JP2017101453A - Water content adjustment method of soil material - Google Patents

Water content adjustment method of soil material Download PDF

Info

Publication number
JP2017101453A
JP2017101453A JP2015235119A JP2015235119A JP2017101453A JP 2017101453 A JP2017101453 A JP 2017101453A JP 2015235119 A JP2015235119 A JP 2015235119A JP 2015235119 A JP2015235119 A JP 2015235119A JP 2017101453 A JP2017101453 A JP 2017101453A
Authority
JP
Japan
Prior art keywords
fine
coarse
moisture content
grained
grained material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015235119A
Other languages
Japanese (ja)
Other versions
JP6585484B2 (en
Inventor
青野 隆
Takashi Aono
隆 青野
勝利 藤崎
Katsutoshi Fujisaki
勝利 藤崎
恭伸 奈須野
Kyonobu Nasuno
恭伸 奈須野
良和 宮内
Yoshikazu Miyauchi
良和 宮内
清 加納
Kiyoshi Kano
清 加納
浩一 増村
Koichi Masumura
浩一 増村
小林 弘明
Hiroaki Kobayashi
弘明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2015235119A priority Critical patent/JP6585484B2/en
Publication of JP2017101453A publication Critical patent/JP2017101453A/en
Application granted granted Critical
Publication of JP6585484B2 publication Critical patent/JP6585484B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a water content adjustment method of soil material, which contains a fine grain material and a coarse grain material, capable of efficiently and properly adjusting the water content rate therein.SOLUTION: A water content adjustment method of soil material in an embodiment is a method of adjusting the water content rate in a soil material for manufacturing a soil material M using aground material B which is obtained by excavation. The method of adjusting the water content in a soil material includes the steps of: sorting a ground material B into a fine grain material M1 and a coarse grain material M2 for predetermined period and exposing the same to the atmosphere; mixing the fine grain material M1 and the coarse grain material M2 which have been exposed to the atmosphere for predetermined period; and heating the mixed fine grain material M1 and the coarse grain material M2.SELECTED DRAWING: Figure 6

Description

本発明は、構造物の造成に用いられる土質材料の含水率調整方法による土質材料の製造に関する。   The present invention relates to the production of a soil material by a method for adjusting the moisture content of the soil material used for constructing a structure.

特開2007−255807号公報には、水分を含む汚泥、粘土、石炭、石灰石又はスラグ等の固体粒状物を乾燥及び撹拌させる撹拌乾燥装置が記載されている。この撹拌乾燥装置は、上側に配置された撹拌室と、下側に配置された送風室と、を備える。撹拌室の上端には、原料の供給口が設けられ、撹拌室の内部には、棒状のパドル軸を中心として回転する複数のパドルが配置されている。供給口から供給された原料は、撹拌室内で複数のパドルによって撹拌された後、撹拌室の側面に設けられた取出口から排出される。   Japanese Patent Application Laid-Open No. 2007-255807 describes a stirring and drying device that dries and stirs solid particulates such as sludge containing moisture, clay, coal, limestone, or slag. This agitation drying apparatus includes an agitation chamber disposed on the upper side and an air blowing chamber disposed on the lower side. A raw material supply port is provided at the upper end of the stirring chamber, and a plurality of paddles rotating around a rod-shaped paddle shaft are arranged inside the stirring chamber. The raw material supplied from the supply port is stirred by a plurality of paddles in the stirring chamber and then discharged from an outlet provided on the side surface of the stirring chamber.

一方、送風室の側面の下端には、熱ガスを送風室に導入するガス導入口が設けられ、送風室の上端には、撹拌室と送風室とを仕切ると共に、下からの熱ガスを通過させることが可能なガス分散板が配置されている。ガス導入口から導入された熱ガスは、ガス分散板を通過して撹拌室に入り込み、撹拌室で撹拌されている原料を乾燥させる。こうして、原料の乾燥のために導入された熱ガスは、撹拌室の上端に位置するガス排出口から排出される。   On the other hand, a gas introduction port for introducing hot gas into the blower chamber is provided at the lower end of the side surface of the blower chamber, and the agitator chamber and the blower chamber are partitioned at the upper end of the blower chamber and the hot gas from below passes therethrough. A gas dispersion plate that can be made to flow is disposed. The hot gas introduced from the gas introduction port passes through the gas dispersion plate and enters the stirring chamber, and dries the raw material stirred in the stirring chamber. Thus, the hot gas introduced for drying the raw material is discharged from the gas discharge port located at the upper end of the stirring chamber.

特開2007−255807号公報JP 2007-255807 A

ところで、ダム等の構造物を造成するときに用いられる土質材料として、自然界に存在しない材料が用いられる場合もある。このような場合に、土質材料として、比較的粒径が小さい細粒材と、細粒材よりも粒径が大きい粗粒材と、を混合した材料を用いることがある。このような土質材料を用いるときには、細粒材と粗粒材との混合比率及び含水率を適切に調整することが重要である。   By the way, a material that does not exist in nature may be used as a soil material used when constructing a structure such as a dam. In such a case, a material obtained by mixing a fine-grained material having a relatively small particle diameter and a coarse-grained material having a larger particle diameter than the fine-grained material may be used as the soil material. When such a soil material is used, it is important to appropriately adjust the mixing ratio and moisture content of the fine and coarse particles.

特に、細粒材及び粗粒材の含水率の調整は重要であり、細粒材及び粗粒材を土質材料として用いる場合には、その土質材料の含水率を最適含水率に近づける必要がある。ここで、最適含水率とは、一定の方法で土質材料を締め固めたときに、最もよく締め固められる土質材料の含水率を示している。この土質材料の含水率が最適含水率に近い場合には、土質材料の密度を高めることができると共に土質材料の締固めを良好に行うことができ、土質材料としての品質を高めることが可能となる。また、一般的に、細粒材及び粗粒材の含水率は、最適含水率よりも高いことが多く、乾燥させて含水率を低減させることが必要な場合がある。更に、ダム等の構造物を造成するときには、大量の土質材料が必要となるので、細粒材及び粗粒材の含水率の調整を効率よく且つ適切に行うことが求められる。   In particular, it is important to adjust the moisture content of the fine-grained material and coarse-grained material, and when the fine-grained material and coarse-grained material are used as the soil material, the moisture content of the soil material needs to be close to the optimum moisture content. . Here, the optimal moisture content indicates the moisture content of the soil material that is best compacted when the soil material is compacted by a certain method. When the moisture content of the soil material is close to the optimum moisture content, the density of the soil material can be increased and the soil material can be compacted well, and the quality of the soil material can be increased. Become. In general, the moisture content of fine and coarse particles is often higher than the optimum moisture content, and it may be necessary to reduce the moisture content by drying. Furthermore, when constructing a structure such as a dam, a large amount of soil material is required. Therefore, it is required to efficiently and appropriately adjust the moisture content of fine and coarse particles.

本発明は、細粒材及び粗粒材の含水率の調整を効率よく且つ適切に行うことができる土質材料の含水率調整方法を提供することを目的とする。   An object of the present invention is to provide a method for adjusting the moisture content of a soil material that can efficiently and appropriately adjust the moisture content of fine and coarse particles.

本発明に係る土質材料の含水率調整方法は、掘削して得られる地盤材料から土質材料を製造する土質材料の含水率調整方法であって、地盤材料を細粒材と粗粒材とに分別して、それぞれを所定期間曝す工程と、所定期間曝された細粒材及び粗粒材を混合する工程と、混合された細粒材及び粗粒材を加熱する工程と、を備える。   The method for adjusting the moisture content of a soil material according to the present invention is a method for adjusting the moisture content of a soil material for producing a soil material from a ground material obtained by excavation, wherein the soil material is divided into fine and coarse particles. Separately, a step of exposing each of them for a predetermined period, a step of mixing the fine-grained material and the coarse-grained material exposed for a predetermined period of time, and a step of heating the mixed fine-grained material and the coarse-grained material are provided.

この土質材料の含水率調整方法では、地盤材料から分別された細粒材及び粗粒材のそれぞれは所定期間曝されることになる。このとき、粗粒材の粒径は細粒材の粒径よりも大きいので、所定期間曝している段階では、粗粒材の方が細粒材よりも粒子間の空隙が大きくて通気性がよいので乾きやすく含水率が低減しやすい。よって、分別された細粒材と粗粒材のそれぞれを所定期間曝すことにより、このときには特に粗粒材の含水率を低減させることができる。また、所定期間曝された細粒材及び粗粒材は、混合された状態で加熱される。このとき、より乾いた粗粒材と、細粒材とが混合された状態で加熱されるので、細粒材のみが加熱される場合よりも、効率よく細粒材及び粗粒材を乾燥させることができる。すなわち、乾いていて含水率が低い粗粒材に細粒材を混合させて加熱を行うことにより、細粒材に含まれた水分の気化を効率よく且つ適切に促進させることができる。よって、大量の土質材料が必要な場合であっても、細粒材及び粗粒材の含水率の調整を効率よく且つ適切に行うことができる。   In this method of adjusting the moisture content of the soil material, each of the fine grain material and coarse grain material separated from the ground material is exposed for a predetermined period. At this time, since the particle size of the coarse-grained material is larger than the particle size of the fine-grained material, the coarse-grained material has a larger gap between the particles than the fine-grained material and the air permeability is higher than the fine-grained material. Because it is good, it is easy to dry and moisture content is easy to reduce. Therefore, the moisture content of the coarse-grained material can be particularly reduced at this time by exposing each of the separated fine-grained material and coarse-grained material for a predetermined period. Further, the fine-grained material and the coarse-grained material exposed for a predetermined period are heated in a mixed state. At this time, since the dried coarse-grained material and the fine-grained material are heated in a mixed state, the fine-grained material and the coarse-grained material are dried more efficiently than when only the fine-grained material is heated. be able to. That is, by mixing and heating a fine-grained material to a coarse-grained material that is dry and having a low moisture content, the vaporization of moisture contained in the fine-grained material can be promoted efficiently and appropriately. Therefore, even when a large amount of soil material is required, the moisture content of the fine and coarse particles can be adjusted efficiently and appropriately.

また、地盤材料を細粒材と粗粒材に分級することによって前述の分別を行ってもよい。この場合、分級によって分別された細粒材と粗粒材のそれぞれに、前述の処理が施されるので、細粒材及び粗粒材の含水率の調整を効率よく且つ適切に行うことができる。   Moreover, you may perform the above-mentioned classification by classifying a ground material into a fine grain material and a coarse grain material. In this case, since the above-mentioned processing is performed on each of the fine-grained material and coarse-grained material classified by classification, the moisture content of the fine-grained material and coarse-grained material can be adjusted efficiently and appropriately. .

