method similar to the preparation method of catalyst S-G2.

実施例5 触媒S−G5の調製
コンチザイムが50mg/mLである代わりに、コンチザイムが50mg/mLであり、ラクターゼF「アマノ」が5mg/mLであり、可溶性ヘスペリジナーゼ<タナベ>が5mg/mLであり、ラクセルDJが5mg/mLであり、かつパンセラーゼBR(ヤクルト薬品工業株式会社製)が5mg/mLになるように添加した以外は、触媒S−G2の調製方法と同様な方法で、触媒S−G5を得た。
Example 5 Preparation of catalyst S-G5 Instead of contigzyme being 50 mg / mL, contizyme is 50 mg / mL, lactase F “Amano” is 5 mg / mL and soluble hesperidinase <Tanabe> is 5 mg / mL The catalyst S-G2 was prepared in the same manner as in the preparation of the catalyst S-G2, except that the Luxel DJ was 5 mg / mL and the pancerase BR (manufactured by Yakult Pharmaceutical Co., Ltd.) was added to 5 mg / mL. G5 was obtained.

実施例6 触媒S−L1の調製
コンチザイムが50mg/mLである代わりに、リパーゼA「アマノ」6(天野エンザイム株式会社製)が5mg/mLになるように添加した以外は、触媒S−G2の調製方法と同様な方法で、触媒S−L1を得た。
Example 6 Preparation of catalyst S-L1 Instead of contigzyme being 50 mg / mL, lipase A “Amano” 6 (manufactured by Amano Enzyme Co., Ltd.) was added except that it was 5 mg / mL. Catalyst S-L1 was obtained by a method similar to the preparation method.

実施例7 触媒S−P1の調製
コンチザイムが50mg/mLである代わりに、プロレザー(天野エンザイム株式会社製)が5mg/mLになるように添加した以外は、触媒S−G2の調製方法と同様な方法で、触媒S−P1を得た。
Example 7 Preparation of catalyst S-P1 Similar to the preparation method of catalyst S-G2, except that pro leather (manufactured by Amano Enzyme Co., Ltd.) was added to 5 mg / mL instead of the contizyme being 50 mg / mL. In this way, catalyst S-P1 was obtained.

実施例8 触媒S−P2の調製
コンチザイムが50mg/mLの代わりに、プロレザーが5mg/mLであり、かつプロレザーFG−F(天野エンザイム株式会社製)が5mg/mLになるように添加した以外は、触媒S−G2の調製方法と同様な方法で、触媒S−P2を得た。
Example 8 Preparation of catalyst S-P2 Contizyme was added so that proleather was 5 mg / mL and proleather FG-F (manufactured by Amano Enzyme Inc.) was 5 mg / mL instead of 50 mg / mL. Except for the above, catalyst S-P2 was obtained in the same manner as the method for preparing catalyst S-G2.

試験例1 触媒活性の測定
植物加工物S−O、触媒S−G1−G、触媒S−G1、触媒S−G2、触媒S−G3、触媒S−G4、触媒S−G5、触媒S−L1、触媒S−P1及び触媒S−P2の糖濃度を測定した。糖濃度の測定はフェノール−硫酸法(生物工学,2012年,第90巻,790ページ)で行い、標準物質としてマルトースを用いた。
糖濃度を測定した後、各触媒を凍結乾燥し、粉末化した。糖含量が25mgになるように粉末化触媒をガラスバイアルにいれ、そこへトルエン 0.4mL、7−オキサビシクロ[4.1.0]ヘプタン 48mg、シクロプロピルアミン 34mg、水 5mg、飽和食塩水 10mgを加えた。ガラスバイアルを密閉し、37℃の温浴で16時間振とうした。16時間経過後、触媒をろ過し、ガスクロマトグラフィー(GC)分析を行った。クロマトグラムのピーク面積に基づき、trans−2−(シクロプロピルアミノ)シクロヘキサノールへの変換率と選択率を算出した。
Test Example 1 Measurement of catalytic activity Plant processed product S-O, catalyst S-G1-G, catalyst S-G1, catalyst S-G2, catalyst S-G3, catalyst S-G4, catalyst S-G5, catalyst S-L1 The sugar concentrations of catalyst S-P1 and catalyst S-P2 were measured. The sugar concentration was measured by the phenol-sulfuric acid method (Biotechnology, 2012, Vol. 90, page 790), and maltose was used as a standard substance.
After measuring the sugar concentration, each catalyst was freeze-dried and powdered. A powdered catalyst is placed in a glass vial so that the sugar content is 25 mg, and 0.4 mL of toluene, 48 mg of 7-oxabicyclo [4.1.0] heptane, 34 mg of cyclopropylamine, 5 mg of water, and 10 mg of saturated saline are added thereto. Was added. The glass vial was sealed and shaken in a 37 ° C. warm bath for 16 hours. After 16 hours, the catalyst was filtered and subjected to gas chromatography (GC) analysis. Based on the peak area of the chromatogram, the conversion rate and selectivity to trans-2- (cyclopropylamino) cyclohexanol were calculated.

