JP2017097167A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2017097167A
JP2017097167A JP2015229033A JP2015229033A JP2017097167A JP 2017097167 A JP2017097167 A JP 2017097167A JP 2015229033 A JP2015229033 A JP 2015229033A JP 2015229033 A JP2015229033 A JP 2015229033A JP 2017097167 A JP2017097167 A JP 2017097167A
Authority
JP
Japan
Prior art keywords
tilt
optical axis
tilting
coil
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015229033A
Other languages
Japanese (ja)
Inventor
高広 森永
Takahiro Morinaga
高広 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2015229033A priority Critical patent/JP2017097167A/en
Publication of JP2017097167A publication Critical patent/JP2017097167A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an imaging apparatus achieving both: high flexibility in the movement of a movable member that holds a vibration-proofing optical element; and high accuracy in a mechanical movement end of the movable member.SOLUTION: An imaging apparatus comprises: a stationary member for supporting, in a manner capable of oscillating a spherical center, a movable member that holds imaging means; tilt driving means for applying, to the movable member, a force in a tilt direction that changes a tilt of an optical axis; rotation driving means for applying, to the movable member, a force in a rotation direction that centers the optical axis; tilt range limiting means for mechanically limiting a movement range of the movable member in the tilt direction; and rotation range limiting means for mechanically limiting a movement range of the movable member in the rotation direction. The rotation range limiting means includes: a stationary side rotation limiting part provided in the stationary member; and a movable side rotation limiting part that is provided in the movable member and comes into contact with the stationary side rotation limiting part by a rotation movement to regulate a rotation. The stationary side rotation limiting part and the movable side rotation limiting part are provided on a planar surface vertical to the optical axis that pass the center of a spherical center oscillation.SELECTED DRAWING: Figure 18

Description

本発明は、防振(像振れ補正)機構を備えた撮像装置に関する。   The present invention relates to an imaging apparatus provided with an image stabilization (image blur correction) mechanism.

近年の撮像装置では、手振れなどを起因とする像振れを軽減させるための防振機構の搭載が一般的になっている。防振機構は、撮像装置に加わる振動や姿勢変化を検知して、その影響をキャンセルするように、撮像光学系や撮像素子といった防振用の光学要素を光軸に対してシフト(光軸と垂直な平面に沿う移動)やチルト(光軸に対して傾ける動作)させる。撮像装置の用途の多様化を背景として、防振用の光学要素の動作スペック(駆動量や駆動方向の自由度)を向上させることが求められている。   In recent imaging apparatuses, an anti-vibration mechanism for reducing image blur caused by camera shake or the like is generally mounted. The anti-vibration mechanism detects vibrations and posture changes applied to the image pickup device and shifts the anti-vibration optical elements such as the image pickup optical system and the image pickup element with respect to the optical axis so as to cancel the influence (with the optical axis). Move along a vertical plane) and tilt (tilt with respect to the optical axis). With the background of diversification of uses of imaging devices, it is required to improve the operation specifications (driving amount and degree of freedom of driving direction) of an optical element for image stabilization.

例えば特許文献1の撮像装置では、防振用の光学要素を保持する可動部材に円錐状の接触面(凹面)を設け、この円錐状の接触面に接触する部分球面を固定部材の突起部に設け、接触面と部分球面の接触によって可動部材を球心揺動(自在に回転)可能に支持している。そして、光軸に直交する第1の軸、光軸と第1の軸の双方に対して直交する第2の軸、光軸に一致する第3の軸を中心として可動部材を回転駆動させる3軸駆動タイプの防振機構を構成している。   For example, in the imaging apparatus of Patent Document 1, a conical contact surface (concave surface) is provided on a movable member that holds an optical element for vibration isolation, and a partial spherical surface that contacts the conical contact surface is used as a protrusion of the fixing member. The movable member is supported so as to be swingable (can be freely rotated) by contact between the contact surface and the partial spherical surface. The movable member is driven to rotate around a first axis orthogonal to the optical axis, a second axis orthogonal to both the optical axis and the first axis, and a third axis that coincides with the optical axis. A shaft drive type anti-vibration mechanism is constructed.

特許第5730219号Japanese Patent No. 5730219

防振機能を備えた撮像装置で正確な防振制御を実現するために、防振時に動作する可動部材の動作量を所定の範囲に制限する機械的な範囲制限手段が用いられる。例えば、防振用の駆動手段としてボイスコイルモータを用いる場合、磁石とコイルの相対的な位置ずれが過大になると位置制御不能となってしまうので、ボイスコイルモータで制御できる範囲内に可動部材の動作範囲を収めるべく、機械的に動作範囲を制限することが望ましい。また、可動部材の位置や動作を検出するための検出手段を備えており、撮像装置の起動時や防振モードの切替時などに、検出手段による検出の基準を設定するイニシャライズ(初期化)が行われるが、範囲制限手段により定められる機械的な移動端を基準としてイニシャライズすることが多い。そのため、可動部材の機械的移動端の精度を高めることでイニシャライズ精度が向上し、結果として正確で高性能な防振制御を実現できる。しかし、前述の3軸駆動タイプのように動作の自由度を高めた防振機構は、構造が複雑でスペース上の制約が多かったり、所定の方向の回転を制限する際に当該方向と異なる方向の動作による位置や向きのずれを考慮する必要があったりするため、各駆動方向で高精度に機械的移動端を設定できる簡易な構造の範囲制限手段を得ることが難しかった。   In order to realize accurate image stabilization control with an imaging apparatus having an image stabilization function, a mechanical range limiting unit that limits the amount of movement of the movable member that operates during image stabilization to a predetermined range is used. For example, when a voice coil motor is used as an anti-vibration driving means, if the relative positional deviation between the magnet and the coil becomes excessive, position control becomes impossible. In order to keep the operating range, it is desirable to mechanically limit the operating range. In addition, a detection means for detecting the position and operation of the movable member is provided, and initialization (initialization) for setting a reference for detection by the detection means at the time of starting the imaging device or switching the image stabilization mode is performed. In many cases, the initialization is performed based on the mechanical moving end determined by the range limiting means. Therefore, by increasing the accuracy of the mechanical moving end of the movable member, the initialization accuracy is improved, and as a result, accurate and high-performance anti-vibration control can be realized. However, the anti-vibration mechanism with a high degree of freedom of operation, such as the above-described three-axis drive type, has a complicated structure and many space restrictions, or a direction different from that direction when limiting rotation in a predetermined direction. Therefore, it is difficult to obtain a range limiting means having a simple structure that can set the mechanical moving end with high accuracy in each driving direction.

