JP2017098205A - Secondary battery having electrode body - Google Patents

Secondary battery having electrode body Download PDF

Info

Publication number
JP2017098205A
JP2017098205A JP2015232472A JP2015232472A JP2017098205A JP 2017098205 A JP2017098205 A JP 2017098205A JP 2015232472 A JP2015232472 A JP 2015232472A JP 2015232472 A JP2015232472 A JP 2015232472A JP 2017098205 A JP2017098205 A JP 2017098205A
Authority
JP
Japan
Prior art keywords
conductive member
positive electrode
negative electrode
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015232472A
Other languages
Japanese (ja)
Other versions
JP6540476B2 (en
Inventor
石井 勝
Masaru Ishii
勝 石井
平 齋藤
Taira Saito
平 齋藤
悠史 近藤
Yuji Kondo
悠史 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015232472A priority Critical patent/JP6540476B2/en
Publication of JP2017098205A publication Critical patent/JP2017098205A/en
Application granted granted Critical
Publication of JP6540476B2 publication Critical patent/JP6540476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery capable of suppressing generation of internal short circuit caused by a foreign substance.SOLUTION: A secondary battery includes: an electrode body 20 configured by laminating a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode; and an internal member 200 arranged on the outside of the electrode body 20 in a lamination direction. The internal member 200 includes a first conductive member 110 conducted to the positive electrode; a second conductive member 120 conducted to the negative electrode; and an insulation member 130 interposed between the first conductive member 110 and the second conductive member 120. The first conductive member 110 is mutually stuck to at least an outer edge portion out of a face opposed to the insulation member 130 and the second conductive member 120 is mutually stuck to at least an outer edge portion out of a face opposed to the insulation member 130.SELECTED DRAWING: Figure 2

Description

本発明は電極体を有する二次電池に関する。   The present invention relates to a secondary battery having an electrode body.

携帯電話、ノート型パソコンなどのモバイル機器に係わる技術開発及び生産増加に伴い、エネルギー源となる二次電池の需要が増加している。特に、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として今後ますます需要の増加が期待されている。   With the development of technology and production related to mobile devices such as mobile phones and laptop computers, the demand for secondary batteries as energy sources is increasing. In particular, an increase in demand is expected in the future as a high-output power source for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV).

しかし、従来の二次電池には、外部衝撃によって電池容器が押しつぶされる場合など、二次電池に過度な貫通衝撃が加えられる際には、正極と負極の間のセパレータが破断し、短絡が発生し発熱する虞があった。   However, when the secondary battery is subjected to excessive penetration impact, such as when the battery container is crushed by an external impact, the separator between the positive and negative electrodes breaks and a short circuit occurs. There was a risk of heat generation.

そこで、例えば特許文献1では、電池容器内の電極体の外側に、活物質層を有しない電極(短絡用電極)と、短絡用電極と電極体最外周との間に配置された絶縁層を備える二次電池が提案されている。この二次電池によれば、貫通衝撃が加えられた場合において、短絡用電極と、電極体の最外周に最も近い正極または負極のいずれかの電極との短絡パスを形成することにより発熱を抑制でき、貫通衝撃に対しての二次電池の安全性を向上させることが出来る。   Therefore, in Patent Document 1, for example, an electrode having no active material layer (short-circuit electrode) and an insulating layer disposed between the short-circuit electrode and the outermost periphery of the electrode body are provided outside the electrode body in the battery container. A secondary battery provided has been proposed. According to this secondary battery, when a through impact is applied, heat generation is suppressed by forming a short-circuit path between the short-circuit electrode and either the positive electrode or the negative electrode closest to the outermost periphery of the electrode body. In addition, the safety of the secondary battery against penetration impact can be improved.

特開2013−41824号公報JP 2013-41824 A

しかしながら、例えば、外部衝撃により電池の構成要素同士が接触した場合や電池容器と電池の蓋体を溶接した際に、微細な金属片などの導電性の異物が電池容器内に発生する虞がある。従来の技術においては、発生した異物が、短絡用電極と、絶縁層との間に混入する虞があり、混入した異物が絶縁層を貫通することによる内部短絡が発生する虞があった。内部短絡が発生すると、短絡電流に伴い、電池の性能低下などが発生する可能性がある。   However, for example, when the battery components come into contact with each other due to external impact or when the battery container and the battery lid are welded, there is a possibility that conductive foreign matters such as fine metal pieces may be generated in the battery container. . In the prior art, the generated foreign matter may be mixed between the short-circuiting electrode and the insulating layer, and an internal short circuit may occur due to the mixed foreign matter penetrating the insulating layer. When an internal short circuit occurs, there is a possibility that the performance of the battery will deteriorate due to the short circuit current.

そこで、本発明は二次電池における上記従来の課題を解決するべく創出されたものであり、異物による内部短絡の発生を抑制した二次電池を提供することを目的とする。   Therefore, the present invention was created to solve the above-described conventional problems in secondary batteries, and an object thereof is to provide a secondary battery in which the occurrence of internal short circuits due to foreign substances is suppressed.

ここに開示される二次電池において、正極と、負極と、正極と負極の間に介在しているセパレータと、を積層した電極体と、前記電極体を収納する電池容器と、前記電極体の積層方向において、前記電極体と前記電池容器との間に配置された内部部材と、を備える。前記内部部材は、前記正極と導通している第1の導電部材と、前記負極と導通している第2の導電部材と、第1の導電部材と第2の導電部材の間に介在している絶縁部材とを有する。ここで、前記第1の導電部材は、前記絶縁部材と対向している面のうち、少なくとも外縁部が互いに接着されており、前記第2の導電部材は、前記絶縁部材と対向している面のうち、少なくとも外縁部が互いに接着されていることを特徴とする二次電池。   In the secondary battery disclosed herein, an electrode body in which a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode are stacked, a battery container that houses the electrode body, and the electrode body And an internal member disposed between the electrode body and the battery container in the stacking direction. The internal member is interposed between the first conductive member connected to the positive electrode, the second conductive member connected to the negative electrode, and the first conductive member and the second conductive member. And an insulating member. Here, the first conductive member has at least outer edges bonded to each other among the surfaces facing the insulating member, and the second conductive member is the surface facing the insulating member. A secondary battery characterized in that at least outer edges are bonded to each other.