GC分析は以下の条件で行った。
機器:GC−2010 Plus(商品名、株式会社島津製作所製)
移動相:ヘリウム
圧力:94kPa
検出器:水素炎イオン化検出器
気化室温度:220℃
検出器温度:300℃
スプリット比:1:150
注入量:0.5μL
カラム:BETADEX120(長さ:30m、内径:0.25μm、Supelco社製)
カラム温度:130℃
The GC analysis was performed under the following conditions.
Equipment: GC-2010 Plus (trade name, manufactured by Shimadzu Corporation)
Mobile phase: Helium pressure: 94 kPa
Detector: Hydrogen flame ionization detector Vaporization chamber temperature: 220 ° C
Detector temperature: 300 ° C
Split ratio: 1: 150
Injection volume: 0.5 μL
Column: BETADEX 120 (length: 30 m, inner diameter: 0.25 μm, manufactured by Supelco)
Column temperature: 130 ° C

植物加工物S−Oを触媒として用いた場合の変換率は46%、選択率は67%であった。植物加工物S−Oの変換率に対する各触媒の変換率の値を相対活性値として算出した。表11に示すとおり、各触媒の触媒活性は、植物加工物S−Oに対して向上した。

Figure 2017104044
When plant processed product S-O was used as a catalyst, the conversion rate was 46%, and the selectivity was 67%. The value of the conversion rate of each catalyst relative to the conversion rate of the plant processed product S-O was calculated as a relative activity value. As shown in Table 11, the catalytic activity of each catalyst was improved with respect to the plant processed product S-O.
Figure 2017104044

実施例9 ゲルろ過クロマトグラフィーによる精製1
15mLの触媒S−L1を1N酢酸を用いてpH5に調整した溶液をカラムにアプライし、初めに溶出した液10mLをフラクションNo.1とした。フラクションNo.31−No.33を混合して、触媒S−L1−Cを得た。また、フラクションNo.34−No.36を混合して、触媒S−L1−Dを得た。
なお、ゲルろ過クロマトグラフィーによる精製は、以下の条件で行った。
カラム:Sephacryl S−400 HR(GEヘルスケア・ジャパン株式会社製、直径:2.4cm、高さ:96cm)
溶出溶媒:50mM酢酸ナトリウム緩衝液(pH5.0)
温度:室温
1フラクションあたりの容積:10mL
Example 9 Purification by gel filtration chromatography 1
A solution of 15 mL of catalyst S-L1 adjusted to pH 5 with 1N acetic acid was applied to the column, and 10 mL of the first eluted solution was added to fraction No. It was set to 1. Fraction No. 31-No. 33 was mixed to obtain catalyst S-L1-C. In addition, fraction no. 34-No. 36 was mixed to obtain catalyst S-L1-D.
The purification by gel filtration chromatography was performed under the following conditions.
Column: Sephacryl S-400 HR (manufactured by GE Healthcare Japan, diameter: 2.4 cm, height: 96 cm)
Elution solvent: 50 mM sodium acetate buffer (pH 5.0)
Temperature: Volume per room temperature fraction: 10 mL

実施例10 ゲルろ過クロマトグラフィーによる精製2
15mLの触媒S−G5を1N酢酸でpH5に調整し、実施例9と同様な方法でゲルろ過によるサイズ分画を行った。フラクションNo.31−No.33を混合して、触媒S−G5−Iを得た。
Example 10 Purification by gel filtration chromatography 2
15 mL of catalyst S-G5 was adjusted to pH 5 with 1N acetic acid, and size fractionation was performed by gel filtration in the same manner as in Example 9. Fraction No. 31-No. 33 was mixed to obtain catalyst S-G5-I.

