JP6630667B2 - Method for producing optically active substance - Google Patents

Method for producing optically active substance Download PDF

Info

Publication number
JP6630667B2
JP6630667B2 JP2016529335A JP2016529335A JP6630667B2 JP 6630667 B2 JP6630667 B2 JP 6630667B2 JP 2016529335 A JP2016529335 A JP 2016529335A JP 2016529335 A JP2016529335 A JP 2016529335A JP 6630667 B2 JP6630667 B2 JP 6630667B2
Authority
JP
Japan
Prior art keywords
group
substituent
nmr
compound
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016529335A
Other languages
Japanese (ja)
Other versions
JPWO2015194508A1 (en
Inventor
祐希 竹内
祐希 竹内
健裕 浅野
健裕 浅野
浩一 和田
浩一 和田
和也 津崎
和也 津崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Pharma Chemical Co Ltd
Original Assignee
Kyowa Pharma Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Pharma Chemical Co Ltd filed Critical Kyowa Pharma Chemical Co Ltd
Publication of JPWO2015194508A1 publication Critical patent/JPWO2015194508A1/en
Application granted granted Critical
Publication of JP6630667B2 publication Critical patent/JP6630667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/42Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups or hydroxy groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C215/44Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups or hydroxy groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton bound to carbon atoms of the same ring or condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Quinoline Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明は、光学活性体の製造方法に関する。   The present invention relates to a method for producing an optically active substance.

式(Z)で表される化合物(以下、「化合物(Z)」ともいう。)は、連続する2つの炭素原子に、それぞれ酸素原子または窒素原子が結合した化合物であり、1分子中に少なくとも2つの不斉炭素を有するため、複数の光学異性体が存在する。光学活性な化合物(Z)は、医薬品または農薬の開発の分野において汎用される化学構造の1つであり、不斉反応で使用する遷移金属触媒のリガンドとしても使用できる。
なお、式中、Xは−O−または−NR−を示し、Yは−O−、−NR−または−S−を示し、R、R、R、R、R、RおよびRは、それぞれ独立に水素原子または有機基を示し、アスタリスクはその炭素原子が不斉炭素であることを示す。
The compound represented by the formula (Z) (hereinafter, also referred to as “compound (Z)”) is a compound in which an oxygen atom or a nitrogen atom is bonded to two consecutive carbon atoms, and at least one molecule in one molecule. Because it has two asymmetric carbons, there are multiple optical isomers. The optically active compound (Z) is one of the chemical structures widely used in the field of development of pharmaceuticals or agricultural chemicals, and can be used as a ligand of a transition metal catalyst used in an asymmetric reaction.
In the formula, X is -O- or -NR f - indicates, Y is -O -, - NR g - or -S- are shown, R a, R b, R c, R d, R e, R f and R g each independently represent a hydrogen atom or an organic group, and an asterisk indicates that the carbon atom is an asymmetric carbon.

化合物(Z)は、具体的には、例えば、1,2−ジオール(XおよびYがともに−O−である場合)、1,2−アミノアルコール(Xが−O−かつYが−NH−である場合、または、Xが−NH−かつYが−O−である場合)、1,2−ジアミン(XおよびYがともに−NH−である場合)、1,2−メルカプトアルコール(Xが−O−かつYが−S−である場合)、1,2−メルカプトアミン(Xが−NH−かつYが−S−である場合)である。   Specifically, the compound (Z) is, for example, 1,2-diol (when both X and Y are -O-), 1,2-aminoalcohol (X is -O- and Y is -NH- Or where X is -NH- and Y is -O-), 1,2-diamine (when both X and Y are -NH-), 1,2-mercapto alcohol (where X is —O— and Y is —S—) and 1,2-mercaptoamine (when X is —NH— and Y is —S—).

現在までに、光学活性な化合物(Z)の製造方法について、多くの検討が行われている。なかでも、入手が容易なエポキシド構造またはアジリジン構造を有する化合物に求核剤を反応させ、立体選択的に開環することにより光学活性な化合物(Z)を得る方法は、原子効率が高く有用である。   Until now, many studies have been made on the method for producing the optically active compound (Z). Among them, a method of obtaining an optically active compound (Z) by reacting a readily available compound having an epoxide structure or an aziridine structure with a nucleophile and stereoselectively opening the ring has high atomic efficiency and is useful. is there.

例えば、エポキシド構造を有する化合物に求核剤を反応させて、光学活性な化合物(Z)を得る方法としては、(A)ラセミ体を光学分割する方法(例えば、特許文献1〜3、非特許文献1、2)、(B)他の位置に不斉炭素を導入し、生じたジアステレオマーを分離する方法(例えば、特許文献4、非特許文献3)、(C)光学活性な触媒の存在下でエポキシド構造を有する化合物と求核剤の不斉開環反応を行う方法(例えば、特許文献5、非特許文献4〜6)等がある。特に、(A)の方法としては、分割剤として光学活性な酸を用いる方法、光学活性な充填剤を利用したカラムクラマトグラフィーを用いて分離する方法、および動物または微生物に由来する酵素を利用する方法などが知られている。   For example, as a method of reacting a compound having an epoxide structure with a nucleophile to obtain an optically active compound (Z), (A) a method of optically resolving a racemic body (for example, Patent Documents 1 to 3, Non-patent Literatures 1 and 2), (B) a method of introducing an asymmetric carbon at another position and separating the resulting diastereomer (for example, Patent Literature 4, Non-Patent Literature 3), (C) Optically active catalyst There is a method of performing an asymmetric ring-opening reaction between a compound having an epoxide structure and a nucleophile in the presence (for example, Patent Document 5, Non-Patent Documents 4 to 6) and the like. In particular, as the method (A), a method using an optically active acid as a resolving agent, a method for separation using column chromatography using an optically active filler, and an enzyme derived from animals or microorganisms are used. Methods are known.

また、アジリジン構造を有する化合物に求核剤を反応させて、化合物(Z)を得る方法としては、(D)ラセミ体を光学分割する方法(例えば、特許文献6)、(E)光学活性な触媒の存在下でアジリジン構造を有する化合物と求核剤の不斉開環反応を行う方法(例えば、非特許文献7,8)等がある。   As a method of reacting a compound having an aziridine structure with a nucleophile to obtain a compound (Z), (D) a method of optically resolving a racemate (for example, Patent Document 6), (E) an optically active There is a method of performing an asymmetric ring-opening reaction between a compound having an aziridine structure and a nucleophile in the presence of a catalyst (for example, Non-Patent Documents 7 and 8).

特許第4406483号公報Japanese Patent No. 4406483 特許第4406482号公報Japanese Patent No. 4406482 米国特許第5981267号明細書U.S. Pat. No. 5,981,267 特開平9−157258号公報JP-A-9-157258 特開2003−206266号公報JP 2003-206266 A 特開2011−83934号公報JP 2011-83934 A

Tetrahedron,56,9773−9779(2000)Tetrahedron, 56, 9773-9779 (2000) Synth.Commun.,29,1369−1377(1999)Synth. Commun. , 29, 1369-1377 (1999). J.Med.Chem.41,38−45(1998)J. Med. Chem. 41, 38-45 (1998) Tetrahedron:Asymmetry,9,1747−1752(1998)Tetrahedron: Asymmetry, 9, 1747-1752 (1998). Bull.Chem.Soc.Jpn.,61,1213−1220(1988)Bull. Chem. Soc. Jpn. , 61, 1213-1220 (1988). Chemistry Letters,36,34−35(2007)Chemistry Letters, 36, 34-35 (2007). Org.Biomol.Chem.,9,6205−6207(2011)Org. Biomol. Chem. , 9, 6205-6207 (2011). J.Org.Chem.,68,5160−5167(2003)J. Org. Chem. , 68, 5160-5167 (2003).

しかしながら、(A)、(B)および(D)の方法では、理論上の収率が50%を超えることはなく、製造物と同じ量の分割剤の使用、または、大容量カラムによる精製が必要となり、工業的に製造する方法としては問題がある。   However, in the methods (A), (B) and (D), the theoretical yield does not exceed 50%, and the use of the same amount of the resolving agent as the product or purification using a large-capacity column is not possible. This is necessary, and there is a problem in an industrial production method.

一方、(C)および(E)の方法では、短工程で目的の光学活性な化合物(Z)を製造することができるが、多くの場合、光学活性な触媒として金属触媒または強力な酸触媒を用いる。そのため、(C)および(E)の方法では、使用できる含ヘテロ3員環構造を有する化合物または求核剤が限定され、高価な金属触媒の回収工程が必要となる。   On the other hand, in the methods (C) and (E), the desired optically active compound (Z) can be produced in a short step, but in many cases, a metal catalyst or a strong acid catalyst is used as the optically active catalyst. Used. Therefore, in the methods (C) and (E), usable compounds having a hetero-containing 3-membered ring structure or nucleophiles are limited, and an expensive metal catalyst recovery step is required.

したがって、本発明の目的は、安価で入手が容易な触媒を使用し、簡便な操作により、エポキシドまたはアジリジンを有する化合物と求核剤とを反応させ、式(3)で表される化合物を立体選択的かつ効率よく製造する方法を提供することである。   Therefore, an object of the present invention is to react a compound having an epoxide or an aziridine with a nucleophile by a simple operation using an inexpensive and easily available catalyst to convert the compound represented by the formula (3) into a steric compound. An object of the present invention is to provide a method for selectively and efficiently manufacturing.

本発明は、以下の[1]〜[9]を提供する。
[1]式(1):
(式中、Xは、−O−または−NR−であり、Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基であり、R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(1b)で表される化合物となっていてもよい)
(式中、X、RおよびRは、前記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す)
で表される化合物と、
式(2):
(式中、Yは、−O−、−NR−または−S−であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルコキシ基、C6−10アリール基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、また、RおよびRが互いに結合して式(2a)で表される化合物となっていてもよく、ただし、式(2)で表される化合物は水または硫化水素ではない)
(式中、Rは、RおよびRが互いに結合して形成される基を示す)
で表される化合物と、を植物加工物の存在下反応させ、
式(3):
(式中、X、Y、R、R、R、RおよびRは、前記定義と同一である)
で表される化合物を得る工程を含む、式(3)で表される化合物の製造方法。
[2]前記式(1)で表される化合物が、式(1c)で表される化合物である、請求項1に記載の製造方法。
(式中、XおよびRは、前記定義と同一である)
[3]前記式(1)で表される化合物が、式(1a)で表される化合物である、[1]に記載の製造方法。
(式中、Xは、−O−または−NR−であり、Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基であり、RおよびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、前記置換基が、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子を示す)
[4]Yが−NR−である、[1]〜[3]のいずれか一項に記載の製造方法。
[5]Yが−O−である、[1]〜[3]のいずれか一項に記載の製造方法。
[6]Yが−S−である、[1]〜[3]のいずれか一項に記載の製造方法。
[7]前記植物加工物が、マメ科、ウリ科、ナス科、ウルシ科、ショウガ科、ミカン科、ヒガンバナ科、セリ科、アブラナ科、ハス科、マタタビ科、バラ科、ユリ科、イネ科、モクセイ科、バショウ科、ツバキ科およびネギ科の植物からなる群から選択される植物を粉砕して調製される、[1]〜[6]のいずれか一項に記載の製造方法。
[8]7−オキサビシクロ[4.1.0]ヘプタンおよびシクロプロピルアミンを、大豆加工物の存在下で反応させて(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールを得る工程を含む、(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールの製造方法。
[9](1) 7−オキサビシクロ[4.1.0]ヘプタンおよびシクロプロピルアミンを、大豆加工物の存在下で反応させて(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールを得る工程と、
(2a) (1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールとカルボニル化試薬を反応させた後に、さらに保護された若しくは保護されていない6−(3−アミノプロポキシ)−2(1H)−キノリノンとを反応させ、または、
(2b) 保護された若しくは保護されていない6−(3−アミノプロポキシ)−2(1H)−キノリノンとカルボニル化試薬を反応させた後に、さらに(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールを反応させ、
保護された6−(3−アミノプロポキシ)−2(1H)−キノリノンを用いた場合は、さらに脱保護を行うことによって、
(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンを得る工程と、
を含む、(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンの製造方法。
The present invention provides the following [1] to [9].
[1] Equation (1):
(Wherein, X is —O— or —NR—, and R is a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a C 3-6 which may have a substituent. A cycloalkyl group, a C 2-6 alkenyl group optionally having a substituent, a C 3-6 cycloalkenyl group optionally having a substituent, a C 2-6 alkynyl group optionally having a substituent, an optionally substituted C 6-10 aryl group, an optionally substituted C 1-6 alkylcarbonyl group, an optionally substituted C 6-10 arylcarbonyl group, a substituent May be a C 1-6 alkylsulfonyl group or a C 6-10 arylsulfonyl group, wherein R 1 , R 2 , R 3 and R 4 each independently have a hydrogen atom or a substituent. a C 1-6 alkyl group, an optionally substituted C 3-6 cycloalkyl group, Yes which may have a substituent C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, an optionally C 2-6 alkynyl group or a substituted group may have a substituent A C 6-10 aryl group which may be substituted, wherein the substituent is a C 1-4 alkyl group, a C 2-4 alkenyl group, a C 2-4 alkynyl group, a C 1-4 alkoxy group, an amino group, an imino Group, a nitro group, a hydroxy group, an oxo group, a nitrile group, a mercapto group or a halogen atom, and R 2 and R 3 may be bonded to each other to form a compound represented by the formula (1b))
(Wherein, X, R 1 and R 4 are the same as defined above, and R 7 represents a group formed by combining R 2 and R 3 with each other)
And a compound represented by
Equation (2):
(Wherein Y is —O—, —NR 6 — or —S—, and R 5 and R 6 are each independently a hydrogen atom or a C 1-6 alkyl group which may have a substituent. A C 3-6 cycloalkyl group optionally having a substituent, a C 2-6 alkenyl group optionally having a substituent, a C 3-6 cycloalkenyl group optionally having a substituent, a substituent A C 2-6 alkynyl group or a C 6-10 aryl group optionally having a substituent, wherein the substituent is a C 1-4 alkoxy group, a C 6-10 aryl group, And R 5 and R 6 are bonded to each other to form a compound represented by the formula (2a): a group represented by the following formulas: imino, nitro, hydroxy, oxo, nitrile, mercapto or halogen. Provided that the compound represented by the formula (2) is water or sulfide Not in the original)
(Wherein, R 8 represents a group formed by combining R 5 and R 6 with each other)
With the compound represented by the presence of a plant product,
Equation (3):
(Wherein, X, Y, R 1 , R 2 , R 3 , R 4 and R 5 are the same as defined above)
A method for producing a compound represented by the formula (3), comprising a step of obtaining a compound represented by the formula:
[2] The production method according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the formula (1c).
Wherein X and R 7 are the same as defined above.
[3] The production method according to [1], wherein the compound represented by the formula (1) is a compound represented by the formula (1a).
(Wherein, X is —O— or —NR—, and R is a hydrogen atom, a C 1-6 alkyl group which may have a substituent, or a C 3-6 which may have a substituent. A cycloalkyl group, a C 2-6 alkenyl group optionally having a substituent, a C 3-6 cycloalkenyl group optionally having a substituent, a C 2-6 alkynyl group optionally having a substituent, an optionally substituted C 6-10 aryl group, an optionally substituted C 1-6 alkylcarbonyl group, an optionally substituted C 6-10 arylcarbonyl group, a substituent A C 1-6 alkylsulfonyl group or a C 6-10 arylsulfonyl group which may have R 2 and R 3 each independently represent a hydrogen atom or a C 1-6 alkyl which may have a substituent; having group, an optionally substituted C 3-6 cycloalkyl group, a substituent Good C 2-6 alkenyl group, an optionally substituted C 3-6 cycloalkenyl group, which may have a good C 2-6 alkynyl group or a substituted group may have a substituent C 6- 10 aryl groups, wherein the substituent is a C 1-4 alkyl group, a C 2-4 alkenyl group, a C 2-4 alkynyl group, a C 1-4 alkoxy group, an amino group, an imino group, a nitro group, a hydroxy group , Oxo, nitrile, mercapto or halogen atom)
[4] The production method according to any one of [1] to [3], wherein Y is —NR 6 —.
[5] The production method according to any one of [1] to [3], wherein Y is -O-.
[6] The production method according to any one of [1] to [3], wherein Y is -S-.
[7] The processed plant product is a leguminous plant, a cucurbitaceae, a solanaceae, an urushiaceae, a gingeraceae, a mandarinaceae, an amaryllidaceae, a sericaceae, a brassicaceae, a lotus family, a mataceae family, a rose family, a lily family, a gramineous family. The method according to any one of [1] to [6], wherein the method is prepared by crushing a plant selected from the group consisting of plants of the family Laceae, Musaceae, Camellia and Allium.
[8] Step of reacting 7-oxabicyclo [4.1.0] heptane and cyclopropylamine in the presence of a processed soybean product to obtain (1R, 2R) -2-cyclopropylamino-1-cyclohexanol A method for producing (1R, 2R) -2-cyclopropylamino-1-cyclohexanol, comprising:
[9] (1) 7-oxabicyclo [4.1.0] heptane and cyclopropylamine are reacted in the presence of a processed soybean product to give (1R, 2R) -2-cyclopropylamino-1-cyclohexanol Obtaining a
(2a) After reacting (1R, 2R) -2-cyclopropylamino-1-cyclohexanol with a carbonylating reagent, further protected or unprotected 6- (3-aminopropoxy) -2 (1H ) -Quinolinone, or
(2b) After reacting the protected or unprotected 6- (3-aminopropoxy) -2 (1H) -quinolinone with a carbonylating reagent, further react (1R, 2R) -2-cyclopropylamino-1. Reacting cyclohexanol,
When a protected 6- (3-aminopropoxy) -2 (1H) -quinolinone is used, further deprotection can be carried out.
Obtaining (-)-6- [3- [3-cyclopropyl-3-[(1R, 2R) -2-hydroxycyclohexyl] ureido] -propoxy] -2 (1H) -quinolinone;
A method for producing (-)-6- [3- [3-cyclopropyl-3-[(1R, 2R) -2-hydroxycyclohexyl] ureido] -propoxy] -2 (1H) -quinolinone.

本発明によれば、安価で入手が容易な触媒を使用し、簡便な操作により、エポキシド構造またはアジリジン構造を有する化合物と種々の求核剤とを反応させ、式(3)で表される化合物を立体選択的かつ効率的に製造することができる。   According to the present invention, a compound having an epoxide structure or an aziridine structure is reacted with various nucleophiles by a simple operation using an inexpensive catalyst which is easily available, and a compound represented by the formula (3) Can be stereoselectively and efficiently produced.

また、本発明で使用する触媒は、入手容易な植物加工物であり、必ずしも触媒の回収を必要としない。さらに、触媒は、反応終了後、回収して再利用することも可能である。   Further, the catalyst used in the present invention is an easily available plant processed product, and does not necessarily require the recovery of the catalyst. Further, the catalyst can be recovered and reused after the completion of the reaction.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の一実施形態は、式(1)で表される化合物(以下、「化合物(1)」等ともいう。)と化合物(2)を植物加工物の存在下で反応させ、化合物(3)を得るものである。
In one embodiment of the present invention, a compound represented by the formula (1) (hereinafter, also referred to as “compound (1)” or the like) and a compound (2) are reacted in the presence of a processed plant product to produce a compound (3 ).

<式(1)で表される化合物(化合物(1))>
式(1)において、Xは、−O−または−NR−である。すなわち、化合物(1)は、エポキシド構造を有する化合物またはアジリジン構造を有する化合物を意味する。
<Compound represented by Formula (1) (Compound (1))>
In the formula (1), X is -O- or -NR-. That is, the compound (1) means a compound having an epoxide structure or a compound having an aziridine structure.

Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基である。R represents a hydrogen atom, a C 1-6 alkyl group which may have a substituent, a C 3-6 cycloalkyl group which may have a substituent, or a C 2-6 alkenyl which may have a substituent. Group, C 3-6 cycloalkenyl group which may have a substituent, C 2-6 alkynyl group which may have a substituent, C 6-10 aryl group which may have a substituent, substituent which may have a C 1-6 alkylcarbonyl group, an optionally substituted C 6-10 arylcarbonyl group, an optionally substituted C 1-6 alkylsulfonyl group or C 6-10 An arylsulfonyl group.

また、R、R、RおよびRは、それぞれ独立に、水素原子、C1−6アルキル基、C3−6シクロアルキル基、C2−6アルケニル基、C3−6シクロアルケニル基、C2−6アルキニル基またはC6−10アリール基である。R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a C 1-6 alkyl group, a C 3-6 cycloalkyl group, a C 2-6 alkenyl group, a C 3-6 cycloalkenyl A C 2-6 alkynyl group or a C 6-10 aryl group.

1−6アルキル基とは、炭素数1〜6のアルキル基を意味する。C1−6アルキル基としては、例えば、メチル基、エチル基、プロパン−1−イル基、プロパン−2−イル基(イソプロピル基)、ブタン−1−イル基、ブタン−2−イル基、ペンタン−1−イル基、ペンタン−2−イル基、ペンタン−3−イル基、ヘキサン−1−イル基、ヘキサン−2−イル基および3−ヘキシル基が挙げられる。The C 1-6 alkyl group means an alkyl group having 1 to 6 carbon atoms. Examples of the C 1-6 alkyl group include a methyl group, an ethyl group, a propan-1-yl group, a propan-2-yl group (isopropyl group), a butan-1-yl group, a butan-2-yl group, and pentane -1-yl group, pentan-2-yl group, pentan-3-yl group, hexane-1-yl group, hexane-2-yl group and 3-hexyl group.

3−6シクロアルキル基とは、炭素数3〜6のシクロアルキル基を意味する。C3−6シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。The C 3-6 cycloalkyl group means a cycloalkyl group having 3 to 6 carbon atoms. Examples of the C 3-6 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.

2−6アルケニル基とは、炭素数2〜6のアルケニル基を意味する。C2−6アルケニル基としては、例えば、ビニル基、1−プロペン−1−イル基、2−プロペン−1−イル基、プロペン−2−イル基、2−ブテン−1−イル基、2−ブテン−2−イル基、3−ブテン−1−イル基、2−ペンテン−1−イル基、3−ペンテン−1−イル基、2−ヘキセン−1−イル基、3−ヘキセン−1−イル基、4−ヘキセン−1−イル基および5−ヘキセン−1−イル基が挙げられる。The C 2-6 alkenyl group means an alkenyl group having 2 to 6 carbon atoms. Examples of the C 2-6 alkenyl group include a vinyl group, a 1-propen-1-yl group, a 2-propen-1-yl group, a propen-2-yl group, a 2-buten-1-yl group, Buten-2-yl group, 3-buten-1-yl group, 2-penten-1-yl group, 3-penten-1-yl group, 2-hexen-1-yl group, 3-hexen-1-yl And 4-hexen-1-yl and 5-hexen-1-yl groups.

3−6シクロアルケニル基とは、炭素数3〜6のシクロアルケニル基を意味する。C3−6シクロアルケニル基としては、例えば、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基が挙げられる。The C 3-6 cycloalkenyl group means a cycloalkenyl group having 3 to 6 carbon atoms. Examples of the C 3-6 cycloalkenyl group include a cyclobutenyl group, a cyclopentenyl group, and a cyclohexenyl group.

2−6アルキニル基とは、炭素数2〜6のアルキニル基を意味する。C2−6アルキニル基としては、例えば、エチニル基、プロパルギル基および3−ブチン−1−イル基が挙げられる。The C 2-6 alkynyl group means an alkynyl group having 2 to 6 carbon atoms. Examples of the C 2-6 alkynyl group include an ethynyl group, a propargyl group and a 3-butyn-1-yl group.

6−10アリール基とは、炭素数6〜10のアリール基を意味する。C6−10アリール基としては、例えば、フェニル基およびナフチル基が挙げられる。The C 6-10 aryl group means an aryl group having 6 to 10 carbon atoms. Examples of the C 6-10 aryl group include a phenyl group and a naphthyl group.