このような構成によれば、前記第1の導電部材と前記絶縁部材との間、および前記第2の導電部材と前記絶縁部材との間における異物の混入を防止でき、異物による内部短絡の発生を抑制することが可能である。   According to such a configuration, foreign matter can be prevented from being mixed between the first conductive member and the insulating member and between the second conductive member and the insulating member, and an internal short circuit caused by the foreign matter can be generated. Can be suppressed.

また、ここに開示される二次電池の好ましい一態様においては、前記第1の導電部材または前記第2の導電部材いずれかが電池容器である。   In a preferred embodiment of the secondary battery disclosed herein, either the first conductive member or the second conductive member is a battery container.

このような構成によれば、第1の導電部材または第2の導電部材の厚み分だけ電池容器内に電極体を充填する空間が存在するため、よりエネルギー密度の高い二次電池を得ることが可能である。   According to such a configuration, since there is a space for filling the electrode body in the battery container by the thickness of the first conductive member or the second conductive member, a secondary battery with higher energy density can be obtained. Is possible.

また、ここに開示される二次電池の好ましい一態様においては、前記第1の導電部材が、正極集電箔であり、前記第2の導電部材が、負極集電箔である。   In a preferred embodiment of the secondary battery disclosed herein, the first conductive member is a positive electrode current collector foil, and the second conductive member is a negative electrode current collector foil.

このような構成によれば、内部部材を電極体とは別に用意する必要がなく、電極体と内部部材の接着箇所が必要ないため、より安全性が高く、エネルギー密度の高い二次電池を得ることが可能である。   According to such a configuration, there is no need to prepare an internal member separately from the electrode body, and there is no need for a bonding portion between the electrode body and the internal member, so that a secondary battery with higher safety and high energy density is obtained. It is possible.

本発明の一実施形態において処理される二次電池の内部構造を、該二次電池の幅方向より模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the secondary battery processed in one Embodiment of this invention from the width direction of this secondary battery. 本発明の一実施形態において処理される二次電池の内部構造を、該二次電池の厚さ方向より模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the secondary battery processed in one Embodiment of this invention from the thickness direction of this secondary battery. 本発明の一実施形態において処理される二次電池の電極体の全体的な構成を示す模式図である。It is a schematic diagram which shows the whole structure of the electrode body of the secondary battery processed in one Embodiment of this invention. 本発明の一実施形態における二次電池の接着状態を示す模式図であるIt is a schematic diagram which shows the adhesion state of the secondary battery in one Embodiment of this invention. 本発明の一実施形態における二次電池の内部構造を、該二次電池の幅方向より模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the secondary battery in one Embodiment of this invention from the width direction of this secondary battery. 本発明の一実施形態における二次電池の構成を示す模式図である。It is a schematic diagram which shows the structure of the secondary battery in one Embodiment of this invention.

以下、本発明の二次電池の代表的な実施形態につき、図面を用いて詳しく説明する。ここで説明される実施形態は、当然ながら特に本発明を限定することを意図したものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。また、各図は模式的に描かれており、例えば、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。   Hereinafter, typical embodiments of the secondary battery of the present invention will be described in detail with reference to the drawings. The embodiments described herein are, of course, not intended to limit the present invention in particular. Further, matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters for those skilled in the art based on the prior art in this field. Each drawing is schematically drawn. For example, the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship.

まず、本実施形態に適用される二次電池100の構造について、図1および図2を用いて簡単に説明する。なお、本明細書において「二次電池」とは、正負極間の電荷の移動により充放電が実現される電池を指し、代表的な例としてリチウムイオン二次電池等があるが、これらの二次電池に限定されるものではない。また、本実施形態において、捲回電極体の例を示すが、本発明はこれに限らず積層型の電極体を用いてもよい。   First, the structure of the secondary battery 100 applied to this embodiment is demonstrated easily using FIG. 1 and FIG. In this specification, the “secondary battery” refers to a battery that is charged and discharged by the movement of electric charge between the positive and negative electrodes, and a typical example includes a lithium ion secondary battery. It is not limited to the secondary battery. Moreover, in this embodiment, although the example of a wound electrode body is shown, this invention is not restricted to this, You may use a laminated electrode body.

図1に示す二次電池100では、大まかにいって、扁平形状の電極体20と非水電解液(図示せず)と内部部材200(図示せず)とが扁平な角形の密閉構造の電池容器(即ち外装容器)30に収容されている。電池容器30は、一端(電池の通常の使用状態における上端部に相当する。)に開口部を有する箱形(即ち有底直方体状)のケース本体32と、該ケース本体32の開口部を封止する蓋体34とから構成される。電池容器30の材質としては、例えば、アルミニウム、ステンレス鋼、ニッケルめっき鋼といった軽量で熱伝導性の良い金属材料が好ましく用いられ得る。   In the secondary battery 100 shown in FIG. 1, roughly speaking, a battery having a flat rectangular shape in which a flat electrode body 20, a nonaqueous electrolyte (not shown), and an internal member 200 (not shown) are flat. The container (that is, the outer container) 30 is accommodated. The battery container 30 has a box-shaped (that is, bottomed rectangular parallelepiped) case body 32 having an opening at one end (corresponding to the upper end in a normal use state of the battery), and the opening of the case body 32 is sealed. And a lid 34 to be stopped. As a material of the battery container 30, for example, a light metal material having a good thermal conductivity such as aluminum, stainless steel, or nickel-plated steel can be preferably used.

また、図2に示すように、内部部材200は、第1の導電部材110と、第2の導電部材120と、第1の導電部材110と第2の導電部材120の間に介在している絶縁部材130とを有している。また、前記第1の導電部材110と前記絶縁部材130と対向している面の少なくとも外縁部が互いに接着されており、前記第2の導電部材120と前記絶縁部材130と対向している面の少なくとも外縁部が互いに接着されている。なお、外縁部については、図4の説明と共に後述する。   As shown in FIG. 2, the internal member 200 is interposed between the first conductive member 110, the second conductive member 120, and the first conductive member 110 and the second conductive member 120. And an insulating member 130. In addition, at least outer edge portions of the surfaces facing the first conductive member 110 and the insulating member 130 are bonded to each other, and the surface of the surface facing the second conductive member 120 and the insulating member 130 is bonded. At least the outer edges are bonded together. The outer edge portion will be described later together with the description of FIG.