実施例11 ゲルろ過クロマトグラフィーによる精製3
15mLの触媒S−P2を1N酢酸でpH5に調整し、実施例9と同様な方法でゲルろ過によるサイズ分画を行った。フラクションNo.35−No.37を混合して、触媒S−P2−Tを得た。
Example 11 Purification by gel filtration chromatography 3
15 mL of catalyst S-P2 was adjusted to pH 5 with 1N acetic acid, and size fractionation was performed by gel filtration in the same manner as in Example 9. Fraction No. 35-No. 37 was mixed to obtain catalyst S-P2-T.

試験例2 触媒活性の測定
試験例1と同様の方法で、触媒S−L1−C、触媒S−L1−D、触媒S−G5−I及び触媒S−P2−Tを用いた場合の変換率をそれぞれ算出した。また、対応する植物加工物S−Oを用いた場合の変換率に対する各触媒を用いた変換率の値(相対活性値)をそれぞれ算出し、表12に示した。表12に示すとおり、各触媒の触媒活性は、植物粉末S−Oに対して向上した。

Figure 2017104044
Test Example 2 Measurement of catalyst activity Conversion rate when using catalyst S-L1-C, catalyst S-L1-D, catalyst S-G5-I and catalyst S-P2-T in the same manner as in Test Example 1 Was calculated respectively. Moreover, the value (relative activity value) of the conversion rate using each catalyst with respect to the conversion rate when using the corresponding plant processed product S-O was calculated and shown in Table 12. As shown in Table 12, the catalytic activity of each catalyst was improved with respect to plant powder S-O.
Figure 2017104044

実施例12 触媒P−L1の調製
柑橘類由来成分(ペクチン(商品名)、関東化学株式会社製、以下、「植物加工物P−O」と略す)が2.5mg/mL、リパーゼA「アマノ」6が5mg/mL、リン酸ナトリウム緩衝液(pH7.0)が25mMの濃度になるように調製した溶液50mLを用意し、37℃で18時間、振盪反応させた。植物加工物S−Oを消化するのに使用した酵素を分解する為にプロテイナーゼ K(株式会社キアゲン製)を1mL添加し、37℃で2時間以上振盪反応させた。分画分子量30kDaの孔径の限外濾過膜(VIVASPIN 20、ザルトリウス・ジャパン株式会社)を用いて、取り扱い説明書に従い脱塩・精製を行い、精製液(触媒P−L1)を得た。
Example 12 Preparation of Catalyst P-L1 Citrus-derived component (pectin (trade name), manufactured by Kanto Chemical Co., Inc., hereinafter abbreviated as “plant processed product PO”) was 2.5 mg / mL, Lipase A “Amano” 50 mL of a solution prepared so that 6 had a concentration of 5 mg / mL and sodium phosphate buffer (pH 7.0) had a concentration of 25 mM was prepared and subjected to a shaking reaction at 37 ° C. for 18 hours. In order to degrade the enzyme used to digest the plant processed product S-O, 1 mL of proteinase K (manufactured by Qiagen) was added, and the mixture was shaken at 37 ° C. for 2 hours or more. Using an ultrafiltration membrane (VIVASPIN 20, Sartorius Japan Co., Ltd.) having a pore size of a molecular weight cut off of 30 kDa, desalting and purification were performed according to the instruction manual to obtain a purified solution (catalyst P-L1).