特許文献1の撮像装置は、固定部材からの可動部材の脱落を防ぐ脱落防止部材を備えており、脱落防止部材に対して可動部材が当接することによって、前述の第1の軸と第2の軸を中心として可動部材が所定の角度以上に回転することを制限する。これに対して、第3の軸を中心とする回転方向については、駆動手段を構成する磁石の磁気バネ効果による中立位置への復帰を行わせることが可能であるが、機械的に回転範囲を制限して防振制御に関するイニシャライズを行うものとは異なっている。   The imaging device of Patent Document 1 includes a drop-off preventing member that prevents the movable member from dropping from the fixed member. When the movable member abuts against the drop-off preventing member, the first shaft and the second shaft described above are provided. The movable member is restricted from rotating more than a predetermined angle around the axis. On the other hand, with respect to the rotation direction around the third axis, it is possible to return to the neutral position by the magnetic spring effect of the magnet constituting the driving means, but the rotation range is mechanically limited. This is different from the one that performs the initialization related to the image stabilization control.

本発明は以上の問題点に鑑みてなされたものであり、防振用の光学要素を保持する可動部材の動作の自由度が高く、かつ可動部材の機械的移動端を高精度に定めることが可能な撮像装置を提供することを目的とする。   The present invention has been made in view of the above problems, and the degree of freedom of operation of the movable member holding the vibration-proof optical element is high, and the mechanical moving end of the movable member can be determined with high accuracy. An object is to provide a possible imaging device.

本発明の撮像装置は、被写体画像を得る撮像手段の少なくとも一部を支持する可動部材;撮像手段を構成する光学系の光軸上の揺動中心を中心として、可動部材を球心揺動可能に支持する固定部材;光軸の傾きを変化させる傾動方向の力を可動部材に付与する傾動用駆動手段;光軸を中心とする回転方向の力を可動部材に付与する回転用駆動手段;傾動方向での固定部材に対する可動部材の動作範囲を機械的に制限する傾動範囲制限手段;及び、回転方向での固定部材に対する可動部材の動作範囲を機械的に制限する回転範囲制限手段;を備えており、回転範囲制限手段は、固定部材に設けた固定側回転制限部と、可動部材に設けられ回転動作によって固定側回転制限部に当接して回転を規制する可動側回転制限部を備え、固定側回転制限部と可動側回転制限部は、揺動中心を通り光軸に垂直な第1の平面上に位置していることを特徴とする。   The imaging apparatus of the present invention is a movable member that supports at least a part of an imaging unit that obtains a subject image; the movable member is capable of pivoting about the pivot center on the optical axis of an optical system that constitutes the imaging unit. A fixing member that supports the movable member; a tilting drive unit that applies a force in a tilting direction that changes the tilt of the optical axis to the movable member; a rotation driving unit that applies a force in the rotational direction around the optical axis to the movable member; Tilting range limiting means for mechanically limiting the operating range of the movable member relative to the fixed member in the direction; and rotation range limiting means for mechanically limiting the operating range of the movable member relative to the fixed member in the rotational direction. The rotation range limiting means includes a fixed-side rotation limiting portion provided on the fixed member, and a movable-side rotation limiting portion that is provided on the movable member and contacts the fixed-side rotation limiting portion by a rotation operation to restrict rotation. Side rotation limiter Movable rotation limiting part is characterized by being located on a first plane perpendicular to the street light axis swing center.

固定部材は光軸を中心とする径方向で可動部材の外側を囲む筒状体であり、この筒状の固定部材に内径方向に向けて突設した内方突出部を固定側回転制限部として用いることが好ましい。可動側回転制限部として、可動部材に外径方向に向けて突設されて回転方向で内方突出部の両側に位置する一対の外方突出部を設けることが好ましい。一対の外方突出部を第1の平面上に位置させ、一対の外方突出部よりも光軸に沿う方向に長く内方突出部を形成することで、可動部材を傾動させた状態でも、回転動作時に各外方突出部を内方突出部に確実に当接させることができる。   The fixed member is a cylindrical body that surrounds the outside of the movable member in the radial direction with the optical axis as the center, and an inward protruding portion that protrudes toward the inner diameter direction on the cylindrical fixed member is used as a fixed-side rotation limiting portion. It is preferable to use it. As the movable-side rotation restricting portion, it is preferable to provide a pair of outward projecting portions that project from the movable member in the outer diameter direction and are positioned on both sides of the inward projecting portion in the rotational direction. Even when the movable member is tilted by positioning the pair of outward protrusions on the first plane and forming the inward protrusion longer in the direction along the optical axis than the pair of outward protrusions, Each outward protrusion can be reliably brought into contact with the inward protrusion when rotating.

可動部材は揺動中心を中心とする球面を備え、固定部材は、回転範囲制限手段を構成する上記の内方突出部を含む複数の内方突出部を回転方向に位置を異ならせて備えており、該複数の内方突出部を介して可動部材の球面を球心揺動可能に支持することが好ましい。   The movable member is provided with a spherical surface centered on the swing center, and the fixed member is provided with a plurality of inwardly projecting portions including the inwardly projecting portions constituting the rotation range limiting means at different positions in the rotational direction. It is preferable that the spherical surface of the movable member is supported through the plurality of inwardly projecting portions so as to be able to swing the ball.

回転用駆動手段は、固定部材と可動部材の一方に支持される回転用コイルと、他方に支持される回転用磁石によって構成するとよい。回転用コイルと回転用磁石は、径方向に対向して配置され、かつ光軸に沿う方向でそれぞれの一部が第1の平面上に位置する。回転用磁石の位置変化を検出する第1のセンサが、固定部材と可動部材のうち回転用コイルを支持する側に支持される。第1の平面内で揺動中心を通り回転用磁石と回転用コイルに向けて延びる第1の磁束検出軸上に第1のセンサが位置し、第1の平面内で第1の磁束検出軸に関して略対称に一対の外方突出部が位置する関係にするとよい。   The rotation drive means may be constituted by a rotation coil supported by one of the fixed member and the movable member and a rotation magnet supported by the other. The rotating coil and the rotating magnet are arranged to face each other in the radial direction, and a part of each of the rotating coil and the rotating magnet is positioned on the first plane in the direction along the optical axis. The 1st sensor which detects the position change of the magnet for rotation is supported by the side which supports the coil for rotation among a fixed member and a movable member. A first sensor is positioned on a first magnetic flux detection axis that passes through the center of oscillation in the first plane and extends toward the rotating magnet and the rotating coil, and the first magnetic flux detection axis in the first plane. It is preferable that the pair of outward projecting portions are positioned approximately symmetrically with respect to the above.