第1の導電部材110や第2の導電部材120の材質としては、導電性を有する物であれば特に制限はないが、好ましくはアルミニウム、ステンレス鋼、ニッケルめっき鋼といった軽量で熱伝導性の良い金属材料が好ましく用いられ得る。また、絶縁部材130の材質としてはポリオレフィン系樹脂であるポリエチレン(PE)やポリプロピレン(PP)、エンプラであるポリフェニレンスルファイド(PPS)やフッ素化樹脂共重合体であるペルフルオロアルコキシフッ素樹脂(PFA)などの単独または複合の合成樹脂が用いられ得る。   The material of the first conductive member 110 and the second conductive member 120 is not particularly limited as long as it has conductivity, but is preferably lightweight and has good thermal conductivity such as aluminum, stainless steel, and nickel-plated steel. Metal materials can be preferably used. The insulating member 130 may be made of polyethylene (PE) or polypropylene (PP), which is a polyolefin resin, polyphenylene sulfide (PPS), which is an engineering plastic, or perfluoroalkoxy fluororesin (PFA), which is a fluorinated resin copolymer. A single or composite synthetic resin can be used.

ここで、第1の導電部材110は正極50と、第2の導電部材120は負極60と、それぞれ電気的に接続(導通)されている。なお、本実施の形態の説明および図2において、第1の導電部材110は、第2の導電部材120よりも電極体との位置が近いように記載されているが、実際はそれに限らず、第1の導電部材110と第2の導電部材120の位置関係は、入れ替わっていてもよい。   Here, the first conductive member 110 and the second conductive member 120 are electrically connected (conductive) to the positive electrode 50 and the negative electrode 60, respectively. In the description of this embodiment and FIG. 2, the first conductive member 110 is described so as to be closer to the electrode body than the second conductive member 120. The positional relationship between the first conductive member 110 and the second conductive member 120 may be switched.

また、図1に示すように、蓋体34には外部接続用の正極端子42および負極端子44と、電池容器30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36と、非水電解液を注入するための注入口(図示せず)が設けられている。また、電池容器30の内部には電池容器30の内圧上昇により作動する電流遮断機構(CurrentInterrupt Device、CID)が設けられてもよい。   As shown in FIG. 1, the lid 34 is set to release the internal pressure when the internal pressure of the battery container 30 rises above a predetermined level, and the positive terminal 42 and the negative terminal 44 for external connection. A thin safety valve 36 and an injection port (not shown) for injecting a non-aqueous electrolyte are provided. In addition, a current interruption mechanism (Current Interrupt Device, CID) that operates when the internal pressure of the battery container 30 increases may be provided inside the battery container 30.

ここに開示される電極体20は、図1〜図3に示すように、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された正極50と、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成された負極60とを、2枚の長尺状のセパレータ70を介して積層した積層体が長尺方向に捲回され、扁平形状に成形された形態を有する。   As shown in FIGS. 1 to 3, the electrode body 20 disclosed herein includes a positive electrode active material layer 54 along a longitudinal direction on one or both surfaces (here, both surfaces) of an elongated positive electrode current collector 52. The formed positive electrode 50 and the negative electrode 60 in which the negative electrode active material layer 64 is formed along the longitudinal direction on one side or both sides (here, both sides) of the long negative electrode current collector 62 are two long pieces. The laminated body laminated | stacked through the separator 70 of a shape is wound by the elongate direction, and has the form shape | molded by the flat shape.

電極体20の捲回軸方向の中央部分には、図1および図3に示すように、捲回コア部分(即ち、正極50の正極活物質層54と、負極60の負極活物質層64と、セパレータ70とが積層されてなる積層構造)が形成されている。また、電極体20の捲回軸方向の両端部では、正極活物質層非形成部分52aおよび負極活物質層非形成部分62aの一部が、それぞれ捲回コア部分から外方にはみ出ている。かかる正極側はみ出し部分(正極活物質層非形成部分52a)および負極側はみ出し部分(負極活物質層非形成部分62a)には、正極集電板42aおよび負極集電板44aがそれぞれ付設され、正極端子42および負極端子44とそれぞれ電気的に接続されている。   As shown in FIG. 1 and FIG. 3, the winding core portion (that is, the positive electrode active material layer 54 of the positive electrode 50 and the negative electrode active material layer 64 of the negative electrode 60) , A laminated structure in which separators 70 are laminated). In addition, at both ends of the electrode body 20 in the winding axis direction, a part of the positive electrode active material layer non-formed part 52a and a part of the negative electrode active material layer non-formed part 62a protrude outward from the wound core part. The positive electrode side protruding portion (positive electrode active material layer non-forming portion 52a) and the negative electrode side protruding portion (negative electrode active material layer non-forming portion 62a) are respectively provided with a positive electrode current collecting plate 42a and a negative electrode current collecting plate 44a. The terminal 42 and the negative terminal 44 are electrically connected to each other.

正極50を構成する正極集電体52としては、例えばアルミニウム箔等が挙げられる。正極活物質層54は、少なくとも正極活物質を含有する。かかる正極活物質としては、例えば層状構造やスピネル構造等のリチウム複合金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiFePO等)が挙げられる。正極活物質層54は、活物質以外の成分、例えばアセチレンブラック(AB)等の導電材やポリフッ化ビニリデン(PVDF)等のバインダ等を含み得る。 Examples of the positive electrode current collector 52 constituting the positive electrode 50 include an aluminum foil. The positive electrode active material layer 54 contains at least a positive electrode active material. Examples of the positive electrode active material include lithium composite metal oxides such as a layered structure and a spinel structure (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiFePO 4, etc.). The positive electrode active material layer 54 can include components other than the active material, for example, a conductive material such as acetylene black (AB), a binder such as polyvinylidene fluoride (PVDF), and the like.

負極60を構成する負極集電体62としては、例えば銅箔等が挙げられる。負極活物質層64は、少なくとも負極活物質を含有する。かかる負極活物質としては、例えば、黒鉛等の炭素材料が挙げられる。負極活物質層64は、活物質以外の成分、例えばスチレンブタジエンラバー(SBR)等のバインダやカルボキシメチルセルロース(CMC)等の増粘剤等を含み得る。   Examples of the negative electrode current collector 62 constituting the negative electrode 60 include copper foil. The negative electrode active material layer 64 contains at least a negative electrode active material. Examples of the negative electrode active material include carbon materials such as graphite. The negative electrode active material layer 64 may include components other than the active material, for example, a binder such as styrene butadiene rubber (SBR), a thickener such as carboxymethyl cellulose (CMC), and the like.