また、所定期間曝す工程の後において、細粒材の含水率と粗粒材の含水率とを比較する工程を備え、比較する工程において、細粒材の含水率が粗粒材の含水率以上である場合には、混合する工程と加熱する工程を実行し、比較する工程において、細粒材の含水率が粗粒材の含水率以上でない場合には、加熱する工程を実行しなくてもよい。この場合、細粒材の含水率と粗粒材の含水率との比較を行って、細粒材の含水率が粗粒材の含水率以上である場合には、加熱する工程を実行する。このように細粒材の含水率が高い場合には、土質材料全体としても水分が多いので、加熱によって含水率を低減させることにより土質材料の品質を高めることができる。一方、細粒材の含水率が低い場合には、土質材料全体としても水分が少ないので、加熱を行う必要がない。このように、含水率の比較を行い、その結果を用いて加熱の要否を決定することができるので、含水率の調整をより適切に行うことができる。   In addition, after the step of exposing for a predetermined period, a step of comparing the moisture content of the fine-grained material and the moisture content of the coarse-grained material is provided, and in the comparing step, the moisture content of the fine-grained material is equal to or higher than the moisture content of the coarse-grained material. In the case where the water content of the fine-grained material is not equal to or higher than the water content of the coarse-grained material in the step of comparing and performing the step of mixing and heating, the step of heating need not be performed. Good. In this case, the moisture content of the fine-grained material is compared with the moisture content of the coarse-grained material. If the moisture content of the fine-grained material is equal to or higher than the moisture content of the coarse-grained material, a heating step is executed. Thus, when the moisture content of the fine-grained material is high, the soil material as a whole has a large amount of moisture. Therefore, the quality of the soil material can be improved by reducing the moisture content by heating. On the other hand, when the moisture content of the fine-grained material is low, there is little moisture in the entire soil material, so heating is not necessary. Thus, since the moisture content can be compared and the necessity of heating can be determined using the result, the moisture content can be adjusted more appropriately.

また、加熱する工程では、細粒材及び粗粒材を撹拌混合させながら細粒材及び粗粒材を加熱してもよい。この場合、細粒材及び粗粒材を撹拌混合させながら細粒材及び粗粒材を加熱しており、撹拌混合によって細粒材及び粗粒材に含まれる水分の気化を促進させることができるので、含水率を効率よく低減させることができる。   In the heating step, the fine-grained material and the coarse-grained material may be heated while stirring and mixing the fine-grained material and the coarse-grained material. In this case, the fine-grained material and the coarse-grained material are heated while stirring and mixing the fine-grained material and the coarse-grained material, and the vaporization of water contained in the fine-grained material and the coarse-grained material can be promoted by stirring and mixing. Therefore, the moisture content can be reduced efficiently.

また、上記作用効果を好適に奏する方法として、具体的には、前述の加熱する工程は、温風を当てる工程である、という方法が挙げられる。   In addition, as a method for suitably exhibiting the above-described effects, specifically, there is a method in which the above-described heating step is a step of applying warm air.

また、細粒材及び粗粒材を混合する工程は、傾斜して配置された筒体の内部で行われ、細粒材及び粗粒材を混合する工程では、細粒材及び粗粒材を筒体内で混合しながら、細粒材及び粗粒材を筒体の上方から下方に移動させ、温風を当てる工程では、筒体の下方から筒体内の細粒材及び粗粒材に向かって温風を当ててもよい。この場合、混合された細粒材及び粗粒材が上方から筒体内に導入されると共に、筒体内の細粒材及び粗粒材には、筒体の下方から温風が当てられる。従って、細粒材及び粗粒材が筒体内で上方から下方に流れると共に、温風は筒体内で下方から上方に流れる。よって、細粒材及び粗粒材に対する温風の相対速度を高めることができるので、温風による含水率の低減を一層効率よく行うことができる。   In addition, the step of mixing the fine-grained material and the coarse-grained material is performed inside the cylindrical body arranged at an inclination. In the step of mixing the fine-grained material and the coarse-grained material, the fine-grained material and the coarse-grained material are While mixing in the cylinder, the fine and coarse particles are moved from the upper side of the cylinder to the lower side, and in the step of applying warm air, the lower part of the cylinder is directed toward the fine and coarse particles in the cylinder. Hot air may be applied. In this case, the mixed fine particle material and coarse particle material are introduced into the cylinder from above, and hot air is applied to the fine particle material and coarse particle material in the cylinder from below the cylinder. Accordingly, fine and coarse particles flow from the upper side to the lower side in the cylinder, and warm air flows from the lower side to the upper side in the cylinder. Therefore, since the relative speed of the warm air with respect to the fine-grained material and the coarse-grained material can be increased, the moisture content by the warm air can be reduced more efficiently.

本発明によれば、細粒材及び粗粒材の含水率の調整を効率よく且つ適切に行うことができる土質材料の含水率調整方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the moisture content adjustment method of the soil material which can adjust the moisture content of a fine grain material and a coarse grain material efficiently and appropriately can be provided.

実施形態に係る土質材料の含水率調整方法を含む土質材料の製造方法で得られた土質材料によって構築されたロックフィルダムを示す断面図である。It is sectional drawing which shows the rock fill dam constructed | assembled by the soil material obtained with the manufacturing method of the soil material including the moisture content adjusting method of the soil material which concerns on embodiment. 土質材料における含水率と乾燥密度との関係を示すグラフである。It is a graph which shows the relationship between the moisture content in a soil material, and a dry density. 実施形態に係る土質材料製造装置を示す側面図である。It is a side view which shows the soil material manufacturing apparatus which concerns on embodiment. 図3の土質材料製造装置における筒部の内側面を示す展開図である。It is an expanded view which shows the inner surface of the cylinder part in the soil material manufacturing apparatus of FIG. 図4の筒部の内部において撹拌及び温風の供給を行っている状態を示す図である。It is a figure which shows the state which is stirring and supply of warm air in the inside of the cylinder part of FIG. 図1に示される土質材料が得られるまでの工程を、各装置を簡略化して示した図である。It is the figure which simplified and showed each apparatus until the soil material shown by FIG. 1 is obtained. 実施形態に係る土質材料の含水率調整方法を含む土質材料の製造方法の各工程を示すフローチャートである。It is a flowchart which shows each process of the manufacturing method of the soil material containing the moisture content adjusting method of the soil material which concerns on embodiment. 図7の各工程を経て得られた土質材料の性状(粒径加積曲線)を示すグラフである。It is a graph which shows the property (particle diameter accumulation curve) of the soil material obtained through each process of FIG.

以下、図面を参照しながら本発明に係る土質材料の含水率調整方法を含む土質材料の製造方法の実施形態について説明する。本発明に係る土質材料の含水率調整方法は、下記の実施形態の土質材料の含水率調整方法に限定されず適宜変更可能である。また、下記の説明において、同一又は相当する要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, embodiments of a method for producing a soil material including a method for adjusting the moisture content of the soil material according to the present invention will be described with reference to the drawings. The method for adjusting the moisture content of the soil material according to the present invention is not limited to the method for adjusting the moisture content of the soil material of the following embodiment, and can be changed as appropriate. Moreover, in the following description, the same code | symbol is attached | subjected to the element which is the same or it corresponds, and the overlapping description is abbreviate | omitted.

まず、図1に示されるように、本実施形態に係る含水率調整方法を含む土質材料の製造方法で得られた土質材料Mは、例えば、中央遮水壁型のロックフィルダムDの遮水壁Wとして用いられる。ロックフィルダムDは、この遮水壁Wと、遮水壁Wの両側に位置するフィルタ層Fと、フィルタ層Fの更に両側に位置するロック層Rと、を備えている。遮水壁Wは、コア部と称される部位であり、高い遮水性を具備する粘土状となっている。フィルタ層Fは、遮水壁Wを両側から支える砂又は砂利の層であり、ロック層Rは、フィルタ層Fを両側から支える岩石の層である。ロックフィルダムDでは、遮水壁Wにおいて高い遮水性能を発揮すると共に、ロックフィルダムDの盛立面D1においてフィルタ層F及びロック層Rにより高い安定性が確保されている。   First, as shown in FIG. 1, the soil material M obtained by the soil material manufacturing method including the moisture content adjusting method according to the present embodiment is, for example, a water-impervious wall of a rock-fill dam D of a central impermeable wall type. Used as W. The rockfill dam D includes the impermeable wall W, a filter layer F located on both sides of the impermeable wall W, and a lock layer R located on both sides of the filter layer F. The water-impervious wall W is a part called a core part, and has a clay shape with high water-imperviousness. The filter layer F is a sand or gravel layer that supports the impermeable wall W from both sides, and the rock layer R is a rock layer that supports the filter layer F from both sides. In the rock fill dam D, high water shielding performance is exhibited in the water shielding wall W, and high stability is ensured by the filter layer F and the rock layer R on the rising surface D1 of the rock fill dam D.

前述のロックフィルダムDにおいて、遮水壁Wを構成する土質材料Mでは、高い遮水性能が求められ、土質材料Mの品質は厳しく管理される。また、土質材料Mとしては、自然界に存在しない材料が用いられる。土質材料Mは、その粒径が比較的小さい細粒材M1(図5参照)と、細粒材M1よりも粒径が大きい粗粒材M2と、が混合されることにより製造される。ここで、例えば、細粒材M1は、その粒径が所定値以下である細粒分が50%以上含まれる材料を示し、粗粒材M2は、その粒径が所定値より大きい粗粒分が50%以上含まれる材料を示している。   In the above-described rockfill dam D, the soil material M constituting the water-impervious wall W is required to have high water-blocking performance, and the quality of the soil material M is strictly controlled. As the soil material M, a material that does not exist in nature is used. The soil material M is manufactured by mixing a fine grain material M1 (see FIG. 5) having a relatively small particle diameter and a coarse grain material M2 having a larger particle diameter than the fine grain material M1. Here, for example, the fine particle material M1 indicates a material containing 50% or more of fine particles whose particle size is equal to or smaller than a predetermined value, and the coarse particle material M2 indicates a coarse particle content whose particle size is larger than a predetermined value. Indicates a material containing 50% or more.