実施例13 触媒C−L1の調製
植物加工物P−Oの代わりにニンジン由来成分(キャロットパウダー(商品名)、こだま食品株式会社製、以下、「植物加工物C−O」と略す)を用いた以外は、触媒P−L1の調製と同様な方法で、触媒C−L1を得た。
Example 13 Preparation of catalyst C-L1 Carrot derived components (carrot powder (trade name), manufactured by Kodama Foods Co., Ltd., hereinafter abbreviated as “plant processed product C-O”) were used instead of the plant processed product P—O. Except for the above, catalyst C-L1 was obtained in the same manner as in the preparation of catalyst P-L1.

実施例14 触媒U−L1の調製
植物加工物P−Oの代わりにウコン由来成分(有機ウコン末(商品名)、日本粉末薬品株式会社製、以下、「植物加工物U−O」と略す)を用いた以外は、触媒P−L1の調製と同様な方法で、触媒U−L1を得た。
Example 14 Preparation of Catalyst U-L1 Turmeric-derived component (organic turmeric powder (trade name), manufactured by Nippon Powdery Chemical Co., Ltd., hereinafter abbreviated as “plant processed product U-O”) instead of plant processed product PO A catalyst U-L1 was obtained in the same manner as in the preparation of the catalyst P-L1, except that was used.

実施例15 触媒T−L1の調製
植物加工物P−Oの代わりに緑茶由来成分(粉末緑茶Eライフ(商品名)、株式会社三香園商店製、以下、「植物加工物T−O」と略す)を用いた以外は、触媒T−L1の調製と同様な方法で、触媒U−L1を得た。
Example 15 Preparation of catalyst T-L1 Green tea-derived component (powdered green tea E Life (trade name), manufactured by Sankoen Shoten Co., Ltd., hereinafter “plant processed product TO”) instead of plant processed product PO ) Was used in the same manner as in the preparation of the catalyst T-L1, except that the catalyst U-L1 was obtained.

実施例16 触媒C−P2の調製
リパーゼA「アマノ」6の代わりにプロレザーが5mg/mLであり、プロレザーFG−Fが5mg/mLになるように添加した以外は、触媒C−L1と同様な方法により、触媒C−P2を得た。
Example 16 Preparation of catalyst C-P2 Catalyst C-L1 and lipase A “Amano” 6 except that Pro Leather was added at 5 mg / mL and Pro Leather FG-F was added at 5 mg / mL. Catalyst C-P2 was obtained by the same method.

試験例3 触媒活性の測定
反応時間を16時間から48時間に変更した以外は実施例2と同様な方法により、植物加工物P−O、植物加工物C−O、植物加工物U−O、植物加工物T−O、触媒P−L1、触媒C−L1、触媒U−L1、触媒T−L1及び触媒C−P2を用いて反応を行い、trans−2−(シクロプロピルアミノ)シクロヘキサノールへの変換率と選択率を算出した。
各触媒を用いた反応における変換率を表13に示した。植物加工物を酵素処理することにより触媒活性の向上が見られた。
さらに、選択率に関しては、植物加工物T−Oを用いた場合は40%eeであるのに対し、触媒T−L1を用いた場合は60%eeであり、著しい選択率向上が見られた。

Figure 2017104044
Test Example 3 Measurement of catalytic activity By the same method as in Example 2 except that the reaction time was changed from 16 hours to 48 hours, plant processed product PO, plant processed product C-O, plant processed product U-O, Processed plant product T-O, catalyst P-L1, catalyst C-L1, catalyst U-L1, catalyst T-L1 and catalyst C-P2 are used for the reaction to trans-2- (cyclopropylamino) cyclohexanol The conversion rate and selectivity were calculated.
Table 13 shows the conversion rate in the reaction using each catalyst. The catalytic activity was improved by enzymatic treatment of processed plant products.
Furthermore, the selectivity was 40% ee when the plant processed product TO was used, whereas it was 60% ee when the catalyst T-L1 was used, and a marked improvement in selectivity was observed. .
Figure 2017104044