このような正極50、負極60は、例えば以下のようにして作製することができる。まず、正極活物質または負極活物質と必要に応じて用いられる材料とを適当な溶媒(例えば正極活物質であればN−メチル−2−ピロリドンなどの有機溶媒、負極活物質であればイオン交換水などの水系溶媒)に分散させ、ペースト状(スラリー状)の組成物を調製する。次に、該組成物の適当量を正極集電体52または負極集電体62の表面に付与した後、乾燥により溶媒を除去することによって形成することができる。また、必要に応じて適当なプレス処理を施すことによって正極活物質層54および負極活物質層64の性状(例えば、平均厚み、活物質密度、空孔率等)を調整し得る。   Such a positive electrode 50 and a negative electrode 60 can be produced as follows, for example. First, a positive electrode active material or a negative electrode active material and a material used as necessary are combined with an appropriate solvent (for example, an organic solvent such as N-methyl-2-pyrrolidone for a positive electrode active material, or ion exchange for a negative electrode active material A paste-like (slurry) composition is prepared by dispersing in an aqueous solvent such as water. Next, an appropriate amount of the composition can be applied to the surface of the positive electrode current collector 52 or the negative electrode current collector 62, and then the solvent can be removed by drying. Moreover, the properties (for example, average thickness, active material density, porosity, etc.) of the positive electrode active material layer 54 and the negative electrode active material layer 64 can be adjusted by performing an appropriate press treatment as necessary.

セパレータ70としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成るシート(フィルム)等である。かかるシートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。また、セパレータ70の表面には、耐熱層(HRL)が設けられていてもよい。   The separator 70 is, for example, a sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, or polyamide. Such a sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). Further, a heat resistant layer (HRL) may be provided on the surface of the separator 70.

非水電解液としては、典型的には有機溶媒(非水溶媒)中に、支持塩を含有させたものを用いることができる。非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類等の有機溶媒を、特に限定なく用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)等を単独で、あるいは2種以上を適宜組み合わせて用いることができる。支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩を好適に用いることができる。 As the nonaqueous electrolytic solution, typically, an organic solvent (nonaqueous solvent) containing a supporting salt can be used. As the non-aqueous solvent, organic solvents such as various carbonates, ethers, esters and the like used for an electrolyte solution of a general lithium ion secondary battery can be used without particular limitation. As specific examples, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC) and the like can be used alone or in appropriate combination of two or more. As the supporting salt, for example, a lithium salt such as LiPF 6 , LiBF 4 , or LiClO 4 can be suitably used.

なお、上記非水電解液は、上述した非水溶媒、支持塩以外の成分、例えば、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;ホウ素原子および/またはリン原子を含むオキサラト錯体化合物、ビニレンカーボナート(VC)、フルオロエチレンカーボナート(FEC)等の被膜形成剤;分散剤;増粘剤;等の各種添加剤を含み得る。   The non-aqueous electrolyte includes components other than the non-aqueous solvent and the supporting salt described above, for example, a gas generating agent such as biphenyl (BP) and cyclohexylbenzene (CHB); an oxalato complex containing a boron atom and / or a phosphorus atom. Various additives such as a compound, a film forming agent such as vinylene carbonate (VC), fluoroethylene carbonate (FEC); a dispersant; a thickener;

以下、本発明に関する実施例(試験例)を説明するが、本発明をかかる実施例(試験例)に示すものに限定することを意図したものではない。   EXAMPLES Examples (test examples) relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples (test examples).

以下の材料、プロセスによって、第1実施例1および第2実施例に係る電極体を構築した。
<第1実施例>
正極の作製は以下の手順で行った。正極活物質粉末としてのLiNi0.33Co0.33Mn0.33(LNCM)と、導電材としてのABと、バインダとしてのPVDFとを、LNCM:AB:PVDF=90:8:2の質量比でNMPと混合し、スラリー状の正極活物質層形成用組成物を調製した。かかる組成物を、厚み15μmの長尺状のアルミニウム箔(正極集電体)の両面に帯状に塗布して乾燥、プレスすることにより、正極シートを作製した。なお、上記正極の平均厚みが約65μm(正極活物質層の片面当たりの平均厚みが約25μm)となるように、上記正極活物質層形成用組成物の塗付量およびプレス条件を調整した。
The electrode bodies according to the first example 1 and the second example were constructed by the following materials and processes.
<First embodiment>
The positive electrode was produced by the following procedure. LiNi 0.33 Co 0.33 Mn 0.33 O 2 (LNCM) as a positive electrode active material powder, AB as a conductive material, and PVDF as a binder, LNCM: AB: PVDF = 90: 8: 2 A slurry-like composition for forming a positive electrode active material layer was prepared by mixing with NMP at a mass ratio of The composition was coated on both sides of a 15 μm long aluminum foil (positive electrode current collector) in a strip shape, dried and pressed to prepare a positive electrode sheet. The coating amount of the positive electrode active material layer forming composition and the pressing conditions were adjusted so that the average thickness of the positive electrode was about 65 μm (the average thickness per one side of the positive electrode active material layer was about 25 μm).

負極の作製は以下の手順で行った。まず、負極活物質粉末として非晶質炭素で表面がコートされた黒鉛(C)を準備した。そして、かかる黒鉛(C)と、バインダとしてのSBRと、増粘剤としてのCMCとを、C:SBR:CMC=98:1:1の質量比でイオン交換水と混合して、スラリー状の負極活物質層形成用組成物を調製した。かかる組成物を、厚み10μmの長尺状の銅箔(負極集電体)の両面に帯状に塗布して乾燥、プレスすることにより、負極シートを作製した。なお、上記負極の平均厚みが約80μm(負極活物質層の片面当たりの平均厚みが約35μm)となるように、上記負極活物質層形成用組成物の塗付量およびプレス条件を調整した。   The negative electrode was produced according to the following procedure. First, graphite (C) whose surface was coated with amorphous carbon was prepared as a negative electrode active material powder. And this graphite (C), SBR as a binder, and CMC as a thickener are mixed with ion exchange water at a mass ratio of C: SBR: CMC = 98: 1: 1, A composition for forming a negative electrode active material layer was prepared. The composition was coated on both sides of a long copper foil (negative electrode current collector) having a thickness of 10 μm and dried and pressed to prepare a negative electrode sheet. The amount of the negative electrode active material layer-forming composition applied and the pressing conditions were adjusted so that the average thickness of the negative electrode was about 80 μm (the average thickness per one side of the negative electrode active material layer was about 35 μm).