ここで、細粒材M1と粗粒材M2については、土の粒度試験(JIS−A−1204)で求められる粒径加積曲線により求めることができる。粒径加積曲線の一例を図8に示している。この図8に示されるように、細粒材M1は、粗粒材M2と比較して所定の粒径における通過質量百分率が大きいもの、と定義することも可能である。また、所定のふるい分け試験(JIS−A−1102)及びJIS−A−1102で規定される大きさの網ふるいに新たな網ふるいを追加したふるい分けの結果から求められる粗粒率により求めることもできる。更に、細粒材M1は、粗粒材M2と比較して粗粒率が低いものと定義してもよい。   Here, about the fine grain material M1 and the coarse grain material M2, it can obtain | require with the particle size accumulation curve calculated | required by the particle size test (JIS-A-1204) of soil. An example of the particle size accumulation curve is shown in FIG. As shown in FIG. 8, the fine-grained material M1 can also be defined as having a larger passing mass percentage at a predetermined particle size than the coarse-grained material M2. Moreover, it can also obtain | require with the coarse-grain rate calculated | required from the result of the screening which added the new screen sieve to the screen sieve of the magnitude | size prescribed | regulated by a predetermined screening test (JIS-A-1102) and JIS-A-1102. . Further, the fine grain material M1 may be defined as having a lower coarse grain ratio than the coarse grain material M2.

土質材料Mでは、その細粒材M1及び粗粒材M2の混合比率、及び細粒材M1及び粗粒材M2の含水率が適切に調整されていることが重要である。また、図2に示されるように、土質材料Mの含水率は、最適含水率Rmaxに近づける必要がある。土質材料Mの含水率を最適含水率Rmaxに近づけることにより、土質材料Mの乾燥密度(土質材料Mの土粒子の密度)を高くすることができ、土質材料Mの締固めを良好に行うと共に土質材料Mとしての品質を高めることが可能となる。   In the soil material M, it is important that the mixing ratio of the fine grain material M1 and the coarse grain material M2 and the moisture content of the fine grain material M1 and the coarse grain material M2 are appropriately adjusted. Further, as shown in FIG. 2, the moisture content of the soil material M needs to be close to the optimum moisture content Rmax. By bringing the moisture content of the soil material M close to the optimum moisture content Rmax, the dry density of the soil material M (the density of soil particles of the soil material M) can be increased, and the soil material M can be compacted well. It becomes possible to improve the quality as the soil material M.

ここで、土質材料Mの含水率を最適含水率Rmaxに近づける具体例として、例えば、土質材料Mの乾燥密度をr×Dmax以上とする例が挙げられる。Dmaxは、含水率が最適含水率Rmaxであるときの最大乾燥密度を示しており、rは1未満であって且つ1に近い任意の割合を示しており、例えば0.9である。乾燥密度がr×Dmaxであるときに含水率は、最適含水率Rmaxより若干小さいRa、又は最適含水率Rmaxより若干大きいRb、となり、土質材料Mの含水率をRa以上且つRb以下とすることが考えられる。   Here, as a specific example of bringing the moisture content of the soil material M close to the optimum moisture content Rmax, for example, an example in which the dry density of the soil material M is set to r × Dmax or more is given. Dmax indicates the maximum dry density when the water content is the optimum water content Rmax, and r indicates an arbitrary ratio that is less than 1 and close to 1, for example, 0.9. When the dry density is r × Dmax, the moisture content is Ra slightly smaller than the optimum moisture content Rmax, or Rb slightly larger than the optimum moisture content Rmax, and the moisture content of the soil material M should be Ra above and below Rb. Can be considered.

次に、図3を参照しながら、含水率を調整しつつ、細粒材M1及び粗粒材M2から土質材料Mを製造する土質材料製造装置1について説明する。この土質材料製造装置1では、細粒材M1及び粗粒材M2の混合と、細粒材M1及び粗粒材M2の含水率の調整と、が行われる。図3に示されるように、土質材料製造装置1は、細粒材M1及び粗粒材M2が供給されるホッパ2a,2b,2cと、ホッパ2cに供給された細粒材M1及び粗粒材M2を斜め上方に搬送するコンベア3と、コンベア3の上端から斜め下方に延びるミキサ4と、下方からミキサ4の内部に温風Hを供給する温風供給装置5と、を備えている。   Next, the soil material manufacturing apparatus 1 that manufactures the soil material M from the fine-grained material M1 and the coarse-grained material M2 while adjusting the water content will be described with reference to FIG. In this soil material manufacturing apparatus 1, mixing of the fine grain material M1 and the coarse grain material M2 and adjustment of the moisture content of the fine grain material M1 and the coarse grain material M2 are performed. As shown in FIG. 3, the soil material manufacturing apparatus 1 includes hoppers 2a, 2b, and 2c to which fine-grained material M1 and coarse-grained material M2 are supplied, and fine-grained material M1 and coarse-grained material supplied to the hopper 2c. A conveyor 3 that conveys M2 obliquely upward, a mixer 4 that extends obliquely downward from the upper end of the conveyor 3, and a hot air supply device 5 that supplies hot air H to the inside of the mixer 4 from below are provided.

ホッパ2a,2b,2cは、上方に向かうに従って徐々に拡径する漏斗状に形成されている。ホッパ2a及びホッパ2bのそれぞれには、所定の割合とされた細粒材M1と粗粒材M2とが供給される。ここで、所定の割合とは、遮水壁Wの盛土材として使用される土質材料Mに求められる透水性能を考慮して定められる細粒材M1と粗粒材M2の割合である。本実施形態において、所定の割合は、例えば、細粒材M1:粗粒材M2=1:2である。   The hoppers 2a, 2b, and 2c are formed in a funnel shape that gradually increases in diameter toward the top. Each of the hopper 2a and the hopper 2b is supplied with a fine grain material M1 and a coarse grain material M2 having a predetermined ratio. Here, the predetermined ratio is a ratio of the fine-grained material M1 and the coarse-grained material M2 determined in consideration of the water permeability required for the soil material M used as the embankment material of the impermeable wall W. In the present embodiment, the predetermined ratio is, for example, a fine grain material M1: a coarse grain material M2 = 1: 2.

土質材料製造装置1は、更に、ホッパ2a,2bの下側に、細粒材M1及び粗粒材M2の含水率を測定する含水率測定装置6a,6bを備えており、ホッパ2cの下側には含水率測定装置6cが設けられている。ホッパ2a,2bに供給された細粒材M1と粗粒材M2は、それぞれホッパ2a,2bの内部で流下し、各含水率測定装置6a,6bによって細粒材M1と粗粒材M2の含水率が測定される。   The soil material manufacturing apparatus 1 further includes moisture content measuring devices 6a and 6b for measuring the moisture content of the fine grain material M1 and the coarse grain material M2 below the hoppers 2a and 2b. Is provided with a moisture content measuring device 6c. The fine-grained material M1 and the coarse-grained material M2 supplied to the hoppers 2a and 2b flow down inside the hoppers 2a and 2b, respectively, and the moisture content measuring devices 6a and 6b respectively contain the fine-grained material M1 and the coarse-grained material M2. The rate is measured.

含水率測定装置6a,6bは、ホッパ2a,2bに通された細粒材M1及び粗粒材M2の含水率を測定する。含水率測定装置6a,6bは、例えば、赤外線含水率測定装置であり、細粒材M1及び粗粒材M2のそれぞれに赤外線を照射し、これによる細粒材M1及び粗粒材M2のそれぞれからの反射赤外線を検出することによって、細粒材M1及び粗粒材M2の含水率をリアルタイムで測定する。このように、含水率測定装置6a,6bでは、非接触で細粒材M1及び粗粒材M2の含水率を測定することが可能となっている。   The moisture content measuring devices 6a and 6b measure the moisture content of the fine grain material M1 and the coarse grain material M2 passed through the hoppers 2a and 2b. The moisture content measuring devices 6a and 6b are, for example, infrared moisture content measuring devices, which irradiate each of the fine-grained material M1 and the coarse-grained material M2 with infrared rays, and thereby from each of the fine-grained material M1 and the coarse-grained material M2. By detecting the reflected infrared rays, the moisture content of the fine grain material M1 and the coarse grain material M2 is measured in real time. Thus, the moisture content measuring devices 6a and 6b can measure the moisture content of the fine-grained material M1 and the coarse-grained material M2 in a non-contact manner.

ホッパ2a,2bを流下した細粒材M1及び粗粒材M2は、ホッパ2cに合流し、その後、例えば含水率測定装置6cの対向位置に配置される。この含水率測定装置6cは、前述の含水率測定装置6a,6bと同様に、細粒材M1及び粗粒材M2の含水率を測定可能である。なお、ホッパ2a,2b,2c及び含水率測定装置6a,6b,6cの数及び配置場所は、前述の例に限定されず、適宜変更可能である。例えば、ホッパ2a,2bに通される前に、含水率測定装置6a,6b,6cと同様の含水率測定装置が細粒材M1及び粗粒材M2の含水率を測定してもよい。   The fine-grained material M1 and the coarse-grained material M2 that have flowed down the hoppers 2a and 2b merge into the hopper 2c, and then, for example, are arranged at a position facing the moisture content measuring device 6c. This moisture content measuring device 6c can measure the moisture content of the fine-grained material M1 and the coarse-grained material M2 in the same manner as the moisture content measuring devices 6a and 6b described above. Note that the number and location of the hoppers 2a, 2b, 2c and the moisture content measuring devices 6a, 6b, 6c are not limited to the above-described examples, and can be changed as appropriate. For example, before being passed through the hoppers 2a and 2b, a moisture content measuring device similar to the moisture content measuring devices 6a, 6b, and 6c may measure the moisture content of the fine-grained material M1 and the coarse-grained material M2.

含水率測定装置6cの対向位置を通過した細粒材M1及び粗粒材M2は、コンベア3の下端部分に乗せられる。コンベア3は、その下端から斜め上方に延在すると共に細粒材M1及び粗粒材M2を斜め上方に搬送するコンベア本体3aと、コンベア本体3aの上方でコンベア本体3aに沿って延在するカバー3bと、コンベア本体3aを支持する複数の柱部材3cと、を備えている。   The fine-grained material M1 and the coarse-grained material M2 that have passed through the opposite positions of the moisture content measuring device 6c are placed on the lower end portion of the conveyor 3. The conveyor 3 extends obliquely upward from its lower end and conveys the fine grain material M1 and the coarse grain material M2 obliquely upward, and a cover extending along the conveyor body 3a above the conveyor body 3a. 3b and a plurality of column members 3c that support the conveyor body 3a.