試験例4 触媒活性の測定
植物加工物S−O、植物加工物C−O、植物加工物P−O、触媒S−L1−C、触媒S−L1−D、触媒S−P2−T、触媒C−L1、触媒C−P2、触媒P−L1及び触媒T−L1の糖濃度を測定した。糖濃度の測定はフェノール−硫酸法(生物工学,2012年,第90巻,790ページ)で行い、標準物質としてマルトースを用いた。
糖濃度を測定した後、各触媒を凍結乾燥し、粉末化した。糖含量が12.5mgになるように粉末化触媒をガラスバイアルにいれ、そこへトルエン 0.4mL、7−オキサビシクロ[4.1.0]ヘプタン 48mg、イソプロピルアミン 34mg、水 5mg、飽和食塩水 10mgを加えた。ガラスバイアルを密閉し、37℃の温浴で60時間振とうした。60時間経過後、触媒をろ過し、試験例1と同様な方法によりガスクロマトグラフィー(GC)分析を行った。クロマトグラムのピーク面積に基づき、trans−2−(イソプロピルアミノ)シクロヘキサノールへの変換率と選択率を算出した。
植物加工物S−O、植物加工物C−O及び植物加工物P−Oの変換率はそれぞれ、47%、3%及び6%であった。対応する植物加工物を用いた場合の変換率に対する各触媒を用いた変換率の値(相対活性値)をそれぞれ算出し、表14〜16に示した。各触媒は、酵素処理を行うことにより、触媒活性が向上した。
さらに、植物加工物T−Oの選択率を測定した。植物加工物T−Oは6%であるのに対し、触媒T−L1は23%eeであり、著しい選択率向上が見られた。
Test Example 4 Measurement of catalytic activity Plant processed product S-O, plant processed product C-O, plant processed product P-O, catalyst S-L1-C, catalyst S-L1-D, catalyst S-P2-T, catalyst The sugar concentrations of C-L1, Catalyst C-P2, Catalyst P-L1, and Catalyst T-L1 were measured. The sugar concentration was measured by the phenol-sulfuric acid method (Biotechnology, 2012, Vol. 90, page 790), and maltose was used as a standard substance.
After measuring the sugar concentration, each catalyst was freeze-dried and powdered. A powdered catalyst is placed in a glass vial so that the sugar content is 12.5 mg, and 0.4 mL of toluene, 48 mg of 7-oxabicyclo [4.1.0] heptane, 34 mg of isopropylamine, 5 mg of water, and saturated saline 10 mg was added. The glass vial was sealed and shaken in a 37 ° C. bath for 60 hours. After 60 hours, the catalyst was filtered, and gas chromatography (GC) analysis was performed in the same manner as in Test Example 1. Based on the peak area of the chromatogram, the conversion rate and selectivity to trans-2- (isopropylamino) cyclohexanol were calculated.
The conversion rates of the plant processed product S-O, the plant processed product C-O, and the plant processed product P-O were 47%, 3%, and 6%, respectively. The conversion rate values (relative activity values) using the respective catalysts with respect to the conversion rate when using the corresponding processed plant product were calculated and shown in Tables 14-16. The catalytic activity of each catalyst was improved by performing an enzyme treatment.
Furthermore, the selectivity of plant processed material TO was measured. The processed plant product T-O was 6%, while the catalyst T-L1 was 23% ee, and a marked improvement in selectivity was observed.

Figure 2017104044
Figure 2017104044

Figure 2017104044
Figure 2017104044

Figure 2017104044
Figure 2017104044

Claims (6)

式(1)で表される化合物と式(2)で表される化合物を反応させて式(3)で表される化合物を得る反応を促進する植物加工物の触媒活性を向上させる方法であって、
植物加工物を酵素処理する工程を含む、方法。
Figure 2017104044

(式中、Xは、−O−または−NR−であり、Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基であり、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(1b)で表される化合物となっていてもよく、Yは、−O−、−NR−または−S−であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルコキシ基、C6−10アリール基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(2a)で表される化合物となっていてもよく、ただし、式(2)で表される化合物は水または硫化水素ではない。)
Figure 2017104044

(式中、X、RおよびRは、前記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す。)
Figure 2017104044

(式中、Rは、RおよびRが互いに結合して形成される基を示す。)
It is a method for improving the catalytic activity of a processed plant product that promotes the reaction of reacting a compound represented by formula (1) with a compound represented by formula (2) to obtain a compound represented by formula (3). And
A method comprising the step of enzyme-treating a processed plant product.
Figure 2017104044