上記のとおり作製した正極および負極を、ポリエチレン層の両面にポリプロピレン層が形成され、さらに一方のポリプロピレン層の表面にアルミナ粒子とバインダからなる層(所謂、耐熱層)が形成された四層構造のセパレータ2枚を介して長尺方向に重ねあわせ、長尺方向に60回(即ち捲回数が60回)巻き取った(捲回した)。そして、かかる(捲回後の正極、負極およびセパレータ)を、捲回軸に直交する一の方向に押しつぶして拉げることで、扁平形状の電極体を作製した。   The positive electrode and the negative electrode produced as described above have a four-layer structure in which a polypropylene layer is formed on both sides of a polyethylene layer, and a layer (so-called heat-resistant layer) made of alumina particles and a binder is formed on the surface of one polypropylene layer. The sheets were overlapped in the longitudinal direction through two separators, and wound up (wound) 60 times in the longitudinal direction (that is, the number of times of winding). Then, the flat-shaped electrode body was produced by crushing such (the positive electrode, the negative electrode and the separator after winding) in one direction perpendicular to the winding axis.

次に、図4のように、内部部材200として、厚み15μmのアルミニウム箔(第1の導電部材110)と、厚さ5mmのPE製シート(絶縁部材130)と、厚み10μmの銅箔(第2の導電部材120)とを重ね、前記電極体の捲回軸と直交する方向における外周1周分以上の長さにおいて切り取った後、第1の導電部材110と絶縁部材130との対向している面において、外周端から5mmの部分を150℃において圧力0.1MPaにおいて、1時間静置することによって、第1の導電部材110と絶縁部材130と第2の導電部材120をまとめて接着した。   Next, as shown in FIG. 4, as the internal member 200, an aluminum foil having a thickness of 15 μm (first conductive member 110), a PE sheet having a thickness of 5 mm (insulating member 130), and a copper foil having a thickness of 10 μm (first member). Two conductive members 120), and cut out at a length of one or more circumferences in the direction perpendicular to the winding axis of the electrode body, and then the first conductive member 110 and the insulating member 130 face each other. The first conductive member 110, the insulating member 130, and the second conductive member 120 were bonded together by leaving a portion 5 mm from the outer peripheral edge at 150 ° C. and a pressure of 0.1 MPa for 1 hour. .

なお、本実施例では、接着方法として熱溶着を用いたが、接着剤を用いるなど他の接着方法を用いてもよい。また、本実施例では、内部部材200の長さを前記電極体の捲回軸と直交する方向における外周1周分以上の長さとし、接着箇所を外周端から10mmとしたが、接触箇所は本発明の効果が出るのであればこれに限らず、例えば絶縁部材130の外周端のみでもよいし全面でもよい。また、第1の導電部材110と絶縁部材130を接着する工程と、第2の導電部材120と絶縁部材130を接着する工程を分けて行ってもよい。   In this embodiment, heat welding is used as the bonding method, but other bonding methods such as using an adhesive may be used. Further, in this embodiment, the length of the internal member 200 is set to a length equal to or longer than one circumference of the outer periphery in the direction orthogonal to the winding axis of the electrode body, and the adhesion location is set to 10 mm from the outer circumference end. For example, only the outer peripheral end of the insulating member 130 or the entire surface may be used as long as the effect of the invention is obtained. Further, the step of bonding the first conductive member 110 and the insulating member 130 and the step of bonding the second conductive member 120 and the insulating member 130 may be performed separately.

次に、この第1の導電部材110、絶縁部材130、第2の導電部材120の順に積層された内部部材200が、前記電極体の積層方向において、前記電極体と前記電池容器30の間に配置され、電極体の正極50と第1の導電部材110とが電気的に接続(導通)し、前記電極体の負極60と第2の導電部材120とが電気的に接続(導通)するようにそれぞれ固定した。   Next, the internal member 200 in which the first conductive member 110, the insulating member 130, and the second conductive member 120 are stacked in this order is disposed between the electrode body and the battery container 30 in the stacking direction of the electrode body. The electrode body positive electrode 50 and the first conductive member 110 are electrically connected (conductive), and the electrode body negative electrode 60 and the second conductive member 120 are electrically connected (conductive). Fixed to each.

なお、本実施例では、電気的接続方法として、図5のように負極60と第1の導電部材110を第1の接続部材112により固定し、正極50と第2の導電部材120を第2の接続部材122でそれぞれ溶着させることによって固定するが、本発明はその固定方法に限定されるものではなく、導電性接着剤を用いるなどその他の方法を用いて固定してもよい。なお、第1の接続部材112および第2の接続部材121は導電性の材料であれば特に制限はなく、今回はアルミニウム箔を用いた。   In the present embodiment, as an electrical connection method, the negative electrode 60 and the first conductive member 110 are fixed by the first connection member 112 as shown in FIG. 5, and the positive electrode 50 and the second conductive member 120 are secondly connected. However, the present invention is not limited to the fixing method, and may be fixed using other methods such as using a conductive adhesive. The first connecting member 112 and the second connecting member 121 are not particularly limited as long as they are conductive materials, and this time, aluminum foil was used.

電極体の正極活物質層の非形成部および負極活物質層の非形成部に、それぞれ、正極リード端子および負極リード端子を超音波溶接手段により付設した。その後、かかる電極体および内部部材200を非水電解液とともに箱型の電池容器30に収容し、電池容器30の開口部を気密に封口した。非水電解液としてはECとDMCとEMCとを3:4:3の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させた非水電解液を41g使用した。このようにして構築した密閉型の角型リチウムイオン二次電池に対し、常法により初期充放電処理(コンディショニング)を行って二次電池を作製した。 A positive electrode lead terminal and a negative electrode lead terminal were respectively attached to the non-formed part of the positive electrode active material layer and the non-formed part of the negative electrode active material layer of the electrode body by ultrasonic welding means. Thereafter, the electrode body and the internal member 200 were accommodated in the box-shaped battery container 30 together with the non-aqueous electrolyte, and the opening of the battery container 30 was hermetically sealed. As the non-aqueous electrolyte, 41 g of a non-aqueous electrolyte in which LiPF 6 as a supporting salt is contained at a concentration of about 1 mol / liter in a mixed solvent containing EC, DMC, and EMC in a volume ratio of 3: 4: 3 is used. did. The sealed prismatic lithium ion secondary battery thus constructed was subjected to an initial charge / discharge treatment (conditioning) by a conventional method to produce a secondary battery.