コンベア本体3aは、その上面に細粒材M1と粗粒材M2とが乗せられて、乗せられた細粒材M1及び粗粒材M2を斜め上方に搬送する。カバー3bは、コンベア本体3aを斜め上から覆っており、例えば雨から細粒材M1及び粗粒材M2を保護する。このカバー3b及びコンベア本体3aによって、コンベア3における細粒材M1及び粗粒材M2の搬送経路3dは、少なくともその上下が覆われた態様となっており、後述する温風Hを導入しやすい形状となっている。複数の柱部材3cは、コンベア本体3aから地面Gに向かって延びており、コンベア本体3aを傾斜させた状態で支持している。   The conveyor main body 3a has the fine grain material M1 and the coarse grain material M2 placed on the upper surface thereof, and conveys the placed fine grain material M1 and coarse grain material M2 obliquely upward. The cover 3b covers the conveyor main body 3a from diagonally above, and protects the fine grain material M1 and the coarse grain material M2 from, for example, rain. By the cover 3b and the conveyor main body 3a, the transport path 3d of the fine-grained material M1 and the coarse-grained material M2 in the conveyor 3 is at least covered at the top and bottom, and has a shape that can easily introduce hot air H described later. It has become. The plurality of column members 3c extend from the conveyor body 3a toward the ground G, and support the conveyor body 3a in an inclined state.

ミキサ4は、全体として筒状を呈しており、その内部に細粒材M1及び粗粒材M2を流通可能となっている。ミキサ4の上端は、コンベア3の上端と隣接しており、コンベア3において斜め上方に移動した細粒材M1及び粗粒材M2は、上方からミキサ4の内部に供給される。ミキサ4は、5体の筒部4aが互いに回転可能に連結されて形成された筒体4bと、筒体4bを傾斜させた状態で支持する複数の柱部材4cと、を備えている。   The mixer 4 has a cylindrical shape as a whole, and a fine grain material M1 and a coarse grain material M2 can be distributed therein. The upper end of the mixer 4 is adjacent to the upper end of the conveyor 3, and the fine grain material M <b> 1 and the coarse grain material M <b> 2 that have moved obliquely upward in the conveyor 3 are supplied into the mixer 4 from above. The mixer 4 includes a cylindrical body 4b formed by connecting five cylindrical portions 4a so as to be rotatable, and a plurality of column members 4c that support the cylindrical body 4b in an inclined state.

筒体4bの各筒部4aは、その軸線方向x(斜めに延びる方向)に互いに連結されており、互いに軸線回りに回転可能となっている。各筒部4aの内部には細粒材M1及び粗粒材M2が通り、各筒部4a内を通る細粒材M1及び粗粒材M2は各筒部4aの回転によって撹拌混合される。また、図5に示されるように、一の筒部4aは、軸線方向xに隣接する他の筒部4aの反対方向に回転する。具体的には、筒体4bの上から奇数番目に位置する筒部4aの回転方向は、上から偶数番目に位置する筒部4aの反対方向に回転する。このように一の筒部4aを隣接する他の筒部4aの反対方向に回転させることにより、筒部4a内で細粒材M1及び粗粒材M2の撹拌混合及び均一化を促進させることが可能となっている。   The cylindrical portions 4a of the cylindrical body 4b are connected to each other in the axial direction x (direction extending obliquely), and are rotatable around the axial line. The fine-grained material M1 and the coarse-grained material M2 pass through the inside of each cylindrical portion 4a, and the fine-grained material M1 and the coarse-grained material M2 passing through each cylindrical portion 4a are agitated and mixed by the rotation of each cylindrical portion 4a. Moreover, as FIG. 5 shows, the one cylinder part 4a rotates in the opposite direction of the other cylinder part 4a adjacent to the axial direction x. Specifically, the rotation direction of the cylinder part 4a located at the odd number from the top of the cylinder 4b rotates in the opposite direction to the cylinder part 4a located at the even number from the top. Thus, by rotating one cylinder part 4a in the opposite direction of the other adjacent cylinder parts 4a, it is possible to promote stirring and mixing and homogenization of the fine grain material M1 and the coarse grain material M2 in the cylinder part 4a. It is possible.

図4は、各筒部4aを展開した展開図を示している。図4に示されるように、各筒部4aの内面4dには、内面4dから面外方向に突出する複数の突出部4eが設けられている。各突出部4eは、各筒部4aの軸線方向xに対して所定角度θを成して傾斜している。所定角度θの値は、例えば50°以上且つ80°以下であるが、0°より大きく且つ90°以下であれば任意の値とすることが可能である。また、一の筒部4aにおける突出部4eの傾斜方向は、軸線方向xに隣接する他の筒部4aにおける突出部4eの傾斜方向と、互いに逆となっている。このように各筒部4aの内面4dにおいて突出部4eが所定角度θを成して傾斜していることにより、内面4d及び突出部4eを通る細粒材M1及び粗粒材M2の撹拌混合及び均一化を更に促進させることが可能となっている。   FIG. 4 shows a developed view in which each cylindrical portion 4a is developed. As shown in FIG. 4, the inner surface 4d of each cylindrical portion 4a is provided with a plurality of projecting portions 4e projecting from the inner surface 4d in the out-of-plane direction. Each protrusion 4e is inclined at a predetermined angle θ with respect to the axial direction x of each cylinder 4a. The value of the predetermined angle θ is, for example, 50 ° or more and 80 ° or less, but can be an arbitrary value as long as it is greater than 0 ° and 90 ° or less. Moreover, the inclination direction of the protrusion part 4e in one cylinder part 4a is mutually opposite to the inclination direction of the protrusion part 4e in the other cylinder part 4a adjacent to the axial direction x. As described above, the protrusion 4e is inclined at a predetermined angle θ on the inner surface 4d of each cylindrical portion 4a, whereby the fine-grained material M1 and the coarse-grained material M2 passing through the inner surface 4d and the protruding portion 4e are stirred and mixed. It is possible to further promote homogenization.

図3及び図4のように構成されるミキサ4において、細粒材M1及び粗粒材M2は、上から筒体4bの内部に導入される。筒体4bの内部に導入された細粒材M1及び粗粒材M2は、各筒部4aの回転、及び各突出部4eへの衝突によって撹拌混合されながら筒体4b内を下方に移動していく。   In the mixer 4 configured as shown in FIGS. 3 and 4, the fine grain material M1 and the coarse grain material M2 are introduced into the cylindrical body 4b from above. The fine-grained material M1 and the coarse-grained material M2 introduced into the cylindrical body 4b move downward in the cylindrical body 4b while being stirred and mixed by the rotation of the cylindrical parts 4a and the collision with the protruding parts 4e. Go.

また、筒体4bの下端には温風供給装置5が配置される。温風供給装置5は、例えば、昇降装置V1によって昇降可能な作業台V2を備えた作業車Vに搭載されており、作業台V2上に配置されている。このように温風供給装置5が作業車Vの昇降可能な作業台V2上に配置されることにより、温風供給装置5を所望の位置に移動可能となっている。温風供給装置5は、下から筒体4b内に挿入されるホース部5aと、例えば灯油によって温風Hをホース部5a内に送出するファンヒータ5bと、を備えている。このファンヒータ5bから送出される温風Hのように、本実施形態で用いられる温風は、バーナーのような炎ではなく、ヒータとして用いられる程度の比較的低温の温風を想定している。ホース部5aは、例えばビニルによって構成されている。なお、温風供給装置5の構成は、上記に限られず、適宜変更可能である。   Moreover, the warm air supply apparatus 5 is arrange | positioned at the lower end of the cylinder 4b. The hot air supply device 5 is mounted, for example, on a work vehicle V including a work table V2 that can be moved up and down by the lift device V1, and is disposed on the work table V2. As described above, the hot air supply device 5 is arranged on the work table V2 on which the work vehicle V can be moved up and down, so that the hot air supply device 5 can be moved to a desired position. The hot air supply device 5 includes a hose portion 5a that is inserted into the cylinder 4b from below, and a fan heater 5b that sends hot air H into the hose portion 5a by, for example, kerosene. Like the hot air H sent from the fan heater 5b, the hot air used in the present embodiment is not a flame like a burner, but assumes a relatively low temperature hot air that can be used as a heater. . The hose portion 5a is made of, for example, vinyl. In addition, the structure of the warm air supply apparatus 5 is not restricted above, It can change suitably.

以上のようにミキサ4の下側に温風供給装置5が配置され、温風供給装置5のホース部5aが筒体4bに下から挿入され、ホース部5aから筒体4b内に温風が供給される。これにより、図5に模式的に示されるように、細粒材M1及び粗粒材M2を筒体4bの回転によって筒体4b内で撹拌混合すると共に、上から下に移動する細粒材M1及び粗粒材M2に対して下から上へ温風Hが吹き付けられる。   As described above, the hot air supply device 5 is disposed on the lower side of the mixer 4, the hose portion 5a of the hot air supply device 5 is inserted into the cylindrical body 4b from below, and the hot air is introduced into the cylindrical body 4b from the hose portion 5a. Supplied. Thereby, as schematically shown in FIG. 5, the fine-grained material M1 and the coarse-grained material M2 are stirred and mixed in the cylindrical body 4b by the rotation of the cylindrical body 4b, and the fine-grained material M1 moving from the top to the bottom. And the warm air H is sprayed from the bottom to the coarse particle material M2.

また、筒体4bに下から供給された温風Hは筒体4bの内面4dに沿って斜め上に移動するので、温風Hは筒体4bの内部で細粒材M1及び粗粒材M2に対して逆行し、これにより細粒材M1及び粗粒材M2は筒体4b内で効率よく乾燥され含水率が低減できる。筒体4b内で撹拌混合及び乾燥された細粒材M1及び粗粒材M2は、土質材料Mとして筒体4bの下方に排出される。排出された土質材料Mは、トラック等によってロックフィルダムDを構築する現場に搬送されて遮水壁Wとして用いられる。   Moreover, since the warm air H supplied from the bottom to the cylinder 4b moves obliquely upward along the inner surface 4d of the cylinder 4b, the warm air H flows in the fine particle material M1 and the coarse particle material M2 inside the cylinder 4b. As a result, the fine-grained material M1 and the coarse-grained material M2 are efficiently dried in the cylindrical body 4b and the water content can be reduced. The fine-grained material M1 and the coarse-grained material M2 that are stirred and mixed and dried in the cylindrical body 4b are discharged as a soil material M below the cylindrical body 4b. The discharged soil material M is transported to the site where the rockfill dam D is constructed by a truck or the like and used as the water shielding wall W.