傾動範囲制限手段は、固定部材に設けた固定側傾動制限部と、可動部材に設けた複数の可動側傾動制限部を備えており、可動部材の傾動方向に応じて、複数の可動側傾動制限部のいずれかが固定側傾動制限部に当接して傾動を規制することが好ましい。   The tilt range limiting means includes a fixed side tilt limiter provided on the fixed member and a plurality of movable side tilt limiters provided on the movable member, and a plurality of movable side tilt limits according to the tilting direction of the movable member. It is preferable that any one of the portions abuts against the fixed-side tilt limiting portion to restrict tilting.

より詳しくは、複数の可動側傾動制限部は、可動部材から光軸に沿う方向に向けて突出する複数の光軸方向突出部であり、固定側傾動制限部は、傾動していない状態の光軸に対して略垂直な規制面であり、複数の光軸方向突出部の端部と規制面が光軸に沿う方向で対向するように構成するとよい。   More specifically, the plurality of movable side tilt limiting portions are a plurality of optical axis direction protruding portions protruding from the movable member in a direction along the optical axis, and the fixed side tilt limiting portion is light that is not tilted. The restriction surface is substantially perpendicular to the axis, and the ends of the plurality of optical axis direction protruding portions and the restriction surface may be opposed to each other in the direction along the optical axis.

複数の光軸方向突出部の端部は、第1の平面と略平行な第2の平面上に位置することが好ましい。複数の光軸方向突出部の端部は、第2の平面上で光軸を中心とする同一円周上に位置することが好ましい。また、複数の光軸方向突出部の端部は半球形状であることが好ましい。   The ends of the plurality of projecting portions in the optical axis direction are preferably located on a second plane substantially parallel to the first plane. The ends of the plurality of projecting portions in the optical axis direction are preferably located on the same circumference around the optical axis on the second plane. Moreover, it is preferable that the edge part of a some optical axis direction protrusion part is hemispherical shape.

傾動用駆動手段の構成要素として、回転方向に互いの位置が異なりかつそれぞれの一部が第1の平面上に位置するように、固定部材と可動部材の一方に第1の傾動用コイルと第2の傾動用コイルを備えるとよい。固定部材と可動部材の他方には、第1の傾動用コイルに対して径方向に対向して位置する第1の傾動用磁石と、第2の傾動用コイルに対して径方向に対向して位置する第2の傾動用磁石を備える。固定部材と可動部材のうち第1の傾動用コイルと第2の傾動用コイルを支持する側には、第1の傾動用磁石の位置変化を検出する第2のセンサと、第2の傾動用磁石の位置変化を検出する第3のセンサを支持する。第1の平面内で揺動中心を通り第1の傾動用磁石と第1の傾動用コイルに向けて延びる第2の磁束検出軸上に第2のセンサが位置し、第1の平面内で揺動中心を通り第2の傾動用磁石と第2の傾動用コイルに向けて延びる第3の磁束検出軸上に第3のセンサが位置する関係にするとよい。   As a component of the tilting drive means, the first tilting coil and the first tilting coil are arranged on one of the fixed member and the movable member so that their positions are different from each other in the rotation direction and a part of each is positioned on the first plane. Two tilting coils may be provided. The other one of the fixed member and the movable member is opposed to the first tilting magnet in a radial direction with respect to the first tilting coil and in the radial direction with respect to the second tilting coil. A second tilting magnet is provided. On the side of the fixed member and the movable member that supports the first tilt coil and the second tilt coil, a second sensor that detects a change in the position of the first tilt magnet, and a second tilt A third sensor that detects a change in the position of the magnet is supported. A second sensor is positioned on a second magnetic flux detection axis that extends through the oscillation center in the first plane and extends toward the first tilting magnet and the first tilting coil, and in the first plane. It is preferable that the third sensor be positioned on a third magnetic flux detection axis that extends toward the second tilting magnet and the second tilting coil through the swing center.

複数の可動側傾動制限部として、以下の第1組から第4組の可動側傾動制限部を備えることが好ましい。第1組の可動側傾動制限部は、第2の磁束検出軸と光軸を含む平面に関して略対称な位置に一対設けられ、第1の傾動用磁石と第1の傾動用コイルにより正方向の推力を付与したときの第1の傾動方向への可動部材の傾動端を固定側傾動制限部への当接によって決める。第2組の可動側傾動制限部は、第2の磁束検出軸と光軸を含む平面に関して略対称な位置に一対設けられ、第1の傾動用磁石と第1の傾動用コイルにより上記の正方向と逆方向の推力を付与したときの第2の傾動方向への可動部材の傾動端を固定側傾動制限部への当接によって決める。第3組の可動側傾動制限部は、第3の磁束検出軸と光軸を含む平面に関して略対称に位置して一対設けられ、第2の傾動用磁石と第2の傾動用コイルにより正方向の推力を付与したときの第3の傾動方向への可動部材の傾動端を固定側傾動制限部への当接によって決める。第4組の可動側傾動制限部は、第3の磁束検出軸と光軸を含む平面に関して略対称に位置して一対設けられ、第2の傾動用磁石と第2の傾動用コイルにより上記の正方向と逆方向の推力を付与したときの第4の傾動方向への可動部材の傾動端を固定側傾動制限部への当接によって決める。   As the plurality of movable side tilt restricting portions, it is preferable to include the following first to fourth movable side tilt restricting portions. The first set of movable side tilt restricting portions are provided in a pair substantially symmetrically with respect to the plane including the second magnetic flux detection axis and the optical axis, and are moved in the positive direction by the first tilting magnet and the first tilting coil. The tilting end of the movable member in the first tilting direction when the thrust is applied is determined by contact with the fixed-side tilt limiting portion. A pair of the second set of movable side tilt restricting portions is provided at substantially symmetrical positions with respect to the plane including the second magnetic flux detection axis and the optical axis, and the above-described positive tilting magnet and the first tilting coil are used to The tilting end of the movable member in the second tilting direction when thrust in the direction opposite to the direction is applied is determined by contact with the fixed-side tilt limiting portion. The third set of movable side tilt limiting portions is provided in a pair substantially symmetrically with respect to the plane including the third magnetic flux detection axis and the optical axis, and is forwardly moved by the second tilting magnet and the second tilting coil. The tilting end of the movable member in the third tilting direction when the thrust is applied is determined by contact with the fixed-side tilt limiting portion. The fourth set of movable side tilt limiting portions are provided in a pair substantially symmetrically with respect to the plane including the third magnetic flux detection axis and the optical axis, and the second tilting magnet and the second tilting coil are used to The tilting end of the movable member in the fourth tilt direction when the thrust in the forward direction and the reverse direction is applied is determined by contact with the fixed tilt limiter.