このような構成によれば、前記第1の導電部材110と前記絶縁部材130との間、および前記第2の導電部材120と前記絶縁部材130との間における異物の混入を防止でき、異物による内部短絡の発生を抑制することが可能である。
<第2実施例>
第2実施例の模式図を図6に示す。第2実施例の電池は、内部部材200の構成が異なること、および電極体の正極が電池容器30と電気的に接続されていること以外は上記第1実施例と同様の構成であるので、重複する説明は省略する。
According to such a configuration, foreign matter can be prevented from being mixed between the first conductive member 110 and the insulating member 130 and between the second conductive member 120 and the insulating member 130. It is possible to suppress the occurrence of an internal short circuit.
<Second embodiment>
A schematic diagram of the second embodiment is shown in FIG. The battery of the second embodiment has the same configuration as that of the first embodiment except that the configuration of the internal member 200 is different and that the positive electrode of the electrode body is electrically connected to the battery container 30. A duplicate description is omitted.

内部部材200は、厚さ5mmのPE製シート(絶縁部材130)と、厚み10μmの銅箔(第2の導電部材120)とを重ねて作製したものであり、前記電極体の捲回軸と直交する方向における外周1周分以上の長さにおいて切り取った後、第2の導電部材120と絶縁部材130とを接着した。その後、絶縁部材130と電池容器30を接着した。なお、接着方法や接着箇所は上記第1実施例と同様の構成であるので省略するが、それに限定されるものではない。   The internal member 200 is made by stacking a PE sheet (insulating member 130) having a thickness of 5 mm and a copper foil (second conductive member 120) having a thickness of 10 μm, and the winding axis of the electrode body and The second conductive member 120 and the insulating member 130 were bonded to each other after cutting out at a length equal to or longer than one round of the outer periphery in the orthogonal direction. Thereafter, the insulating member 130 and the battery container 30 were bonded. Although the bonding method and the bonding location are the same as those in the first embodiment, they are omitted, but are not limited thereto.

なお、電極体の正極は、厚み15μmのアルミニウム箔を用いて、電池容器30と電気的に接続させた。なお、本実施例においては、正極とは別にアルミニウム箔を用いたが、正極集電箔のアルミニウム箔を延長することで、正極と電池容器30とを電気的に接続させてもよいし、他の材質を用いて電気的に接続してもよい。   The positive electrode of the electrode body was electrically connected to the battery container 30 using an aluminum foil having a thickness of 15 μm. In this embodiment, an aluminum foil is used separately from the positive electrode, but the positive electrode and the battery container 30 may be electrically connected by extending the aluminum foil of the positive electrode current collector foil. You may electrically connect using the material of.

次に、捲回体の内周方向から数えて、第2の導電部材120、絶縁部材130の順に積層された内部部材200が、捲回電極体の最外周を構成するように、捲回電極体と電池容器30の間に配置され、電極体の負極60と第2の導電部材120とが電気的に接続するように固定した。なお、本実施例では、電極体の負極60と第2の導電部材120は、第2の接続部材122でそれぞれ溶着させることによって固定するが、本発明はその固定方法に限定されるものではなく、導電性接着剤を用いるなどその他の方法を用いて固定してもよい。なお、第2の接続部材121は導電性の材料であれば特に制限はなく、今回はアルミニウム箔を用いた。   Next, counting from the inner peripheral direction of the wound body, the inner member 200 in which the second conductive member 120 and the insulating member 130 are laminated in this order forms the outermost periphery of the wound electrode body. The negative electrode 60 of the electrode body and the second conductive member 120 were fixed so as to be electrically connected. In this embodiment, the negative electrode 60 of the electrode body and the second conductive member 120 are fixed by being welded by the second connecting member 122, respectively, but the present invention is not limited to the fixing method. It may be fixed using other methods such as using a conductive adhesive. The second connecting member 121 is not particularly limited as long as it is a conductive material, and an aluminum foil is used this time.

また、電極体に固定した内部部材200の絶縁部材130と、電池容器30とを接触させた状態で固定した。本実施例では、導電性の接着剤を用いて固定したがその固定方法に限定されるものではない。   Further, the insulating member 130 of the internal member 200 fixed to the electrode body and the battery container 30 were fixed in a contacted state. In this embodiment, fixing is performed using a conductive adhesive, but the method is not limited to this fixing method.

かかる構成によって、第2実施例は第1実施例より第1の導電部材110の厚み分だけ電池容器30内に電極体を充填する空間があるため、よりエネルギー密度の高い二次電池を作製することが出来る。
<第3実施例>
第3実施例の電池は、内部部材200の構成が異なること、および電極体の負極が電池容器30と電気的に接続されていること以外は上記第1実施例と同様の構成であるので、重複する説明は省略する。
With this configuration, the second embodiment has a space for filling the electrode body in the battery container 30 by the thickness of the first conductive member 110 as compared with the first embodiment, so that a secondary battery with higher energy density is produced. I can do it.
<Third embodiment>
The battery of the third embodiment has the same configuration as that of the first embodiment except that the configuration of the internal member 200 is different and that the negative electrode of the electrode body is electrically connected to the battery container 30. A duplicate description is omitted.

内部部材200は、厚み15μmのアルミニウム箔(第1の導電部材110)と厚さ5mmのPE製シート(絶縁部材130)とを重ねて作製したものであり、前記電極体の捲回軸と直交する方向における外周1周分以上の長さにおいて切り取った後、第1の導電部材の外縁部分111と絶縁部材130とを接着した。その後、絶縁部材130と電池容器30を接着した。なお、接着方法や接着箇所は上記第1実施例と同様の構成であるので省略するが、それに限定されるものではない。   The internal member 200 is produced by stacking a 15 μm thick aluminum foil (first conductive member 110) and a 5 mm thick PE sheet (insulating member 130), and is orthogonal to the winding axis of the electrode body. The outer edge portion 111 of the first conductive member and the insulating member 130 were bonded to each other after cutting out at a length equal to or longer than one circumference of the outer periphery in the direction to be performed. Thereafter, the insulating member 130 and the battery container 30 were bonded. Although the bonding method and the bonding location are the same as those in the first embodiment, they are omitted, but are not limited thereto.