次に、土質材料製造装置1を用いて土質材料Mを製造する製造方法について、図6及び図7を参照しながら説明する。図6は、土質材料Mが得られるまでの各工程を土質材料製造装置1の各装置を簡略化して示した図であり、図7は、本実施形態の土質材料Mの製造方法の一例を示すフローチャートである。   Next, the manufacturing method which manufactures the soil material M using the soil material manufacturing apparatus 1 is demonstrated, referring FIG.6 and FIG.7. FIG. 6 is a diagram showing each process of the soil material manufacturing apparatus 1 in a simplified manner until the soil material M is obtained. FIG. 7 is an example of a method for manufacturing the soil material M according to the present embodiment. It is a flowchart to show.

まず、図6及び図7に示されるように、地盤の掘削を行って地盤材料Bの山を形成する(ステップS1)。そして、ステップS2に移行し、得られた地盤材料Bから、篩分けによって細粒材M1及び粗粒材M2を分級し、細粒材M1と粗粒材M2との分別を行う。このとき、例えばグリズリバーによって細粒材M1と粗粒材M2との篩分けを行うことにより、細粒材M1と粗粒材M2とを分別する。   First, as shown in FIGS. 6 and 7, the ground is excavated to form a pile of the ground material B (step S1). And it transfers to step S2 and classifies the fine grain material M1 and the coarse grain material M2 by sieving from the obtained ground material B, and performs the classification with the fine grain material M1 and the coarse grain material M2. At this time, for example, the fine-grained material M1 and the coarse-grained material M2 are separated by performing sieving between the fine-grained material M1 and the coarse-grained material M2 using a grizzly river.

次に、ステップS3では、細粒材M1及び粗粒材M2をそれぞれ気中に存置することによって、細粒材M1及び粗粒材M2をそれぞれ所定期間曝す工程を実行する。この所定期間は、例えば1週間以上であり、好ましくは、1月以上且つ6月以下であり、細粒材M1及び粗粒材M2をある程度乾燥させるのに十分とされた期間である。すなわち、ステップS3では、細粒材M1及び粗粒材M2のそれぞれが天日乾燥されるので、細粒材M1及び粗粒材M2それぞれの含水率がある程度低減される。   Next, in step S3, a step of exposing the fine-grained material M1 and the coarse-grained material M2 for a predetermined period of time by executing the fine-grained material M1 and the coarse-grained material M2 respectively in the air is performed. This predetermined period is, for example, one week or more, preferably one month or more and six months or less, and is a period sufficient to dry the fine-grained material M1 and the coarse-grained material M2 to some extent. That is, in step S3, since each of the fine grain material M1 and the coarse grain material M2 is sun-dried, the moisture content of each of the fine grain material M1 and the coarse grain material M2 is reduced to some extent.

細粒材M1及び粗粒材M2を所定期間曝した後には、前述の含水率測定装置6a,6bを用いて細粒材M1及び粗粒材M2それぞれの含水率を測定し、その後、細粒材M1及び粗粒材M2を土質材料製造装置1のホッパ2に流し込んで細粒材M1及び粗粒材M2の混合を開始する(ステップS4)。なお、ホッパ2で流下した細粒材M1及び粗粒材M2に対して含水率測定装置6が細粒材M1及び粗粒材M2の含水率を測定してもよい。   After exposing the fine-grained material M1 and the coarse-grained material M2 for a predetermined period, the moisture content of each of the fine-grained material M1 and the coarse-grained material M2 is measured using the above-described moisture content measuring devices 6a and 6b. The material M1 and the coarse particle material M2 are poured into the hopper 2 of the soil material manufacturing apparatus 1 to start mixing the fine particle material M1 and the coarse particle material M2 (step S4). Note that the moisture content measuring device 6 may measure the moisture content of the fine-grained material M1 and the coarse-grained material M2 with respect to the fine-grained material M1 and the coarse-grained material M2 flowing down by the hopper 2.

その後は、ステップS5に移行して、細粒材M1の含水率と粗粒材M2の含水率とを比較する工程が行われる。ステップS5において、細粒材M1の含水率が粗粒材M2の含水率以上であると判定した場合には、細粒材M1及び粗粒材M2をコンベア3で搬送した後に、温風供給装置5による温風Hの導入と、ミキサ4の回転による細粒材M1及び粗粒材M2の撹拌混合と、を実行する。このように、加熱する工程(温風を当てる工程)と混合する工程とを実行する(ステップS6)。   Thereafter, the process proceeds to step S5, and a process of comparing the moisture content of the fine-grained material M1 and the moisture content of the coarse-grained material M2 is performed. In step S5, when it is determined that the moisture content of the fine-grained material M1 is equal to or higher than the moisture content of the coarse-grained material M2, the hot-air supply device is transported after the fine-grained material M1 and the coarse-grained material M2 are conveyed by the conveyor 3. 5 and the stirring and mixing of the fine-grained material M1 and the coarse-grained material M2 by the rotation of the mixer 4 are executed. In this way, a heating step (step of applying warm air) and a mixing step are executed (step S6).

一方、ステップS5において、細粒材M1の含水率が粗粒材M2の含水率以上でないと判定した場合には、細粒材M1及び粗粒材M2をコンベア3で搬送し、加水装置Kによる細粒材M1及び粗粒材M2への加水と、ミキサ4の回転による細粒材M1及び粗粒材M2の撹拌混合と、を実行する(ステップS7)。ステップS7では、温風供給装置5による温風Hの導入は行わないが、ステップS7において細粒材M1及び粗粒材M2への加水を省略することも可能である。   On the other hand, in Step S5, when it is determined that the moisture content of the fine-grained material M1 is not equal to or higher than the moisture content of the coarse-grained material M2, the fine-grained material M1 and the coarse-grained material M2 are transported by the conveyor 3, Addition to the fine particle material M1 and the coarse particle material M2 and agitation and mixing of the fine particle material M1 and the coarse particle material M2 by the rotation of the mixer 4 are executed (step S7). In step S7, hot air H is not introduced by the hot air supply device 5, but in step S7, it is possible to omit the addition to the fine grain material M1 and the coarse grain material M2.

以上のようにステップS6又はステップS7を経ることにより、ミキサ4において、細粒材M1及び粗粒材M2の撹拌混合による均一化と、乾燥による細粒材M1及び粗粒材M2の含水率の調整と、を同時に行って、細粒材M1及び粗粒材M2の含水率を最適含水率Rmaxに近づける処理を実行する。そして、細粒材M1及び粗粒材M2の含水率を最適含水率Rmaxに近づけるために、温風供給装置5による温風Hの供給量は調整される。このように、土質材料製造装置1では、ミキサ4の内部に細粒材M1及び粗粒材M2を供給すると共に温風Hの供給を行うことにより、大量の細粒材M1及び粗粒材M2の均一化と乾燥とを一度に行うことが可能となっている。   By passing through step S6 or step S7 as described above, in the mixer 4, the fine particle material M1 and the coarse particle material M2 are homogenized by stirring and mixing, and the moisture content of the fine particle material M1 and the coarse particle material M2 by drying is reduced. Adjustment is performed at the same time, and a process of bringing the moisture content of the fine-grained material M1 and the coarse-grained material M2 closer to the optimum moisture content Rmax is executed. And in order to make the moisture content of the fine grain material M1 and the coarse grain material M2 approach the optimal moisture content Rmax, the supply amount of the warm air H by the warm air supply device 5 is adjusted. As described above, in the soil material manufacturing apparatus 1, by supplying the fine-grained material M1 and the coarse-grained material M2 into the mixer 4 and supplying the hot air H, a large amount of the fine-grained material M1 and the coarse-grained material M2 are supplied. Can be made uniform and dried at once.

上記のようにミキサ4で均一化及び乾燥された細粒材M1及び粗粒材M2は、土質材料Mとしてミキサ4の下方に排出される。そして、ミキサ4から排出された土質材料Mは、トラック等によってロックフィルダムDの構築現場に運搬され(ステップS8)、遮水壁Wとして用いられる。こうして一連の処理が終了する。   The fine-grained material M1 and the coarse-grained material M2 that have been homogenized and dried by the mixer 4 as described above are discharged as a soil material M below the mixer 4. And the soil material M discharged | emitted from the mixer 4 is conveyed by the construction site of the rock fill dam D by a truck etc. (step S8), and is used as the impermeable wall W. Thus, a series of processing ends.

次に、本実施形態に係る土質材料の含水率調整方法の作用効果について説明する。   Next, the effect of the soil material moisture content adjusting method according to the present embodiment will be described.

本実施形態に係る土質材料の含水率調整方法では、地盤材料Bから分別された細粒材M1及び粗粒材M2のそれぞれは所定期間曝されることになる。このとき、粗粒材M2の粒径は細粒材M1の粒径よりも大きいので、所定期間曝している段階では、粗粒材M2の方が細粒材M1よりも粒子間の空隙が大きく通気に接する表面積が大きいので含水率が低減しやすい。よって、分別された細粒材M1と粗粒材M2のそれぞれを所定期間曝すことにより、このときには特に粗粒材M2の含水率を低減させることができる。   In the soil material moisture content adjusting method according to the present embodiment, each of the fine-grained material M1 and the coarse-grained material M2 separated from the ground material B is exposed for a predetermined period. At this time, the particle size of the coarse material M2 is larger than the particle size of the fine particle material M1, and therefore the coarse particle material M2 has larger gaps between the particles than the fine particle material M1 when exposed for a predetermined period. Since the surface area in contact with the ventilation is large, the water content is easily reduced. Therefore, by exposing each of the fine-grained material M1 and the coarse-grained material M2 for a predetermined period, the moisture content of the coarse-grained material M2 can be reduced particularly at this time.