第1組の可動側傾動制限部と第4組の可動側傾動制限部は、第1の傾動方向と第4の傾動方向の両方で固定側傾動制限部に当接する一つの共有制限部を共有しており、第2組の可動側傾動制限部と第3組の可動側傾動制限部は、第2の傾動方向と第3の傾動方向の両方で固定側傾動制限部に当接する別の一つの共有制限部を共有していることが好ましい。   The first set of movable side tilt limiting units and the fourth set of movable side tilt limiting units share one common limiting unit that contacts the fixed side tilt limiting unit in both the first tilt direction and the fourth tilt direction. The second set of movable side tilt restricting portions and the third set of movable side tilt restricting portions are different ones that contact the fixed side tilt restricting portion in both the second tilt direction and the third tilt direction. It is preferable that two sharing restriction parts are shared.

さらに、第1組の可動側傾動制限部と第2組の可動側傾動制限部は、第1の傾動方向と第2の傾動方向の両方で固定側傾動制限部に当接する一つの共有制限部を共有し、第3組の可動側傾動制限部と第4組の可動側傾動制限部は、第3の傾動方向と第4の傾動方向の両方で固定側傾動制限部に当接する別の一つの共有制限部を共有するように構成してもよい。   Furthermore, the first set of movable side tilt limiting units and the second set of movable side tilt limiting units are one shared limiting unit that contacts the fixed side tilt limiting unit in both the first tilt direction and the second tilt direction. And the third set of movable side tilt restricting portions and the fourth set of movable side tilt restricting portions are different ones that contact the fixed side tilt restricting portion in both the third tilt direction and the fourth tilt direction. Two sharing restriction units may be shared.

本発明は、傾動用駆動手段や回転用駆動手段を構成する磁石が可動部材側に支持されているムービングマグネットタイプと、傾動用駆動手段や回転用駆動手段を構成するコイルが可動部材側に支持されているムービングマグコイルタイプのいずれの防振機構にも適用が可能である。コイルやセンサに電気的配線が接続することを考慮した場合、ムービングマグネットタイプを選択することで、配線の簡略さや防振駆動時の負荷低減において有利となる。   The present invention includes a moving magnet type in which magnets constituting the tilting drive means and the rotation drive means are supported on the movable member side, and a coil constituting the tilt drive means and the rotation drive means supported on the movable member side. The present invention can be applied to any of the moving magnet coil type vibration isolation mechanisms that are used. Considering that electrical wiring is connected to the coil and sensor, selecting the moving magnet type is advantageous in simplifying wiring and reducing load during vibration-proof driving.

本発明の撮像装置によれば、光軸を中心とする回転(ロール)動作の範囲を制限する回転範囲制限手段が、光軸を傾動させる動作(チルト動作)による影響を最も受けにくい位置(第1の平面上)に設けられている。この回転範囲制限手段を可動部材と固定部材にそれぞれ設けた径方向への突出部とすることで、構成を簡略なものにできる。傾動の動作範囲を制限する傾動範囲制限手段についても、可動部材に設けた光軸方向への突出部と、固定部材に設けられ光軸に垂直な規制面からなる簡略なものとした上で、ロール動作の状態や傾動の方向の違いによる影響を受けにくくしている。傾動範囲制限手段では特に、傾動用駆動手段の推力の方向に傾動させたときに2つの可動側傾動制限部がペアとなって固定側傾動制限部に当接して高い安定性が得られる構成となっている。従って、防振用の光学要素を保持する可動部材をチルト動作とロール動作を含む高い自由度で動作させつつ、可動部材の各動作の機械的移動端を簡略な構成で高精度に定めることができ、この機械的移動端を利用して高い精度で防振制御を実行することが可能である。   According to the imaging apparatus of the present invention, the rotation range limiting means for limiting the range of the rotation (roll) operation around the optical axis is the position (first position) that is least affected by the operation of tilting the optical axis (tilt operation). 1 plane). The configuration can be simplified by using the rotation range limiting means as radial protrusions provided on the movable member and the fixed member, respectively. With respect to the tilting range limiting means for limiting the tilting range of motion, it is simple and comprises a projecting portion in the optical axis direction provided on the movable member and a regulating surface provided on the fixed member and perpendicular to the optical axis. It is less affected by the difference in roll operation and tilt direction. Especially in the tilt range limiting means, when tilted in the direction of the thrust of the tilting drive means, the two movable side tilt limiters are paired and come into contact with the fixed side tilt limit section to obtain high stability and It has become. Accordingly, it is possible to determine the mechanical movement end of each operation of the movable member with a simple configuration with high accuracy while operating the movable member holding the optical element for vibration isolation with a high degree of freedom including a tilt operation and a roll operation. It is possible to carry out the image stabilization control with high accuracy using this mechanical moving end.