1−6アルキル基、C3−6シクロアルキル基、C2−6アルケニル基、C3−6シクロアルケニル基、C2−6アルキニル基およびC6−10アリール基は、それぞれ無置換であっても、置換基を有していてもよい。置換基としては、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子が挙げられる。C1−4アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基およびブトキシ基が挙げられる。The C 1-6 alkyl group, C 3-6 cycloalkyl group, C 2-6 alkenyl group, C 3-6 cycloalkenyl group, C 2-6 alkynyl group and C 6-10 aryl group are each unsubstituted. And may have a substituent. Examples of the substituent include a C1-4 alkyl group, a C2-4 alkenyl group, a C2-4 alkynyl group, a C1-4 alkoxy group, an amino group, an imino group, a nitro group, a hydroxy group, an oxo group, and a nitrile group. , A mercapto group or a halogen atom. Examples of the C 1-4 alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butoxy group.

化合物(1)としては、例えば、Cis−2,3−エポキシブタンが挙げられる。   Examples of the compound (1) include Cis-2,3-epoxybutane.

また、化合物(1)の代わりに、Xが−S−であるチイラン構造を有する化合物を用いてもよい。チイラン構造を有する化合物を用いた場合、1,2−メルカプトアミン、1,2−メルカプトアルコール、1,2−ジチオールを得ることができる。   Further, instead of the compound (1), a compound having a thiirane structure in which X is -S- may be used. When a compound having a thiirane structure is used, 1,2-mercaptoamine, 1,2-mercaptoalcohol, and 1,2-dithiol can be obtained.

また、化合物(1)は、化合物(1b)であってもよい。
式中、X、RおよびRは、上記定義と同一であり、Rは、RおよびRが互いに結合して形成される基を示す。
Further, the compound (1) may be the compound (1b).
In the formula, X, R 1 and R 4 are the same as defined above, and R 7 represents a group formed by combining R 2 and R 3 with each other.

式(1b)中、Xは、−O−または−NR−を示し、Rは、RおよびRが互いに結合して形成される基を示す。RおよびRが互いに結合して形成される基とは、RまたはRが置換基を有している場合、当該置換基を介して接続されるように結合してもよい。すなわち、Rは、C1−6アルキレン基、C2−6アルケニレン基、C2−6アルキニレン基およびC6−10アリーレン基だけでなく、RとRとが置換基を介して結合して形成される態様も包含する。In the formula (1b), X represents —O— or —NR—, and R 7 represents a group formed by bonding R 2 and R 3 to each other. The groups R 2 and R 3 are bonded to each other to form, when R 2 or R 3 has a substituent, may be coupled to be connected via the substituent. That is, R 7 is not only a C 1-6 alkylene group, a C 2-6 alkenylene group, a C 2-6 alkynylene group, and a C 6-10 arylene group, but also R 2 and R 3 are bonded via a substituent. It also includes an embodiment formed by:

1−6アルキレン基、C2−6アルケニレン基、C2−6アルキニレン基およびC6−10アリーレン基とは、それぞれ式(1)で定義されたC1−6アルキル基、C2−6アルケニル基、C2−6アルキニル基およびC6−10アリール基からさらに水素原子を1つ除いてなる基である。A C 1-6 alkylene group, a C 2-6 alkenylene group, a C 2-6 alkynylene group and a C 6-10 arylene group are respectively a C 1-6 alkyl group and a C 2-6 defined by the formula (1). It is a group in which one hydrogen atom is further removed from an alkenyl group, a C 2-6 alkynyl group and a C 6-10 aryl group.

とRが置換基を介して結合して形成される態様とは、例えば、2−オキサプロピレン基(−CHOCH−)、3−オキサペンチレン基(−CHCHOCHCH−)、3−オキソペンチレン基(−CHCHC(=O)CHCH−)が挙げられる。Examples of the mode in which R 2 and R 3 are formed by bonding via a substituent include, for example, a 2-oxapropylene group (—CH 2 OCH 2 —) and a 3-oxapentylene group (—CH 2 CH 2 OCH). 2 CH 2 —) and a 3-oxopentylene group (—CH 2 CH 2 C (= O) CH 2 CH 2 —).

式(1b)で表される化合物の具体例としては、6−オキサビシクロ[3.1.0]ヘキサン、7−オキサビシクロ[4.1.0]ヘプタン、8−オキサビシクロ[5.1.0]オクタンおよび3,6−ジオキサビシクロ[3.1.0]ヘキサンが挙げられる。   Specific examples of the compound represented by the formula (1b) include 6-oxabicyclo [3.1.0] hexane, 7-oxabicyclo [4.1.0] heptane, and 8-oxabicyclo [5.1. 0] octane and 3,6-dioxabicyclo [3.1.0] hexane.

<式(2)で表される化合物(化合物(2))>
式(2)において、Yは、−O−、−NR−または−S−である。すなわち、化合物(2)は、アルコール、アミンまたはチオールを意味する。ただし、水および硫化水素は、化合物(2)の範囲から除かれる。
<Compound represented by Formula (2) (Compound (2))>
In the formula (2), Y is, -O -, - NR 6 - or -S-. That is, the compound (2) means an alcohol, an amine or a thiol. However, water and hydrogen sulfide are excluded from the range of the compound (2).

また、RおよびRは、それぞれ独立に、水素原子、C1−6アルキル基、C3−6シクロアルキル基、C2−6アルケニル基、C3−6シクロアルケニル基、C2−6アルキニル基またはC6−10アリール基である。R 5 and R 6 each independently represent a hydrogen atom, a C 1-6 alkyl group, a C 3-6 cycloalkyl group, a C 2-6 alkenyl group, a C 3-6 cycloalkenyl group, a C 2-6 It is an alkynyl group or a C 6-10 aryl group.

1−6アルキル基としては、例えば、メチル基、エチル基、プロパン−1−イル基、プロパン−2−イル基(イソプロピル基)、ブタン−1−イル基、ブタン−2−イル基、ペンタン−1−イル基、ペンタン−2−イル基、ペンタン−3−イル基、ヘキサン−1−イル基、ヘキサン−2−イル基および3−ヘキシル基が挙げられる。Examples of the C 1-6 alkyl group include a methyl group, an ethyl group, a propan-1-yl group, a propan-2-yl group (isopropyl group), a butan-1-yl group, a butan-2-yl group, and pentane -1-yl group, pentan-2-yl group, pentan-3-yl group, hexane-1-yl group, hexane-2-yl group and 3-hexyl group.

3−6シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。Examples of the C 3-6 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.

2−6アルケニル基としては、例えば、ビニル基、1−プロペン−1−イル基、2−プロペン−1−イル基、プロペン−2−イル基、2−ブテン−1−イル基、2−ブテン−2−イル基、3−ブテン−1−イル基、2−ペンテン−1−イル基、3−ペンテン−1−イル基、2−ヘキセン−1−イル基、3−ヘキセン−1−イル基、4−ヘキセン−1−イル基および5−ヘキセン−1−イル基が挙げられる。Examples of the C 2-6 alkenyl group include a vinyl group, a 1-propen-1-yl group, a 2-propen-1-yl group, a propen-2-yl group, a 2-buten-1-yl group, Buten-2-yl group, 3-buten-1-yl group, 2-penten-1-yl group, 3-penten-1-yl group, 2-hexen-1-yl group, 3-hexen-1-yl And 4-hexen-1-yl and 5-hexen-1-yl groups.

3−6シクロアルケニル基としては、例えば、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基が挙げられる。Examples of the C 3-6 cycloalkenyl group include a cyclobutenyl group, a cyclopentenyl group, and a cyclohexenyl group.

2−6アルキニル基としては、例えば、エチニル基、プロパルギル基および3−ブチン−1−イル基が挙げられる。Examples of the C 2-6 alkynyl group include an ethynyl group, a propargyl group and a 3-butyn-1-yl group.

6−10アリール基としては、例えば、フェニル基およびナフチル基が挙げられる。Examples of the C 6-10 aryl group include a phenyl group and a naphthyl group.

1−6アルキル基、C3−6シクロアルキル基、C2−6アルケニル基、C3−6シクロアルケニル基、C2−6アルキニル基およびC6−10アリール基は、それぞれ無置換であっても、置換基を有していてもよい。置換基としては、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C6−10アリール基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子が挙げられる。C1−4アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基およびブトキシ基が挙げられる。The C 1-6 alkyl group, C 3-6 cycloalkyl group, C 2-6 alkenyl group, C 3-6 cycloalkenyl group, C 2-6 alkynyl group and C 6-10 aryl group are each unsubstituted. And may have a substituent. Examples of the substituent include a C 1-4 alkyl group, a C 2-4 alkenyl group, a C 2-4 alkynyl group, a C 6-10 aryl group, a C 1-4 alkoxy group, an amino group, an imino group, a nitro group, and a hydroxy group. Groups, oxo groups, nitrile groups, mercapto groups or halogen atoms. Examples of the C 1-4 alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butoxy group.

化合物(2)の具体例としては、メタノール、エタノール、1−プロパノール、2−プロパノール(イソプロパノール)、1−ブタノール、2−ブタノール、1−ペンタノール、2−ペンタノール、フェノール、アンモニア、メチルアミン、エチルアミン、プロピルアミン、2−プロピルアミン(イソプロピルアミン)、2−ペンチルアミン、3−ペンチルアミン、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミン、tert−ブチルアミン、アリルアミン、プロパルギルアミン、ベンジルアミン、2−フェニルエチルアミン、アニリン、ジメチルアミン、ジエチルアミン、3−メトキシプロピルアミン、3−エトキシプロピルアミン、メタンチオール、エタンチオール、1−プロパンチオール、2−プロパンチオール、ブタンチオールが挙げられる。   Specific examples of compound (2) include methanol, ethanol, 1-propanol, 2-propanol (isopropanol), 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, phenol, ammonia, methylamine, Ethylamine, propylamine, 2-propylamine (isopropylamine), 2-pentylamine, 3-pentylamine, cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, tert-butylamine, allylamine, propargylamine, benzylamine, 2 -Phenylethylamine, aniline, dimethylamine, diethylamine, 3-methoxypropylamine, 3-ethoxypropylamine, methanethiol, ethanethiol, 1-propanethiol, - propanethiol include butanethiol.

また、化合物(2)は、化合物(2a)であってもよい。
式中、Rは、RおよびRが互いに結合して形成される基を示す。
Further, the compound (2) may be the compound (2a).
In the formula, R 8 represents a group formed by combining R 5 and R 6 with each other.

式(2a)中、Rは、RおよびRが互いに結合して形成される基を示す。RおよびRが互いに結合して形成される基とは、RまたはRが置換基を有している場合、当該置換基を介して接続されるように結合してもよい。すなわち、Rは、C1−6アルキレン基、C3−6シクロアルキレン基、C2−6アルケニレン基、C3−6シクロアルケニレン基、C2−6アルキニレン基およびC6−10アリーレン基だけでなく、RとRが置換基を介して結合して形成される態様も包含する。In the formula (2a), R 8 represents a group formed by combining R 5 and R 6 with each other. The groups R 5 and R 6 are bonded to each other to form, when R 5 or R 6 has a substituent may be attached so as to be connected via the substituent. That is, R 8 is only a C 1-6 alkylene group, a C 3-6 cycloalkylene group, a C 2-6 alkenylene group, a C 3-6 cycloalkenylene group, a C 2-6 alkynylene group and a C 6-10 arylene group. However, an embodiment in which R 5 and R 6 are formed by bonding via a substituent is also included.

1−6アルキレン基、C3−6シクロアルキレン基、C2−6アルケニレン基、C3−6シクロアルケニレン基、C2−6アルキニレン基およびC6−10アリーレン基とは、それぞれ式(2)で定義されたC1−6アルキル基、C2−6アルケニル基、C2−6アルキニル基およびC6−10アリール基からさらに水素原子を1つ除いてなる基である。A C 1-6 alkylene group, a C 3-6 cycloalkylene group, a C 2-6 alkenylene group, a C 3-6 cycloalkenylene group, a C 2-6 alkynylene group and a C 6-10 arylene group are each represented by the formula (2 A) a C 1-6 alkyl group, a C 2-6 alkenyl group, a C 2-6 alkynyl group and a C 6-10 aryl group as defined in the above, wherein one hydrogen atom is further removed.

とRが置換基を介して結合して形成される態様とは、例えば、2−オキサプロピレン基(−CHOCH−)、3−オキサペンチレン基(−CHCHOCHCH−)、3−オキソペンチレン基(−CHCHC(=O)CHCH−)が挙げられる。Examples of the mode in which R 5 and R 6 are formed by bonding through a substituent include, for example, a 2-oxapropylene group (—CH 2 OCH 2 —) and a 3-oxapentylene group (—CH 2 CH 2 OCH). 2 CH 2 —) and a 3-oxopentylene group (—CH 2 CH 2 C (= O) CH 2 CH 2 —).

化合物(2a)の具体例としては、ピロリジン、ピペリジン、モルホリン、ピペラジン、ホモピペラジン、チオモルホリンである。   Specific examples of the compound (2a) include pyrrolidine, piperidine, morpholine, piperazine, homopiperazine, and thiomorpholine.

化合物(2)の量は、経済性、回収性を考慮した任意の量を用いることができる。このような量としては、例えば、化合物(1)のモル数に対して0.01〜100当量、好ましくは0.1〜10当量、更に好ましくは0.5〜2当量である。   As the amount of compound (2), any amount can be used in consideration of economy and recovery. Such an amount is, for example, 0.01 to 100 equivalents, preferably 0.1 to 10 equivalents, more preferably 0.5 to 2 equivalents, based on the number of moles of the compound (1).

<式(3)で表される化合物(化合物(3))>
化合物(3)とは、式(3)で表される化合物であり、式中、X、Y、R、R、R、R、R、R、RおよびRは、上記定義と同一である。
<Compound represented by Formula (3) (Compound (3))>
The compound (3) is a compound represented by the formula (3), wherein X, Y, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are , Is the same as the above definition.

また、化合物(1)が化合物(1b)である場合、化合物(2)が化合物(2a)である場合を考慮すると、化合物(3)には化合物(3a)〜(3c)が包含される。
When the compound (1) is the compound (1b) and the compound (2) is the compound (2a), the compound (3) includes the compounds (3a) to (3c).

化合物(3)の具体例としては、1,2−ジオール(XおよびYがともに−O−である場合)、1,2−アミノアルコール(Xが−O−かつYが−NH−である場合、または、Xが−NH−かつYが−O−である場合)、1,2−ジアミン(XおよびYがともに−NH−である場合)、1,2−メルカプトアルコール(Xが−O−かつYが−S−である場合)、1,2−メルカプトアミン(Xが−NH−かつYが−S−である場合)が挙げられる。   Specific examples of the compound (3) include 1,2-diol (when both X and Y are -O-), 1,2-aminoalcohol (when X is -O- and Y is -NH-). Or X is -NH- and Y is -O-), 1,2-diamine (when both X and Y are -NH-), 1,2-mercapto alcohol (X is -O- And Y is -S-) and 1,2-mercaptoamine (when X is -NH- and Y is -S-).

<植物加工物>
本明細書において、植物加工物とは、食用植物の一部を加工して得られる粉末または抽出物である。
<Processed plant>
In the present specification, a processed plant is a powder or an extract obtained by processing a part of an edible plant.

上記「食用植物」とは、ヒトがその一部を食べることができる植物として、一般的に知られた植物を意味する。食用植物としては、例えば、穀類、豆類、野菜、果物またはいも類に分類される植物であり、食用植物の一部とは、果実全体、果肉、果皮、茎、種子、胚芽、根、球根および葉から適宜選択することができる。食用植物としては、具体的には、マメ科(例えば、大豆、黒豆、赤インゲンマメ、エンドウマメ)、モクセイ科(例えば、オリーブ)、バショウ科(例えば、バナナ)、イネ科(例えば、小麦)、ウリ科(例えば、カボチャ)、ナス科(例えば、トマト、ジャガイモ)、ウルシ科(例えば、ピスタチオ、カシューナッツ)、ショウガ科(例えば、ウコン)、ツバキ科(例えば、茶)、ミカン科(例えば、ナツミカン、柚子、花柚子、ブンタン)、ヒガンバナ科(例えば、ニンニク)、セリ科(例えば、ニンジン)、アブラナ科(例えば、ダイコン)、ハス科(例えば、レンコン)、マタタビ科(例えば、キウイ)、バラ科(例えば、リンゴ)およびネギ科(例えば、ネギ)の植物が挙げられる。食用植物としては、マメ科(例えば、大豆、黒豆、赤インゲンマメ、エンドウマメ)、ツバキ科(例えば、茶)、セリ科(例えば、ニンジン)、マタタビ科(例えば、キウイ)およびユリ科(例えば、ネギ)からなる群から選択されることが好ましい。なお、ネギは、ネギ科として分類される場合もある。   The above-mentioned "edible plant" means a plant generally known as a plant that can be partially eaten by humans. Edible plants are, for example, plants classified as cereals, legumes, vegetables, fruits or potatoes, and a part of the edible plants is whole fruit, pulp, pericarp, stem, seed, germ, root, bulb and It can be appropriately selected from leaves. As edible plants, specifically, legumes (eg, soybeans, black beans, red kidney beans, peas), Oleaceae (eg, olives), Musaceae (eg, bananas), Gramineae (eg, wheat), Cucurbitaceae (for example, pumpkin), Solanaceae (for example, tomato, potato), Urushi (for example, pistachio, cashew nut), Ginger (for example, turmeric), Camellia (for example, tea), Rutaceae (for example, Natsumikan) , Citron, flower citron, buntan), Amaryllidaceae (for example, garlic), Apiaceae (for example, carrot), Brassicaceae (for example, radish), Lotus family (for example, lotus root), stalk family (for example, kiwi), rose Family (e.g., apples) and allium (e.g., leek) plants. Edible plants include legumes (e.g., soybeans, black beans, red kidney beans, peas), camellias (e.g., tea), apiaceae (e.g., carrots), matabiaceae (e.g., kiwi) and lilies (e.g., It is preferred to be selected from the group consisting of green onions). In addition, the green onion is sometimes classified as an allium.

上記「加工」とは、必要に応じて、乾燥する、加熱する、火であぶる、焙煎する、油であげる、発酵させる、不要な部位を除去する等の処理を行った後、粉末状になるまで粉砕すること、あるいは成分を抽出することを意味する。また、上記植物加工物には、食用植物のエキスを抽出した後、乾燥したものを粉砕して得られる粉末も包含される。したがって、上記茶は、緑茶であってもよく、紅茶であってもよい。また、上記大豆は、きな粉であってもよく、納豆であってもよい。   The above-mentioned "processing" means, if necessary, drying, heating, burning with fire, roasting, raising with oil, fermenting, removing unnecessary parts, etc., and then performing powder processing. It means grinding to the extent possible or extracting the components. In addition, the above-mentioned processed plant product also includes a powder obtained by extracting an edible plant extract and then pulverizing the dried extract. Therefore, the tea may be green tea or black tea. The soybeans may be kinako or natto.

植物加工物は、粉末状または液状に加工された状態で市販されたものを使用してもよく、加工された状態で市販されたものを適宜粉末状に粉砕して使用してもよい。市販されたものとしては、きな粉、脱脂大豆粉(例えば、フジプロF(不二製油(株)製、商品名)、サンリッチF(昭和産業(株)製、商品名)、ソーヤフラワーFT−N(日清オイリオ(株)製、商品名)、エスサンミート特等(味の素(株)製、商品名)、豊年ソイプロ(J−オイルミルズ(株)製、商品名)、水溶性大豆多糖類(例えば、ソヤファイブS−DN(不二製油(株)製、商品名)等の大豆加工物を用いることが好ましく、きな粉、ソーヤフラワーFT−NまたはソヤファイブS−DNを用いることがより好ましい。   As the processed plant product, a commercially available plant in a powdered or liquid state may be used, or a commercially available plant in a processed state may be appropriately pulverized and used. Commercially available ones include kinako, defatted soybean flour (for example, Fujipro F (manufactured by Fuji Oil Co., Ltd., trade name), Sunrich F (manufactured by Showa Sangyo Co., Ltd., trade name), Soya Flower FT-N Nissin Oillio Co., Ltd., trade name), Essun Meat Tokusou (Ajinomoto Co., Ltd., trade name), Housen Soipro (J-Oil Mills Co., Ltd., trade name), water-soluble soybean polysaccharide (for example, It is preferable to use a processed soybean product such as Soya Five S-DN (trade name, manufactured by Fuji Oil Co., Ltd.), and it is more preferable to use Kinako, Soya Flower FT-N or Soya Five S-DN.

植物加工物の量としては、経済性、回収性を考慮した任意の量を用いることができる。このような植物加工物の量としては、例えば、式(1)で表される化合物の質量に対して、質量比で0.01〜100倍量、好ましくは0.1〜10倍量、更に好ましくは1〜5倍量である。   As the amount of the processed plant, any amount can be used in consideration of economy and recovery. The amount of such a processed plant product is, for example, 0.01 to 100 times, preferably 0.1 to 10 times, in terms of mass ratio, based on the mass of the compound represented by the formula (1). Preferably, the amount is 1 to 5 times.

<不斉開環反応>
本発明の実施形態に係る不斉開環反応は、溶媒中で行ってもよい。溶媒中で行う場合は、化合物(1)および化合物(2)と反応しない溶媒であれば、通常、有機合成化学でよく知られた有機溶媒および水を使用することができる。このような有機溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ヘキサン、シクロヘキサン、ヘプタン等の炭化水素類;ジイソプロピルエーテル、テトラヒドロフラン、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、シクロペンチルメチルエーテル等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類が挙げられる。また、これらの溶媒は、単独で使用してもよく、2種以上を混合して用いてもよい。2種以上を混合して用いる場合は、有機溶媒と水を混合して用いることが好ましく、回収性、安全性、経済性の面からトルエンまたはヘプタンと水との混合溶媒を用いることが特に好ましい。
<Asymmetric ring opening reaction>
The asymmetric ring opening reaction according to the embodiment of the present invention may be performed in a solvent. When the reaction is performed in a solvent, an organic solvent and water well known in organic synthetic chemistry can be used as long as the solvent does not react with the compound (1) and the compound (2). Examples of such an organic solvent include aromatic hydrocarbons such as benzene, toluene, and xylene; hydrocarbons such as hexane, cyclohexane, and heptane; diisopropyl ether, tetrahydrofuran, methyl tert-butyl ether, ethyl tert-butyl ether, and cyclopentyl. Ethers such as methyl ether; esters such as ethyl acetate and butyl acetate; and halogenated hydrocarbons such as dichloromethane and chloroform. These solvents may be used alone or in combination of two or more. When two or more kinds are used as a mixture, it is preferable to use a mixture of an organic solvent and water, and it is particularly preferable to use a mixed solvent of toluene or heptane and water from the viewpoint of recoverability, safety and economy. .

不斉開環反応に使用できる溶媒の量は、単独溶媒、混合溶媒のいずれにおいても経済性を考慮した量で用いることができる。このような溶媒の量は、例えば、化合物(1)の質量に対して、容量比で0〜100倍量、好ましくは0.5〜50倍量、更に好ましくは2〜10倍量である。   The amount of the solvent that can be used for the asymmetric ring-opening reaction can be used in any of a single solvent and a mixed solvent in consideration of economy. The amount of such a solvent is, for example, 0 to 100 times, preferably 0.5 to 50 times, and more preferably 2 to 10 times the volume ratio of the compound (1).

不斉開環反応に使用できる水の含量は、触媒に対して水を質量比で0.05〜1倍量の範囲とすることができ、触媒に対して水を0.20〜0.50倍量の範囲であることが更に好ましい。このような範囲であれば、反応の変換率および生成物の光学純度がより向上する。   The content of water that can be used for the asymmetric ring-opening reaction can be in the range of 0.05 to 1 times by mass of water to the catalyst, and 0.20 to 0.50 of water to the catalyst. More preferably, the amount is within the range of double. Within such a range, the conversion of the reaction and the optical purity of the product will be further improved.

反応温度は−20℃〜100℃が好ましく、特に30℃〜50℃が好ましい。反応終了後、触媒をろ別することで、対応する化合物(3)を得ることができる。本発明の不斉開環反応を行う際に、ろ別によって回収された触媒を再利用することができる。   The reaction temperature is preferably from -20C to 100C, particularly preferably from 30C to 50C. After completion of the reaction, the corresponding compound (3) can be obtained by filtering off the catalyst. When performing the asymmetric ring opening reaction of the present invention, the catalyst recovered by filtration can be reused.