(In the formula, X represents —O— or —NR—, and R represents a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a C 3-6 which may have a substituent. A cycloalkyl group, an optionally substituted C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, an optionally substituted C 2-6 alkynyl group, an optionally substituted C 6-10 aryl group, an optionally substituted C 1-6 alkylcarbonyl group, an optionally substituted C 6-10 arylcarbonyl group, a substituent A C 1-6 alkylsulfonyl group or a C 6-10 arylsulfonyl group which may have, and R 1 , R 2 , R 3 and R 4 may each independently have a hydrogen atom or a substituent. a C 1-6 alkyl group, an optionally substituted C 3-6 cycloalkyl group, Yes which may have a substituent C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, an optionally C 2-6 alkynyl group or a substituted group may have a substituent An optionally substituted C 6-10 aryl group, and the substituent is a C 1-4 alkyl group, a C 2-4 alkenyl group, a C 2-4 alkynyl group, a C 1-4 alkoxy group, an amino group, or an imino group. A group, a nitro group, a hydroxy group, an oxo group, a nitrile group, a mercapto group or a halogen atom, and R 2 and R 3 may be bonded to each other to form a compound represented by the formula (1b), Y is —O—, —NR 6 — or —S—, and R 5 and R 6 each independently represent a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a substituent. which may have a C 3-6 cycloalkyl group, substituted Which may C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, which may have a good C 2-6 alkynyl group or a substituted group may have a substituent C 6 -10 aryl group, wherein the substituents, C 1-4 alkoxy groups, C 6-10 aryl group, an amino group, an imino group, a nitro group, hydroxy group, oxo group, nitrile group, mercapto group or a halogen atom And R 5 and R 6 may be bonded to each other to form a compound represented by the formula (2a), provided that the compound represented by the formula (2) is not water or hydrogen sulfide.
Figure 2017104044

(Wherein X, R 1 and R 4 are the same as defined above, and R 7 represents a group formed by bonding R 2 and R 3 to each other.)
Figure 2017104044

(In the formula, R 8 represents a group formed by combining R 5 and R 6 with each other.)
酵素処理が、植物加工物を、脂質分解酵素、タンパク質分解酵素、糖分解酵素及び糖転移酵素から選択される少なくとも1種の酵素で処理することを含む、請求項1に記載の方法。   The method according to claim 1, wherein the enzyme treatment comprises treating the plant processed product with at least one enzyme selected from a lipolytic enzyme, a proteolytic enzyme, a glycolytic enzyme, and a glycosyltransferase. 前記植物加工物が、水溶性大豆多糖類、柑橘類粉末、ニンジン粉末、ウコン粉末、緑茶粉末を含む、請求項1または2に記載の方法。   The method of Claim 1 or 2 with which the said plant processed material contains water-soluble soybean polysaccharide, citrus powder, carrot powder, turmeric powder, and green tea powder. 式(1)で表される化合物と式(2)で表される化合物を反応させて式(3)で表される化合物を得る反応を促進する触媒であって、
植物加工物を酵素処理して得られる組成物を含む、触媒。
Figure 2017104044

(式中、Xは、−O−または−NR−であり、Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基であり、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(1b)で表される化合物となっていてもよく、Yは、−O−、−NR−または−S−であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルコキシ基、C6−10アリール基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(2a)で表される化合物となっていてもよく、ただし、式(2)で表される化合物は水または硫化水素ではない。)
Figure 2017104044

(式中、X、RおよびRは、前記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す。)
Figure 2017104044

(式中、Rは、RおよびRが互いに結合して形成される基を示す。)
A catalyst for promoting a reaction of reacting a compound represented by formula (1) with a compound represented by formula (2) to obtain a compound represented by formula (3),
A catalyst comprising a composition obtained by enzymatic treatment of a processed plant product.
Figure 2017104044