本発明を適用した撮像装置の外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the imaging device to which this invention is applied. 撮像装置の後方斜視図である。It is a back perspective view of an imaging device. 撮像装置の正面図である。It is a front view of an imaging device. 撮像装置の背面図である。It is a rear view of an imaging device. ボールホルダを取り外した状態の撮像装置の背面図である。It is a rear view of an imaging device in the state where a ball holder was removed. 図3のVI矢視図である。FIG. 4 is a view taken along arrow VI in FIG. 3. 図3のVII矢視図である。It is a VII arrow line view of FIG. 図3のVIII矢視図である。It is a VIII arrow line view of FIG. 図3のIX線に沿う断面図である。It is sectional drawing which follows the IX line of FIG. 撮像装置を分解した状態の前方斜視図である。It is a front perspective view of the state where the imaging device was disassembled. 撮像装置を分解した状態の後方斜視図である。It is a back perspective view of the state where the imaging device was disassembled. 可動ユニットを分解した状態の前方斜視図である。It is a front perspective view of the state which disassembled the movable unit. 可動ユニットを分解した状態の正面図である。It is a front view of the state which decomposed | disassembled the movable unit. 可動ユニットを分解した状態の後方斜視図である。It is a back perspective view of the state where the movable unit was disassembled. 可動ユニットを分解した状態の背面図である。It is a rear view of the state which disassembled the movable unit. 可動ユニットの正面図である。It is a front view of a movable unit. 可動ユニットの背面図である。It is a rear view of a movable unit. 図16のXVIII矢視図である。It is a XVIII arrow directional view of FIG. 図16のXIX矢視図である。It is the XIX arrow directional view of FIG. 図16のXX矢視図である。It is a XX arrow line view of FIG. 図16のXXI矢視図である。It is a XXI arrow line view of FIG. 図16のXXII線に沿う断面図である。It is sectional drawing which follows the XXII line of FIG. 可動ユニットと鏡筒とイメージセンサユニットを組み合わせた状態の前方斜視図である。It is a front perspective view of the state which combined the movable unit, the lens-barrel, and the image sensor unit. 可動ユニットと鏡筒とイメージセンサユニットを組み合わせた状態の後方斜視図である。It is a back perspective view of the state which combined the movable unit, the lens-barrel, and the image sensor unit. 固定ユニットを分解した状態の前方斜視図である。It is a front perspective view of the state which disassembled the fixed unit. 固定ユニットを分解した状態の正面図である。It is a front view of the state which decomposed | disassembled the fixing unit. 固定ユニットを分解した状態の後方斜視図である。It is a back perspective view of the state where the fixed unit was disassembled. 固定ユニットを分解した状態の背面図である。It is a rear view of the state which decomposed | disassembled the fixing unit. 完成状態にある固定ユニットを図26のXXIX矢線に沿って見た図である。It is the figure which looked at the fixed unit in a completed state along the XXIX arrow line of FIG. 図26のXXX線に沿う断面図である。It is sectional drawing which follows the XXX line of FIG. 固定ユニットの前方斜視図である。It is a front perspective view of a fixed unit. 固定ユニットの後方斜視図である。It is a back perspective view of a fixed unit. 図7から鏡筒とイメージセンサユニットとコイル支持板を除いた状態の図である。It is a figure of the state which removed the lens-barrel, the image sensor unit, and the coil support plate from FIG. 図33のXXXIV線に沿う断面図である。It is sectional drawing which follows the XXXIV line of FIG. 図5のXXXV線に沿う断面図である。It is sectional drawing which follows the XXXV line of FIG. 防振駆動を行っていない初期状態での可動ユニットとコイルの位置関係を示す正面図である。It is a front view which shows the positional relationship of a movable unit and a coil in the initial state which is not performing anti-vibration drive. 図5からコイルホルダとコイルを除いて可動ユニットとホールセンサを残した状態の背面図である。FIG. 6 is a rear view showing a state where a movable unit and a hall sensor are left after removing the coil holder and the coil from FIG. 5. 可動ユニットに機械的な制限位置までチルト動作を行わせた状態の撮像装置の正面図である。It is a front view of the imaging device in a state where the movable unit is tilted to the mechanical limit position. 図38の状態の撮像装置の背面図である。It is a rear view of the imaging device in the state of FIG. 図38のXL矢視図である。FIG. 39 is a view on arrow XL in FIG. 38. 図39からボールホルダを除いた状態の撮像装置の背面図である。FIG. 40 is a rear view of the imaging apparatus with the ball holder removed from FIG. 39. 図38のXLII線に沿う断面図である。It is sectional drawing which follows the XLII line of FIG. 可動ユニットに機械的な制限位置までロール動作を行わせた状態の撮像装置をボールホルダを除いて示した背面図である。It is the rear view which showed the imaging device of the state which made the movable unit perform roll operation to a mechanical restriction position except a ball holder. 可動ユニットに図43と逆方向の機械的な制限位置までロール動作を行わせた状態の撮像装置をボールホルダを除いて示した背面図である。It is the rear view which showed the imaging device of the state which made the movable unit perform roll operation to the mechanical restriction position of the reverse direction to FIG. 43 except a ball holder. ヨーイング方向にチルト動作させた可動ユニットを図18と同方向から見た図である。It is the figure which looked at the movable unit made to tilt in the yawing direction from the same direction as FIG. ロール範囲制限突起の位置を異ならせた比較例を示す、図45と同様の図である。FIG. 46 is a view similar to FIG. 45 showing a comparative example in which the positions of the roll range limiting protrusions are different. バレルホルダに設ける傾動制限突起の数と位置を異ならせた変形例を示す背面図である。It is a rear view which shows the modification which varied the number and position of the inclination limitation protrusion provided in a barrel holder.

以下、添付図面を参照しながら本発明の一実施形態に係る撮像装置10について説明する。撮像装置10は、被写体画像を得るための撮像手段として、撮像光学系Lとイメージセンサユニット19を有する。図中の「O」は撮像光学系Lの光軸であり、以下の説明では、光軸Oに沿う方向(光軸Oとその延長線が延びる方向、または光軸Oと平行な直線が延びる方向)を光軸方向とし、光軸方向における被写体(物体)側を前方、像側を後方とする。また、光軸Oを中心とする放射方向(光軸Oと垂直で光軸Oと交差する直線が延びる方向)を径方向とし、径方向において光軸Oに接近する方向を内径方向、光軸Oから離れる方向を外径方向とする。また、光軸Oを中心とする円周方向を周方向とする。なお、特に断りがない場合、光軸Oとは、後述する可動ユニット17及び鏡筒11の傾動を行っていない設計上の初期状態での光軸を意味するものとする。   Hereinafter, an imaging device 10 according to an embodiment of the present invention will be described with reference to the accompanying drawings. The imaging device 10 includes an imaging optical system L and an image sensor unit 19 as imaging means for obtaining a subject image. “O” in the figure is the optical axis of the imaging optical system L. In the following description, the direction along the optical axis O (the direction in which the optical axis O and its extension line extend, or a straight line parallel to the optical axis O extends). Direction) is the optical axis direction, the subject (object) side in the optical axis direction is the front, and the image side is the rear. Further, a radial direction centering on the optical axis O (a direction in which a straight line extending perpendicularly to the optical axis O and intersecting the optical axis O) is a radial direction, and a direction approaching the optical axis O in the radial direction is an inner diameter direction, an optical axis The direction away from O is the outer diameter direction. Further, the circumferential direction around the optical axis O is defined as the circumferential direction. Unless otherwise specified, the optical axis O means an optical axis in an initial design state in which the movable unit 17 and the lens barrel 11 described later are not tilted.

図1ないし図4、図6ないし図8に撮像装置10の外観を示す。図9ないし図11に示すように、撮像装置10は、鏡筒11を挿入支持するバレルホルダ(可動部材)12を備え、鏡筒11とバレルホルダ12の結合体がコイルホルダ(固定部材)13とボールホルダ(固定部材)14からなるハウジング内に可動に支持されるという基本構造を有している。   FIGS. 1 to 4 and FIGS. 6 to 8 show the appearance of the imaging apparatus 10. As shown in FIGS. 9 to 11, the imaging device 10 includes a barrel holder (movable member) 12 for inserting and supporting the lens barrel 11, and a combined body of the lens barrel 11 and the barrel holder 12 is a coil holder (fixed member) 13 and a ball. It has a basic structure in which it is movably supported in a housing composed of a holder (fixing member) 14.