反応時間は、経済性を考慮した任意の変換率が得られる時間まで反応を行うことができる。このような反応時間としては、例えば、1〜500時間、好ましくは1〜100時間、更に好ましくは1〜48時間である。   The reaction can be carried out until the time when an arbitrary conversion rate is obtained in consideration of economy. Such a reaction time is, for example, 1 to 500 hours, preferably 1 to 100 hours, and more preferably 1 to 48 hours.

反応終了後、触媒をろ別することで化合物(3)を得ることができる。得られた化合物(3)は、更に晶析、蒸留等の定法により、容易に精製することもできる。   After completion of the reaction, the compound (3) can be obtained by filtering off the catalyst. The obtained compound (3) can be easily purified by a conventional method such as crystallization or distillation.

晶析に使用できる溶媒は、通常、有機合成化学で使用される溶媒であれば特に限定されず、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類;トルエン、ベンゼン、キシレン等の芳香族炭化水素類;ジイソプロピルエーテル、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、シクロペンチルメチルエーテル等のエーテル類などを用いることができ、これらの溶媒を単独または2種以上を混合して用いてもよい。   Solvents that can be used for crystallization are not particularly limited as long as they are usually solvents used in organic synthetic chemistry; hydrocarbons such as hexane, heptane, and cyclohexane; aromatic hydrocarbons such as toluene, benzene, and xylene; Ethers such as diisopropyl ether, methyl tert-butyl ether, ethyl tert-butyl ether and cyclopentyl methyl ether can be used, and these solvents may be used alone or as a mixture of two or more.

上記溶媒の量は、単独溶媒、混合溶媒のいずれの場合においても、経済性を考慮した量とすることができ、化合物(3)の質量に対して、容量比で0.1〜100倍量、好ましくは0.5〜50倍量、さらに好ましくは1〜10倍量である。   The amount of the above-mentioned solvent can be an amount in consideration of economy in any case of a single solvent or a mixed solvent, and is 0.1 to 100 times by volume relative to the mass of the compound (3). , Preferably 0.5 to 50 times, more preferably 1 to 10 times.

<塩形成反応>
本発明により得られた化合物(3)は、有機合成化学で通常使用される無機酸または有機酸と、塩を形成することにより、光学純度を高めることができる。上記酸としては、例えば、塩酸、硫酸、亜硫酸、硝酸、過塩素酸、塩素酸、ヨウ素酸、リン酸等の無機酸;ギ酸、酢酸、乳酸、シュウ酸、クエン酸、マレイン酸、フマル酸、安息香酸、フタル酸、サリチル酸、メタンスルホン酸、トルエンスルホン酸等の有機酸が挙げられる。
<Salt formation reaction>
The compound (3) obtained by the present invention can increase the optical purity by forming a salt with an inorganic acid or an organic acid usually used in organic synthetic chemistry. Examples of the acid include inorganic acids such as hydrochloric acid, sulfuric acid, sulfurous acid, nitric acid, perchloric acid, chloric acid, iodic acid, and phosphoric acid; formic acid, acetic acid, lactic acid, oxalic acid, citric acid, maleic acid, fumaric acid, Organic acids such as benzoic acid, phthalic acid, salicylic acid, methanesulfonic acid, and toluenesulfonic acid.

化合物(3)の光学純度を高めるために、光学活性な酸との塩を形成させてもよい。上記光学活性な酸としては、例えば、酒石酸、リンゴ酸、マンデル酸、フェニルグリシン等が挙げられ、上記酸は置換されているものであってもよい。   In order to increase the optical purity of compound (3), a salt with an optically active acid may be formed. Examples of the optically active acid include tartaric acid, malic acid, mandelic acid, phenylglycine and the like, and the acid may be substituted.

塩を形成する際の溶媒としては経済性、回収性等を考慮して、有機合成化学で通常使用される溶媒を用いることができる。上記溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ヘキサン、シクロヘキサン、ヘプタン等の炭化水素類;ジイソプロピルエーテル、テトラヒドロフラン、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、シクロペンチルメチルエーテル等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類;メタノール、エタノール、イソプロパノール等のアルコール類;水等を挙げることができ、これらの溶媒を単独または2種以上混合してもよい。   As the solvent for forming the salt, a solvent generally used in organic synthetic chemistry can be used in consideration of economy, recovery, and the like. Examples of the solvent include aromatic hydrocarbons such as benzene, toluene, and xylene; hydrocarbons such as hexane, cyclohexane, and heptane; diisopropyl ether, tetrahydrofuran, methyl tert-butyl ether, ethyl tert-butyl ether, cyclopentyl methyl ether, and the like. Ethers such as ethyl acetate and butyl acetate; halogenated hydrocarbons such as dichloromethane and chloroform; alcohols such as methanol, ethanol and isopropanol; and water. Species or more may be mixed.

塩を形成する際に使用する溶媒の量は、単独溶媒、混合溶媒のいずれにおいても経済性を考慮した量で用いることができる。上記溶媒の量は、例えば、化合物(1)の質量に対して、容量比で0〜100倍量、好ましくは0.5〜50倍量、更に好ましくは2〜10倍量である。   The amount of the solvent used for forming the salt can be used in any of a single solvent and a mixed solvent in an amount considering economic efficiency. The amount of the solvent is, for example, 0 to 100 times, preferably 0.5 to 50 times, more preferably 2 to 10 times the volume ratio of the compound (1).

塩形成反応において、より高純度の化合物(3)を得るために、当業者によく知られた方法により、精製することができる。   In the salt formation reaction, in order to obtain the compound (3) with higher purity, the compound (3) can be purified by a method well known to those skilled in the art.

<医薬候補化合物への応用>
本発明で得られる(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノール(以下、「化合物A」ともいう。)は、6−(3−アミノプロポキシ)−2(1H)−キノリノン(以下、「化合物B」ともいう。)と反応させることにより、(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンを製造することができる。
<Application to drug candidate compounds>
(1R, 2R) -2-cyclopropylamino-1-cyclohexanol (hereinafter also referred to as “compound A”) obtained in the present invention is 6- (3-aminopropoxy) -2 (1H) -quinolinone ( Hereinafter, the compound is also referred to as “compound B”) to obtain (−)-6- [3- [3-cyclopropyl-3-[(1R, 2R) -2-hydroxycyclohexyl] ureido] -propoxy] -2 (1H) -quinolinone can be produced.

(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンは、インビボ(in vivo)での強い抗血栓作用および血管内皮肥厚抑制作用の2つの作用を有する物質であり、血小板凝集抑制作用、血小板塊解離作用、脳および末梢血管増加作用等を有している。したがって、(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンは、血栓性疾患や動脈硬化性疾患の治療および予防に有用である。   (-)-6- [3- [3-Cyclopropyl-3-[(1R, 2R) -2-hydroxycyclohexyl] ureido] -propoxy] -2 (1H) -quinolinone was synthesized in vivo. It is a substance having two actions, a strong antithrombotic action and a vascular endothelial thickening inhibitory action, and has a platelet aggregation inhibitory action, a platelet clump dissociating action, a brain and peripheral blood vessel increasing action, and the like. Therefore, (-)-6- [3- [3-cyclopropyl-3-[(1R, 2R) -2-hydroxycyclohexyl] ureido] -propoxy] -2 (1H) -quinolinone is useful for thrombotic diseases and arterial diseases. Useful for the treatment and prevention of sclerosing disorders.

化合物Aおよび化合物Bから(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンを製造する方法としては、公知の方法を用いることができる。公知の方法とは、例えば、特許文献4に記載の方法である。   (-)-6- [3- [3-Cyclopropyl-3-[(1R, 2R) -2-hydroxycyclohexyl] ureido] -propoxy] -2 (1H) -quinolinone is prepared from compound A and compound B. As the method, a known method can be used. The known method is, for example, the method described in Patent Document 4.

化合物Aおよび化合物Bを反応させる際には、下記式(Eq.1)のように、予め化合物Aおよびカルボニル化試薬を反応させた後に、化合物Bを反応させることができる。化合物Aおよびカルボニル化試薬を反応させた後に、反応生成物を精製してもよい。
[式中、Rはカルボニル化試薬の残基を意味する。]
When reacting the compound A and the compound B, the compound B can be reacted after reacting the compound A and the carbonylating reagent in advance as in the following formula (Eq. 1). After reacting compound A with the carbonylating reagent, the reaction product may be purified.
[Wherein, R represents a residue of a carbonylation reagent. ]

反応(i)は、無溶媒または溶媒中で行うことができる。反応(i)で使用できる溶媒としては、例えば、ジオキサン、テトラヒドロフラン、ジエチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類;メタノール、エタノール、イソプロパノール等のアルコール類;N,N−ジメチルホルムアミド、アセトン、ジメチルスルホキシド、アセトニトリル、水等の極性溶媒が挙げられる。これらの溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。   Reaction (i) can be performed without a solvent or in a solvent. Examples of the solvent that can be used in the reaction (i) include ethers such as dioxane, tetrahydrofuran, and diethyl ether; aromatic hydrocarbons such as benzene, toluene, and xylene; halogenated hydrocarbons such as dichloromethane and chloroform; Alcohols such as ethanol and isopropanol; and polar solvents such as N, N-dimethylformamide, acetone, dimethylsulfoxide, acetonitrile, and water. These solvents may be used alone or as a mixture of two or more.

上記カルボニル化試薬には、例えば、クロロぎ酸フェニル等のクロロぎ酸エステル、炭酸ジエチル等の炭酸エステル、カルボニルジイミダゾール、ホスゲン、トリホスゲンが挙げられる。   Examples of the carbonylating reagent include chloroformate such as phenyl chloroformate, carbonate such as diethyl carbonate, carbonyldiimidazole, phosgene, and triphosgene.

反応(i)は、通常、−20〜150℃で行われ、好ましくは−20〜100℃である。   Reaction (i) is usually performed at -20 to 150 ° C, preferably at -20 to 100 ° C.

反応(i)は、塩基性化合物の存在下または非存在下で行うことができる。反応(i)で使用できる塩基性化合物としては、炭酸カリウム、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、水素化ナトリウム等の無機塩基;トリエチルアミン、N,N−ジイソプロピルエチルアミン、イミダゾール、ピリジン等の有機塩基などを用いることができる。   Reaction (i) can be performed in the presence or absence of a basic compound. Examples of the basic compound that can be used in the reaction (i) include inorganic bases such as potassium carbonate, sodium carbonate, sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, and sodium hydride; triethylamine, N, N-diisopropylethylamine, imidazole, An organic base such as pyridine can be used.

反応(i)には、反応をより効率よく進行させるために、さらに添加剤を使用してもよい。このような添加剤の例には、ヨウ化カリウム、ヨウ化ナトリウム、イミダゾール、4−ジメチルアミノピリジン、4−ピロリジノピリジン等が挙げられる。   In the reaction (i), an additive may be further used in order to make the reaction proceed more efficiently. Examples of such additives include potassium iodide, sodium iodide, imidazole, 4-dimethylaminopyridine, 4-pyrrolidinopyridine and the like.

反応(ii)は、無溶媒または溶媒中で行うことができる。反応(ii)で使用できる溶媒には、反応(i)で挙げた溶媒を使用することができる。   Reaction (ii) can be performed without solvent or in a solvent. As the solvent that can be used in the reaction (ii), the solvents mentioned in the reaction (i) can be used.

反応(ii)は、通常、−20〜150℃で行われ、好ましくは−20〜100℃である。   Reaction (ii) is usually performed at -20 to 150 ° C, preferably at -20 to 100 ° C.

反応(ii)は、塩基性化合物の存在下または非存在下で行うことができる。反応(ii)で使用できる塩基性化合物には、反応(i)で挙げた塩基性化合物を使用することができる。   Reaction (ii) can be performed in the presence or absence of a basic compound. As the basic compound that can be used in the reaction (ii), the basic compounds described in the reaction (i) can be used.

また、下記式(Eq.2)のように、予め化合物Bおよびカルボニル化試薬を反応させた後に、化合物Aを反応させてもよい。この場合、各工程は式(Eq.1)のときと同様の方法により、行うことができる。
[式中、Rはカルボニル化試薬の残基を意味する。]
Further, as shown in the following formula (Eq.2), the compound A may be reacted after the compound B and the carbonylating reagent are reacted in advance. In this case, each step can be performed in the same manner as in the case of the formula (Eq. 1).
[Wherein, R represents a residue of a carbonylation reagent. ]

本発明に用いる化合物Bは、保護された化合物Bであってもよい。保護された化合物Bは、キノリノンの1位が保護基で置換されているものを用いることができる。このような保護基としては、例えば、メトキシメチル基、ベンジル基等のアルキル基;トリエチルシリル基、トリフェニルシリル基等の置換シリル基、アセチル基、トリフルオロアセチル基等の置換アシル基、tert−ブトキシカルボニル基等のアルコキシカルボニル基などが挙げられる。   The compound B used in the present invention may be a protected compound B. As the protected compound B, those in which the 1-position of quinolinone is substituted with a protecting group can be used. Examples of such a protecting group include an alkyl group such as a methoxymethyl group and a benzyl group; a substituted silyl group such as a triethylsilyl group and a triphenylsilyl group; a substituted acyl group such as an acetyl group and a trifluoroacetyl group; And an alkoxycarbonyl group such as a butoxycarbonyl group.

また、保護された化合物Bとして、2位が置換された6−(3−アミノプロポキシ)−キノリンを用いることもできる。2位が置換された6−(3−アミノプロポキシ)−キノリンの置換基は、例えば、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、メトキシメトキシ基等のアルコキシ基;ベンジルオキシ基等のアリールアルキルオキシ基;アセトキシ基、ピバロイルオキシ基等のアシルオキシ基;トリエチルシリルオキシ基等のシリルオキシ基などが挙げられる。   Further, 6- (3-aminopropoxy) -quinoline substituted at the 2-position can be used as the protected compound B. Examples of the substituent of 6- (3-aminopropoxy) -quinoline substituted at the 2-position include a halogen atom such as a fluorine atom, a chlorine atom and a bromine atom; an alkoxy group such as a methoxy group and a methoxymethoxy group; a benzyloxy group And the like; an aryloxy group such as an acetoxy group and a pivaloyloxy group; a silyloxy group such as a triethylsilyloxy group.

保護された化合物Bを反応に用いた場合、反応後に公知の方法によって脱保護し、(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンへと変換することもできる。このような脱保護の条件としては、プロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)、John Wiley and Sons刊(1980)に記載の方法を使用することができ、例えば、酸性条件、アルカリ性条件、水素添加が挙げられる。   When the protected compound B is used in the reaction, the compound is deprotected by a known method after the reaction to give (-)-6- [3- [3-cyclopropyl-3-[(1R, 2R) -2-hydroxycyclohexyl]. [Ureido] -propoxy] -2 (1H) -quinolinone. As the conditions for such deprotection, the method described in Protective Groups in Organic Synthesis, published by John Wiley and Sons (1980) can be used. For example, acidic conditions, alkaline conditions , Hydrogenation.

以下、本発明を実施例、参考例により具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described specifically with reference to Examples and Reference Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded.

合成した化合物は、テトラメチルシランを内部標準としたH−NMRおよび13C−NMRスペクトルにより、その構造式を決定した。データは、内部標準として用いたTMS(テトラメチルシラン)を0ppmとしたときの化学シフト値(δ)を記載した。また、水酸基およびアミノ基等の幅広いピークの場合は、記載していない。The structural formula of the synthesized compound was determined by 1 H-NMR and 13 C-NMR spectra using tetramethylsilane as an internal standard. The data described are the chemical shift values (δ) when TMS (tetramethylsilane) used as an internal standard is 0 ppm. In the case of a broad peak such as a hydroxyl group and an amino group, it is not described.

明細書中で用いられる「変換率」とは、下記式に基づいて算出した値である。変換率の算出方法は、具体的には、次のとおりである。まず、植物加工物の存在下、化合物(1)と化合物(2)との反応を行った際の反応液を少量採取する。次に、ガスクロマトグラフィーを用いて採取した反応液を測定し、化合物(1)および化合物(3)の各ピーク面積を得る。得られた各ピーク面積から、有効炭素数法(ECN)によって化合物(1)と化合物(3)のモル比を算出し、下記式に基づいて算出した値である。なお、有効炭素数法(ECN)とは、例えば、Gas Chromatography,Academic Press,NewYork,1962,p207および分析化学便覧改訂5版(村田誠四郎、日本分析化学会編、丸善(株))に記載の方法である。例えば、7−オキサビシクロ[4.1.0]ヘプタンの有効炭素数は、5.00であり、2−シクロプロピルアミノ−1−シクロヘキサノールの有効炭素数は、7.50である。
変換率(%)=100×化合物(3)のモル数/(化合物(1)のモル数+化合物(3)のモル数)
The “conversion rate” used in the specification is a value calculated based on the following equation. The method of calculating the conversion rate is specifically as follows. First, a small amount of a reaction solution obtained when the reaction between the compound (1) and the compound (2) is performed in the presence of a plant product is collected. Next, the collected reaction solution is measured using gas chromatography to obtain peak areas of the compound (1) and the compound (3). From the obtained peak areas, the molar ratio between the compound (1) and the compound (3) was calculated by the effective carbon number method (ECN), and the value was calculated based on the following formula. Note that the effective carbon number method (ECN) is described in, for example, Gas Chromatography, Academic Press, New York, 1962, p207 and Analytical Chemistry Handbook Revised 5th Edition (Murata Seishiro, edited by the Japan Society for Analytical Chemistry, Maruzen Co., Ltd.) This is the method. For example, the available carbon number of 7-oxabicyclo [4.1.0] heptane is 5.00, and the available carbon number of 2-cyclopropylamino-1-cyclohexanol is 7.50.
Conversion rate (%) = 100 × moles of compound (3) / (moles of compound (1) + moles of compound (3))

光学純度は、鏡像体過剰率(%ee)を算出して記載した。測定条件は以下のとおりである。   The optical purity was described by calculating the enantiomeric excess (% ee). The measurement conditions are as follows.

「選択率(%ee)」は、特記しない限り、ガスクロマトグラフィー(GC)を用いて測定した後、ピーク面積の比から、下記式に基づいて計算した。すなわち、選択率が負の値の場合は、「短いGC保持時間のピーク面積」の値が「長いGC保持時間のピーク面積」の値より大きかったことを示す。なお、「選択率(R,R)%ee」と記載されている場合は、(R,R)体の選択率を示す。
選択率(%ee)=100×{(保持時間が長いピークのピーク面積)−(保持時間が短いピークのピーク面積)}/{(保持時間が長いピークのピーク面積)+(保持時間が短いピークのピーク面積)}
Unless otherwise specified, “selectivity (% ee)” was measured using gas chromatography (GC), and then calculated from the ratio of peak areas based on the following formula. That is, when the selectivity is a negative value, it indicates that the value of “peak area of short GC holding time” is larger than the value of “peak area of long GC holding time”. In addition, when "selectivity (R, R)% ee" is described, it indicates the selectivity of the (R, R) form.
Selectivity (% ee) = 100 × {(peak area of peak with long retention time) − (peak area of peak with short retention time)} / {(peak area of peak with long retention time) + (short retention time) Peak area of peak)}

分析条件
(1)ガスクロマトグラフィー法
得られた化合物の分析条件は、表1に記載の条件で測定した。なお、全ての分析条件に共通する事項は、下記共通条件に記載のとおりである。
共通条件
キャリアガス:ヘリウム
検出器:水素炎イオン化検出器
圧力:94kPa
気化室温度:220℃
検出器温度:300℃
スプリット比: 1:150
注入量:0.5μL
サンプル前処理:試料約1mgをジクロロメタンに溶解し、塩化トリメチルシランとトリエチルアミンを加え撹拌し、不溶物をろ過した。
カラム:
BETADEX 120(長さ:30m、内径:0.25μm、Supelco社製)
CP−CHIRASIL−DEX CB(長さ:25m、内径:0.25mm、膜厚:0.25μm、VARIAN社製)
Analysis conditions (1) Gas chromatography method The analysis conditions of the obtained compound were measured under the conditions shown in Table 1. Note that items common to all analysis conditions are as described in the following common conditions.
Common conditions Carrier gas: Helium detector: Flame ionization detector pressure: 94 kPa
Evaporation chamber temperature: 220 ° C
Detector temperature: 300 ° C
Split ratio: 1: 150
Injection volume: 0.5 μL
Sample pretreatment: About 1 mg of a sample was dissolved in dichloromethane, trimethylsilane chloride and triethylamine were added, the mixture was stirred, and insolubles were filtered.
column:
BETAdex 120 (length: 30 m, inner diameter: 0.25 μm, manufactured by Supelco)
CP-CHIRASIL-DEX CB (length: 25 m, inner diameter: 0.25 mm, film thickness: 0.25 μm, manufactured by VARIAN)

(2)液体クロマトグラフィー法
得られた化合物の分析条件は、表2に記載の条件で測定した。なお、全ての分析条件に共通する事項は、下記共通条件に記載のとおりである。
共通条件
注入量:5μL
検出器:紫外吸光検出器(波長254nm)
カラム:
CHIRALCEL OB−H(4.6×250mm、株式会社ダイセル製)
CHIRALPAK AS−RH(4.6×150mm、株式会社ダイセル製)
CHIRALCEL OD−H(4.6×250mm、株式会社ダイセル製)
(2) Liquid chromatography method The analysis conditions of the obtained compound were measured under the conditions shown in Table 2. Note that items common to all analysis conditions are as described in the following common conditions.
Common condition injection volume: 5 μL
Detector: UV absorption detector (wavelength 254 nm)
column:
CHIRALCEL OB-H (4.6 x 250 mm, manufactured by Daicel Corporation)
CHIRALPAK AS-RH (4.6 x 150 mm, manufactured by Daicel Corporation)
CHIRALCEL OD-H (4.6 x 250 mm, manufactured by Daicel Corporation)

分析の為のラセミ体合成と分析方法は、以下の参考例に示した。   The synthesis of the racemate for the analysis and the analytical method are shown in the following Reference Examples.