また、所定期間曝された細粒材M1及び粗粒材M2は、混合された状態で温風供給装置5の温風Hにより加熱される。このとき、より乾いた粗粒材M2と、細粒材M1とが混合された状態で加熱されるので、細粒材M1のみが加熱される場合よりも、効率よく細粒材M1及び粗粒材M2を乾燥させることができる。すなわち、乾いた粗粒材M2に細粒材M1を混合させて加熱を行うことにより、細粒材M1に含まれた水分の気化を効率よく且つ適切に促進させることができる。よって、大量の土質材料Mが必要な場合であっても、細粒材M1及び粗粒材M2の含水率の調整を効率よく且つ適切に行うことができる。   Moreover, the fine grain material M1 and the coarse grain material M2 exposed for a predetermined period are heated by the warm air H of the warm air supply device 5 in a mixed state. At this time, since the dried coarse particle material M2 and the fine particle material M1 are heated in a mixed state, the fine particle material M1 and the coarse particles are more efficiently produced than when only the fine particle material M1 is heated. The material M2 can be dried. That is, by mixing and heating the fine-grained material M1 in the dry coarse-grained material M2, vaporization of the water contained in the fine-grained material M1 can be promoted efficiently and appropriately. Therefore, even when a large amount of soil material M is required, the moisture content of the fine grain material M1 and the coarse grain material M2 can be adjusted efficiently and appropriately.

また、本実施形態の土質材料の含水率調整方法では、細粒材M1及び粗粒材M2のミキサ4への投入によって、土質材料M(細粒材M1及び粗粒材M2)の粒度及び混合比率を調整することも可能である。例えば、図8に示されるように、ミキサ4への投入で細粒材M1及び粗粒材M2を撹拌混合させることにより、土質材料Mの混合比率(土質材料Mの粒度)を理想値(細粒材M1:粗粒材M2=1:2の計算値)に近づけることができる。   In the method for adjusting the moisture content of the soil material according to the present embodiment, the particle size and mixing of the soil material M (the fine grain material M1 and the coarse grain material M2) are performed by introducing the fine grain material M1 and the coarse grain material M2 into the mixer 4. It is also possible to adjust the ratio. For example, as shown in FIG. 8, by mixing the fine-grained material M1 and the coarse-grained material M2 with stirring into the mixer 4, the mixing ratio of the soil material M (particle size of the soil material M) is set to an ideal value (fine particle). (Granular material M1: coarse particle material M2 = 1: 2 calculated value).

また、本実施形態に係る土質材料の含水率調整方法では、図6及び図7に示されるように、地盤材料Bを細粒材M1と粗粒材M2に分級することによって前述の分別を行っている。従って、分級によって分別された細粒材M1と粗粒材M2のそれぞれに、前述の処理が施されるので、細粒材M1及び粗粒材M2の含水率の調整を効率よく且つ適切に行うことができる。   In the soil material moisture content adjusting method according to the present embodiment, as shown in FIGS. 6 and 7, the above-mentioned classification is performed by classifying the ground material B into the fine-grained material M1 and the coarse-grained material M2. ing. Therefore, the fine particles M1 and the coarse particles M2 that have been classified by the classification are subjected to the above-described treatment, so that the moisture content of the fine particles M1 and the coarse particles M2 is adjusted efficiently and appropriately. be able to.

また、所定期間曝す工程の後において、細粒材M1の含水率と粗粒材M2の含水率とを比較する工程を備え、比較する工程において、細粒材M1の含水率が粗粒材M2の含水率以上である場合には、加熱する工程を実行し、比較する工程において、細粒材M1の含水率が粗粒材M2の含水率以上でない場合には、加熱する工程を実行しなくてもよい。   In addition, after the step of exposing for a predetermined period, a step of comparing the moisture content of the fine-grained material M1 and the moisture content of the coarse-grained material M2 is provided, and in the comparing step, the moisture content of the fine-grained material M1 is the coarse-grained material M2. If the water content of the fine-grained material M1 is not higher than the water content of the coarse-grained material M2, in the step of comparing and performing the heating step, the heating step is not performed. May be.

よって、細粒材M1の含水率と粗粒材M2の含水率との比較を行って、細粒材M1の含水率が粗粒材M2の含水率以上である場合には、加熱する工程を実行する。このように細粒材M1の含水率が高い場合には、土質材料全体としても水分が多いことが多いので、加熱によって含水率を低減させることにより土質材料Mの品質を高めることができる。一方、細粒材M1の含水率が低い場合には、土質材料全体としても水分が少ないことが多いので、加熱を行わなくてもよい。このように、含水率の比較を行い、その結果を用いて加熱の要否を決定することができるので、含水率の調整をより適切に行うことができる。   Therefore, the moisture content of the fine grain material M1 is compared with the moisture content of the coarse grain material M2, and if the moisture content of the fine grain material M1 is equal to or higher than the moisture content of the coarse grain material M2, the heating step is performed. Run. Thus, when the moisture content of the fine granule material M1 is high, the soil material as a whole often has a lot of moisture, so the quality of the soil material M can be improved by reducing the moisture content by heating. On the other hand, when the moisture content of the fine-grained material M1 is low, it is not necessary to perform heating because the moisture content of the entire soil material is often small. Thus, since the moisture content can be compared and the necessity of heating can be determined using the result, the moisture content can be adjusted more appropriately.

また、加熱する工程では、細粒材M1及び粗粒材M2を撹拌混合させながら細粒材M1及び粗粒材M2を加熱している。よって、細粒材M1及び粗粒材M2を撹拌混合させながら細粒材M1及び粗粒材M2を加熱しており、撹拌混合によって細粒材M1及び粗粒材M2に含まれる水分の気化を促進させることができるので、含水率を効率よく低減させることができる。   In the heating step, the fine-grained material M1 and the coarse-grained material M2 are heated while stirring and mixing the fine-grained material M1 and the coarse-grained material M2. Therefore, the fine grain material M1 and the coarse grain material M2 are heated while stirring and mixing the fine grain material M1 and the coarse grain material M2, and the moisture contained in the fine grain material M1 and the coarse grain material M2 is vaporized by stirring and mixing. Since it can be made to promote, a moisture content can be reduced efficiently.

また、細粒材M1及び粗粒材M2を混合する工程は、傾斜して配置された筒体4bの内部で行われ、細粒材M1及び粗粒材M2を混合する工程では、細粒材M1及び粗粒材M2を筒体4b内で混合しながら、細粒材M1及び粗粒材M2を筒体4bの上方から下方に移動させ、温風を当てる工程では、筒体4bの下方から筒体4b内の細粒材M1及び粗粒材M2に向かって温風Hを当てている。   In addition, the step of mixing the fine-grained material M1 and the coarse-grained material M2 is performed inside the cylindrical body 4b arranged at an inclination, and the step of mixing the fine-grained material M1 and the coarse-grained material M2 While mixing M1 and coarse particle material M2 in cylinder 4b, fine particle material M1 and coarse particle material M2 are moved downward from above cylinder 4b, and in the step of applying hot air, from below cylinder 4b. Hot air H is applied toward the fine-grained material M1 and the coarse-grained material M2 in the cylinder 4b.

よって、細粒材M1及び粗粒材M2が上方から筒体4b内に導入されると共に、筒体4b内の細粒材M1及び粗粒材M2には、筒体4bの下方から温風Hが当てられる。従って、細粒材M1及び粗粒材M2が筒体4b内で上方から下方に流れると共に、温風Hは筒体4b内で下方から上方に流れる。これにより、細粒材M1及び粗粒材M2に対する温風Hの相対速度を高めることができるので、温風Hによる含水率の低減を一層効率よく行うことができる。   Therefore, the fine-grained material M1 and the coarse-grained material M2 are introduced into the cylindrical body 4b from above, and the fine-grained material M1 and the coarse-grained material M2 in the cylindrical body 4b are supplied with warm air H from below the cylindrical body 4b. Is applied. Therefore, the fine-grained material M1 and the coarse-grained material M2 flow from the upper side to the lower side in the cylinder 4b, and the hot air H flows from the lower side to the upper side in the cylinder 4b. Thereby, since the relative speed of the warm air H with respect to the fine grain material M1 and the coarse grain material M2 can be raised, the water content reduction by the warm air H can be performed more efficiently.

更に、温風を当てる工程で得られた土質材料Mは、ロックフィルダムDの遮水壁Wとして用いられる。このロックフィルダムDの遮水壁Wでは、前述したように高い遮水性能が求められる。そして、遮水壁Wとして用いられる土質材料Mとしても、その含水率が適切に調整された高品質のものが求められる。そこで、本実施形態に係る土質材料の含水率調整方法では、前述のように温風を当てる工程を経て得られた土質材料Mを製造することができ、この土質材料Mは、その含水率が効率よく且つ適切に調整されている。従って、効率よく製造することができると共に高品質な土質材料Mを、ロックフィルダムDの遮水壁Wとして用いることができる。   Furthermore, the soil material M obtained in the process of applying hot air is used as the water-impervious wall W of the rockfill dam D. The water-impervious wall W of the rockfill dam D is required to have high water-impervious performance as described above. And as the soil material M used as the water-impervious wall W, a high-quality material whose water content is appropriately adjusted is required. Therefore, in the method for adjusting the moisture content of the soil material according to the present embodiment, the soil material M obtained through the process of applying hot air as described above can be manufactured, and the soil material M has a moisture content of It is adjusted efficiently and appropriately. Therefore, the high-quality soil material M that can be efficiently manufactured can be used as the water-impervious wall W of the rockfill dam D.

以上、本発明の実施形態について説明したが、本発明は、前述の実施形態に限定されるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。すなわち、本発明は、各請求項の要旨を変更しない範囲で種々の変形が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment, It deform | transformed in the range which does not change the summary described in each claim, or applied to others It may be a thing. That is, the present invention can be variously modified without changing the gist of each claim.

例えば、前述の実施形態では、温風供給装置5がミキサ4の下方から筒体4b内の細粒材M1及び粗粒材M2に向かって温風Hを当てる例について説明した。しかしながら、温風Hを当てる向き及び温風供給装置5の配置場所については、適宜変更可能である。   For example, in the above-described embodiment, the example in which the hot air supply device 5 applies the hot air H from below the mixer 4 toward the fine grain material M1 and the coarse grain material M2 in the cylindrical body 4b has been described. However, the direction in which the hot air H is applied and the location of the hot air supply device 5 can be changed as appropriate.