図9、図12ないし図17、図22、図34ないし図36に示すように、バレルホルダ12は、光軸Oを囲む筒部12aの内部に光軸方向に貫通する穴である軸方向貫通部12bを有している。軸方向貫通部12bの後端付近には内径方向へ突出して軸方向貫通部12bの内径サイズ(開口径)を小さくさせる環状の挿入規制フランジ12cが形成されている。   As shown in FIGS. 9, 12 to 17, 22, 34 to 36, the barrel holder 12 is an axially penetrating portion that is a hole penetrating in the optical axis direction inside a cylindrical portion 12 a surrounding the optical axis O. 12b. An annular insertion restriction flange 12c is formed near the rear end of the axial through-hole 12b so as to protrude in the inner diameter direction and reduce the inner diameter size (opening diameter) of the axial through-hole 12b.

図5、図9、図12ないし図18、図20、図22ないし図24、図34ないし図37、図41、図43、図44に示すように、バレルホルダ12の筒部12aの外面には3つの揺動案内面20が形成されている。3つの揺動案内面20は周方向に位置を異ならせて設けられており、それぞれを符号20A,20B,20Cで区別する。各揺動案内面20A,20B,20Cは光軸O上の所定の点を中心とする同一の球面の一部であり、この球面の中心を球心揺動中心Q(図9、図22、図35)とする。揺動案内面20A,20B,20Cは周方向に略同じ幅を有しており、かつ周方向に略等間隔(120度間隔)で配されている。   As shown in FIGS. 5, 9, 12 to 18, 20, 22 to 24, 34 to 37, 41, 43, and 44, the outer surface of the cylindrical portion 12 a of the barrel holder 12 is provided. Three swing guide surfaces 20 are formed. The three swing guide surfaces 20 are provided at different positions in the circumferential direction, and are distinguished by reference numerals 20A, 20B, and 20C. Each of the swing guide surfaces 20A, 20B, and 20C is a part of the same spherical surface centered on a predetermined point on the optical axis O, and the center of this spherical surface is a spherical center swing center Q (FIGS. 9, 22, and 22). FIG. 35). The swing guide surfaces 20A, 20B, and 20C have substantially the same width in the circumferential direction, and are arranged at substantially equal intervals (120 degree intervals) in the circumferential direction.

図9、図11、図14、図15、図17ないし図22、図24、図35、図37、図41ないし図44に示すように、バレルホルダ12の後端面には、光軸方向後方へ突出する複数の傾動制限突起(傾動範囲制限手段、可動側傾動制限部、光軸方向突出部)30が設けられている。傾動制限突起30は、揺動案内面20Aの両側の周方向位置に設けられた一対の傾動制限突起30A,30Bと、揺動案内面20Bの両側の周方向位置に設けられた一対の傾動制限突起30C,30Dと、揺動案内面20Cの両側の周方向位置に設けられた一対の傾動制限突起30E,30Fの計6つからなる。各傾動制限突起30は先端(光軸方向後方の端部)が半球面状の突起であり、バレルホルダ12の後端面からのそれぞれの突出量が略等しい(図18ないし図22参照)。   9, 11, 14, 15, 17 to 22, 24, 35, 37, and 41 to 44, the rear end surface of the barrel holder 12 is rearward in the optical axis direction. A plurality of tilt limiting protrusions (tilting range limiting means, a movable side tilt limiting portion, and an optical axis direction protruding portion) 30 that protrude are provided. The tilt limiting protrusions 30 are a pair of tilt limiting protrusions 30A and 30B provided at the circumferential positions on both sides of the swing guide surface 20A, and a pair of tilt limits provided at the circumferential positions on both sides of the swing guide surface 20B. It consists of a total of six projections 30C, 30D and a pair of tilt limiting projections 30E, 30F provided at circumferential positions on both sides of the swing guide surface 20C. Each tilt limiting projection 30 is a projection having a hemispherical tip (end on the rear side in the optical axis direction), and the amount of protrusion from the rear end surface of the barrel holder 12 is substantially equal (see FIGS. 18 to 22).

また、6つの傾動制限突起30A,30B,30C,30D,30E,30Fは、光軸Oからの径方向距離が略一致しており、かつ隣り合う2つの傾動制限突起30の周方向間隔が全て略一致している。別言すれば、図15や図17や図37のように光軸Oに沿って見た状態で、6つの傾動制限突起30A,30B,30C,30D,30E,30Fの後端部が光軸Oを中心とする同一円周上に略等間隔で位置し、周方向に隣り合う傾動制限突起30A,30B,30C,30D,30E,30Fの後端部を順に直線で接続すると正六角形となる。   Further, the six tilt limiting projections 30A, 30B, 30C, 30D, 30E, and 30F have substantially the same radial distance from the optical axis O, and all the circumferential intervals between the two adjacent tilt limiting projections 30 are all the same. It is almost coincident. In other words, the rear end portions of the six tilt limiting protrusions 30A, 30B, 30C, 30D, 30E, and 30F are positioned along the optical axis when viewed along the optical axis O as shown in FIGS. When the rear end portions of the tilt limiting protrusions 30A, 30B, 30C, 30D, 30E, and 30F that are located at substantially equal intervals on the same circumference centering on O and are adjacent to each other in the circumferential direction are connected in a straight line in order, a regular hexagon is formed .

図10ないし図18、図21ないし図24、図34、図36、図37、図41、図43、図44に示すように、バレルホルダ12の揺動案内面20A上には、周方向に離間する一対のロール範囲制限突起(回転範囲制限手段、可動側回転制限部、外方突出部)31が設けられている。球心揺動中心Q(図9、図22、図35)を中心とする球面の一部である揺動案内面20Aは、光軸方向における前端と後端から中央に進むにつれて光軸Oからの距離が大きくなり、一対のロール範囲制限突起31は、光軸Oからの揺動案内面20Aの距離が最も大きくなる光軸方向の中央付近に設けられている。すなわち、揺動案内面20Aのうち最も外径方向に突出している箇所にロール範囲制限突起31が設けられている。   10 to 18, 21 to 24, 34, 36, 37, 41, 43, and 44, on the swing guide surface 20A of the barrel holder 12, it is spaced apart in the circumferential direction. A pair of roll range limiting projections (rotation range limiting means, movable side rotation limiting portion, outward projection portion) 31 is provided. The swing guide surface 20A, which is a part of a spherical surface centered on the ball center swing center Q (FIGS. 9, 22, and 35), moves from the optical axis O as it advances from the front end and the rear end to the center in the optical axis direction. The pair of roll range limiting protrusions 31 are provided near the center in the optical axis direction where the distance of the swing guide surface 20A from the optical axis O is the longest. In other words, the roll range limiting projection 31 is provided at the most protruding portion in the outer diameter direction of the swing guide surface 20A.