参考例1 trans−2−(イソプロピルアミノ)シクロヘキサノール合成
50mLナスフラスコに7−オキサビシクロ[4.1.0]ヘプタン 1.45gとイソプロピルアミン0.87gを量りとり、メタノール8mLと水2mL、塩化リチウム0.13gを加え、50℃で48時間反応した。反応後、減圧下に濃縮し、粗体を得た。粗体は柴田科学社製ガラスチューブオーブンGTO−250RS(クーゲルロール)で減圧蒸留し、trans−2−(イソプロピルアミノ)シクロヘキサノールを1.26g得た。(外浴温度135−140℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.82−0.94(m,1H), 1.00(d,J=6.31Hz,3H), 1.06(d,J=6.31Hz,3H), 1.20−1.31(m,3H), 1.69−1.73(m,2H), 2.06−2.10(m,2H), 2.18−2.26(m,1H), 2.96(sep,J=6.31Hz,1H),3.09(m,1H)
13C−NMR(75.45MHz,CDCl) δ 22.79(CH3), 24.28(CH2), 24.73(CH3), 25.36(CH2), 31.29(CH2), 32.98(CH2), 45.05(CH), 60.64(CH), 73.87(CH)
分析条件A 保持時間 12.9分、13.2分
Reference Example 1 Synthesis of trans-2- (isopropylamino) cyclohexanol 1.45 g of 7-oxabicyclo [4.1.0] heptane and 0.87 g of isopropylamine were weighed into a 50 mL eggplant flask, and 8 mL of methanol, 2 mL of water, and chloride 0.13 g of lithium was added and reacted at 50 ° C. for 48 hours. After the reaction, the mixture was concentrated under reduced pressure to obtain a crude product. The crude product was distilled under reduced pressure using a glass tube oven GTO-250RS (Kugel Roll) manufactured by Shibata Kagaku KK to obtain 1.26 g of trans-2- (isopropylamino) cyclohexanol. (External bath temperature 135-140 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.82-0.94 (m, 1H), 1.00 (d, J = 6.31 Hz, 3H), 1.06 (d, J = 6) .31Hz, 3H), 1.20-1.31 (m, 3H), 1.69-1.73 (m, 2H), 2.06-1.10 (m, 2H), 2.18-2 .26 (m, 1H), 2.96 (sep, J = 6.31 Hz, 1H), 3.09 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 22.79 (CH3), 24.28 (CH2), 24.73 (CH3), 25.36 (CH2), 31.29 (CH2), 32. 98 (CH2), 45.05 (CH), 60.64 (CH), 73.87 (CH)
Analysis condition A retention time 12.9 minutes, 13.2 minutes

参考例2 trans−2−(シクロプロピルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、シクロプロピルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.19−0.55(m、4H),0.94−1.07(m,1H),1.18−1.30(m,3H),1.71−1.76(m,2H),2.00−2.06(m,1H),2.19−2.36(m,3H),3.06−3.14(m,1H)
13C−NMR(75.45MHz,CDCl) δ 5.69(CH2),7.22(CH2),24.19(CH2),24.85(CH2),27.50(CH),30.71(CH2),33.26(CH2),63.54(CH),72.94(CH)
分析条件B 保持時間 (S,S)体:26.9分、(R,R)体:27.4分
Reference Example 2 Synthesis of trans-2- (cyclopropylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that cyclopropylamine was used instead of isopropylamine. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.19-0.55 (m, 4H), 0.94-1.07 (m, 1H), 1.18-1.30 (m, 3H) ), 1.71-1.76 (m, 2H), 2.00-2.06 (m, 1H), 2.19-2.36 (m, 3H), 3.06-3.14 (m , 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 5.69 (CH2), 7.22 (CH2), 24.19 (CH2), 24.85 (CH2), 27.50 (CH), 30. 71 (CH2), 33.26 (CH2), 63.54 (CH), 72.94 (CH)
Analysis condition B Retention time (S, S) form: 26.9 minutes, (R, R) form: 27.4 minutes

参考例3 trans−2−(プロピルアミノ)シクロヘキサンノール合成
イソプロピルアミンに代えて、プロピルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度115−120℃、圧力0.2mmHg)
H−NMR(300.4MHz,CDCl) δ 0.90−0.99(m,4H),1.21−1.29(m,3H),1.42−1.55(m,2H),1.71−1.73(m,2H),2.02−2.22(m,3H),2.39−2.47(m,1H),2.70−2.79(m,1H),3.10−3.18(m,1H)
13C−NMR(75.45MHz,CDCl) δ 11.69(CH3),23.60(CH2),24.39(CH2),25.03(CH2),30.43(CH2),33.52(CH2),48.54(CH2),63.47(CH), 73.46(CH)
分析条件B 保持時間 20.0分、20.3分
Reference Example 3 Synthesis of trans-2- (propylamino) cyclohexanol All operations were the same as in Reference Example 1, except that propylamine was used instead of isopropylamine. (External bath temperature 115-120 ° C, pressure 0.2mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.90-0.99 (m, 4H), 1.21-1.29 (m, 3H), 1.42-1.55 (m, 2H) ), 1.71-1.73 (m, 2H), 2.02-2.22 (m, 3H), 2.39-2.47 (m, 1H), 2.70-2.79 (m , 1H), 3.10-3.18 (m, 1H).
13 C-NMR (75.45 MHz, CDCl 3 ) δ 11.69 (CH3), 23.60 (CH2), 24.39 (CH2), 25.03 (CH2), 30.43 (CH2), 33. 52 (CH2), 48.54 (CH2), 63.47 (CH), 73.46 (CH)
Analysis condition B retention time 20.0 minutes, 20.3 minutes

参考例4 trans−2−(3−ペンチルアミノ)シクロヘキサノール合成
イソプロピルアミンに替えて、3−アミノペンタンを用いる他は全て参考例1と同様に操作した。(外浴温度150−155℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.83−0.94(m,7H),1.20−1.56(m,7H),1.69−1.73(m,2H),2.05−2.09(m,2H),2.14−2.22(m,1H),2.44−2.52(m,1H),3.02−3.10(m,1H)
13C−NMR(75.45MHz,CDCl) δ 8.99(CH3),10.26(CH3),24.28(CH2),25.40(CH2),26.19(CH2),26.89(CH2),31.41(CH2),32.89(CH2),56.76(CH),61.14(CH),74.12(CH)
分析条件B 保持時間 30.3分、31.3分
Reference Example 4 synthesis of trans-2- (3-pentylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1, except that 3-aminopentane was used instead of isopropylamine. (Outer bath temperature 150-155 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.83-0.94 (m, 7H), 1.20-1.56 (m, 7H), 1.69-1.73 (m, 2H) ), 2.05 to 2.09 (m, 2H), 2.14 to 2.22 (m, 1H), 2.44 to 2.52 (m, 1H), 3.02 to 3.10 (m , 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 8.99 (CH3), 10.26 (CH3), 24.28 (CH2), 25.40 (CH2), 26.19 (CH2), 26. 89 (CH2), 31.41 (CH2), 32.89 (CH2), 56.76 (CH), 61.14 (CH), 74.12 (CH)
Analysis condition B retention time 30.3 minutes, 31.3 minutes

参考例5 trans−2−(tert−ブチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、tert−ブチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度100−105℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.90−1.19(m,1H),1.13(s,9H),1.24−1.32(m,3H),1.67−1.71(m,2H),1.98−2.07(m,2H),2.19−2.27(m,1H),2.89−2.97(m,1H)
13C−NMR(75.45MHz,CDCl) δ 24.47(CH2),25.88(CH2),30.63(CH3),32.64(CH2),34.88(CH2),50.68(C),58.13(CH),74.31(CH)
分析条件B 保持時間 15.6分、16.0分
Reference Example 5 Synthesis of trans-2- (tert-butylamino) cyclohexanol The same operation as in Reference Example 1 was carried out except that tert-butylamine was used instead of isopropylamine. (Outer bath temperature 100-105 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.90-1.19 (m, 1H), 1.13 (s, 9H), 1.24-1.32 (m, 3H), 1. 67-1.71 (m, 2H), 1.98-2.07 (m, 2H), 2.19-2.27 (m, 1H), 2.89-2.97 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 24.47 (CH2), 25.88 (CH2), 30.63 (CH3), 32.64 (CH2), 34.88 (CH2), 50. 68 (C), 58.13 (CH), 74.31 (CH)
Analysis condition B retention time 15.6 minutes, 16.0 minutes

参考例6 trans−2−(アリルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、アリルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.92−1.04(m,1H),1.19−1.31(m,3H),1.70−1.72(m,2H), 1.97−2.07(m,2H),2.24−2.32(m,1H),3.11−3.26(m,2H),3.36−3.42(m,1H),5.06−5.22(m,2H),5.84−5.97(m,1H)
13C−NMR(75.45MHz,CDCl) δ 24.28(CH2),24.71(CH2),30.07(CH2),33.62(CH2),49.17(CH2),62.65(CH),73.27(CH),115.61(CH2),136.85(CH)
分析条件A 保持時間 34.8分、35.2分
Reference Example 6 Synthesis of trans-2- (allylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1, except that allylamine was used instead of isopropylamine. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.92-1.04 (m, 1H), 1.19-1.31 (m, 3H), 1.70-1.72 (m, 2H) ), 1.97-2.07 (m, 2H), 2.24-2.32 (m, 1H), 3.11-3.36 (m, 2H), 3.36-3.42 (m , 1H), 5.06-5.22 (m, 2H), 5.84-5.97 (m, 1H).
13 C-NMR (75.45 MHz, CDCl 3 ) δ 24.28 (CH2), 24.71 (CH2), 30.07 (CH2), 33.62 (CH2), 49.17 (CH2), 62. 65 (CH), 73.27 (CH), 115.61 (CH2), 136.85 (CH)
Analysis condition A Retention time 34.8 minutes, 35.2 minutes

参考例7 trans−2−(プロパルギルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、プロパルギルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.92−1.05(m,1H),1.21−1.38(m,3H),1.68−1.73(m,2H),1.96−2.08(m,2H),2.24(t,J=2.40Hz,1H),2.40−2.48(m,1H),3.21−3.29(m,1H),3.47(dq,J1=16.82Hz,J2=2.40Hz,2H)
13C−NMR(75.45MHz,CDCl) δ 24.31(CH2),24.56(CH2),29.79(CH2),33.80(CH2),35.35(CH2),62.01(CH),71.30(C),73.61(CH),82.22(CH)
分析条件C 保持時間 47.1分、47.6分
Reference Example 7 Synthesis of trans-2- (propargylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1, except that propargylamine was used instead of isopropylamine. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.92-1.05 (m, 1H), 1.21-1.38 (m, 3H), 1.68-1.73 (m, 2H) ), 1.96-2.08 (m, 2H), 2.24 (t, J = 2.40 Hz, 1H), 2.40-2.48 (m, 1H), 3.21-3.32. (M, 1H), 3.47 (dq, J1 = 16.82 Hz, J2 = 2.40 Hz, 2H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 24.31 (CH2), 24.56 (CH2), 29.79 (CH2), 33.80 (CH2), 35.35 (CH2), 62. 01 (CH), 71.30 (C), 73.61 (CH), 82.22 (CH)
Analysis condition C Retention time 47.1 minutes, 47.6 minutes

参考例8 trans−2−(シクロペンチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、シクロペンチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度170−175℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.87−0.95(m,1H),1.20−1.38(m,5H),1.50−1.87(m,8H),2.01−2.22(m,3H),3.01−3.09(m,1H),3.19−3.27(m,1H)
13C−NMR(75.45MHz,CDCl3)δ 23.59(CH2),23.79(CH2),24.31(CH2),25.27(CH2),30.91(CH2),33.08(CH2),33.12(CH2),34.59(CH2),56.14(CH),61.86(CH),73.75(CH)
分析条件D 保持時間 24.7分、25.1分
Reference Example 8 Synthesis of trans-2- (cyclopentylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that cyclopentylamine was used instead of isopropylamine. (External bath temperature 170-175 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.87-0.95 (m, 1H), 1.20-1.38 (m, 5H), 1.50-1.87 (m, 8H) ), 2.01-2.22 (m, 3H), 3.01-3.09 (m, 1H), 3.19-3.27 (m, 1H).
< 13 > C-NMR (75.45 MHz, CDCl3) [delta] 23.59 (CH2), 23.79 (CH2), 24.31 (CH2), 25.27 (CH2), 30.91 (CH2), 33.08 (CH2), 33.12 (CH2), 34.59 (CH2), 56.14 (CH), 61.86 (CH), 73.75 (CH)
Analysis condition D retention time 24.7 minutes, 25.1 minutes

参考例9 trans−2−(シクロヘキシルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、シクロヘキシルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度170−175℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.83−1.04(m,2H),1.08−1.36(m,7H),1.62−1.73(m,6H),1.90(d,J=12.32Hz,1H),1.97−2.08(m,2H),2.21−2.30(m,1H),2.51−2.60(m,1H),3.01−3.09(m,1H)
13C−NMR(75.45MHz,CDCl3) δ 24.29(CH2),24.56(CH2),25.06(CH2),25.29(CH2),26.00(CH2),31.47(CH2),33.04(CH2),33.50(CH2),35.19(CH2),53.18(CH),60.26(CH),73.77(CH)
分析条件E 保持時間 31.4分、31.9分
Reference Example 9 Synthesis of trans-2- (cyclohexylamino) cyclohexanol The same operation as in Reference Example 1 was performed except that cyclohexylamine was used instead of isopropylamine. (External bath temperature 170-175 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.83-1.04 (m, 2H), 1.08-1.36 (m, 7H), 1.62-1.73 (m, 6H) ), 1.90 (d, J = 12.32 Hz, 1H), 1.97-2.08 (m, 2H), 2.21-2.30 (m, 1H), 2.51-2.60. (M, 1H), 3.01-3.09 (m, 1H)
< 13 > C-NMR (75.45 MHz, CDCl3) [delta] 24.29 (CH2), 24.56 (CH2), 25.06 (CH2), 25.29 (CH2), 26.00 (CH2), 31.47. (CH2), 33.04 (CH2), 33.50 (CH2), 35.19 (CH2), 53.18 (CH), 60.26 (CH), 73.77 (CH)
Analysis condition E Retention time 31.4 minutes, 31.9 minutes

参考例10 trans−2−(ジメチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、ジメチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度70−75℃、圧力0.2mmHg)
H−NMR(300.4MHz,CDCl) δ 1.03−1.31(m,4H),1.69−1.78(m,3H),2.07−2.33(m,8H),3.27−3.35(m,1H)
13C−NMR(75.45MHz,CDCl) δ 20.16(CH2),23.97(CH2),25.14(CH2),33.05(CH2),39.98(CH3),69.11(CH),69.36(CH)
分析条件F 保持時間 46.5分、47.1分
Reference Example 10 Synthesis of trans-2- (dimethylamino) cyclohexanol The same operation as in Reference Example 1 was performed except that dimethylamine was used instead of isopropylamine. (Outer bath temperature 70-75 ° C, pressure 0.2mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.03-1.31 (m, 4H), 1.69-1.78 (m, 3H), 2.07-2.33 (m, 8H) ), 3.27-3.35 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.16 (CH2), 23.97 (CH2), 25.14 (CH2), 33.05 (CH2), 39.98 (CH3), 69. 11 (CH), 69.36 (CH)
Analysis condition F retention time 46.5 minutes, 47.1 minutes

参考例11 trans−2−(ジエチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、ジエチルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度80−85℃、圧力0.2mmHg)
H−NMR(300.4MHz,CDCl) δ 1.04(t,J=6.91Hz,6H),1.13−1.31(m,4H),1.69−1.77(m,3H),2.10−2.14(m,1H),2.26−2.42(m,3H),2.57−2.69(m,2H),3.26−3.34(m,1H)
13C−NMR(75.45MHz,CDCl) δ 14.58(CH3),22.69(CH2),24.04(CH2),25.61(CH2),33.07(CH2),43.08(CH2),66.05(CH),68.89(CH)
分析条件G 保持時間 29.7分、30.6分
Reference Example 11 Synthesis of trans-2- (diethylamino) cyclohexanol The same operation as in Reference Example 1 was performed except that diethylamine was used instead of isopropylamine. (Outer bath temperature 80-85 ° C, pressure 0.2mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.04 (t, J = 6.91 Hz, 6H), 1.13-1.31 (m, 4H), 1.69-1.77 (m , 3H), 2.10-2.14 (m, 1H), 2.26-2.42 (m, 3H), 2.57-2.69 (m, 2H), 3.26-3.34. (M, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 14.58 (CH3), 22.69 (CH2), 24.04 (CH2), 25.61 (CH2), 33.07 (CH2), 43. 08 (CH2), 66.05 (CH), 68.89 (CH)
Analysis condition G Retention time 29.7 minutes, 30.6 minutes

参考例12 trans−2−(1−ピロリジニル)シクロヘキサノール合成
イソプロピルアミンに代えて、ピロリジンを用いる他は全て参考例1と同様に操作した。(外浴温度100−105℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.17−1.27(m,4H),1.69−1.78(m,7H),2.05−2.15(m,1H),2.42−2.59(m,3H),2.64−2.71(m,2H),3.29−3.37(m,1H)
13C−NMR(75.45MHz,CDCl) δ 20.99(CH2),23.43(CH2),24.03(CH2),25.16(CH2),33.13(CH2),47.03(CH2),64.78(CH),70.51(CH)
分析条件H 保持時間 23.0分、23.2分
Reference Example 12 Synthesis of trans-2- (1-pyrrolidinyl) cyclohexanol The same operation as in Reference Example 1 was performed except that pyrrolidine was used instead of isopropylamine. (Outer bath temperature 100-105 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.17-1.27 (m, 4H), 1.69-1.78 (m, 7H), 2.05-2.15 (m, 1H) ), 2.42-2.59 (m, 3H), 2.64-2.71 (m, 2H), 3.29-3.37 (m, 1H).
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.99 (CH2), 23.43 (CH2), 24.03 (CH2), 25.16 (CH2), 33.13 (CH2), 47. 03 (CH2), 64.78 (CH), 70.51 (CH)
Analysis condition H retention time 23.0 minutes, 23.2 minutes

参考例13 trans−2−(1−ピペリジニル)シクロヘキサノール合成
イソプロピルアミンに代えて、ピペリジンを用いる他は全て参考例1と同様に操作した。(外浴温度105−115℃、圧力0.2mmHg)
H−NMR(300.4MHz,CDCl) δ 1.12−1.26(m,4H),1.43−1.79(m,9H),2.10−2.17(m,2H),2.31−2.34(m,2H),2.63−2.70(m,2H),3.31−3.39(m,2H)
13C−NMR(75.45MHz,CDCl3) δ 22.06(CH2),24.04(CH2),24.79(CH2),25.56(CH2),26.67(CH2),33.19(CH2),49.63(CH2),68.45(CH),70.93(CH)
分析条件H 保持時間 35.6分、35.8分
Reference Example 13 Synthesis of trans-2- (1-piperidinyl) cyclohexanol The same operation as in Reference Example 1 was performed except that piperidine was used instead of isopropylamine. (Outer bath temperature 105-115 ° C, pressure 0.2mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.12 to 1.26 (m, 4H), 1.43-1.79 (m, 9H), 2.10-2.17 (m, 2H) ), 2.31-2.34 (m, 2H), 2.63-2.70 (m, 2H), 3.31-3.39 (m, 2H).
13 C-NMR (75.45 MHz, CDCl 3) δ 22.06 (CH 2), 24.04 (CH 2), 24.79 (CH 2), 25.56 (CH 2), 26.67 (CH 2), 33.19 (CH2), 49.63 (CH2), 68.45 (CH), 70.93 (CH)
Analysis conditions H Retention time 35.6 minutes, 35.8 minutes

参考例14 trans−2−(フェニルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、アニリンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.98−1.11(m,1H),1.24−1.47(m,3H),1.70−1.79(m,2H),2.10−2.14(m,2H),3.10−3.18(m,1H),3.31−3.39(m,1H),6.70−6.77(m,3H),7.15−7.25(m,2H)
13C−NMR(75.45MHz,CDCl3) δ 24.15(CH2),24.82(CH2),31.42(CH2),33.09(CH2),59.89(CH),74.25(CH),114.17(CH),118.07(CH),129.18(CH),147.73(C)
分析条件α 保持時間 27.5分、29.7分
Reference Example 14 Synthesis of trans-2- (phenylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that aniline was used instead of isopropylamine. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.98-1.11 (m, 1H), 1.25-1.47 (m, 3H), 1.70-1.79 (m, 2H) ), 2.10-2.14 (m, 2H), 3.10-3.18 (m, 1H), 3.31-3.39 (m, 1H), 6.70-6.77 (m , 3H), 7.15-7.25 (m, 2H)
< 13 > C-NMR (75.45 MHz, CDCl3) [delta] 24.15 (CH2), 24.82 (CH2), 31.42 (CH2), 33.09 (CH2), 59.89 (CH), 74.25. (CH), 114.17 (CH), 118.07 (CH), 129.18 (CH), 147.73 (C)
Analysis condition α Retention time 27.5 minutes, 29.7 minutes

参考例15 trans−2−(2−フェニルエチルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、2−フェニルエチルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.84−0.96(m,1H),1.18−1.32(m,3H),1.67−1.71(m,2H),1.99−2.07(m,2H),2.16−2.25(m,1H),2.70−2.86(m,3H),3.00−3.15(m,2H),7.18−7.32(m,5H)
13C−NMR(75.45MHz,CDCl) δ 24.29(CH2),25.15(CH2),30.55(CH2),33.25(CH2),37.01(CH2),47.89(CH2),63.55(CH),73.62(CH),126.06(CH),128.36(CH),128.63(CH),140.06(C)
分析条件α 保持時間 25.0分、35.0分
Reference Example 15 Synthesis of trans-2- (2-phenylethylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1, except that 2-phenylethylamine was used instead of isopropylamine. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.84-0.96 (m, 1H), 1.18-1.32 (m, 3H), 1.67-1.71 (m, 2H) ), 1.99-2.07 (m, 2H), 2.16-2.25 (m, 1H), 2.70-2.86 (m, 3H), 3.00-3.15 (m , 2H), 7.18-7.32 (m, 5H).
13 C-NMR (75.45 MHz, CDCl 3 ) δ 24.29 (CH2), 25.15 (CH2), 30.55 (CH2), 33.25 (CH2), 37.01 (CH2), 47. 89 (CH2), 63.55 (CH), 73.62 (CH), 126.06 (CH), 128.36 (CH), 128.63 (CH), 140.06 (C)
Analysis condition α Retention time 25.0 minutes, 35.0 minutes

参考例16 trans−2−(ベンジルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、ベンジルアミンを用いる他は全て参考例1と同様に操作した。(外浴温度175−180℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.91−1.05(m,1H),1.16−1.35(m,3H),1.71−1.74(m,2H),2.01−2.07(m,1H),2.15−2.21(m,1H),2.25−2.33(m,1H),3.16−3.24(m,1H),3.69(d,J=12.92Hz,1H),3.96(d,J=12.92Hz,1H),7.22−7.36(m,5H)
13C−NMR(75.45MHz,CDCl) δ 24.25(CH2),24.85(CH2),30.20(CH2),33.40(CH2),50.68(CH2),62.89(CH),73.41(CH),126.81(CH),127.96(CH),128.25(CH),140.32(C)
分析条件α 保持時間 16.9分、26.9分
Reference Example 16 Synthesis of trans-2- (benzylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1, except that benzylamine was used instead of isopropylamine. (Outer bath temperature 175-180 ° C, pressure 0.1mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.91 to 1.05 (m, 1H), 1.16-1.35 (m, 3H), 1.71-1.74 (m, 2H) ), 2.01 to 2.07 (m, 1H), 2.15 to 2.21 (m, 1H), 2.25-2.33 (m, 1H), 3.16 to 3.24 (m , 1H), 3.69 (d, J = 12.92 Hz, 1H), 3.96 (d, J = 12.92 Hz, 1H), 7.22-7.36 (m, 5H).
13 C-NMR (75.45 MHz, CDCl 3 ) δ 24.25 (CH2), 24.85 (CH2), 30.20 (CH2), 33.40 (CH2), 50.68 (CH2), 62. 89 (CH), 73.41 (CH), 126.81 (CH), 127.96 (CH), 128.25 (CH), 140.32 (C)
Analysis condition α Retention time 16.9 minutes, 26.9 minutes

参考例17 trans−2−(3−エトキシプロピルアミノ)シクロヘキサノール合成
イソプロピルアミンに代えて、3−エトキシプロピルアミンを用いる他は全て参考例1と同様に操作した。得られた粗体は、そのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.91−1.03(m,1H),1.15−1.30(m,6H),1.70−1.79(m,4H),1.99−2.09(m,2H),2.17−2.25(m,1H),2.52−2.61(m,1H),2.82−2.91(m,1H),3.14−3.22(m,1H),3.43−3.51(m,4H)
13C−NMR(75.45MHz,CDCl) δ 14.98(CH3),24.26(CH2),24.86(CH2),30.21(CH2),30.33(CH2),33.42(CH2),43.90(CH2),63.35(CH),65.98(CH2),68.80(CH2),73.27(CH)
分析条件AA 保持時間 25.6分、25.8分
Reference Example 17 Synthesis of trans-2- (3-ethoxypropylamino) cyclohexanol All operations were performed in the same manner as in Reference Example 1 except that 3-ethoxypropylamine was used instead of isopropylamine. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.91 to 1.03 (m, 1H), 1.15-1.30 (m, 6H), 1.70 to 1.79 (m, 4H ), 1.99-2.09 (m, 2H), 2.17-2.25 (m, 1H), 2.52-2.61 (m, 1H), 2.82-2.91 (m , 1H), 3.14-3.22 (m, 1H), 3.43-3.51 (m, 4H).
13 C-NMR (75.45 MHz, CDCl 3 ) δ 14.98 (CH3), 24.26 (CH2), 24.86 (CH2), 30.21 (CH2), 30.33 (CH2), 33. 42 (CH2), 43.90 (CH2), 63.35 (CH), 65.98 (CH2), 68.80 (CH2), 73.27 (CH)
Analysis conditions AA Retention time 25.6 minutes, 25.8 minutes