例えば、コンベア3の斜め上方に温風供給装置5を配置して、コンベア3の上方から細粒材M1及び粗粒材M2に向かって温風Hを当ててもよい。このように、コンベア3の斜め上方から細粒材M1及び粗粒材M2に向かって温風Hを当てる場合にも、斜め上方に移動する細粒材M1及び粗粒材M2に対して温風Hの相対速度を高めることができるので、含水率の低減を効率よく行うことができる。なお、他の例として、ミキサ4の斜め上方から細粒材M1及び粗粒材M2に向かって温風Hを当ててもよいし、コンベア3の斜め下方から細粒材M1及び粗粒材M2に向かって温風Hを当ててもよい。更に、細粒材M1及び粗粒材M2を加熱させる手段は、温風Hに限られず、温風供給装置5以外の加熱手段、例えば、火で直接焙ってもよいし、混合する工程で使用する容器に加熱を行ってもよい。   For example, the hot air supply device 5 may be disposed obliquely above the conveyor 3 and the hot air H may be applied from above the conveyor 3 toward the fine grain material M1 and the coarse grain material M2. As described above, even when the hot air H is applied toward the fine-grained material M1 and the coarse-grained material M2 from obliquely above the conveyor 3, the warm-air is applied to the fine-grained material M1 and the coarse-grained material M2 that move obliquely upward. Since the relative speed of H can be increased, the moisture content can be reduced efficiently. As another example, warm air H may be applied toward the fine-grained material M1 and the coarse-grained material M2 from diagonally above the mixer 4, or the fine-grained material M1 and the coarse-grained material M2 from diagonally below the conveyor 3. You may apply the warm air H toward. Further, the means for heating the fine-grained material M1 and the coarse-grained material M2 is not limited to the hot air H, but may be directly heated by a heating means other than the hot air supply device 5, for example, or used in the mixing step. The container to be heated may be heated.

また、前述の実施形態では、図6に示されるように、一つの地盤材料Bの山から細粒材M1と粗粒材M2とを分級して細粒材M1及び粗粒材M2を分別する例について説明した。しかしながら、細粒材M1の掘削場所と、粗粒材M2の掘削場所とを互いに別の場所として、細粒材M1の山と、粗粒材M2の山と、のそれぞれを予め形成してもよい。また、細粒材M1と粗粒材M2とを所定の割合で交互に層状に形成したブレンドパイルを形成しておいてもよく、このブレンドパイルを斜めにスライスカットして細粒材M1及び粗粒材M2を土質材料製造装置1に導入してもよい。更に、細粒材M1と粗粒材M2との混合時に、必要に応じて不足している細粒材M1を追加してもよい。   In the above-described embodiment, as shown in FIG. 6, the fine-grained material M1 and the coarse-grained material M2 are classified from the pile of one ground material B, and the fine-grained material M1 and the coarse-grained material M2 are classified. An example was described. However, even if the excavation place of the fine-grained material M1 and the excavation place of the coarse-grained material M2 are different from each other, the mountain of the fine-grained material M1 and the mountain of the coarse-grained material M2 are each formed in advance. Good. Also, a blend pile in which the fine grain material M1 and the coarse grain material M2 are alternately formed in layers at a predetermined ratio may be formed. The blend pile is sliced obliquely to fine grain material M1 and coarse grain material M1. The granular material M2 may be introduced into the soil material manufacturing apparatus 1. Furthermore, when the fine-grained material M1 and the coarse-grained material M2 are mixed, the fine-grained material M1 that is lacking may be added as necessary.

また、前述の実施形態では、土質材料MをロックフィルダムDの遮水壁Wとして用いる例について説明したが、土質材料Mを適用可能な構造物はロックフィルダムDの遮水壁Wに限定されない。例えば、土質材料Mを、堤防として用いる等、他の構造物に適用してもよい。   Moreover, although the above-mentioned embodiment demonstrated the example which uses the soil material M as the water-impervious wall W of the rock fill dam D, the structure which can apply the soil material M is not limited to the water-impervious wall W of the rock fill dam D. For example, the soil material M may be applied to other structures such as a dike.

次に、本実施形態の土質材料製造装置1及び土質材料の含水率調整方法を用いて土質材料Mを製造した実施例及び比較例について説明する。ここで、本実施例では、盛土材として使用し透水性能の確保を考慮して細粒材M1と粗粒材M2との混合比率を1:2とした土質材料Mを材料として使用することにした。土質材料Mの最適含水率Rmaxは18%であったので、施工時には混合した土質材料Mに求める含水率の範囲を18%以上且つ20%以下とした。   Next, the Example and comparative example which manufactured the soil material M using the soil material manufacturing apparatus 1 and the moisture content adjustment method of a soil material of this embodiment are demonstrated. Here, in this example, the soil material M is used as a material for the embankment material and the mixing ratio of the fine-grained material M1 and the coarse-grained material M2 is set to 1: 2 in consideration of securing the water permeability. did. Since the optimum moisture content Rmax of the soil material M was 18%, the range of the moisture content required for the soil material M mixed at the time of construction was set to 18% or more and 20% or less.

また、実施例では、地盤材料Bで掘削を行って分級を行い細粒材M1及び粗粒材M2を得た直後において、細粒材M1の含水率は30%(a)、粗粒材M2の含水率は27%(b)であった。そして、所定期間曝す工程を実行し、2週間細粒材M1及び粗粒材M2を天日乾燥させた(晴天が続いた)後、細粒材M1の含水率は24%(c)、粗粒材M2の含水率は12%(d)となった。   Moreover, in an Example, immediately after excavating with the ground material B and classifying and obtaining the fine grain material M1 and the coarse grain material M2, the moisture content of the fine grain material M1 is 30% (a), and the coarse grain material M2 The water content of was 27% (b). And after performing the exposure process for a predetermined period and drying the fine-grained material M1 and the coarse-grained material M2 in the sun for two weeks (sunny weather continued), the moisture content of the fine-grained material M1 is 24% (c), coarse The moisture content of the granule M2 was 12% (d).

その後、2カ月細粒材M1及び粗粒材M2を天日乾燥させた(比較的晴天が続いた)後、細粒材M1の含水率は27%(e)、粗粒材M2の含水率は15%(f)となり、更に、3カ月細粒材M1及び粗粒材M2を曝した(晴天雨天が繰り返された)後、細粒材M1の含水率は30%(g)、粗粒材M2の含水率は18%(h)、となった。このように細粒材M1と粗粒材M2とを別々に所定期間曝すことによって粗粒材M2の含水率を低減できることが分かった。なお、細粒材M1と粗粒材M2とを別々の採掘場から得た場合にも同様の結果となった。   Thereafter, the fine-grained material M1 and the coarse-grained material M2 were dried in the sun (relatively fine weather continued), and then the moisture content of the fine-grained material M1 was 27% (e), and the moisture content of the coarse-grained material M2 Was 15% (f), and after exposure to fine-grained material M1 and coarse-grained material M2 for 3 months (sunny weather was repeated), the moisture content of fine-grained material M1 was 30% (g) The moisture content of the material M2 was 18% (h). Thus, it was found that the moisture content of the coarse-grained material M2 can be reduced by separately exposing the fine-grained material M1 and the coarse-grained material M2 for a predetermined period. Similar results were obtained when the fine-grained material M1 and the coarse-grained material M2 were obtained from separate mining sites.

一方、比較例では、掘削直後に細粒材M1と粗粒材M2とを混合して混合土を生成し、この状態で所定期間曝した。この直後において、混合土の含水率は28%となった。そして、2週間混合土を天日乾燥させた(晴天が続いた)後、混合土の含水率は20%となり、その後2カ月混合土を天日乾燥させた(比較的晴天が続いた)後、混合土の含水率は22%となった。そして、3カ月混合土を曝した(晴天雨天が繰り返された)後、混合土の含水率は26%となった。   On the other hand, in the comparative example, the fine-grained material M1 and the coarse-grained material M2 were mixed immediately after excavation to generate mixed soil, and exposed in this state for a predetermined period. Immediately after this, the water content of the mixed soil was 28%. After the mixed soil was dried in the sun for two weeks (sunny weather continued), the moisture content of the mixed soil became 20%, and then the mixed soil was dried in the sun for two months (relatively clear weather continued) The water content of the mixed soil was 22%. And after exposing the mixed soil for 3 months (sunny rainy weather was repeated), the moisture content of the mixed soil became 26%.

更に、前述の実施例の(a)〜(h)の各時点において、細粒材M1と粗粒材M2とを1:2で混合した場合における平均含水率は、最初の時点((a)及び(b))では28%(=(30%+27%×2)/3)、2週間後の時点((c)及び(d))では16%(=(24%+12%×2)/3)、2カ月後の時点((e)及び(f))では19%(=(27%+15%×2)/3)、3カ月後の時点((g)及び(h))では22%(=(30%+18%×2)/3)となった。   Furthermore, at each time point (a) to (h) in the above-described embodiment, the average moisture content when the fine-grained material M1 and the coarse-grained material M2 are mixed 1: 2 is the first time point ((a). And (b)) 28% (= (30% + 27% × 2) / 3), and 2 weeks later ((c) and (d)) 16% (= (24% + 12% × 2) / 3) 19% (= (27% + 15% × 2) / 3) at 2 months later ((e) and (f)), 22 at 3 months later ((g) and (h)) % (= (30% + 18% × 2) / 3).

そして、3か月後の時点で平均含水率が22%であった細粒材M1及び粗粒材M2を土質材料製造装置1に導入して、混合及び乾燥を促進させると、結果として得られた土質材料Mの含水率は、3%減少できて19%となった。従って、得られた土質材料Mの含水率は18%以上且つ20%以下であって所望の範囲内であるため、求める品質が確保されていることが分かった。   Then, when the fine-grained material M1 and the coarse-grained material M2 having an average moisture content of 22% after 3 months are introduced into the soil material manufacturing apparatus 1 and mixing and drying are promoted, the result is obtained. The water content of the soil material M was reduced by 3% to 19%. Therefore, the moisture content of the obtained soil material M is 18% or more and 20% or less and is within a desired range, and thus it has been found that the required quality is ensured.

一方、細粒材M1のみを土質材料製造装置1に導入する比較例では、含水率が30%(g)の細粒材M1のみを土質材料製造装置1に導入した。この場合、細粒材M1の含水率は5%低減できて25%となった。しかし、この細粒材M1と粗粒材M2とを1:2で混合した土質材料の含水率は20.5%(=(25%+18%×2)/3)となり、所望の範囲内にならなかった。これにより、細粒材M1のみを土質材料製造装置1に導入しても求める品質の土質材料Mが得られなかったことが分かった。   On the other hand, in the comparative example in which only the fine grain material M1 is introduced into the soil material production apparatus 1, only the fine grain material M1 having a moisture content of 30% (g) is introduced into the soil material production apparatus 1. In this case, the water content of the fine grain material M1 was reduced by 5% to 25%. However, the moisture content of the soil material obtained by mixing the fine-grained material M1 and the coarse-grained material M2 at 1: 2 is 20.5% (= (25% + 18% × 2) / 3), which is within the desired range. did not become. Thereby, even if it introduce | transduced only the fine grain material M1 into the soil material manufacturing apparatus 1, it turned out that the required soil material M was not obtained.