より詳しくは、一対のロール範囲制限突起31は、光軸Oに対して略垂直で球心揺動中心Qを通る第1の平面T1(図18、図21、図22に一点鎖線で示す)上に位置している。図18に拡大して示すように、個々のロール範囲制限突起31は、光軸方向の中央に位置する平面31aと、平面31aの前後に形成した対をなす湾曲面31bを有している。一対のロール範囲制限突起31は互いの平面31aが対向する向きで配置されており、周方向に対向する位置関係の湾曲面31bは、平面31aから離れて光軸方向の前後方向に進むにつれて互いの周方向間隔を大きくするように湾曲している。   More specifically, the pair of roll range limiting protrusions 31 is a first plane T1 that is substantially perpendicular to the optical axis O and passes through the spherical center swing center Q (shown by a one-dot chain line in FIGS. 18, 21, and 22). Located on the top. As shown in an enlarged view in FIG. 18, each roll range limiting protrusion 31 has a flat surface 31a located at the center in the optical axis direction and a pair of curved surfaces 31b formed before and after the flat surface 31a. The pair of roll range limiting protrusions 31 are arranged in such a direction that the flat surfaces 31a face each other, and the curved surfaces 31b in a positional relationship facing each other in the circumferential direction move away from the flat surface 31a and move forward and backward in the optical axis direction. Is curved to increase the circumferential interval.

また、6つの傾動制限突起30A,30B,30C,30D,30E,30Fの先端(半球状の面の頂点部分)は、光軸Oに対して略垂直(すなわち第1の平面T1と略平行)で球心揺動中心Qよりも光軸方向後方に位置する第2の平面T2(図18ないし図22に一点鎖線で示す)上に位置している。   The tips of the six tilt limiting protrusions 30A, 30B, 30C, 30D, 30E, and 30F (the apex portion of the hemispherical surface) are substantially perpendicular to the optical axis O (that is, substantially parallel to the first plane T1). And located on the second plane T2 (indicated by the alternate long and short dash line in FIGS. 18 to 22) located rearward in the optical axis direction from the center of swinging Q of the ball.

図12ないし図17、図34ないし図37、図41ないし図44に示すように、バレルホルダ12は、3つの揺動案内面20A,20B,20Cの間の周方向位置に3つの支持座21,22,23を有している。支持座21は揺動案内面20Aと揺動案内面20Cの間に位置し、支持座22は揺動案内面20Aと揺動案内面20Bの間に位置し、支持座23は揺動案内面20Bと揺動案内面20Cの間に位置している。支持座21,22,23はそれぞれ、光軸Oを中心とする同一の円筒面の一部である支持面21a,22a,23aと、支持面21a,22a,23aよりも外径方向に突出する磁石支持突起21b,22b,23bを有している。支持面21a,22a,23aはそれぞれ支持座21,22,23の周方向の両端部分に一対が設けられており、各一対の支持面21a,22a,23aの間は凹状になっている。   As shown in FIGS. 12 to 17, 34 to 37, and 41 to 44, the barrel holder 12 has three support seats 21 at a circumferential position between the three swing guide surfaces 20A, 20B, and 20C. 22 and 23. The support seat 21 is positioned between the swing guide surface 20A and the swing guide surface 20C, the support seat 22 is positioned between the swing guide surface 20A and the swing guide surface 20B, and the support seat 23 is the swing guide surface. It is located between 20B and the swing guide surface 20C. The support seats 21, 22, and 23 protrude in the outer diameter direction from the support surfaces 21a, 22a, and 23a, which are part of the same cylindrical surface with the optical axis O as the center, and the support surfaces 21a, 22a, and 23a, respectively. It has magnet support protrusions 21b, 22b, and 23b. A pair of support surfaces 21a, 22a, and 23a are provided at both ends in the circumferential direction of the support seats 21, 22, and 23, respectively, and a recess is formed between each pair of support surfaces 21a, 22a, and 23a.

図10ないし図15、図18、図20、図21、図23、図24、図34、図42に示すように、磁石支持突起21bと磁石支持突起22bは、光軸方向の厚みが小さく周方向に長手方向を向けた板状の突起であり、互いの形状は略共通である。磁石支持突起21bと磁石支持突起22bのそれぞれの光軸方向の前面と後面は、互いに略平行で光軸Oに対して略垂直な平面となっている。磁石支持突起21bと磁石支持突起22bはそれぞれ、支持座21と支持座22の光軸方向の略中央に位置している。図5、図9、図12ないし図17、図19、図22、図33ないし図37、図41、図43、図44に示すように、磁石支持突起23bは周方向の厚みが小さく光軸方向に長手方向を向けた板状の突起である。磁石支持突起23bの周方向の両側面は、互いに略平行で光軸方向に延びる平面となっている。磁石支持突起23bは支持座23の周方向の略中央に位置している。   As shown in FIGS. 10 to 15, 18, 18, 20, 21, 23, 24, 34, and 42, the magnet support protrusion 21b and the magnet support protrusion 22b have a small thickness in the optical axis direction and have a small circumference. These are plate-like protrusions whose longitudinal directions are directed in the direction, and their shapes are substantially common. The front and rear surfaces of the magnet support protrusion 21b and the magnet support protrusion 22b in the optical axis direction are substantially parallel to each other and are substantially perpendicular to the optical axis O. The magnet support protrusions 21b and the magnet support protrusions 22b are located at approximately the center of the support seat 21 and the support seat 22 in the optical axis direction. As shown in FIGS. 5, 9, 12 to 17, 19, 22, 22, 33 to 37, 41, 43, and 44, the magnet support protrusion 23b has a small thickness in the circumferential direction and an optical axis. It is a plate-like protrusion whose longitudinal direction is directed to the direction. Both side surfaces in the circumferential direction of the magnet support protrusion 23b are flat surfaces that are substantially parallel to each other and extend in the optical axis direction. The magnet support protrusion 23b is located at the approximate center of the support seat 23 in the circumferential direction.