参考例18 trans−2−(イソプロピルアミノ)シクロペンタノール合成
エポキシドとして6−オキサビシクロ[3.1.0]ヘキサンを用いる他は参考例1同様に操作した。(外浴温度95−100℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.05−1.10(m、6H),1.21−1.31(m、1H),1.48−1.78(m、3H),1.88−2.08(m、2H),2.67−2.95(m、2H),3.78−3.85(m、1H)
13C−NMR(75.45MHz,CDCl) δ 20.03(CH2),22.44(CH3),23.85(CH3),30.41(CH2),32.18(CH2),47.03(CH),63.90(CH),77.78(CH)
分析条件I 保持時間 14.3分、14.7分
Reference Example 18 Synthesis of trans-2- (isopropylamino) cyclopentanol The same operation as in Reference Example 1 was performed except that 6-oxabicyclo [3.1.0] hexane was used as the epoxide. (Outer bath temperature 95-100 ° C, pressure 0.1mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.05-1.10 (m, 6H), 1.21-1.31 (m, 1H), 1.48-1.78 (m, 3H) ), 1.88-2.08 (m, 2H), 2.67-2.95 (m, 2H), 3.78-3.85 (m, 1H).
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.03 (CH2), 22.44 (CH3), 23.85 (CH3), 30.41 (CH2), 32.18 (CH2), 47. 03 (CH), 63.90 (CH), 77.78 (CH)
Analysis conditions I Retention time 14.3 minutes, 14.7 minutes

参考例19 trans−2−(シクロプロピルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、シクロプロピルアミン用いる他は全て参考例18と同様に操作した。(外浴温度105−110℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.31−0.52(m,4H),1.27−1.40(m,1H),1.48−1.79(m,3H),1.88−1.99(m,1H),2.03−2.19(m,2H),2.90−2.97(m,1H),3.85(q,J=6.31Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 5.89(CH2),6.46(CH2),20.08(CH2),29.30(CH),30.13(CH2),32.12(CH2),66.95(CH),77.21(CH)
分析条件J 保持時間 15.5分、15.7分
Reference Example 19 Synthesis of trans-2- (cyclopropylamino) cyclopentanol The same operation as in Reference Example 18 was carried out except that cyclopropylamine was used instead of isopropylamine. (Outer bath temperature 105-110 ° C, pressure 0.1mmHg)
1 H-NMR (300.4MHz, CDCl 3) δ 0.31-0.52 (m, 4H), 1.27-1.40 (m, 1H), 1.48-1.79 (m, 3H ), 1.88-1.99 (m, 1H), 2.03-1.19 (m, 2H), 2.90-2.97 (m, 1H), 3.85 (q, J = 6). .31Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 5.89 (CH2), 6.46 (CH2), 20.08 (CH2), 29.30 (CH), 30.13 (CH2), 32. 12 (CH2), 66.95 (CH), 77.21 (CH)
Analysis condition J Retention time 15.5 minutes, 15.7 minutes

参考例20 trans−2−(プロピルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、プロピルアミン用いる他は全て参考例18と同様に操作した。(外浴温度100−105℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.71(t,J=7.51Hz,3H),1.22−1.35(m,1H),1.45−1.78(m,5H),1.88−2.11(m,2H),2.50−2.66(m,2H),2.78−2.86(m,1H),3.85(q,J=6.61Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 11.66(CH3),20.15(CH2),23.22(CH2),29.93(CH2),32.53(CH2),50.41(CH2),66.57(CH),77.43(CH)
分析条件K 保持時間 17.3分、17.6分
Reference Example 20 Synthesis of trans-2- (propylamino) cyclopentanol The same operation was performed as in Reference Example 18, except that propylamine was used instead of isopropylamine. (Outer bath temperature 100-105 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.71 (t, J = 7.51 Hz, 3H), 1.22-1.35 (m, 1H), 1.45-1.78 (m , 5H), 1.88-2.11 (m, 2H), 2.50-2.66 (m, 2H), 2.78-2.86 (m, 1H), 3.85 (q, J = 6.61Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 11.66 (CH3), 20.15 (CH2), 23.22 (CH2), 29.93 (CH2), 32.53 (CH2), 50. 41 (CH2), 66.57 (CH), 77.43 (CH)
Analysis condition K retention time 17.3 minutes, 17.6 minutes

参考例21 trans−2−(アリルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、アリルアミン用いる他は全て参考例18と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.23−1.36(m,1H),1.48−1.78(m,3H),1.89−2.06(m,2H),2.82−2.90(m,1H),3.18−3.34(m,4H),3.83−3.89(m,1H),5.10(d,J=10.21Hz,1H),5.18(dd,J1=17.12Hz,J2=1.50Hz,1H),5.85−5.98(m,1H)
13C−NMR(75.45MHz,CDCl) δ 20.02(CH2),29.67(CH2),32.38(CH2),50.87(CH2),65.81(CH),77.31(CH),115.97(CH2),136.31(CH)
分析条件L 保持時間 32.9分、34.0分
Reference Example 21 Synthesis of trans-2- (allylamino) cyclopentanol All operations were performed in the same manner as in Reference Example 18 except that allylamine was used instead of isopropylamine. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.23-1.36 (m, 1H), 1.48-1.78 (m, 3H), 1.89-2.06 (m, 2H) ), 2.82-2.90 (m, 1H), 3.18-3.34 (m, 4H), 3.83-3.89 (m, 1H), 5.10 (d, J = 10). .21 Hz, 1H), 5.18 (dd, J1 = 17.12 Hz, J2 = 1.50 Hz, 1H), 5.85-5.98 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.02 (CH2), 29.67 (CH2), 32.38 (CH2), 50.87 (CH2), 65.81 (CH), 77. 31 (CH), 115.97 (CH2), 136.31 (CH)
Analysis conditions L Retention time 32.9 minutes, 34.0 minutes

参考例22 trans−2−(プロパルギルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、プロパルギルアミン用いる他は全て参考例18と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.25−1.37(m,1H),1.51−1.81(m,3H),1.89−2.07(m,2H),2.27−2.29(m,1H),3.01−3.08(m,1H),3.35−3.54(m,2H),3.89(q,J=6.31Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 20.12(CH2),29.39(CH2),32.48(CH2),36.57(CH2),64.97(CH),71.50(C),77.53(CH),81.89(CH)
分析条件M 保持時間 40.1分、41.9分
Reference Example 22 Synthesis of trans-2- (propargylamino) cyclopentanol The same operation was performed as in Reference Example 18, except that propargylamine was used instead of isopropylamine. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.25-1.37 (m, 1H), 1.51-1.81 (m, 3H), 1.89-2.07 (m, 2H) ), 2.27-1.29 (m, 1H), 3.01-3.08 (m, 1H), 3.35-3.54 (m, 2H), 3.89 (q, J = 6). .31Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.12 (CH2), 29.39 (CH2), 32.48 (CH2), 36.57 (CH2), 64.97 (CH), 71. 50 (C), 77.53 (CH), 81.89 (CH)
Analysis condition M Retention time 40.1 minutes, 41.9 minutes

参考例23 trans−2−(シクロペンチルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、シクロペンチルアミン用いる他は全て参考例18と同様に操作した。(外浴温度165−170℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.22−1.36(m,3H),1.47−1.77(m,7H),1.82−2.06(m,4H),2.82−2.89(m,1H),3.11(quin,J=7.21Hz,1H),3.81(q,J=6.91Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 19.83(CH2),23.57(CH2),23.66(CH2),29.98(CH2),32.10(CH2),32.63(CH2),33.65(CH2),58.34(CH),65.01(CH),77.25(CH)
分析条件N 保持時間 24.3分、24.5分
Reference Example 23 Synthesis of trans-2- (cyclopentylamino) cyclopentanol The same operation as in Reference Example 18 was performed except that cyclopentylamine was used instead of isopropylamine. (Outer bath temperature 165-170 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.22-1.36 (m, 3H), 1.47-1.77 (m, 7H), 1.82-2.06 (m, 4H) ), 2.82-2.89 (m, 1H), 3.11 (quin, J = 7.21 Hz, 1H), 3.81 (q, J = 6.91 Hz, 1H).
13 C-NMR (75.45 MHz, CDCl 3 ) δ 19.83 (CH2), 23.57 (CH2), 23.66 (CH2), 29.98 (CH2), 32.10 (CH2), 32. 63 (CH2), 33.65 (CH2), 58.34 (CH), 65.01 (CH), 77.25 (CH)
Analysis condition N Retention time 24.3 minutes, 24.5 minutes

参考例24 trans−2−(1−ピロリジニル)シクロペンタノール合成
イソプロピルアミンに代えて、ピロリジン用いる他は全て参考例18と同様に操作した。(外浴温度125−130℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.46−1.83(m,8H),1.86−2.00(m,2H),2.41−2.48(m,1H),2.59−2.61(m,4H),4.06−4.12(m,1H)
13C−NMR(75.45MHz,CDCl) δ 21.34(CH2),22.96(CH2),29.70(CH2),34.51(CH2),52.46(CH2),73.19(CH),76.28(CH)
分析条件O 保持時間 19.9分、20.3分
Reference Example 24 Synthesis of trans-2- (1-pyrrolidinyl) cyclopentanol The same operation as in Reference Example 18 was carried out except that pyrrolidine was used instead of isopropylamine. (Outer bath temperature 125-130 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4MHz, CDCl 3) δ 1.46-1.83 (m, 8H), 1.86-2.00 (m, 2H), 2.41-2.48 (m, 1H ), 2.59-2.61 (m, 4H), 4.06-4.12 (m, 1H).
13 C-NMR (75.45 MHz, CDCl 3 ) δ 21.34 (CH2), 22.96 (CH2), 29.70 (CH2), 34.51 (CH2), 52.46 (CH2), 73. 19 (CH), 76.28 (CH)
Analysis condition O Retention time 19.9 minutes, 20.3 minutes

参考例25 trans−2−(1−ピペリジニル)シクロペンタノール合成
イソプロピルアミンに代えて、ピペリジン用いる他は全て参考例18と同様に操作した。(外浴温度125−130℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.41−1.75(m,10H),1.80−1.97(m,2H),2.48−2.56(m,5H),4.10−4.16(m,1H)
13C−NMR(75.45MHz,CDCl) δ 21.71(CH2),24.29(CH2),25.76(CH2),26.92(CH2),34.36(CH2),52.14(CH2),74.38(CH),75.17(CH)
分析条件N 保持時間 23.1分、23.4分
Reference Example 25 Synthesis of trans-2- (1-piperidinyl) cyclopentanol The same operation was performed as in Reference Example 18, except that piperidine was used instead of isopropylamine. (Outer bath temperature 125-130 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.41-1.75 (m, 10H), 1.80-1.97 (m, 2H), 2.48-2.56 (m, 5H) ), 4.10-4.16 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 21.71 (CH2), 24.29 (CH2), 25.76 (CH2), 26.92 (CH2), 34.36 (CH2), 52. 14 (CH2), 74.38 (CH), 75.17 (CH)
Analysis conditions N Retention time 23.1 minutes, 23.4 minutes

参考例26 trans−2−(フェニルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、アニリン用いる他は全て参考例18と同様に操作した。(外浴温度160−165℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.29−1.38(m,1H),1.41−2.02(m,4H),2.16−2.28(m,1H),3.52−3.58(m,1H),3.96−4.01(m,1H),6.62−6.73(m,3H),7.09−7.21(m,2H)
13C−NMR(75.45MHz,CDCl) δ 20.84(CH2),30.97(CH2),32.61(CH2),61.93(CH),77.97(CH),113.30(CH),117.42(CH),129.17(CH),147.64(C)
分析条件P 保持時間 51.3分、51.6分
Reference Example 26 Synthesis of trans-2- (phenylamino) cyclopentanol The same operation as in Reference Example 18 was carried out except that aniline was used instead of isopropylamine. (Outer bath temperature 160-165 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.29-1.38 (m, 1H), 1.41-2.02 (m, 4H), 2.16-2.28 (m, 1H) ), 3.52-3.58 (m, 1H), 3.96-4.01 (m, 1H), 6.62-6.73 (m, 3H), 7.09-7.21 (m , 2H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.84 (CH2), 30.97 (CH2), 32.61 (CH2), 61.93 (CH), 77.97 (CH), 113. 30 (CH), 117.42 (CH), 129.17 (CH), 147.64 (C)
Analysis conditions P Retention time 51.3 minutes, 51.6 minutes

参考例27 trans−2−(2−フェニルエチルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、2−フェニルエチルアミン用いる他は全て参考例18と同様に操作した。(外浴温度160−165℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.18−1.31(m,1H),1.47−1.76(m,3H),1.86−2.04(m,2H),2.72−2.96(m,5H),3.82(q,J=6.31Hz,1H),7.18−7.30(m,5H)
13C−NMR(75.45MHz,CDCl) δ 20.24(CH2),30.02(CH2),32.63(CH2),36.32(CH2),49.63(CH2),66.50(CH),77.61(CH),126.07(CH),128.36(CH),128.54(CH),139.69(C)
分析条件α 保持時間 13.6分、18.3分
Reference Example 27 Synthesis of trans-2- (2-phenylethylamino) cyclopentanol The same operation as in Reference Example 18 was performed except that 2-phenylethylamine was used instead of isopropylamine. (Outer bath temperature 160-165 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.18-1.31 (m, 1H), 1.47-1.76 (m, 3H), 1.86-2.04 (m, 2H) ), 2.72-2.96 (m, 5H), 3.82 (q, J = 6.31 Hz, 1H), 7.18-7.30 (m, 5H).
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.24 (CH2), 30.02 (CH2), 32.63 (CH2), 36.32 (CH2), 49.63 (CH2), 66. 50 (CH), 77.61 (CH), 126.07 (CH), 128.36 (CH), 128.54 (CH), 139.69 (C)
Analysis condition α Retention time 13.6 minutes, 18.3 minutes

参考例28 trans−2−(ベンジルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、ベンジルアミン用いる他は全て参考例18と同様に操作した。(外浴温度160−165℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.23−1.36(m,1H),1.43−1.57(m,1H),1.59−1.75(m,2H),1.84−2.04(m,2H),2.81−2.88(m,1H),3.66−3.85(m,3H),7.20−7.32(m,5H)
13C−NMR(75.45MHz,CDCl) δ 20.22(CH2),29.96(CH2),32.46(CH2),52.45(CH2),66.03(CH),77.69(CH),126.88(CH),128.07(CH),128.30(CH),140.04(C)
分析条件β 保持時間 33.2分、34.9分
Reference Example 28 Synthesis of trans-2- (benzylamino) cyclopentanol The same operation as in Reference Example 18 was carried out except that benzylamine was used instead of isopropylamine. (Outer bath temperature 160-165 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.23-1.36 (m, 1H), 1.43-1.57 (m, 1H), 1.59-1.75 (m, 2H) ), 1.84-2.04 (m, 2H), 2.81-2.88 (m, 1H), 3.66-3.85 (m, 3H), 7.20-7.32 (m , 5H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 20.22 (CH2), 29.96 (CH2), 32.46 (CH2), 52.45 (CH2), 66.03 (CH), 77. 69 (CH), 126.88 (CH), 128.07 (CH), 128.30 (CH), 140.04 (C)
Analysis condition β Retention time 33.2 minutes, 34.9 minutes

参考例29 trans−2−(3−エトキシプロピルアミノ)シクロペンタノール合成
イソプロピルアミンに代えて、3−エトキシプロピルアミン用いる他は全て参考例18と同様に操作した。得られた粗体は、そのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.19(t,J=6.91Hz,3H),1.26−1.36(m,1H),1.48−1.81(m,5H),1.89−2.07(m,2H),2.64−2.86(m,3H),3.35−3.51(m,4H),3.83−3.89(m,1H)
13C−NMR(75.45MHz,CDCl) δ 15.01(CH3),20.18(CH2),29.90(CH2),29.99(CH2),32.48(CH2),45.91(CH2),66.02(CH2),66.04(CH),68.98(CH2),77.42(CH)
分析条件γ 保持時間 23.6分、24.7分
Reference Example 29 Synthesis of trans-2- (3-ethoxypropylamino) cyclopentanol The same operation as in Reference Example 18 was carried out except that 3-ethoxypropylamine was used instead of isopropylamine. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.19 (t, J = 6.91 Hz, 3H), 1.26-1.36 (m, 1H), 1.48-1.81 (m , 5H), 1.89-2.07 (m, 2H), 2.64-2.86 (m, 3H), 3.35-3.51 (m, 4H), 3.83-3.89. (M, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 15.01 (CH3), 20.18 (CH2), 29.90 (CH2), 29.99 (CH2), 32.48 (CH2), 45. 91 (CH2), 66.02 (CH2), 66.04 (CH), 68.98 (CH2), 77.42 (CH)
Analysis condition γ Retention time 23.6 minutes, 24.7 minutes

参考例30 trans−4−(イソプロピルアミノ)−3−テトラヒドロフラン−3−オール合成
エポキシドとして3,6−ジオキサビシクロ[3.1.0]ヘキサンを用いる他は参考例1同様に操作した。(外浴温度120−125℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.08(d,J=6.31Hz,3H),1.08(d,J=6.31Hz,3H),2.86(sep,J=6.31Hz,1H),3.23−3.26(m,1H),3.55(dd,J1=9.01Hz,J2=3.91Hz,1H),3.62−3.66(m,1H),3.98(dd,J1=9.61Hz,J2=5.11Hz,1H),4.05(dd,J1=9.31Hz,J2=5.71Hz,1H),4.11−4.15(m,1H)
13C−NMR(75.45MHz,CDCl) δ 22.46(CH3),23.11(CH3),46.70(CH),63.73(CH),72.17(CH2),73.63(CH2),76.33(CH)
分析条件γ 保持時間 25.5分、25.7分
Reference Example 30 Synthesis of trans-4- (isopropylamino) -3-tetrahydrofuran-3-ol The same operation as in Reference Example 1 was performed except that 3,6-dioxabicyclo [3.1.0] hexane was used as the epoxide. (Outer bath temperature 120-125 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.08 (d, J = 6.31 Hz, 3H), 1.08 (d, J = 6.31 Hz, 3H), 2.86 (sep, J = 6.31 Hz, 1H), 3.23-3.26 (m, 1H), 3.55 (dd, J1 = 9.01 Hz, J2 = 3.91 Hz, 1H), 3.62-3.66 ( m, 1H), 3.98 (dd, J1 = 9.61 Hz, J2 = 5.11 Hz, 1H), 4.05 (dd, J1 = 9.31 Hz, J2 = 5.71 Hz, 1H), 4.11 -4.15 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 22.46 (CH3), 23.11 (CH3), 46.70 (CH), 63.73 (CH), 72.17 (CH2), 73. 63 (CH2), 76.33 (CH)
Analysis condition γ Retention time 25.5 minutes, 25.7 minutes

参考例31 trans−4−(シクロプロピルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、シクロプロピルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.41−0.53(m,4H), 2.12−2.19(m,1H), 3.27−3.31(m,1H), 3.61−3.68(m,2H), 3.97(dd,J1=9.61Hz,J2=4.81Hz,1H),4.06(dd,J1=9.01Hz,J2=5.41Hz,1H), 4.21(q,J=2.40Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 6.18(CH2),6.35(CH2),28.93(CH),66.57(CH),71.90(CH2),73.62(CH2),75.59(CH)
分析条件γ 保持時間 26.2分、28.2分
Reference Example 31 synthesis of trans-4- (cyclopropylamino) tetrahydrofuran-3-ol All operations were the same as in Reference Example 30, except that cyclopropylamine was used instead of isopropylamine. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.41-0.53 (m, 4H), 2.12 to 2.19 (m, 1H), 3.27-3.31 (m, 1H) ), 3.61-3.68 (m, 2H), 3.97 (dd, J1 = 9.61 Hz, J2 = 4.81 Hz, 1H), 4.06 (dd, J1 = 9.01 Hz, J2 = 5.41 Hz, 1H), 4.21 (q, J = 2.40 Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 6.18 (CH2), 6.35 (CH2), 28.93 (CH), 66.57 (CH), 71.90 (CH2), 73. 62 (CH2), 75.59 (CH)
Analysis condition γ Retention time 26.2 minutes, 28.2 minutes

参考例32 trans−4−(プロピルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、プロピルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度150−155℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 0.93(t,J=7.21Hz,3H),1.50(sext,J=7.21Hz,2H),2.58(t,J=7.21Hz,2H),3.13−3.15(m,1H),3.58(dd,J1=9.31Hz,J2=3.60Hz,1H),3.65(dd,J1=9.61Hz,J2=2.70Hz,1H),3.99(dd,J1=9.61Hz,J2=4.81Hz,1H),4.05(dd,J1=9.31Hz,J2=5.71Hz,1H),4.13−4.14(m,1H)
13C−NMR(75.45MHz,CDCl) δ 11.54(CH3),23.02(CH2),49.96(CH2),66.52(CH),71.96(CH2),73.80(CH2),75.98(CH)
分析条件Q 保持時間 18.3分、18.9分
Reference Example 32 Synthesis of trans-4- (propylamino) tetrahydrofuran-3-ol All operations were the same as in Reference Example 30, except that propylamine was used instead of isopropylamine. (Outer bath temperature 150-155 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.93 (t, J = 7.21 Hz, 3H), 1.50 (sext, J = 7.21 Hz, 2H), 2.58 (t, J = 7.21 Hz, 2H), 3.13-3.15 (m, 1H), 3.58 (dd, J1 = 9.31 Hz, J2 = 3.60 Hz, 1H), 3.65 (dd, J1 = 9.61 Hz, J2 = 2.70 Hz, 1H), 3.99 (dd, J1 = 9.61 Hz, J2 = 4.81 Hz, 1H), 4.05 (dd, J1 = 9.31 Hz, J2 = 5. 71Hz, 1H), 4.13-4.14 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 11.54 (CH3), 23.02 (CH2), 49.96 (CH2), 66.52 (CH), 71.96 (CH2), 73. 80 (CH2), 75.98 (CH)
Analysis condition Q Retention time 18.3 minutes, 18.9 minutes

参考例33 trans−4−(アリルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、アリルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 3.17−3.27(m,3H),3.56−3.68(m,2H),3.95−4.05(m,2H),4.10−4.16(m,1H)5.11−5.23(m,2H),5.81−5.95(m,1H)
13C−NMR(75.45MHz,CDCl) δ 50.39(CH2),65.59(CH),71.78(CH2),73.70(CH2),75.86(CH),116.58(CH2),135.67(CH)
分析条件R 保持時間 20.3分、20.7分
Reference Example 33 Synthesis of trans-4- (allylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30, except that allylamine was used instead of isopropylamine. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 3.17-3.27 (m, 3H), 3.56-3.68 (m, 2H), 3.95-4.05 (m, 2H) ), 4.10-4.16 (m, 1H) 5.11-5.23 (m, 2H), 5.81-5.95 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 50.39 (CH2), 65.59 (CH), 71.78 (CH2), 73.70 (CH2), 75.86 (CH), 116. 58 (CH2), 135.67 (CH)
Analysis condition R retention time 20.3 minutes, 20.7 minutes

参考例34 trans−4−(プロパルギルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、プロパルギルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 2.31(s,1H),3.37−3.52(m,3H),3.57−3.72(m,2H),3.97−4.18(m,3H)
13C−NMR(75.45MHz,CDCl) δ 36.28(CH2),64.88(CH),71.94(CH2),72.07(C),73.87(CH2),75.97(CH),81.48(CH)
分析条件S 保持時間 24.5分、25.1分
Reference Example 34 synthesis of trans-4- (propargylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30, except that propargylamine was used instead of isopropylamine. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 2.31 (s, 1H), 3.37-3.52 (m, 3H), 3.57-3.72 (m, 2H), 97-4.18 (m, 3H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 36.28 (CH2), 64.88 (CH), 71.94 (CH2), 72.07 (C), 73.87 (CH2), 75. 97 (CH), 81.48 (CH)
Analysis conditions S retention time 24.5 minutes, 25.1 minutes

参考例35 trans−4−(シクロペンチルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、シクロペンチルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度170−175℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.22−1.36(m,2H),1.53−1.74(m,4H),1.87−1.90(m,2H),3.06−3.22(m,2H),3.56(dd,J1=9.01Hz,J2=3.91Hz,1H),3.65(dd,J1=9.61Hz,J2=2.70Hz,1H),3.95−4.15(m,3H)
13C−NMR(75.45MHz,CDCl) δ 23.67(CH2),33.00(CH2),33.38(CH2),58.13(CH),65.27(CH),72.33(CH2),73.73(CH2),76.37(CH)
分析条件γ 保持時間 28.5分、28.7分
Reference Example 35 Synthesis of trans-4- (cyclopentylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30, except that cyclopentylamine was used instead of isopropylamine. (External bath temperature 170-175 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.22-1.36 (m, 2H), 1.53-1.74 (m, 4H), 1.87-1.90 (m, 2H) ), 3.06-3.22 (m, 2H), 3.56 (dd, J1 = 9.01 Hz, J2 = 3.91 Hz, 1H), 3.65 (dd, J1 = 9.61 Hz, J2 = 2.70Hz, 1H), 3.95-4.15 (m, 3H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 23.67 (CH2), 33.00 (CH2), 33.38 (CH2), 58.13 (CH), 65.27 (CH), 72. 33 (CH2), 73.73 (CH2), 76.37 (CH)
Analysis condition γ Retention time 28.5 minutes, 28.7 minutes