以上の実施例及び比較例により、細粒材M1及び粗粒材M2をそれぞれ個別に所定期間曝し、その後、細粒材M1及び粗粒材M2を共に土質材料製造装置1に導入した場合に、高品質の土質材料Mが得られることが確認できた。   According to the above examples and comparative examples, when the fine-grained material M1 and the coarse-grained material M2 are individually exposed for a predetermined period, and then both the fine-grained material M1 and the coarse-grained material M2 are introduced into the soil material manufacturing apparatus 1, It was confirmed that a high-quality soil material M was obtained.

1…土質材料製造装置、2,2a,2b,2c…ホッパ、3…コンベア、3a…コンベア本体、3b…カバー、3c…柱部材、4…ミキサ、4a…筒部、4b…筒体、4c…柱部材、4d…内面、4e…突出部、5…温風供給装置、5a…ホース部、5b…ファンヒータ、6,6a,6b,6c…含水率測定装置、B…地盤材料、D…ロックフィルダム、D1…盛立面、F…フィルタ層、G…地面、H…温風、M…土質材料、M1…細粒材、M2…粗粒材、R…ロック層、V…作業車、V1…昇降装置、V2…作業台、W…遮水壁、x…軸線方向、θ…所定角度。 DESCRIPTION OF SYMBOLS 1 ... Soil material manufacturing apparatus, 2, 2a, 2b, 2c ... Hopper, 3 ... Conveyor, 3a ... Conveyor main body, 3b ... Cover, 3c ... Column member, 4 ... Mixer, 4a ... Cylindrical part, 4b ... Cylindrical body, 4c ... pillar member, 4d ... inner surface, 4e ... projecting part, 5 ... hot air supply device, 5a ... hose part, 5b ... fan heater, 6, 6a, 6b, 6c ... moisture content measuring device, B ... ground material, D ... Rock fill dam, D1 ... rising surface, F ... filter layer, G ... ground, H ... warm air, M ... soil material, M1 ... fine grain material, M2 ... coarse grain material, R ... rock layer, V ... work vehicle, V1 ... lifting device, V2 work bench, W ... water shielding wall, x ... axial direction, θ ... predetermined angle.

Claims (6)

掘削して得られる地盤材料から土質材料を製造する土質材料の含水率調整方法であって、
前記地盤材料を細粒材と粗粒材とに分別して、それぞれを所定期間曝す工程と、
前記所定期間曝された前記細粒材及び前記粗粒材を混合する工程と、
混合された前記細粒材及び前記粗粒材を加熱する工程と、
を備える土質材料の含水率調整方法。
A method for adjusting the moisture content of a soil material to produce a soil material from a ground material obtained by excavation,
Separating the ground material into fine-grained material and coarse-grained material, and exposing each of them for a predetermined period;
Mixing the fine-grained material and the coarse-grained material exposed for the predetermined period;
Heating the mixed fine-grained material and the coarse-grained material;
A method for adjusting the moisture content of a soil material comprising:
前記地盤材料を前記細粒材と前記粗粒材に分級することによって前記分別を行う、
請求項1に記載の土質材料の含水率調整方法。
The classification is performed by classifying the ground material into the fine-grained material and the coarse-grained material,
The method for adjusting the moisture content of the soil material according to claim 1.
前記所定期間曝す工程の後において、前記細粒材の含水率と前記粗粒材の含水率とを比較する工程を備え、
前記比較する工程において、前記細粒材の含水率が前記粗粒材の含水率以上である場合には、前記混合する工程と前記加熱する工程を実行し、
前記比較する工程において、前記細粒材の含水率が前記粗粒材の含水率以上でない場合には、前記加熱する工程を実行しない、
請求項1又は2に記載の土質材料の含水率調整方法。
After the step of exposing for a predetermined period, the step of comparing the moisture content of the fine-grained material and the moisture content of the coarse-grained material,
In the comparing step, when the moisture content of the fine-grained material is equal to or higher than the moisture content of the coarse-grained material, the mixing step and the heating step are executed.
In the comparing step, when the moisture content of the fine-grained material is not equal to or higher than the moisture content of the coarse-grained material, the heating step is not performed.
The method for adjusting the moisture content of a soil material according to claim 1 or 2.
前記加熱する工程では、前記細粒材及び前記粗粒材を撹拌混合させながら前記細粒材及び前記粗粒材を加熱する、
請求項1〜3のいずれか一項に記載の土質材料の含水率調整方法。
In the heating step, the fine grain material and the coarse grain material are heated while stirring and mixing the fine grain material and the coarse grain material.
The moisture content adjustment method of the soil material as described in any one of Claims 1-3.
前記加熱する工程は、温風を当てる工程である、
請求項1〜4のいずれか一項に記載の土質材料の含水率調整方法。
The heating step is a step of applying warm air.
The moisture content adjustment method of the soil material as described in any one of Claims 1-4.
前記細粒材及び前記粗粒材を混合する工程は、傾斜して配置された筒体の内部で行われ、
前記細粒材及び前記粗粒材を混合する工程では、前記細粒材及び前記粗粒材を前記筒体内で混合しながら、前記細粒材及び前記粗粒材を前記筒体の上方から下方に移動させ、
前記温風を当てる工程では、前記筒体の下方から前記筒体内の前記細粒材及び前記粗粒材に向かって温風を当てる、
請求項5に記載の土質材料の含水率調整方法。
The step of mixing the fine-grained material and the coarse-grained material is performed inside a cylindrical body arranged at an inclination,
In the step of mixing the fine-grained material and the coarse-grained material, while the fine-grained material and the coarse-grained material are mixed in the cylinder, the fine-grained material and the coarse-grained material are lowered from above the cylindrical body. Move to
In the step of applying the hot air, the hot air is applied from below the cylindrical body toward the fine-grained material and the coarse-grained material in the cylindrical body,
The method for adjusting the moisture content of the soil material according to claim 5.
JP2015235119A 2015-12-01 2015-12-01 Method for adjusting moisture content of soil material Active JP6585484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015235119A JP6585484B2 (en) 2015-12-01 2015-12-01 Method for adjusting moisture content of soil material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015235119A JP6585484B2 (en) 2015-12-01 2015-12-01 Method for adjusting moisture content of soil material

Publications (2)

Publication Number Publication Date
JP2017101453A true JP2017101453A (en) 2017-06-08
JP6585484B2 JP6585484B2 (en) 2019-10-02

Family

ID=59017946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015235119A Active JP6585484B2 (en) 2015-12-01 2015-12-01 Method for adjusting moisture content of soil material

Country Status (1)

Country Link
JP (1) JP6585484B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986478U (en) * 1972-11-16 1974-07-26
JPH0430742A (en) * 1990-05-24 1992-02-03 Tonen Corp Soil-sterilizing equipment
JPH09137465A (en) * 1995-11-09 1997-05-27 Kumagai Gumi Co Ltd Civil engineering machinery and earth and sand treatment method
US5743030A (en) * 1996-03-20 1998-04-28 Sirr; Chester Lea Loader with screening device
JPH11267629A (en) * 1998-03-20 1999-10-05 Nikko Co Ltd Method for improving soil
JP2001276899A (en) * 2000-03-31 2001-10-09 Kumagai Gumi Co Ltd Treating equipment for dredged earth and sand
JP2015067992A (en) * 2013-09-27 2015-04-13 株式会社シンフォニーエム Classification transfer device of dredge object

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986478U (en) * 1972-11-16 1974-07-26
JPH0430742A (en) * 1990-05-24 1992-02-03 Tonen Corp Soil-sterilizing equipment
JPH09137465A (en) * 1995-11-09 1997-05-27 Kumagai Gumi Co Ltd Civil engineering machinery and earth and sand treatment method
US5743030A (en) * 1996-03-20 1998-04-28 Sirr; Chester Lea Loader with screening device
JPH11267629A (en) * 1998-03-20 1999-10-05 Nikko Co Ltd Method for improving soil
JP2001276899A (en) * 2000-03-31 2001-10-09 Kumagai Gumi Co Ltd Treating equipment for dredged earth and sand
JP2015067992A (en) * 2013-09-27 2015-04-13 株式会社シンフォニーエム Classification transfer device of dredge object

Also Published As

Publication number Publication date
JP6585484B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
KR101825055B1 (en) Aggregate or mineral sealed drying screen apparatus
US2320469A (en) Mixing and homogenizing apparatus
CN105312234B (en) Air feeding-distribution device, distribution method, material production equipment and material production method
CN104245142A (en) Method and device for grinding moist material
JP6585484B2 (en) Method for adjusting moisture content of soil material
JP2004141713A (en) Crushing system for manufacturing aggregate
US4585354A (en) Device for preparing roadway paving materials
JP2006346655A (en) Apparatus for uniformly stirring and mixing multiple kinds of conveying articles to continuously convey and supply set amount of articles
JP5954546B2 (en) Method for producing granulated raw material for sintering
KR101719517B1 (en) Charging apparatus for raw material
CN106622602A (en) Annular sand production equipment
Shinohara et al. Particle segregation of binary mixture in a moving bed by penetration model
KR101722560B1 (en) Hopper with temperature maintenance device
CN104669437A (en) Dust raising prevention cemented tailing filling mixer
US3369798A (en) Apparatus for and method of blending dry materials
JP6997425B2 (en) Soft soil mixing device
CN204566392U (en) A kind of anti-airborne dust tailing cemented filling mixer
JP2606881B2 (en) Sintering raw material charging method
CN215973999U (en) Dry powder mortar clout recovery unit
RU2630934C1 (en) Method of producing fine aggregate of improved quality and equipment complex for its implementation
CN205854564U (en) A kind of new type auto powder particles packer
SU749666A2 (en) Concrete mix preparing unit
JP6954236B2 (en) Manufacturing method and manufacturing equipment for coal interior sintered ore
JP2008169642A (en) Asphalt mixture manufacturing method
RU2355467C1 (en) Mouth piece for revolving drum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190905

R150 Certificate of patent or registration of utility model

Ref document number: 6585484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250