電極体の負極は、厚み10μmの銅箔(第2の接続部材122)を用いて、電池容器30と電気的に接続させた。なお、本実施例においては、負極とは別に銅箔を用いたが、正極集電箔の銅箔を延長することで、正極と電池容器30とを電気的に接続させてもよいし、他の材質を用いて電気的に接続してもよい。   The negative electrode of the electrode body was electrically connected to the battery container 30 using a copper foil (second connecting member 122) having a thickness of 10 μm. In this example, copper foil was used separately from the negative electrode, but the positive electrode and the battery container 30 may be electrically connected by extending the copper foil of the positive electrode current collector foil. You may electrically connect using the material of.

次に、捲回体の内周方向から数えて、第1の導電部材110、絶縁部材130の順に積層された内部部材200が、電極体の最外周を構成するよう配置され、電極体の正極50と第1の導電部材110とがそれぞれ電気的に接続するように固定した。なお、本実施例では、導電性の接着剤を用いて固定したがその固定方法に限定されるものではない。   Next, the internal member 200 in which the first conductive member 110 and the insulating member 130 are stacked in this order, counting from the inner peripheral direction of the wound body, is arranged to constitute the outermost periphery of the electrode body, and the positive electrode of the electrode body 50 and the first conductive member 110 were fixed so as to be electrically connected to each other. In the present embodiment, fixing is performed using a conductive adhesive, but the fixing method is not limited thereto.

また、電極体に固定した内部部材200の絶縁部材130と、電池容器30とを接触させた状態で固定した。本実施例では、導電性の接着剤を用いて固定したがその固定方法に限定されるものではない。   Further, the insulating member 130 of the internal member 200 fixed to the electrode body and the battery container 30 were fixed in a contacted state. In this embodiment, fixing is performed using a conductive adhesive, but the method is not limited to this fixing method.

かかる構成によって、第3実施例は第1実施例より第2の導電部材の厚み分だけ電池容器30内に電極体を充填する空間があるため、よりエネルギー密度の高い二次電池を作製することが出来る。
<第4実施例>
第4実施例の電池は、内部部材200が電極体と一体であること以外は上記第1実施例と同様の構成であるので、重複する説明は省略する。
With this configuration, the third embodiment has a space for filling the electrode body in the battery container 30 by the thickness of the second conductive member as compared with the first embodiment, so that a secondary battery having a higher energy density is produced. I can do it.
<Fourth embodiment>
Since the battery of the fourth embodiment has the same configuration as that of the first embodiment except that the internal member 200 is integral with the electrode body, the overlapping description is omitted.

本実施例において、正極は、正極活物質層を有する発電部と、正極活物質層を有さず、正極集電箔が露出した正極集電箔部から構成されており、電極体における正極の最外周部分は、発電部でなく、正極集電箔部より構成されている。   In this example, the positive electrode is composed of a power generation part having a positive electrode active material layer and a positive electrode current collector foil part that does not have a positive electrode active material layer and the positive electrode current collector foil is exposed. The outermost peripheral part is not a power generation part but a positive electrode current collector foil part.

負極も、負極活物質層を有する発電部と、負極活物質層を有さず、負極集電箔が露出した負極集電箔部から構成されており、電極体における負極の最外周部分は、発電部でなく、負極集電箔部より構成されている。   The negative electrode is also composed of a power generation part having a negative electrode active material layer and a negative electrode current collector foil part that does not have a negative electrode active material layer and the negative electrode current collector foil is exposed. It is comprised from the negative electrode current collector foil part instead of a power generation part.

上述の正極と負極とを、第1実施例と同様に四層構造のセパレータ2枚を介して長尺方向に重ねあわせた後に捲回し、電極体を作製した。そして、電極体の捲回最外周部分は、正極集電箔部と、負極集電箔部とを、セパレータを介して固定した。なお、本実施例では、電極体のセパレータを溶着させることによって、正極集電箔部とセパレータ、および負極集電箔部とセパレータを固定したが、その固定方法に限定されるものではない。   The positive electrode and the negative electrode described above were wound in the longitudinal direction through two separators having a four-layer structure in the same manner as in the first example, and then wound to prepare an electrode body. And the winding outermost periphery part of the electrode body fixed the positive electrode current collection foil part and the negative electrode current collection foil part via the separator. In this example, the positive electrode current collector foil part and the separator and the negative electrode current collector foil part and the separator were fixed by welding the separator of the electrode body, but the method is not limited to this fixing method.

かかる構成によって、第4実施例は、電極体20と内部部材200を接着する箇所が必要なく、電池容器内30に占める内部部材200の割合が小さくなりやすい。よって、電極体を充填する空間が出来やすく、よりエネルギー密度の高い二次電池を作製することが出来る。また、第1の外部部材と第2の外部部材をそれぞれ正極または負極に接続する手間が不要のため、作製が容易であり、コスト面でもメリットがある。   With such a configuration, the fourth embodiment does not require a portion for bonding the electrode body 20 and the internal member 200, and the ratio of the internal member 200 to the battery container 30 tends to be small. Therefore, it is easy to create a space for filling the electrode body, and a secondary battery with higher energy density can be manufactured. In addition, since there is no need to connect the first external member and the second external member to the positive electrode or the negative electrode, manufacturing is easy and there is a merit in terms of cost.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

また、上記実施例では、金属製のパッケージを有する角型電池を採用したが、この形態に限られるものではない。例えば、金属製のパッケージを有する角型電池や円筒型電池、ラミネートフィルムのパッケージを有する電池や合成樹脂製のパッケージを有する電池であってもよい。   Moreover, in the said Example, although the square battery which has metal packages was employ | adopted, it is not restricted to this form. For example, a square battery or a cylindrical battery having a metal package, a battery having a laminate film package, or a battery having a synthetic resin package may be used.

上記実施例の電池では、正極シートの発電領域と露出領域がいずれもアルミニウムで構成されているが、両者ともアルミニウムで構成される必要はない。一般的なリチウム二次電池に適用する場合には、高電位での安定性に優れるアルミニウムが好ましい。   In the battery of the above embodiment, the power generation region and the exposed region of the positive electrode sheet are both made of aluminum, but both need not be made of aluminum. When applied to a general lithium secondary battery, aluminum excellent in stability at a high potential is preferable.