参考例36 trans−4−(ジエチルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、ジエチルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度115−120℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.05(t,J=7.21Hz.6H),2.62(q,J=7.21Hz,4H),3.21(dt,J1=6.61Hz,J2=3.00Hz,1H),3.61−3.69(m,2H),3.93−4.03(m,2H),4.27−4.32(m,1H)
13C−NMR(75.45MHz,CDCl) δ 11.55(CH3),43.97(CH2),69.59(CH2),70.33(CH),74.48(CH),74.76(CH2)
分析条件T 保持時間 15.8分、16.1分
Reference Example 36 Synthesis of trans-4- (diethylamino) tetrahydrofuran-3-ol All operations were the same as in Reference Example 30, except that diethylamine was used instead of isopropylamine. (External bath temperature 115-120 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.05 (t, J = 7.21 Hz, 6H), 2.62 (q, J = 7.21 Hz, 4H), 3.21 (dt, J1 = 6.61 Hz, J2 = 3.00 Hz, 1H), 3.61-3.69 (m, 2H), 3.93-4.03 (m, 2H), 4.27-4.32 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 11.55 (CH3), 43.97 (CH2), 69.59 (CH2), 70.33 (CH), 74.48 (CH), 74. 76 (CH2)
Analysis condition T retention time 15.8 minutes, 16.1 minutes

参考例37 trans−4−(1−ピペリジニル)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、ピペリジンを用いる他は全て参考例30と同様に操作した。(外浴温度150−155℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.47(d,J=4.81Hz,2H),1.56−1.63(m,4H),2.34−2.40(m,2H),2.54−2.57(m,2H),2.81(dt,J1=6.61Hz,J2=2.70Hz,1H),3.66−3.71(m,2H),3.95(dd,J1=9.61Hz,J2=5.71Hz,1H),4.02(dd,J1=9.01Hz,J2=7.21Hz,1H),4.32−4.36(m,1H)
13C−NMR(75.45MHz,CDCl) δ 23.99(CH2),25.48(CH2),52.39(CH2),69.63(CH2),74.11(CH),74.95(CH),75.13(CH2)
分析条件U 保持時間 16.6分、17.0分
Reference Example 37 Synthesis of trans-4- (1-piperidinyl) tetrahydrofuran-3-ol All operations were the same as in Reference Example 30, except that piperidine was used instead of isopropylamine. (Outer bath temperature 150-155 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.47 (d, J = 4.81 Hz, 2H), 1.56-1.63 (m, 4H), 2.34-2.40 (m , 2H), 2.54-2.57 (m, 2H), 2.81 (dt, J1 = 6.61 Hz, J2 = 2.70 Hz, 1H), 3.66-3.71 (m, 2H). , 3.95 (dd, J1 = 9.61 Hz, J2 = 5.71 Hz, 1H), 4.02 (dd, J1 = 9.01 Hz, J2 = 7.21 Hz, 1H), 4.32-4.36 (M, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 23.99 (CH2), 25.48 (CH2), 52.39 (CH2), 69.63 (CH2), 74.11 (CH), 74. 95 (CH), 75.13 (CH2)
Analysis condition U Retention time 16.6 minutes, 17.0 minutes

参考例38 trans−4−(フェニルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、アニリンを用いる他は全て参考例30と同様に操作した。(外浴温度195−200℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDOD) δ 3.66−3.78(m,3H),3.95(dd,J1=9.61Hz,J2=3.91Hz,1H),4.16−4.21(m,2H),6.60−6.68(m,3H),7.08−7.13(m,2H)
13C−NMR(75.45MHz,CDOD) δ 62.66(CH),72.96(CH2),74.95(CH2),76.52(CH),114.11(CH),118.24(CH),130.07(CH),148.72(C)
分析条件V 保持時間 50.8分、51.2分
Reference Example 38 Synthesis of trans-4- (phenylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30, except that aniline was used instead of isopropylamine. (Outer bath temperature 195-200 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CD 3 OD) δ 3.66-3.78 (m, 3H), 3.95 (dd, J1 = 9.61 Hz, J2 = 3.91 Hz, 1H), 4. 16-4.21 (m, 2H), 6.60-6.68 (m, 3H), 7.08-7.13 (m, 2H)
13 C-NMR (75.45 MHz, CD 3 OD) δ 62.66 (CH), 72.96 (CH2), 74.95 (CH2), 76.52 (CH), 114.11 (CH), 118 .24 (CH), 130.07 (CH), 148.72 (C)
Analysis condition V Retention time 50.8 minutes, 51.2 minutes

参考例39 trans−4−(2−フェニルエチルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、2−フェニルエチルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度190−195℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 2.76−2.90(m,4H),3.15(s,1H),3.51(dd,J1=9.01Hz,J2=3.30Hz,1H),3.63(dd,J1=9.61Hz,J2=1.80Hz,1H),3.93(dd,J1=9.61Hz,J2=4.81Hz,1H),4.00−4.08(m,2H),7.17−7.31(m,5H)
13C−NMR(75.45MHz,CDCl) δ 36.17(CH2),49.28(CH2),66.56(CH),72.17(CH2),73.92(CH2),76.28(CH),126.27(CH),128.47(CH),128.53(CH),139.34(C)
分析条件γ 保持時間 29.2分、29.4分
Reference Example 39 synthesis of trans-4- (2-phenylethylamino) tetrahydrofuran-3-ol The same operation as in Reference Example 30 was performed except that 2-phenylethylamine was used instead of isopropylamine. (Outer bath temperature 190-195 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 2.76-2.90 (m, 4H), 3.15 (s, 1H), 3.51 (dd, J1 = 9.01 Hz, J2 = 3) 3.30 Hz, 1H), 3.63 (dd, J1 = 9.61 Hz, J2 = 1.80 Hz, 1H), 3.93 (dd, J1 = 9.61 Hz, J2 = 4.81 Hz, 1H), 4. 00-4.08 (m, 2H), 7.17-7.31 (m, 5H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 36.17 (CH2), 49.28 (CH2), 66.56 (CH), 72.17 (CH2), 73.92 (CH2), 76. 28 (CH), 126.27 (CH), 128.47 (CH), 128.53 (CH), 139.34 (C)
Analysis condition γ Retention time 29.2 minutes, 29.4 minutes

参考例40 trans−4−(ベンジルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、ベンジルアミンを用いる他は全て参考例30と同様に操作した。(外浴温度185−190℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 3.15(s,1H),3.54(dd,J1=9.31Hz,J2=3.30Hz,1H),3.62(dd,J1=9.61Hz,J2=1.80Hz,1H),3.74(s,2H),3.94(dd,J1=9.61Hz,J2=4.51Hz,1H),4.00(dd,J1=9.31Hz,J2=5.71Hz,1H),4.08−4.10(m,1H),7.22−7.34(m,5H)
13C−NMR(75.45MHz,CDCl) δ 52.03(CH2),65.82(CH),72.08(CH2),73.82(CH2),76.18(CH),127.15(CH),128.07(CH),128.42(CH),139.37(C)
分析条件γ 保持時間 29.1分、29.3分
Reference Example 40 Synthesis of trans-4- (benzylamino) tetrahydrofuran-3-ol All operations were performed in the same manner as in Reference Example 30, except that benzylamine was used instead of isopropylamine. (Outer bath temperature 185-190 ° C, pressure 0.1 mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 3.15 (s, 1H), 3.54 (dd, J1 = 9.31 Hz, J2 = 3.30 Hz, 1H), 3.62 (dd, J1) = 9.61 Hz, J2 = 1.80 Hz, 1H), 3.74 (s, 2H), 3.94 (dd, J1 = 9.61 Hz, J2 = 4.51 Hz, 1H), 4.00 (dd, J1 = 9.31 Hz, J2 = 5.71 Hz, 1H), 4.08-4.10 (m, 1H), 7.22-7.34 (m, 5H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 52.03 (CH2), 65.82 (CH), 72.08 (CH2), 73.82 (CH2), 76.18 (CH), 127. 15 (CH), 128.07 (CH), 128.42 (CH), 139.37 (C)
Analysis condition γ Retention time 29.1 minutes, 29.3 minutes

参考例41 trans−4−(3−エトキシプロピルアミノ)テトラヒドロフラン−3−オール合成
イソプロピルアミンに代えて、3−エトキシプロピルアミンを用いる他は全て参考例30と同様に操作した。得られた粗体は、そのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.19(t,J=6.91Hz,3H),1.76(quin,J=6.61Hz,2H),2.69−2.73(m,2H),3.13−3.17(m,1H),3.46−3.51(m,4H),3.57(dd,J1=9.01Hz,J2=3.30Hz,1H),3.66(dd,J1=9.61Hz,J2=2.40Hz,1H),3.98(dd,J1=9.61Hz,J2=4.81Hz,1H),4.06(dd,J1=9.01Hz,J2=5.41Hz,1H),4.14(quin,J=2.40Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 14.98(CH3),29.78(CH2),45.74(CH2),66.05(CH2),66.55(CH),68.89(CH2),72.08(CH2),73.84(CH2),75.91(CH)
分析条件ζ 保持時間 7.3分、9.1分
Reference Example 41 Synthesis of trans-4- (3-ethoxypropylamino) tetrahydrofuran-3-ol The same operation as in Reference Example 30 was performed except that 3-ethoxypropylamine was used instead of isopropylamine. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.19 (t, J = 6.91 Hz, 3H), 1.76 (quin, J = 6.61 Hz, 2H), 2.69-2.73 (M, 2H), 3.13-3.17 (m, 1H), 3.46-3.51 (m, 4H), 3.57 (dd, J1 = 9.01 Hz, J2 = 3.30 Hz, 1H), 3.66 (dd, J1 = 9.61 Hz, J2 = 2.40 Hz, 1H), 3.98 (dd, J1 = 9.61 Hz, J2 = 4.81 Hz, 1H), 4.06 (dd) , J1 = 9.01 Hz, J2 = 5.41 Hz, 1H), 4.14 (quin, J = 2.40 Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 14.98 (CH3), 29.78 (CH2), 45.74 (CH2), 66.05 (CH2), 66.55 (CH), 68. 89 (CH2), 72.08 (CH2), 73.84 (CH2), 75.91 (CH)
Analysis conditions ① Retention time 7.3 minutes, 9.1 minutes

参考例42 trans−2−(イソプロピルアミノ)シクロヘプタノール合成
エポキシドとして8−オキサビシクロ[5.1.0]オクタンを用いる他は参考例1同様に操作した。得られた粗体は、そのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 1.02(d,J=6.01Hz,3H),1.06(d,J=6.01Hz,3H),1.36−1.72(m,8H),1.88−2.05(m,2H),2.23−2.31(m,1H),2.94(sep,J=6.01Hz,1H),3.08−3.14(m,1H)
13C−NMR(75.45MHz,CDCl) δ 22.35(CH3),22.56(CH2),24.07(CH3),24.38(CH2),26.50(CH2),30.69(CH2),32.96(CH2),45.56(CH),62.52(CH),75.09(CH)
分析条件W 保持時間 9.4分、9.5分
Reference Example 42 Synthesis of trans-2- (isopropylamino) cycloheptanol The same operation as in Reference Example 1 was performed except that 8-oxabicyclo [5.1.0] octane was used as the epoxide. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.02 (d, J = 6.01 Hz, 3H), 1.06 (d, J = 6.01 Hz, 3H), 1.36-1.72 (M, 8H), 1.88-2.05 (m, 2H), 2.23-2.31 (m, 1H), 2.94 (sep, J = 6.01 Hz, 1H), 3.08 -3.14 (m, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 22.35 (CH3), 22.56 (CH2), 24.07 (CH3), 24.38 (CH2), 26.50 (CH2), 30. 69 (CH2), 32.96 (CH2), 45.56 (CH), 62.52 (CH), 75.09 (CH)
Analysis condition W retention time 9.4 minutes, 9.5 minutes

参考例43 trans−2−(シクロプロピルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、シクロプロピルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 0.22−0.56(m,4H),1.21−1.32(m,1H),1.39−1.71(m,7H),1.89−1.99(m,1H),2.07−2.14(m,1H),2.21−2.28(m,1H),2.33−2.41(m,1H),3.06−3.16(m,1H)
13C−NMR(75.45MHz,CDCl) δ 6.20(CH2),7.13(CH2),22.03(CH2),23.71(CH2),26.55(CH2),27.62(CH), 29.90(CH2),32.75(CH2),65.76(CH),74.90(CH)
分析条件γ 保持時間 25.8分、30.8分
Reference Example 43 Synthesis of trans-2- (cyclopropylamino) cycloheptanol All operations were performed in the same manner as in Reference Example 42 except that cyclopropylamine was used instead of isopropylamine.
1 H-NMR (300.4MHz, CDCl 3) δ 0.22-0.56 (m, 4H), 1.21-1.32 (m, 1H), 1.39-1.71 (m, 7H ), 1.89-1.99 (m, 1H), 2.07-2.14 (m, 1H), 2.21-2.28 (m, 1H), 2.33-2.41 (m , 1H), 3.06-3.16 (m, 1H).
13 C-NMR (75.45 MHz, CDCl 3 ) δ 6.20 (CH2), 7.13 (CH2), 22.03 (CH2), 23.71 (CH2), 26.55 (CH2), 27. 62 (CH), 29.90 (CH2), 32.75 (CH2), 65.76 (CH), 74.90 (CH)
Analysis condition γ Retention time 25.8 minutes, 30.8 minutes

参考例44 trans−2−(2−フェニルエチルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、2−フェニルエチルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.09−1.20(m,1H),1.33−1.67(m,7H),1.83−1.98(m,2H),2.24(dt,J1=9.31Hz,J2=2.70Hz,1H),2.67−3.07(m,5H),3.13−3.20(m,1H),7.15−7.29(m,5H)
13C−NMR(75.45MHz,CDCl) δ 21.95(CH2),23.80(CH2),26.52(CH2),29.27(CH2),33.25(CH2),36.55(CH2),47.99(CH2),65.39(CH),74.96(CH),125.83(CH),128.11(CH),128.34(CH),139.65(C)
分析条件β 保持時間 9.7分、12.4分
Reference Example 44 synthesis of trans-2- (2-phenylethylamino) cycloheptanol All operations were performed in the same manner as in Reference Example 42 except that 2-phenylethylamine was used instead of isopropylamine.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.09-1.20 (m, 1H), 1.33-1.67 (m, 7H), 1.83-1.98 (m, 2H) ), 2.24 (dt, J1 = 9.31 Hz, J2 = 2.70 Hz, 1H), 2.67-3.07 (m, 5H), 3.13-3.20 (m, 1H), 7 .15-7.29 (m, 5H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 21.95 (CH2), 23.80 (CH2), 26.52 (CH2), 29.27 (CH2), 33.25 (CH2), 36. 55 (CH2), 47.99 (CH2), 65.39 (CH), 74.96 (CH), 125.83 (CH), 128.11 (CH), 128.34 (CH), 139.65 (C)
Analysis condition β Retention time 9.7 minutes, 12.4 minutes

参考例45 trans−2−(ベンジルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、ベンジルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.17−1.30(m,1H), 1.34−1.72(m,7H), 1.89−2.02(m,2H), 2.32(dt,J1=9.31Hz,J2=3.00Hz,1H), 3.19−3.26(m,1H),3.64(d,J=12.62Hz,1H),3.90(d,J=12.62Hz,1H), 7.19−7.30(m,5H)
13C−NMR(75.45MHz,CDCl) δ 22.00(CH2),23.80(CH2),26.65(CH2),29.11(CH2),33.31(CH2),50.88(CH2),64.90(CH),75.22(CH),126.81(CH),127.97(CH),128.19(CH),139.89(C)
分析条件β 保持時間 8.1分、10.1分
Reference Example 45 Synthesis of trans-2- (benzylamino) cycloheptanol All operations were performed in the same manner as in Reference Example 42 except that benzylamine was used instead of isopropylamine.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.17-1.30 (m, 1H), 1.34-1.72 (m, 7H), 1.89-2.02 (m, 2H) ), 2.32 (dt, J1 = 9.31 Hz, J2 = 3.00 Hz, 1H), 3.19-3.26 (m, 1H), 3.64 (d, J = 12.62 Hz, 1H). , 3.90 (d, J = 12.62 Hz, 1H), 7.19-7.30 (m, 5H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 22.00 (CH2), 23.80 (CH2), 26.65 (CH2), 29.11 (CH2), 33.31 (CH2), 50. 88 (CH2), 64.90 (CH), 75.22 (CH), 126.81 (CH), 127.97 (CH), 128.19 (CH), 139.89 (C)
Analysis condition β Retention time 8.1 minutes, 10.1 minutes

参考例46 trans−2−(プロパルギルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、プロパルギルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.20−1.31(m,1H),1.34−1.74(m,7H),1.81−1.98(m,2H),2.21−2.26(m,1H),2.44−2.52(m,1H),3.26−3.33(m,1H),3.38−3.55(m,2H)
13C−NMR(75.45MHz,CDCl) δ 22.00(CH2),23.54(CH2),26.76(CH2),28.63(CH2),33.69(CH2),35.65(CH2),64.42(CH),71.10(C),75.41(CH),82.03(CH)
分析条件X 保持時間 22.0分、22.3分
Reference Example 46 Synthesis of trans-2- (propargylamino) cycloheptanol The same operation as in Reference Example 42 was performed except that propargylamine was used instead of isopropylamine.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.20-1.31 (m, 1H), 1.34-1.74 (m, 7H), 1.81-1.98 (m, 2H) ), 2.21-2.26 (m, 1H), 2.44-2.52 (m, 1H), 3.26-3.33 (m, 1H), 3.38-3.55 (m , 2H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 22.00 (CH2), 23.54 (CH2), 26.76 (CH2), 28.63 (CH2), 33.69 (CH2), 35. 65 (CH2), 64.42 (CH), 71.10 (C), 75.41 (CH), 82.03 (CH)
Analysis condition X retention time 22.0 minutes, 22.3 minutes

参考例47 trans−2−(シクロペンチルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、シクロペンチルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.10−2.05(m,18H),2.23(dt,J1=9.31Hz,J2=3.00Hz,1H),3.07−3.14(m,1H),3.22(quin,J=6.01Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 22.28(CH2),23.47(CH2),23.69(CH2),24.03(CH2),26.49(CH2),30.15(CH2),32.77(CH2),33.03(CH2),34.26(CH2),56.33(CH),63.63(CH),75.09(CH)
分析条件Y 保持時間 21.0分、21.2分
Reference Example 47 Synthesis of trans-2- (cyclopentylamino) cycloheptanol All operations were performed in the same manner as in Reference Example 42 except that cyclopentylamine was used instead of isopropylamine.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.10 to 2.05 (m, 18H), 2.23 (dt, J1 = 9.31 Hz, J2 = 3.00 Hz, 1H), 3.07 -3.14 (m, 1H), 3.22 (quin, J = 6.01 Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 22.28 (CH2), 23.47 (CH2), 23.69 (CH2), 24.03 (CH2), 26.49 (CH2), 30. 15 (CH2), 32.77 (CH2), 33.03 (CH2), 34.26 (CH2), 56.33 (CH), 63.63 (CH), 75.09 (CH)
Analysis condition Y Retention time 21.0 minutes, 21.2 minutes

参考例48 trans−2−(ジエチルアミノ)シクロヘプタノール合成
イソプロピルアミンに代えて、ジエチルアミンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.09(t,J=7.21Hz,6H),1.19−1.78(m,9H),2.01−2.09(m,1H),2.34−2.52(m,3H),2.64−2.76(m,2H),3.38−3.45(m,1H)
13C−NMR(75.45MHz,CDCl) δ 14.08(CH3),22.00(CH2),22.47(CH2),24.74(CH2),26.90(CH2),33.52(CH2),43.59(CH2),67.37(CH),71.27(CH)
分析条件C 保持時間 21.0分、21.2分
Reference Example 48 Synthesis of trans-2- (diethylamino) cycloheptanol All operations were performed in the same manner as in Reference Example 42, except that diethylamine was used instead of isopropylamine.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.09 (t, J = 7.21 Hz, 6H), 1.19-1.78 (m, 9H), 2.01-2.09 (m , 1H), 2.34-2.52 (m, 3H), 2.64-2.76 (m, 2H), 3.38-3.45 (m, 1H).
13 C-NMR (75.45 MHz, CDCl 3 ) δ 14.08 (CH3), 22.00 (CH2), 22.47 (CH2), 24.74 (CH2), 26.90 (CH2), 33. 52 (CH2), 43.59 (CH2), 67.37 (CH), 71.27 (CH)
Analysis condition C Retention time 21.0 minutes, 21.2 minutes

参考例49 trans−2−(1−ピペリジニル)シクロヘプタノール合成
イソプロピルアミンに代えて、ピペリジンを用いる他は全て参考例42と同様に操作した。
H−NMR(300.4MHz,CDCl) δ 1.14−1.26(m,1H),1.30−1.83(m,14H),2.01−2.08(m,1H),2.14−2.21(m,1H),2.31−2.33(m,2H),2.60−2.67(m,2H),3.33−3.41(m,1H)
13C−NMR(75.45MHz,CDCl) δ 21.46(CH2),21.67(CH2),24.02(CH2),24.40(CH2),26.22(CH2),26.44(CH2),33.03(CH2),48.96(CH2),70.60(CH),71.88(CH)
分析条件Z 保持時間 21.0分、21.2分
Reference Example 49 Synthesis of trans-2- (1-piperidinyl) cycloheptanol All operations were performed in the same manner as in Reference Example 42 except that piperidine was used instead of isopropylamine.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.14 to 1.26 (m, 1H), 1.30 to 1.83 (m, 14H), 2.01 to 2.08 (m, 1H) ), 2.14-2.21 (m, 1H), 2.31-2.33 (m, 2H), 2.60-2.67 (m, 2H), 3.33-3.41 (m , 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 21.46 (CH2), 21.67 (CH2), 24.02 (CH2), 24.40 (CH2), 26.22 (CH2), 26. 44 (CH2), 33.03 (CH2), 48.96 (CH2), 70.60 (CH), 71.88 (CH)
Analysis condition Z retention time 21.0 minutes, 21.2 minutes

参考例50 trans−2−アミノシクロヘキサノール
trans−2−アミノシクロヘキサン−1−オールは、シグマアルドリッチ社製のものをそのまま用いた。
分析条件A 保持時間 (S,S)体:18.3分、(R,R)体:18.7分
Reference Example 50 trans-2-aminocyclohexanol Trans-2-aminocyclohexan-1-ol manufactured by Sigma-Aldrich Corporation was used as it was.
Analysis condition A Retention time (S, S) form: 18.3 minutes, (R, R) form: 18.7 minutes

参考例51 trans−3−シクロプロピルアミノ−2−ブタノール
Cis−2,3−エポキシブタンとシクロプロピルアミンを用いる他は、参考例1と同様に操作した。得られた粗体は、そのまま分析に用いた。(外浴温度135−140℃、圧力0.1mmHg)
分析条件G 保持時間 11.0分、11.3分
Reference Example 51 The same operation as in Reference Example 1 was performed except that trans-3-cyclopropylamino-2-butanol Cis-2,3-epoxybutane and cyclopropylamine were used. The obtained crude was used for analysis as it was. (External bath temperature 135-140 ° C, pressure 0.1 mmHg)
Analysis condition G Retention time 11.0 minutes, 11.3 minutes