(In the formula, X represents —O— or —NR—, and R represents a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a C 3-6 which may have a substituent. A cycloalkyl group, an optionally substituted C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, an optionally substituted C 2-6 alkynyl group, an optionally substituted C 6-10 aryl group, an optionally substituted C 1-6 alkylcarbonyl group, an optionally substituted C 6-10 arylcarbonyl group, a substituent A C 1-6 alkylsulfonyl group or a C 6-10 arylsulfonyl group which may have, and R 1 , R 2 , R 3 and R 4 may each independently have a hydrogen atom or a substituent. a C 1-6 alkyl group, an optionally substituted C 3-6 cycloalkyl group, Yes which may have a substituent C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, an optionally C 2-6 alkynyl group or a substituted group may have a substituent An optionally substituted C 6-10 aryl group, and the substituent is a C 1-4 alkyl group, a C 2-4 alkenyl group, a C 2-4 alkynyl group, a C 1-4 alkoxy group, an amino group, or an imino group. A group, a nitro group, a hydroxy group, an oxo group, a nitrile group, a mercapto group or a halogen atom, and R 2 and R 3 may be bonded to each other to form a compound represented by the formula (1b), Y is —O—, —NR 6 — or —S—, and R 5 and R 6 each independently represent a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a substituent. which may have a C 3-6 cycloalkyl group, substituted Which may C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, which may have a good C 2-6 alkynyl group or a substituted group may have a substituent C 6 -10 aryl group, wherein the substituents, C 1-4 alkoxy groups, C 6-10 aryl group, an amino group, an imino group, a nitro group, hydroxy group, oxo group, nitrile group, mercapto group or a halogen atom And R 5 and R 6 may be bonded to each other to form a compound represented by the formula (2a), provided that the compound represented by the formula (2) is not water or hydrogen sulfide.
Figure 2017104044

(Wherein X, R 1 and R 4 are the same as defined above, and R 7 represents a group formed by bonding R 2 and R 3 to each other.)
Figure 2017104044

(In the formula, R 8 represents a group formed by combining R 5 and R 6 with each other.)
前記酵素処理が、植物加工物を、脂質分解酵素、タンパク質分解酵素、糖分解酵素及び糖転移酵素から選択される少なくとも1種の酵素で処理することを含む、請求項4に記載の触媒。   The catalyst according to claim 4, wherein the enzyme treatment comprises treating a plant processed product with at least one enzyme selected from a lipolytic enzyme, a proteolytic enzyme, a glycolytic enzyme and a glycosyltransferase. 前記植物加工物が、水溶性大豆多糖類、柑橘類粉末、ニンジン粉末、ウコン粉末、緑茶粉末を含む、請求項4又は5に記載の触媒。
The catalyst according to claim 4 or 5, wherein the processed plant product contains water-soluble soybean polysaccharide, citrus powder, carrot powder, turmeric powder, and green tea powder.
JP2015240029A 2015-12-09 2015-12-09 How to improve catalyst activity Active JP6678442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015240029A JP6678442B2 (en) 2015-12-09 2015-12-09 How to improve catalyst activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240029A JP6678442B2 (en) 2015-12-09 2015-12-09 How to improve catalyst activity

Publications (2)

Publication Number Publication Date
JP2017104044A true JP2017104044A (en) 2017-06-15
JP6678442B2 JP6678442B2 (en) 2020-04-08

Family

ID=59058070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240029A Active JP6678442B2 (en) 2015-12-09 2015-12-09 How to improve catalyst activity

Country Status (1)