負極シートは、発電領域と露出領域がいずれも銅で構成されているが、両者とも銅で構成される必要はない。これら、電極を構成する金属箔は、導電性をもつ金属であれば特に限定することなく用いることができる。例えば、アルミニウム、銅、チタン、ニッケル、鉄、ステンレス等の金属材料を用いることができる。   In the negative electrode sheet, both the power generation area and the exposed area are made of copper, but both need not be made of copper. These metal foils constituting the electrodes can be used without particular limitation as long as they are conductive metals. For example, metal materials such as aluminum, copper, titanium, nickel, iron, and stainless steel can be used.

本明細書または図面に説明した技術的要素は、単独で或いは各種の組み合わせによって技術的な有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数の目的を同時に達成するものであり、そのうち一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings achieves a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

20 電極体
30 電池容器
32 電池容器本体
34 蓋体
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
60 負極
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
70 セパレータ
100 二次電池
110 第1の導電部材
111 第1の導電部材の外縁部分
112 第1の接続部材
120 第2の導電部材
121 第2の導電部材の外縁部分
122 第2の接続部材
130 絶縁部材
131 絶縁部材の外縁部分
200 内部部材
DESCRIPTION OF SYMBOLS 20 Electrode body 30 Battery container 32 Battery container main body 34 Cover body 36 Safety valve 42 Positive electrode terminal 42a Positive electrode current collector plate 44 Negative electrode terminal 44a Negative electrode current collector plate 50 Positive electrode 52 Positive electrode current collector 52a Positive electrode active material layer non-formation part 54 Positive electrode active material Layer 60 Negative electrode 62 Negative electrode current collector 62a Negative electrode active material layer non-formed portion 64 Negative electrode active material layer 70 Separator 100 Secondary battery 110 First conductive member 111 Outer edge portion 112 of first conductive member First connection member 120 First Second conductive member 121 Outer edge portion 122 of second conductive member Second connection member 130 Insulating member 131 Outer edge portion 200 of insulating member Internal member

Claims (3)

正極と、負極と、正極と負極の間に介在しているセパレータと、を積層した電極体と、前記電極体の積層方向外部に配置された内部部材と、を備え、
前記内部部材は、前記正極と導通している第1の導電部材と、前記負極と導通している第2の導電部材と、第1の導電部材と第2の導電部材の間に介在している絶縁部材とを有する二次電池であって、
前記第1の導電部材は、前記絶縁部材と対向している面のうち、少なくとも外縁部が互いに接着されており、
前記第2の導電部材は、前記絶縁部材と対向している面のうち、少なくとも外縁部が互いに接着されていることを特徴とする二次電池。
An electrode body in which a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode are stacked, and an internal member disposed outside in the stacking direction of the electrode body,
The internal member is interposed between the first conductive member connected to the positive electrode, the second conductive member connected to the negative electrode, and the first conductive member and the second conductive member. A secondary battery having an insulating member,
Of the surface facing the insulating member, the first conductive member has at least outer edges bonded to each other,
In the secondary battery, the second conductive member has at least outer edges bonded to each other on a surface facing the insulating member.
前記第1の導電部材または前記第2の導電部材いずれかが電池容器である、請求項1記載の二次電池。   The secondary battery according to claim 1, wherein either the first conductive member or the second conductive member is a battery container. 前記第1の導電部材が、正極集電箔であり、
前記第2の導電部材が、負極集電箔である、請求項1記載の二次電池。
The first conductive member is a positive electrode current collector foil;
The secondary battery according to claim 1, wherein the second conductive member is a negative electrode current collector foil.
JP2015232472A 2015-11-27 2015-11-27 Secondary battery having an electrode body Active JP6540476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015232472A JP6540476B2 (en) 2015-11-27 2015-11-27 Secondary battery having an electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015232472A JP6540476B2 (en) 2015-11-27 2015-11-27 Secondary battery having an electrode body

Publications (2)

Publication Number Publication Date
JP2017098205A true JP2017098205A (en) 2017-06-01
JP6540476B2 JP6540476B2 (en) 2019-07-10

Family

ID=58817167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015232472A Active JP6540476B2 (en) 2015-11-27 2015-11-27 Secondary battery having an electrode body

Country Status (1)

Country Link
JP (1) JP6540476B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025627A (en) * 2000-07-13 2002-01-25 Yuasa Corp Nonaqueous film package secondary battery
JP2003142068A (en) * 2001-08-24 2003-05-16 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006286496A (en) * 2005-04-04 2006-10-19 Sony Corp Polymer cell
JP2013041824A (en) * 2011-08-18 2013-02-28 Samsung Sdi Co Ltd Secondary battery
JP2014127355A (en) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd Electric device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025627A (en) * 2000-07-13 2002-01-25 Yuasa Corp Nonaqueous film package secondary battery
JP2003142068A (en) * 2001-08-24 2003-05-16 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006286496A (en) * 2005-04-04 2006-10-19 Sony Corp Polymer cell
JP2013041824A (en) * 2011-08-18 2013-02-28 Samsung Sdi Co Ltd Secondary battery
JP2014127355A (en) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd Electric device

Also Published As

Publication number Publication date
JP6540476B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6250921B2 (en) battery
JP5445872B2 (en) Secondary battery
JP2017120764A (en) Secondary battery
JP2013201077A (en) Nonaqueous electrolytic secondary battery
CN112909345B (en) Secondary battery and method for manufacturing secondary battery
JP6460418B2 (en) Secondary battery
JP2013232425A (en) Nonaqueous secondary battery
JP2016207286A (en) Electrode and battery
WO2013047515A1 (en) Non-aqueous electrolyte secondary battery
CN111697261A (en) Lithium secondary battery
JP5509561B2 (en) Nonaqueous electrolyte secondary battery
JP2017142896A (en) Secondary battery
JP7285819B2 (en) Non-aqueous electrolyte secondary battery
JP2017098207A (en) Secondary battery having electrode body
JP6681017B2 (en) Secondary battery having electrode body
JP2022044958A (en) battery
JP2016225261A (en) Lithium secondary battery
JP2017027837A (en) Lithium ion secondary battery
JP6540476B2 (en) Secondary battery having an electrode body
JP2020077492A (en) Nonaqueous electrolyte secondary battery
WO2018043419A1 (en) Layered electrode body and power storage element
CN112563681B (en) Nonaqueous electrolyte secondary battery
JP7430665B2 (en) Secondary battery current collector and its manufacturing method, and secondary battery
JP7317877B2 (en) Non-aqueous electrolyte secondary battery
JP2006147185A (en) Wound electrode, its manufacturing method, and battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R151 Written notification of patent or utility model registration

Ref document number: 6540476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151