参考例52 trans−2−(2−プロピルチオ)シクロヘキサノール
50mLナスフラスコに7−オキサビシクロ[4.1.0]ヘプタン 2.00gと2−プロパンチオール1.70mLを量りとり、メタノール8mLと水2mL、トリエチルアミン2.84mLを加え、50℃で20時間反応した。反応後、減圧下に濃縮し、残渣3.12g得た。残渣1.00gを柴田科学社製ガラスチューブオーブンGTO−250RS(クーゲルロール)で減圧蒸留し、trans−2−(2−プロピルチオ)シクロヘキサン−1−オールを0.77g得た。(外浴温度140−150℃、圧力0.1mmHg)
H−NMR(300.4MHz,CDCl) δ 1.20−1.51(m,4H),1.29(d,J=6.61Hz,3H),1.30(d,J=6.61Hz,3H),1.68−1.79(m,2H),2.07−2.15(m,2H),2.38−2.46(m,1H),3.03(sep.,J=6.61Hz,1H),3.26(dt,J1=4.51Hz,J2=9.91Hz,1H)
13C−NMR(75.45MHz,CDCl) δ 24.24(CH3),24.31(CH2),24.39(CH3),26.23(CH2),33.67(CH2),34.05(CH2),35.08(CH),53.58(CH),72.56(CH)
分析条件AB 保持時間 17.6分,18.8分
Reference Example 52 7-oxabicyclo [4.1.0] heptane (2.00 g) and 2-propanethiol (1.70 mL) were weighed into a trans-2- (2-propylthio) cyclohexanol 50 mL eggplant flask, and 8 mL of methanol and 2 mL of water were weighed. Then, 2.84 mL of triethylamine was added, and the mixture was reacted at 50 ° C. for 20 hours. After the reaction, the mixture was concentrated under reduced pressure to obtain 3.12 g of a residue. 1.00 g of the residue was distilled under reduced pressure using a glass tube oven GTO-250RS (Kugelroll) manufactured by Shibata Science Co., Ltd. to obtain 0.77 g of trans-2- (2-propylthio) cyclohexane-1-ol. (Outer bath temperature 140-150 ° C, pressure 0.1mmHg)
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.20-1.51 (m, 4H), 1.29 (d, J = 6.61 Hz, 3H), 1.30 (d, J = 6) .61 Hz, 3H), 1.68-1.79 (m, 2H), 2.07-2.15 (m, 2H), 2.38-2.46 (m, 1H), 3.03 (sep) , J = 6.61 Hz, 1H), 3.26 (dt, J1 = 4.51 Hz, J2 = 9.91 Hz, 1H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 24.24 (CH3), 24.31 (CH2), 24.39 (CH3), 26.23 (CH2), 33.67 (CH2), 34. 05 (CH2), 35.08 (CH), 53.58 (CH), 72.56 (CH)
Analysis condition AB Retention time 17.6 minutes, 18.8 minutes

参考例53 7−トシル−7−アザビシクロ[4.1.0]ヘプタン
温度計、攪拌子を設置した50mL四つ口フラスコに2−アミノシクロヘキサノール1.00g、THF15mL,トリエチルアミン1.81mLを加え、氷冷し、内温3℃で塩化トシル1.74gを加えた。この時内温は10℃まで上昇した。氷冷下で30分、室温(26℃)で30分攪拌した後、水20mL、トルエン20mLを加えて分液し、トルエン層を水10mLで2回洗浄した。洗浄後のトルエン層を硫酸ナトリウムで乾燥し、ロータリーエバポレーターで減圧濃縮した。得られたオイルを真空ポンプで乾燥しtrans−N−トシル−2−アミノシクロヘキサノール(結晶)を2.27g得た。
H−NMR(300.4MHz,CDCl) δ 1.10−1.30(m,4H),1.53−1.76(m,3H),2.00−2.04(m,1H),2.43(s,3H),2.65(d,J=3.30Hz,1H),2.80−2.90(m,1H),3.26−3.35(m,1H),4.96(d,J=6.91Hz,1H),7.32(d,J=8.11Hz,1H),7.80(d,J=8.11Hz,1H)
温度計、攪拌子、塩化カルシウム管を設置した50mL四つ口フラスコにtrans−N−トシル−2−アミノシクロヘキサノール2.17g、トリフェニルホスフィン2.75g、THF22mLを加え、氷冷し、内温2℃でアゾジカルボン酸ジイソプロピル(90.0+%)2.17gを滴下ロートを用いて10分かけて滴下した。このとき内温は5℃まで上昇した。氷冷下で80分、室温(26℃)で60分攪拌した後、水20mL、酢酸エチル30mLを加えて分液し、酢酸エチル層をロータリーエバポレーターで減圧濃縮し、残渣7.21gを得た。残渣をシリカゲル140g、展開溶媒トルエン:酢酸エチル=5:1を用いてカラムクロマトグラフィーを行い、7−トシル−7−アザビシクロ[4.1.0]ヘプタン1.33gを得た。
H−NMR(300.4MHz,CDCl) δ 1.15−1.27(m,2H),1.35−1.44(m,2H),1.79(t,J=5.11Hz,4H),2.44(s,3H),2.97−2.98(m,2H),7.32(d,J=8.11Hz,2H),7.82(d,J=8.11Hz,2H)
Reference Example 53 7-tosyl-7-azabicyclo [4.1.0] heptane In a 50 mL four-necked flask equipped with a thermometer and a stirrer, 1.00 g of 2-aminocyclohexanol, 15 mL of THF, and 1.81 mL of triethylamine were added. The mixture was cooled on ice, and 1.74 g of tosyl chloride was added at an internal temperature of 3 ° C. At this time, the internal temperature rose to 10 ° C. After stirring for 30 minutes under ice-cooling and 30 minutes at room temperature (26 ° C.), 20 mL of water and 20 mL of toluene were added to carry out liquid separation, and the toluene layer was washed twice with 10 mL of water. The washed toluene layer was dried over sodium sulfate, and concentrated under reduced pressure using a rotary evaporator. The obtained oil was dried with a vacuum pump to obtain 2.27 g of trans-N-tosyl-2-aminocyclohexanol (crystal).
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.10-1.30 (m, 4H), 1.53-1.76 (m, 3H), 2.00-2.04 (m, 1H) ), 2.43 (s, 3H), 2.65 (d, J = 3.30 Hz, 1H), 2.80-2.90 (m, 1H), 3.26-3.35 (m, 1H) ), 4.96 (d, J = 6.91 Hz, 1H), 7.32 (d, J = 8.11 Hz, 1H), 7.80 (d, J = 8.11 Hz, 1H)
Trans-N-tosyl-2-aminocyclohexanol (2.17 g), 2.75 g of triphenylphosphine, and 22 mL of THF were added to a 50 mL four-necked flask equipped with a thermometer, a stirrer, and a calcium chloride tube. At 2 ° C., 2.17 g of diisopropyl azodicarboxylate (90.0 +%) was added dropwise using a dropping funnel over 10 minutes. At this time, the internal temperature rose to 5 ° C. After stirring under ice cooling for 80 minutes and at room temperature (26 ° C.) for 60 minutes, water (20 mL) and ethyl acetate (30 mL) were added to carry out liquid separation, and the ethyl acetate layer was concentrated under reduced pressure using a rotary evaporator to obtain 7.21 g of a residue. . The residue was subjected to column chromatography using 140 g of silica gel and a developing solvent of toluene: ethyl acetate = 5: 1 to obtain 1.33 g of 7-tosyl-7-azabicyclo [4.1.0] heptane.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 1.15 to 1.27 (m, 2H), 1.35-1.44 (m, 2H), 1.79 (t, J = 5.11 Hz) , 4H), 2.44 (s, 3H), 2.97-2.98 (m, 2H), 7.32 (d, J = 8.11 Hz, 2H), 7.82 (d, J = 8). .11Hz, 2H)

参考例54 trans−N−トシル−(2−(2−フェニルエチルアミノ)シクロヘキシルアミン)
イソプロピルアミンに代えて、2−フェニルエチルアミンを、7−オキサビシクロ[4.1.0]ヘプタンに代えて、7−トシル−7−アザビシクロ[4.1.0]ヘプタンを用いる他はすべて参考例1と同様に操作した。得られた粗体はそのまま分析に用いた。
H−NMR(300.4MHz,CDCl) δ 0.83−0.94(m,1H),1.06−1.25(m,3H),1.57−1.63(m,2H),1.97−2.07(m,2H),2.16−2.24(m,1H),2.38(s,3H),2.54−2.69(m,4H),2.78−2.87(m,1H),7.13−7.30(m,7H),7.70(d,J=8.11Hz,2H)
13C−NMR(75.45MHz,CDCl) δ 21.27(CH3),24.23(CH2),24.42(CH2),30.89(CH2),32.32(CH2),36.43(CH2),46.90(CH2),57.07(CH),60.11(CH),125.92(CH),126.97(CH),128.22(CH),128.39(CH),129.35(CH),137.09(C),139.68(C),142.89(C)
分析条件θ 保持時間:37.2分、40.6分
Reference Example 54 trans-N-tosyl- (2- (2-phenylethylamino) cyclohexylamine)
Reference Examples except that 2-phenylethylamine is used instead of isopropylamine and 7-tosyl-7-azabicyclo [4.1.0] heptane is used instead of 7-oxabicyclo [4.1.0] heptane The same operation was performed as in 1. The obtained crude was used for analysis as it was.
1 H-NMR (300.4 MHz, CDCl 3 ) δ 0.83-0.94 (m, 1H), 1.06-1.25 (m, 3H), 1.57-1.63 (m, 2H) ), 1.97-2.07 (m, 2H), 2.16-2.24 (m, 1H), 2.38 (s, 3H), 2.54-2.69 (m, 4H), 2.78-2.87 (m, 1H), 7.13-7.30 (m, 7H), 7.70 (d, J = 8.11 Hz, 2H)
13 C-NMR (75.45 MHz, CDCl 3 ) δ 21.27 (CH3), 24.23 (CH2), 24.42 (CH2), 30.89 (CH2), 32.32 (CH2), 36. 43 (CH2), 46.90 (CH2), 57.07 (CH), 60.11 (CH), 125.92 (CH), 126.97 (CH), 128.22 (CH), 128.39 (CH), 129.35 (CH), 137.09 (C), 139.68 (C), 142.89 (C)
Analysis conditions θ Retention time: 37.2 minutes, 40.6 minutes

<触媒調製例>
本実施例で使用した触媒は、以下のようにして入手した。
脱脂大豆粉、ペクチン(柑橘類由来)、水溶性大豆多糖類、カボチャ、レンコン、ジャガイモ、ニンジン、小麦胚芽、ウコンは、粉末状に加工されたものを入手した。
キウイ、ブンタン、ナツミカン、花柚子、ニンニク、大豆、ネギ、ピスタチオ、カシューナッツ、茶(紅茶、緑茶)、赤インゲンマメ、エンドウマメなど加工していない植物片は、必要に応じて加温されたデシケーターで乾燥し、約5gを小型粉砕器“粉砕くん”(柴田化学器械工業社製、SCM−40A)にて30秒間粉砕した後、ヘキサン50mLを加えて分散させ、ヘキサンを除去した後、得られた粉末を減圧下乾燥した。
<Example of catalyst preparation>
The catalyst used in this example was obtained as follows.
The defatted soybean powder, pectin (derived from citrus fruits), water-soluble soybean polysaccharide, pumpkin, lotus root, potato, carrot, wheat germ, and turmeric were obtained in the form of powder.
Unprocessed plant pieces, such as kiwi, buntan, nutmegane, flower yuzu, garlic, soybeans, green onions, pistachios, cashew nuts, tea (tea, green tea), red kidney beans, and peas, are desiccator heated as needed. After drying, about 5 g was crushed for 30 seconds with a small crusher “Kaguri-kun” (manufactured by Shibata Kagaku Kikai Kogyo Co., Ltd., SCM-40A), 50 mL of hexane was added and dispersed, and the hexane was removed. The powder was dried under reduced pressure.

<実施例1〜27>
5mLの試験管に、表3に記載の植物加工物100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン48mg、シクロプロピルアミン34mg、水17mgを加えた。密閉し、37℃の温浴で16時間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。なお、カボチャとして「パンプキンパウダー」(こだま食品製)、ジャガイモとして「マッシュポテト」(三木食品製)、ニンジンとして「キャロットパウダー」(こだま食品製)、トマトとして「トマトパウダー」(こだま食品製)、ダイコンとして「乾燥大根おろし」(こだま食品製)、レンコンとして「れんこんパウダー」(こだま食品製)を粉末状に粉砕して使用した。また、ピスタチオは、脱脂した後に粉砕したものを使用した。
*:ペクチンとして、「ペクチン(柑橘類由来)」(関東化学製、Cat No.32536−32)を使用した。
<Examples 1 to 27>
100 mg of the plant product shown in Table 3 was weighed and placed in a 5 mL test tube, and 0.4 mL of toluene, 48 mg of 7-oxabicyclo [4.1.0] heptane, 34 mg of cyclopropylamine, and 17 mg of water were added. The container was sealed and shaken in a warm bath at 37 ° C. for 16 hours. After the reaction, the catalyst was filtered, and the conversion and the selectivity were measured by GC. Pumpkin “Pumpkin Powder” (made by Kodama Foods), potato “Mashed Potato” (made by Miki Foods), carrot “Carrot Powder” (made by Kodama Foods), tomato “Tomato Powder” (made by Kodama Foods), radish "Dried radish" (made by Kodama Foods) and lotus root "Renkon Powder" (made by Kodama Foods) were used after pulverized into powder. The pistachio used was defatted and then pulverized.
*: "Pectin (derived from citrus fruits)" (Kanto Chemical, Cat No. 32536-32) was used as pectin.

結果を表3に示した。実施例1〜27では、立体選択的に化合物(3)が得られた。特に、実施例1,2,11および13は、変換率、立体選択性ともに優れていた。   The results are shown in Table 3. In Examples 1 to 27, compound (3) was stereoselectively obtained. In particular, Examples 1, 2, 11, and 13 were excellent in both conversion rate and stereoselectivity.

実施例28〜47
5mLの試験管に、表4に記載の植物加工物100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン48mg、イソプロピルアミン29mg、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。なお、カボチャとして「パンプキンパウダー」(こだま食品製)、ジャガイモとして「マッシュポテト」(三木食品製)、ニンジンとして「キャロットパウダー」(こだま食品製)、トマトとして「トマトパウダー」(こだま食品製)、ダイコンとして「乾燥大根おろし」(こだま食品製)、レンコンとして「れんこんパウダー」(こだま食品製)を粉末状に粉砕して使用し、ピスタチオは、脱脂した後に粉砕したものを使用した。
Examples 28 to 47
100 mg of the plant product shown in Table 4 was weighed and placed in a 5 mL test tube, and 0.4 mL of toluene, 48 mg of 7-oxabicyclo [4.1.0] heptane, 29 mg of isopropylamine, and 17 mg of water were added. The container was sealed and shaken in a 40 ° C. warm bath for 6 days. After the reaction, the catalyst was filtered, and the conversion and the selectivity were measured by GC. Pumpkin “Pumpkin Powder” (made by Kodama Foods), potato “Mashed Potato” (made by Miki Foods), carrot “Carrot Powder” (made by Kodama Foods), tomato “Tomato Powder” (made by Kodama Foods), radish "Dried radish" (made by Kodama Foods) was used, and lotus root "Renkon Powder" (made by Kodama Foods) was used by pulverizing it into powder.

結果を表4に示した。実施例28〜47では、立体選択的に化合物(3)が得られた。特に、実施例28〜31,33,39,43および46は、変換率、立体選択性ともに優れていた。   The results are shown in Table 4. In Examples 28 to 47, compound (3) was obtained stereoselectively. In particular, Examples 28 to 31, 33, 39, 43, and 46 were excellent in both conversion rate and stereoselectivity.

実施例48〜63
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS―DN)100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン48mg、表5に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Examples 48 to 63
In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soyafive S-DN) is weighed, 0.4 mL of toluene, 48 mg of 7-oxabicyclo [4.1.0] heptane, and the compound (2) shown in Table 5 1.2 eq., 17 mg of water were added. The container was sealed and shaken in a 40 ° C. warm bath for 6 days. After the reaction, the catalyst was filtered, and the conversion and the selectivity were measured by GC.

結果を表5に示した。実施例48〜63では、立体選択的に化合物(3)が収率よく得られた。   Table 5 shows the results. In Examples 48 to 63, compound (3) was obtained in a high yield in a stereoselective manner.

実施例64〜76
5mLの試験管に、ニンジン100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン48mg、表6に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Examples 64 to 76
In a 5 mL test tube, 100 mg of carrot was weighed, and 0.4 mL of toluene, 48 mg of 7-oxabicyclo [4.1.0] heptane, 1.2 equivalents of the compound (2) described in Table 6 and 17 mg of water were added. . The container was sealed and shaken in a 40 ° C. warm bath for 6 days. After the reaction, the catalyst was filtered, and the conversion and the selectivity were measured by GC.

結果を表6に示した。実施例64〜76では、立体選択的に化合物(3)が得られた。特に、実施例69および75は、変換率、立体選択性ともに優れていた。   The results are shown in Table 6. In Examples 64 to 76, compound (3) was obtained stereoselectively. In particular, Examples 69 and 75 were excellent in both conversion rate and stereoselectivity.

実施例77〜88
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS―DN)100mgを量りとり、トルエン0.4mL、6−オキサビシクロ[3.1.0]ヘキサン41mg、表7に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Examples 77 to 88
100 mg of water-soluble soybean polysaccharide (Soyafive S-DN) was weighed and placed in a 5 mL test tube, and 0.4 mL of toluene, 41 mg of 6-oxabicyclo [3.1.0] hexane, and the compound (2) shown in Table 7 were used. 1.2 eq., 17 mg of water were added. The container was sealed and shaken in a 40 ° C. warm bath for 6 days. After the reaction, the catalyst was filtered, and the conversion and the selectivity were measured by GC.

結果を表7に示した。実施例77〜88は全て、立体選択性、収率ともに優れていた。   The results are shown in Table 7. Examples 77 to 88 were all excellent in both stereoselectivity and yield.

実施例89〜100
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS―DN)100mgを量りとり、トルエン0.4mL、3,6−ジオキサビシクロ[3.1.0]ヘキサン42mg、表8に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Examples 89-100
In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soyafive S-DN) was weighed, 0.4 mL of toluene, 42 mg of 3,6-dioxabicyclo [3.1.0] hexane, and the compound shown in Table 8 (2) 1.2 equivalents and 17 mg of water were added. The container was sealed and shaken in a 40 ° C. warm bath for 6 days. After the reaction, the catalyst was filtered, and the conversion and the selectivity were measured by GC.

結果を表8に示した。実施例89〜100は全て、立体選択性、収率ともに優れていた。   Table 8 shows the results. All of Examples 89 to 100 were excellent in both stereoselectivity and yield.

実施例101〜108
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS−DN)100mgを量りとり、トルエン0.4mL、8−オキサビシクロ[5.1.0]オクタン41mg、表9に記載の化合物(2)1.2当量、水17mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。
Examples 101 to 108
In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soyafive S-DN) is weighed, 0.4 mL of toluene, 41 mg of 8-oxabicyclo [5.1.0] octane, and the compound (2) shown in Table 9 1.2 equivalents and 17 mg of water were added. The container was sealed and shaken in a 40 ° C. warm bath for 6 days. After the reaction, the catalyst was filtered, and the conversion and the selectivity were measured by GC.

結果を表9に示した。実施例101〜108は全て、立体選択的に化合物(3)を与えた。特に、実施例107は、変換率、立体選択性ともに優れていた。   The results are shown in Table 9. Examples 101-108 all gave compound (3) stereoselectively. In particular, Example 107 was excellent in both conversion rate and stereoselectivity.

実施例109
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS−DN)1.1gを量りとり、トルエン2.87mL、Cis−2,3−エポキシブタン41mg、シクロプロピルアミン1.2当量、水390mgを加えた。密閉し、40℃の温浴で6日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。その結果、変換率55%、選択率4%eeであった。
Example 109
In a 5 mL test tube, weigh 1.1 g of water-soluble soybean polysaccharide (Soyafive S-DN), add 2.87 mL of toluene, 41 mg of Cis-2,3-epoxybutane, 1.2 equivalents of cyclopropylamine, and 390 mg of water. added. The container was sealed and shaken in a 40 ° C. warm bath for 6 days. After the reaction, the catalyst was filtered, and the conversion and the selectivity were measured by GC. As a result, the conversion was 55% and the selectivity was 4% ee.

実施例110〜114
攪拌機、温度計を装着した1L四つ口フラスコに、大豆加工物70.0g、トルエン198mL、水28.0mL、7−オキサビシクロ[4.1.0]ヘプタン35.0gおよびシクロプロピルアミン24.4gを加え、窒素雰囲気下にて、40℃で撹拌した。各実施例で使用した大豆加工物および反応時間を表1に示した。反応液を少量採取し、ガスクロマトグラフィーを用いて、所定の反応時間における変換率および選択率を算出した。
Examples 110 to 114
In a 1 L four-necked flask equipped with a stirrer and a thermometer, 70.0 g of processed soybean, 198 mL of toluene, 28.0 mL of water, 35.0 g of 7-oxabicyclo [4.1.0] heptane and 35.0 g of cyclopropylamine. 4 g was added, and the mixture was stirred at 40 ° C. under a nitrogen atmosphere. Table 1 shows processed soybean products and reaction times used in the respective examples. A small amount of the reaction solution was sampled, and the conversion and selectivity at a predetermined reaction time were calculated using gas chromatography.

結果を表10に示した。実施例110〜114は全て、立体選択的に化合物(3)を与えた。特に、実施例112〜114は、変換率、立体選択性ともに優れていた。   The results are shown in Table 10. Examples 110-114 all stereoselectively provided compound (3). In particular, Examples 112 to 114 were excellent in both conversion rate and stereoselectivity.

実施例115
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS−DN)100mgを量りとり、トルエン0.4mL、7−オキサビシクロ[4.1.0]ヘプタン100mg、2−プロパンチオール109mg、水17mgを加えた。密閉し、50℃の温浴で5日間振とうした。反応後、触媒をろ過し、GCにて変換率と選択率を測定した。その結果、変換率7%、選択率72%eeであった。
Example 115
In a 5 mL test tube, weigh 100 mg of water-soluble soybean polysaccharide (Soyafive S-DN), add 0.4 mL of toluene, 100 mg of 7-oxabicyclo [4.1.0] heptane, 109 mg of 2-propanethiol, and 17 mg of water. added. The container was sealed and shaken in a 50 ° C warm bath for 5 days. After the reaction, the catalyst was filtered, and the conversion and the selectivity were measured by GC. As a result, the conversion was 7% and the selectivity was 72% ee.

実施例116
5mLの試験管に、水溶性大豆多糖類(ソヤファイブS−DN)100mgを量りとり、トルエン0.4mL、7−トシル−7−アザビシクロ[4.1.0]ヘプタン100mg、2−フェニルエチルアミン58mg、水17mgを加えた。密閉し、50℃の温浴で5日間振とうした。反応後、触媒をろ過し、ろ液を濃縮し、trans−N−トシル(2−(2−フェニルエチルアミノ)シクロヘキシルアミン)の粗体120mgを得た。粗収率81%、選択率4%eeであった。
Example 116
In a 5 mL test tube, 100 mg of water-soluble soybean polysaccharide (Soyafive S-DN) was weighed, and 0.4 mL of toluene, 100 mg of 7-tosyl-7-azabicyclo [4.1.0] heptane, 58 mg of 2-phenylethylamine, 17 mg of water were added. The container was sealed and shaken in a 50 ° C warm bath for 5 days. After the reaction, the catalyst was filtered, and the filtrate was concentrated to obtain 120 mg of a crude product of trans-N-tosyl (2- (2-phenylethylamino) cyclohexylamine). The crude yield was 81% and the selectivity was 4% ee.