Country Link
JP (1) JP6678442B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191088A1 (en) * 2022-03-31 2023-10-05 協和ファーマケミカル株式会社 Plant-derived organocatalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157258A (en) * 1995-10-05 1997-06-17 Otsuka Pharmaceut Co Ltd Carbostyryl derivative
JP2003206266A (en) * 2002-01-08 2003-07-22 Mitsubishi Chemicals Corp Method for producing optically active trans-2-amino-1- cycloalkanol compound
JP2005508619A (en) * 2001-08-03 2005-04-07 ディヴァーサ コーポレイション Epoxide hydrolases, nucleic acids encoding them and methods for making and using them
JP2006160609A (en) * 2004-12-02 2006-06-22 Nagase & Co Ltd Method for preparing optically active compound
WO2015194508A1 (en) * 2014-06-17 2015-12-23 第一ファインケミカル株式会社 Method for producing optically active substance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157258A (en) * 1995-10-05 1997-06-17 Otsuka Pharmaceut Co Ltd Carbostyryl derivative
JP2005508619A (en) * 2001-08-03 2005-04-07 ディヴァーサ コーポレイション Epoxide hydrolases, nucleic acids encoding them and methods for making and using them
JP2003206266A (en) * 2002-01-08 2003-07-22 Mitsubishi Chemicals Corp Method for producing optically active trans-2-amino-1- cycloalkanol compound
JP2006160609A (en) * 2004-12-02 2006-06-22 Nagase & Co Ltd Method for preparing optically active compound
WO2015194508A1 (en) * 2014-06-17 2015-12-23 第一ファインケミカル株式会社 Method for producing optically active substance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IAIN D. GL WATSON, ET AL: "Ring-Opening Reactions of Nonactivated Aziridines Catalyzed by Tris(pentafluorophenyl)borane", J. ORG. CHEM., vol. 68, JPN6015036715, 2003, pages 5160 - 5167, XP055244918, ISSN: 0004117600, DOI: 10.1021/jo0343578 *
XUE-LONG HOU, ET AL: "Desymmetric ring-opening of meso-epoxides with anilines: a simple way to chiral β-amino alcohols", TETRAHEDRON: ASYMMETRY, vol. 9, JPN6015036714, 1998, pages 1747 - 1752, XP004131434, ISSN: 0004117599, DOI: 10.1016/S0957-4166(98)00153-0 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191088A1 (en) * 2022-03-31 2023-10-05 協和ファーマケミカル株式会社 Plant-derived organocatalyst

Also Published As

Publication number Publication date
JP6678442B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
Krest et al. Cysteine sulfoxides and alliinase activity of some Allium species
Jarstfer et al. Recombinant squalene synthase. Synthesis of non-head-to-tail isoprenoids in the absence of NADPH
JP2012105618A (en) Method for producing ergothioneine
Li et al. Identification of (S, S)-γ-glutamyl-(cis-S-1-propenyl) thioglycine, a naturally occurring norcysteine derivative, from the Chinese vegetable Toona sinensis
JP6630667B2 (en) Method for producing optically active substance
Sanabria-Ríos et al. Antibacterial activity of 2-alkynoic fatty acids against multidrug-resistant bacteria
US20220162548A1 (en) Producing isothiocyanates from callus suspension cultures
JP6678442B2 (en) How to improve catalyst activity
Bordón et al. Weeds as biocatalysts in the stereoselective synthesis of chiral phenylethanols used as key intermediates for pharmaceuticals
Salvano et al. Searching for local biocatalysts: Bioreduction of aldehydes using plant roots of the Province of Córdoba (Argentina)
Bennamane et al. Preparation of chiral phenylethanols using various vegetables grown in Algeria
Diaz-Vidal et al. A series of novel esters of capsaicin analogues catalyzed by Candida antarctica lipases
JP4696302B2 (en) Synthesis method of theaflavins
JP7354382B2 (en) Tomato fruit growth promoter and functional component content improver in tomato fruit, and method for producing tomato fruit growth promoter and functional component content improver in tomato fruit
Negishi et al. Mercaptan-capturing properties of mushrooms
JPH01290606A (en) Plant growth promoter and production thereof
JP6860209B2 (en) Manufacturing method of ceramide NP
JPH1052296A (en) Production (iii) of taxane compounds
JP4502525B2 (en) (+)-4- (2,6,6-Trimethyl-1-cyclohexenyl) butan-2-ol, a process for producing the same, and a fragrance composition containing the same.
JP2015144572A (en) Processed garlic
Shafioul et al. Lipase catalyzed kinetic resolution of rac-2-phenylpropan-1-ol derivatives as building block for phenolic sesquiterpenes
Zhou et al. Phytotoxicity and environmental fate of chiral herbicides
JP2006223233A (en) Method for producing capsinoid, method for stabilizing the same, and capsinoid composition
JPH1052295A (en) Production (ii) of taxane compounds
JPH1052294A (en) Production (i) of taxane compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200317

R150 Certificate of patent or registration of utility model

Ref document number: 6678442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250