実施例117 (1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールの合成
攪拌機、温度計を装着した1L四つ口フラスコに、ソヤファイブS−DN70.0g、トルエン198mL、水28.0mL、7−オキサビシクロ[4.1.0]ヘプタン35.0gおよびシクロプロピルアミン24.4gを加え、窒素雰囲気下にて、40℃で26時間撹拌した。ソヤファイブS−DNを、ヌッチェを用いてろ別し、トルエン140mLで洗浄した。得られたろ液を減圧下にて濃縮し、粗生成物として(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノール58.4g(含量51.0g、64%ee、収率92%)を得た。ここで、含量は、粗生成物のH−NMRスペクトルを測定し、2−(シクロプロピルアミノ)シクロヘキサノールとトルエンとのプロトンの積分比を用いて、粗生成物の質量を基に算出した値である。
攪拌機、温度計を装着した5L四つ口フラスコに、得られた粗生成物の(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノール317.5g(含量272.4g、64%ee)とイソプロパノール2724mLを加え、40℃に昇温した後、フマル酸61.1gと種晶A10mg、活性炭(精製白鷺(日本エンバイロケミカルズ社、商品名))27.2gを加え、30分間静置した。このとき、種晶Aには、ラセミ体の2−シクロプロピルアミノシクロヘキサノールフマル酸塩を用いた。室温まで冷却し、さらに60分間静置した後に、析出したラセミ体の2−(シクロプロピルアミノ)シクロヘキサノールフマル酸塩の結晶および活性炭を、ヌッチェを用いてろ別し、イソプロパノール272mLで結晶を洗浄した。得られたろ液をロータリーエバポレーターで減圧下、濃縮した。得られた(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールにトルエン1498mL、水34.5mLおよび水酸化カリウム40.3gを加えて、フリー体に変換し、トルエン層を分離した。得られたトルエン層を水68mLで3回洗浄し、ロータリーエバポレーターを用いて減圧下にて濃縮し、固形物154.1g(含量135.6g)を得た。攪拌機、温度計を装着した1L四つ口フラスコに、当該固形物154.1g(含量135.6g)とヘプタン407mLを加え、内温25℃に調整し、種晶B135mgを加え、30分間かけて静置した。このとき、種晶Bには、(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールを用いた。さらに、内温10〜15℃で60分間、0℃で60分間静置した後、析出した結晶をろ取した。得られた結晶を0℃のヘプタン68mLで洗浄し、室温で減圧乾燥し、白色の(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールの一次晶103.0g(100%ee)を得た。ろ液はロータリーエバポレーターで減圧下にて濃縮し、一次晶を得た時と同様の操作で二次晶11.0g(100%ee)を得た。粗生成物の(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールから、一次晶および二次晶を合わせた(1R,2R)−2−(シクロプロピルアミノ)シクロヘキサノールの結晶を得る工程の収率は42%であった。
Example 117 Synthesis of (1R, 2R) -2- (cyclopropylamino) cyclohexanol In a 1 L four-necked flask equipped with a stirrer and a thermometer, 70.0 g of Soyafive S-DN, 198 mL of toluene, 28.0 mL of water, 7 -Oxabicyclo [4.1.0] heptane (35.0 g) and cyclopropylamine (24.4 g) were added, and the mixture was stirred at 40 ° C for 26 hours under a nitrogen atmosphere. Soyafive S-DN was filtered off using a Nutsche filter and washed with 140 mL of toluene. The obtained filtrate was concentrated under reduced pressure, and 58.4 g of (1R, 2R) -2- (cyclopropylamino) cyclohexanol (content: 51.0 g, 64% ee, yield: 92%) was obtained as a crude product. Obtained. Here, the content was obtained by measuring the 1 H-NMR spectrum of the crude product and calculating the content based on the mass of the crude product using the integral ratio of protons of 2- (cyclopropylamino) cyclohexanol and toluene. Value.
In a 5 L four-necked flask equipped with a stirrer and a thermometer, 317.5 g of the obtained crude product (1R, 2R) -2- (cyclopropylamino) cyclohexanol (content: 272.4 g, 64% ee) After adding 2724 mL of isopropanol and raising the temperature to 40 ° C., 61.1 g of fumaric acid, 10 mg of seed crystal A, and 27.2 g of activated carbon (purified Shirasagi (Nippon Environmental Chemicals, trade name)) were added, and the mixture was allowed to stand for 30 minutes. At this time, racemic 2-cyclopropylaminocyclohexanol fumarate was used for the seed crystal A. After cooling to room temperature and further standing for 60 minutes, the precipitated crystals of racemic 2- (cyclopropylamino) cyclohexanol fumarate and activated carbon were filtered off with Nutsche and washed with 272 mL of isopropanol. . The obtained filtrate was concentrated under reduced pressure using a rotary evaporator. To the obtained (1R, 2R) -2- (cyclopropylamino) cyclohexanol, 1498 mL of toluene, 34.5 mL of water and 40.3 g of potassium hydroxide were added, and the mixture was converted into a free form, and the toluene layer was separated. The obtained toluene layer was washed three times with 68 mL of water, and concentrated under reduced pressure using a rotary evaporator to obtain 154.1 g of solid (content: 135.6 g). To a 1 L four-necked flask equipped with a stirrer and a thermometer, 154.1 g (content: 135.6 g) of the solid and 407 mL of heptane were added, the internal temperature was adjusted to 25 ° C, and 135 mg of seed crystal B was added. It was left still. At this time, (1R, 2R) -2- (cyclopropylamino) cyclohexanol was used for the seed crystal B. Furthermore, after leaving still at an internal temperature of 10 to 15 ° C. for 60 minutes and at 0 ° C. for 60 minutes, the precipitated crystals were collected by filtration. The obtained crystal was washed with 68 mL of heptane at 0 ° C., and dried under reduced pressure at room temperature to obtain 103.0 g (100% ee) of primary crystals of white (1R, 2R) -2- (cyclopropylamino) cyclohexanol. Was. The filtrate was concentrated under reduced pressure using a rotary evaporator, and 11.0 g (100% ee) of secondary crystals was obtained by the same operation as that for obtaining primary crystals. Step of obtaining (1R, 2R) -2- (cyclopropylamino) cyclohexanol crystals obtained by combining primary and secondary crystals from crude product (1R, 2R) -2- (cyclopropylamino) cyclohexanol Was 42%.

実施例118 光学活性trans−2−(イソプロピルアミノ)シクロヘキサノールの合成
攪拌機、温度計を装着した1L四つ口フラスコに、ソヤファイブS−DN14.4g、ヘプタン36mL、水4.3mL、7−オキサビシクロ[4.1.0]ヘプタン12gおよびイソプロピルアミン8.7gを加え、窒素雰囲気下にて、40℃で49時間撹拌した。ソヤファイブS−DNを、ヌッチェを用いてろ別し、ヘプタン50mLで洗浄した。得られたろ液を減圧下にて濃縮し、再び36mLのヘプタンに溶解し、生じた結晶をろ過した。結晶を5mLのヘプタンで洗浄し、母液を濃縮して、光学活性trans−2−(イソプロピルアミノ)シクロヘキサノール11g(保持時間の長い異性体 82%ee)を得た。
Example 118 Synthesis of optically active trans-2- (isopropylamino) cyclohexanol In a 1 L four-necked flask equipped with a stirrer and a thermometer, 14.4 g of Soyafive S-DN, 36 mL of heptane, 4.3 mL of water, and 7-oxabicyclo were added. [4.1.0] 12 g of heptane and 8.7 g of isopropylamine were added, and the mixture was stirred at 40 ° C. for 49 hours under a nitrogen atmosphere. The soyafive S-DN was filtered off using Nutsche and washed with 50 mL of heptane. The obtained filtrate was concentrated under reduced pressure, dissolved again in 36 mL of heptane, and the generated crystals were filtered. The crystals were washed with 5 mL of heptane, and the mother liquor was concentrated to obtain 11 g of optically active trans-2- (isopropylamino) cyclohexanol (isomer with a long retention time: 82% ee).

実施例119 光学活性trans−2−(プロパルギルアミノ)シクロヘキサノールの合成
攪拌機、温度計を装着した50mL四つ口フラスコに、ソヤファイブS−DN1.2g、ヘプタン3mL、水0.36mL、7−オキサビシクロ[4.1.0]ヘプタン0.858gおよびプロパルギルアミン0.407gを加え、窒素雰囲気下にて、40℃で6日間撹拌した。トルエン3mLを加え攪拌し、ソヤファイブS−DNを、ヌッチェを用いてろ別し、トルエン3mLで洗浄した。得られたろ液を減圧下にて濃縮し、粗生成物として光学活性trans−2−(プロパルギルアミノ)シクロヘキサノール1.19g(45%ee、収率91%)を得た。
攪拌機、温度計を装着した50mL四つ口フラスコに、得られた粗生成物の光学活性trans−2−(プロパルギルアミノ)シクロヘキサノール1.19g(45%ee)とエタノール12mLを加え、40℃に昇温した後、フマル酸0.595gと種晶10mgを加え、30分間静置した。このとき、種晶には、ラセミ体のtrans−2−(プロパルギルアミノ)シクロヘキサノールフマル酸塩を用いた。室温まで冷却し、さらに60分間静置した後に、析出したラセミ体のtrans−2−(プロパルギルアミノ)シクロヘキサノールフマル酸塩の結晶を、ヌッチェを用いてろ別し、エタノール1mLで結晶を洗浄した。得られたろ液をロータリーエバポレーターで減圧下、濃縮した。得られた光学活性trans−2−(プロパルギルアミノ)シクロヘキサノールにトルエン10mL、水1mLおよび水酸化カリウム0.480gを加えて、フリー体に変換し、トルエン層を分離した。得られたトルエン層を水1mLで3回洗浄し、ロータリーエバポレーターを用いて減圧下にて濃縮し、光学活性trans−2−(プロパルギルアミノ)シクロヘキサノール0.440g(90%ee)を得た。この時の通算収率は31%であった。
Example 119 Synthesis of optically active trans-2- (propargylamino) cyclohexanol In a 50 mL four-necked flask equipped with a stirrer and a thermometer, 1.2 g of Soyafive S-DN, 3 mL of heptane, 0.3 mL of water, 0.36 mL of water, and 7-oxabicyclo were added. [4.1.0] 0.858 g of heptane and 0.407 g of propargylamine were added, and the mixture was stirred at 40 ° C for 6 days under a nitrogen atmosphere. Toluene (3 mL) was added and stirred, and Soyafive S-DN was filtered off with a Nutsche filter and washed with 3 mL of toluene. The obtained filtrate was concentrated under reduced pressure to obtain 1.19 g (45% ee, yield: 91%) of optically active trans-2- (propargylamino) cyclohexanol as a crude product.
To a 50 mL four-necked flask equipped with a stirrer and a thermometer, 1.19 g (45% ee) of optically active trans-2- (propargylamino) cyclohexanol of the obtained crude product and 12 mL of ethanol were added, and the mixture was heated to 40 ° C. After the temperature was raised, 0.595 g of fumaric acid and 10 mg of seed crystals were added, and the mixture was allowed to stand for 30 minutes. At this time, racemic trans-2- (propargylamino) cyclohexanol fumarate was used as a seed crystal. After cooling to room temperature and further standing for 60 minutes, the precipitated crystal of racemic trans-2- (propargylamino) cyclohexanol fumarate was filtered off using a Nutsche filter, and the crystal was washed with 1 mL of ethanol. The obtained filtrate was concentrated under reduced pressure using a rotary evaporator. To the obtained optically active trans-2- (propargylamino) cyclohexanol, 10 mL of toluene, 1 mL of water and 0.480 g of potassium hydroxide were added, and the mixture was converted to a free form, and the toluene layer was separated. The obtained toluene layer was washed three times with 1 mL of water, and concentrated under reduced pressure using a rotary evaporator to obtain 0.440 g (90% ee) of optically active trans-2- (propargylamino) cyclohexanol. The total yield at this time was 31%.

Claims (8)

式()で表される化合物

(式中、Xは、−O−または−NR−であり、
Rは、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基、置換基を有してもよいC6−10アリール基、置換基を有してもよいC1−6アルキルカルボニル基、置換基を有してもよいC6−10アリールカルボニル基、置換基を有してもよいC1−6アルキルスルホニル基またはC6−10アリールスルホニル基であり、
およびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、
およびRが互いに結合しており、RおよびRがそれぞれ独立に、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、
前記置換基が、C1−4アルキル基、C2−4アルケニル基、C2−4アルキニル基、C1−4アルコキシ基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子を示す。)と、
式(2)で表される化合物

(式中、Yは、−O−、−NR−または−S−であり、
およびRは、それぞれ独立に、水素原子、置換基を有してもよいC1−6アルキル基、置換基を有してもよいC3−6シクロアルキル基、置換基を有してもよいC2−6アルケニル基、置換基を有してもよいC3−6シクロアルケニル基、置換基を有してもよいC2−6アルキニル基または置換基を有してもよいC6−10アリール基であり、
前記置換基が、C1−4アルコキシ基、C6−10アリール基、アミノ基、イミノ基、ニトロ基、ヒドロキシ基、オキソ基、ニトリル基、メルカプト基またはハロゲン原子であり、または、RおよびRが互いに結合して式(2a)で表される化合物であってもよく、
ただし、式(2)で表される化合物は水または硫化水素ではない。)

(式中、Rは、RおよびRが互いに結合して形成される基を示す。)と、を植物加工物の存在下反応させ、
式()で表される化合物

(式中、X、Y、R 、R および 、前記定義と同一である。)を得る工程を含み、
前記植物が、マメ科、ウルシ科、ミカン科、セリ科、マタタビ科およびネギ科の植物から選択される植物である、式()で表される化合物の製造方法。
Compound represented by the formula ( 1 )

(Wherein, X is -O- or -NR-,
R is a hydrogen atom, a C 1-6 alkyl group which may have a substituent, a C 3-6 cycloalkyl group which may have a substituent, or a C 2-6 alkenyl which may have a substituent. Group, C 3-6 cycloalkenyl group optionally having substituent (s), C 2-6 alkynyl group optionally having substituent (s), C 6-10 aryl group optionally having substituent (s), substituent which may have a C 1-6 alkylcarbonyl group, an optionally substituted C 6-10 arylcarbonyl group, an optionally substituted C 1-6 alkylsulfonyl group or C 6-10 An arylsulfonyl group,
R 1 and R 4 each independently have a hydrogen atom, a C 1-6 alkyl group optionally having a substituent, a C 3-6 cycloalkyl group optionally having a substituent, and a substituent C 2-6 alkenyl group which may be substituted, C 3-6 cycloalkenyl group which may have a substituent, C 2-6 alkynyl group which may have a substituent or C which may have a substituent A 6-10 aryl group,
R 2 and R 3 are bonded to each other, independently of R 2 and R 3 are each an optionally substituted C 1-6 alkyl group, an optionally C 3-6 cycloalkyl which may have a substituent Alkyl group, C 2-6 alkenyl group optionally having substituent (s), C 3-6 cycloalkenyl group optionally having substituent (s), C 2-6 alkynyl group optionally having substituent (s) or substitution A C 6-10 aryl group which may have a group,
The substituent is a C 1-4 alkyl group, a C 2-4 alkenyl group, a C 2-4 alkynyl group, a C 1-4 alkoxy group, an amino group, an imino group, a nitro group, a hydroxy group, an oxo group, a nitrile group; , A mercapto group or a halogen atom. )When,
Compound represented by formula (2)

(Wherein, Y is —O—, —NR 6 — or —S—,
R 5 and R 6 each independently have a hydrogen atom, a C 1-6 alkyl group which may have a substituent, a C 3-6 cycloalkyl group which may have a substituent, and a substituent. C 2-6 alkenyl group which may be substituted, C 3-6 cycloalkenyl group which may have a substituent, C 2-6 alkynyl group which may have a substituent or C which may have a substituent A 6-10 aryl group,
The substituent is a C 1-4 alkoxy group, a C 6-10 aryl group, an amino group, an imino group, a nitro group, a hydroxy group, an oxo group, a nitrile group, a mercapto group or a halogen atom, or R 5 and R 6 may be a compound represented by the formula (2a) by bonding to each other,
However, the compound represented by the formula (2) is not water or hydrogen sulfide. )

(Wherein R 8 represents a group formed by combining R 5 and R 6 with each other) in the presence of a processed plant product,
Compound represented by formula ( 3 )

Wherein X, Y, R 1 , R 2 , R 3 , R 4 and R 5 are the same as defined above,
A method for producing a compound represented by the formula ( 3 ), wherein the plant is a plant selected from a leguminous plant, an auricaceae, an citrus family, an agaricaceae, a bluegrass family, and a leek family.
およびR が水素原子である、請求項1に記載の製造方法。 The production method according to claim 1, wherein R 1 and R 4 are hydrogen atoms . Yが−NR−である、請求項1又は2に記載の製造方法。 The method according to claim 1, wherein Y is —NR 6 —. Yが−O−である、請求項1又は2に記載の製造方法。   The method according to claim 1, wherein Y is —O—. Yが−S−である、請求項1又は2に記載の製造方法。   3. The production method according to claim 1, wherein Y is -S-. 前記植物加工物が、マメ科、ウルシ科、ミカン科、セリ科、マタタビ科およびネギ科の植物から選択される植物を粉砕して調製される、請求項1〜5のいずれか一項に記載の製造方法。   The processed plant product is prepared by crushing a plant selected from a leguminous plant, an urushi family, an citrus family, an agaric family, a blue croaker family, and a green onion plant, according to any one of claims 1 to 5. Manufacturing method. 7−オキサビシクロ[4.1.0]ヘプタンおよびシクロプロピルアミンを、大豆加工物の存在下で反応させて(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールを得る工程を含み、
前記大豆加工物が、きな粉、脱脂大豆粉および水溶性大豆多糖類から選択される少なくとも1つである、(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールの製造方法。
Reacting 7-oxabicyclo [4.1.0] heptane and cyclopropylamine in the presence of a processed soybean product to obtain (1R, 2R) -2-cyclopropylamino-1-cyclohexanol,
The method for producing (1R, 2R) -2-cyclopropylamino-1-cyclohexanol, wherein the processed soybean product is at least one selected from kinako, defatted soybean flour, and water-soluble soybean polysaccharide.
(1) 7−オキサビシクロ[4.1.0]ヘプタンおよびシクロプロピルアミンを、大豆加工物の存在下で反応させて(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールを得る工程と、
(2a) (1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールとカルボニル化試薬を反応させた後に、さらに保護された若しくは保護されていない6−(3−アミノプロポキシ)−2(1H)−キノリノンとを反応させ、または、
(2b) 保護された若しくは保護されていない6−(3−アミノプロポキシ)−2(1H)−キノリノンとカルボニル化試薬を反応させた後に、さらに(1R,2R)−2−シクロプロピルアミノ−1−シクロヘキサノールを反応させ、
保護された6−(3−アミノプロポキシ)−2(1H)−キノリノンを用いた場合は、さらに脱保護を行うことによって、
(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンを得る工程と、を含み、
前記大豆加工物が、きな粉、脱脂大豆粉および水溶性大豆多糖類から選択される少なくとも1つである、(−)−6−〔3−〔3−シクロプロピル−3−〔(1R,2R)−2−ヒドロキシシクロヘキシル〕ウレイド〕−プロポキシ〕−2(1H)−キノリノンの製造方法。
(1) Step of reacting 7-oxabicyclo [4.1.0] heptane and cyclopropylamine in the presence of a processed soybean product to obtain (1R, 2R) -2-cyclopropylamino-1-cyclohexanol When,
(2a) After reacting (1R, 2R) -2-cyclopropylamino-1-cyclohexanol with a carbonylating reagent, further protected or unprotected 6- (3-aminopropoxy) -2 (1H ) -Quinolinone, or
(2b) After reacting the protected or unprotected 6- (3-aminopropoxy) -2 (1H) -quinolinone with a carbonylating reagent, further react (1R, 2R) -2-cyclopropylamino-1. Reacting cyclohexanol,
When a protected 6- (3-aminopropoxy) -2 (1H) -quinolinone is used, further deprotection can be carried out.
Obtaining (-)-6- [3- [3-cyclopropyl-3-[(1R, 2R) -2-hydroxycyclohexyl] ureido] -propoxy] -2 (1H) -quinolinone;
(-)-6- [3- [3-cyclopropyl-3-[(1R, 2R), wherein the processed soybean product is at least one selected from kinako, defatted soybean flour, and water-soluble soybean polysaccharide. 2-hydroxycyclohexyl] ureido] -propoxy] -2 (1H) -quinolinone.
JP2016529335A 2014-06-17 2015-06-15 Method for producing optically active substance Active JP6630667B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014124316 2014-06-17
JP2014124316 2014-06-17
PCT/JP2015/067195 WO2015194508A1 (en) 2014-06-17 2015-06-15 Method for producing optically active substance

Publications (2)

Publication Number Publication Date
JPWO2015194508A1 JPWO2015194508A1 (en) 2017-04-20
JP6630667B2 true JP6630667B2 (en) 2020-01-15

Family

ID=54935494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016529335A Active JP6630667B2 (en) 2014-06-17 2015-06-15 Method for producing optically active substance

Country Status (2)

Country Link
JP (1) JP6630667B2 (en)
WO (1) WO2015194508A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6678442B2 (en) * 2015-12-09 2020-04-08 協和ファーマケミカル株式会社 How to improve catalyst activity
US20230053333A1 (en) 2019-11-21 2023-02-23 Kirin Holdings Kabushiki Kaisha Preparation method of crystal structure analysis sample for structural analysis using crystal sponge method
JPWO2023191088A1 (en) * 2022-03-31 2023-10-05

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103289A (en) * 1994-10-05 1996-04-23 Nisshinbo Ind Inc Production of stereoselective alpha-alkyl-beta-hydroxycarboxylic acid ester with plant cell
JP2964029B2 (en) * 1995-10-05 1999-10-18 大塚製薬株式会社 Carbostyril derivative
EP0978567B1 (en) * 1997-12-29 2005-03-09 Sanyo Shokuhin Co., Ltd. Process for producing optically active alcohols
WO2003012126A2 (en) * 2001-08-03 2003-02-13 Diversa Corporation Epoxide hydrolases, nucleic acids encoding them and methods for making and using them
JP2003206266A (en) * 2002-01-08 2003-07-22 Mitsubishi Chemicals Corp Method for producing optically active trans-2-amino-1- cycloalkanol compound
JP4648691B2 (en) * 2004-12-02 2011-03-09 長瀬産業株式会社 Method for producing optically active compound
JP5248676B2 (en) * 2009-05-22 2013-07-31 サンヨー食品株式会社 Protein complex having asymmetric oxidation reaction and method for producing the same

Also Published As

Publication number Publication date
JPWO2015194508A1 (en) 2017-04-20
WO2015194508A1 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
KR960011716B1 (en) Derivatives of aryloxycarbonic acids, their preparation and their use
JP6630667B2 (en) Method for producing optically active substance
CN1193983C (en) Acylacetonitriles, process for preparation thereof and miticides containing the same
JPS62289553A (en) Polysubstituted butyric acid and threosteric isomer of esterthereof
JPS5879964A (en) Optically active n-(1&#39;-methyl-2&#39;-methoxyethyl)- n-chloroacetyl-2-ethyl-6-methylaniline, manufacture and herbicidal composition
HUE033642T2 (en) Novel processes for the preparation of prostaglandin amides
JP2013531035A (en) Lamarine synthesis method
US10040775B2 (en) Synthesis of chirally enriched 2,4-disubstituted tetrahydropyran-4-ol and its derivatives
CN103509012B (en) Phenanthroindolizididerivative pyridine alkaloid C14 position amination derivative and preparation thereof and anti-phytoviral activity
US9598346B2 (en) Enantioselective process for the preparation of enantiomers of sex pheromones
JP6678442B2 (en) How to improve catalyst activity
US3739024A (en) Production of alphachlorothioamide derivatives
CN104961704B (en) (the oxa- 2H benzos of 6 nitro 3 [hydroxyl of 1,4] oxazines 7) cyclohexadione compounds of hexamethylene 1,3 and activity of weeding containing 2
TWI415842B (en) New process
Reddy et al. Synthesis and Antibacterial Activity of Urea and hiourea Derivatives at C-8 Alkyl Chain of Anacardic Acid Mixture Isolated from a Natural Product Cashew Nut Shell Liquid (CNSL)
AU2008358758A1 (en) A process for preparing atovaquone and associate intermediates
Yamano et al. Versatile amine-promoted mild methanolysis of 3, 5-dinitrobenzoates and its application to the synthesis of colorado potato beetle pheromone
JP3303887B2 (en) Acylated aminophenol derivative
EP0496369A1 (en) Process for the preparation of racemic and optically active-1,2,3,4-tetrahydro isoquinoline 3-carboxylic acid and its precursors
JP4696588B2 (en) Capsinoid production method and stabilization method, and capsinoid composition
FR2362123A1 (en) PROCESS FOR PREPARING ORGANIC ISOCYANATES, BY TERT-ALKYL-URETHANN REACTION WITH PHOSGENE AND PRODUCTS OBTAINED
Salayová et al. Stereoselective synthesis of 1-methoxyspiroindoline phytoalexins and their amino analogues
AU2021337531A1 (en) Dithiophosphate derivatives as hydrogen sulfide release chemicals for improving plant growth and crop yield
JP2006036729A (en) Method for producing optically active alcohol derivative
JP2023513185A (en) Process for preparing S-beflubutamide by removing 2-bromobutanoic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6630667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250