3つの支持座21,22,23は、磁石支持突起21b,22b,23bを除く基礎部分(支持面21a,22a,23a)の形状が略共通であり、この基礎部分が周方向に略等間隔(120度間隔)で配されている。図12ないし図24、図34、図36、図37、図41、図43、図44に示すように、支持座21上にヨーク24が支持され、支持座22上にヨーク25が支持され、支持座23上にヨーク26が支持される。各ヨーク24,25,26は金属製の磁性体で形成されており、支持面21a,22a,23aに沿う湾曲形状の底壁24a,25a,26aと、底壁24a,25a,26aの周方向の両端から外径方向に突出する各一対の立壁24b,25b,26bを有する。ヨーク24の底壁24aとヨーク25の底壁25aには周方向に長手方向を向けた長穴24c,25cが貫通形成されており、ヨーク26の底壁26aには光軸方向に長手方向を向けた長穴26cが貫通形成されている。長穴24cと長穴25cはそれぞれ磁石支持突起21bと磁石支持突起22bを挿入可能な形状であり、長穴26cは磁石支持突起23bを挿入可能な形状である。各磁石支持突起21b,22b,23bは対応する長穴24c,25c,26cに対してガタつきなく挿入される断面形状を有しており、この挿入状態でバレルホルダ12に対する各ヨーク24,25,26の光軸方向及び周方向の位置が決まる。3つのヨーク24,25,26は、底壁24a,25a,26aと立壁24b,25b,26bについては略共通の形状を有しており、長穴24c及び長穴25cに対する長穴26cの形状のみが異なっている。   The three support seats 21, 22, and 23 have substantially the same shape of the base portions (support surfaces 21a, 22a, and 23a) except for the magnet support protrusions 21b, 22b, and 23b, and the base portions are substantially equidistant in the circumferential direction. (120 degree intervals). As shown in FIGS. 12 to 24, 34, 36, 37, 41, 43, and 44, the yoke 24 is supported on the support seat 21, and the yoke 25 is supported on the support seat 22, A yoke 26 is supported on the support seat 23. Each of the yokes 24, 25, and 26 is formed of a metal magnetic material, and the curved bottom walls 24a, 25a, and 26a along the support surfaces 21a, 22a, and 23a, and the circumferential direction of the bottom walls 24a, 25a, and 26a. A pair of standing walls 24b, 25b, and 26b projecting in the outer diameter direction from the both ends of each. Long holes 24c and 25c are formed in the bottom wall 24a of the yoke 24 and the bottom wall 25a of the yoke 25 so as to extend in the circumferential direction. The bottom wall 26a of the yoke 26 has a longitudinal direction in the optical axis direction. An elongated hole 26c is formed through. The long hole 24c and the long hole 25c have shapes into which the magnet support protrusion 21b and the magnet support protrusion 22b can be inserted, respectively, and the long hole 26c has a shape into which the magnet support protrusion 23b can be inserted. Each of the magnet support protrusions 21b, 22b, and 23b has a cross-sectional shape that is inserted into the corresponding elongated holes 24c, 25c, and 26c without rattling, and the yokes 24, 25, and 26 with respect to the barrel holder 12 in this inserted state. The positions in the optical axis direction and the circumferential direction are determined. The three yokes 24, 25, 26 have a substantially common shape with respect to the bottom walls 24a, 25a, 26a and the standing walls 24b, 25b, 26b, and only the shape of the long hole 26c with respect to the long hole 24c and the long hole 25c. Is different.

図16、図17、図34、図36、図37、図41、図43、図44に示すように、ヨーク24,25,26はそれぞれ、湾曲形状の底壁24a,25a,26aの内周面を支持面21a,22a,23a上に載せて支持座21,22,23上に支持される。このとき磁石支持突起21b,22b,23bがそれぞれ長穴24c,25c,26cを通して外径方向に突出する。ヨーク24,25,26が支持座21,22,23上に支持された状態で、光軸Oを中心とする同一の円筒面上に底壁24a,25a,26aが位置する。図18ないし図24に示すように、ヨーク24,25,26の光軸方向の長さはバレルホルダ12の光軸方向の長さと略一致しており、各磁石支持突起21b,22b,23bと各長穴24c,25c,26cの係合によって位置を定めた状態で、ヨーク24,25,26の前縁部とバレルホルダ12の前端面の光軸方向位置が重なり、ヨーク24,25,26の後縁部とバレルホルダ12の後端面の光軸方向位置が重なる。   As shown in FIGS. 16, 17, 34, 36, 37, 41, 43, and 44, the yokes 24, 25, and 26 have inner circumferences of curved bottom walls 24a, 25a, and 26a, respectively. The surface is placed on the support surfaces 21a, 22a, 23a and supported on the support seats 21, 22, 23. At this time, the magnet support protrusions 21b, 22b, and 23b protrude in the outer diameter direction through the long holes 24c, 25c, and 26c, respectively. In a state where the yokes 24, 25, and 26 are supported on the support seats 21, 22, and 23, the bottom walls 24a, 25a, and 26a are positioned on the same cylindrical surface with the optical axis O as the center. As shown in FIGS. 18 to 24, the length of the yokes 24, 25, and 26 in the optical axis direction is substantially the same as the length of the barrel holder 12 in the optical axis direction, and the magnet support protrusions 21b, 22b, and 23b With the positions determined by the engagement of the long holes 24c, 25c, and 26c, the positions of the front edges of the yokes 24, 25, and 26 and the front end surface of the barrel holder 12 in the optical axis direction overlap, and the yokes 24, 25, and 26 The edge portion and the position of the rear end surface of the barrel holder 12 in the optical axis direction overlap.

図10ないし図18、図20、図21、図23、図24、図34、図36、図37、図41、図43、図44に示すように、ヨーク24上に第1磁石ユニット(第1の傾動用磁石)27が支持され、ヨーク25上に第2磁石ユニット(第2の傾動用磁石)28が支持される。第1磁石ユニット27は周方向に長手方向を向けた円弧形状をなす一組の永久磁石27-1と永久磁石27-2からなり、第2磁石ユニット28も同様に周方向に長手方向を向けた円弧形状をなす一組の永久磁石28-1と永久磁石28-2からなる。永久磁石27-1と永久磁石27-2は同形状であり、光軸Oを中心とする円筒面の一部である内周面27aと、内周面27aを含む円筒面よりも径の大きい同心状の円筒面の一部である外周面27bを有している。また、永久磁石27-1と永久磁石27-2はそれぞれ、長手方向の両端に位置して内周面27aと外周面27bを径方向に接続する一対の長手方向端面27cと、一対の長手方向端面27cの間を長手方向に延びて内周面27aと外周面27bを径方向に接続する一対の側面27d,27eを有している。永久磁石28-1と永久磁石28-2はいずれも永久磁石27-1及び永久磁石27-2と同形状の磁石であり、永久磁石27-1,27-2と同様の内周面28a、外周面28b、一対の長手方向端面28c、一対の側面28d,28eを有している。   As shown in FIGS. 10 to 18, 20, 21, 21, 23, 24, 34, 36, 37, 41, 43, and 44, the first magnet unit (first 1 tilting magnet) 27 is supported, and a second magnet unit (second tilting magnet) 28 is supported on the yoke 25. The first magnet unit 27 is composed of a pair of permanent magnets 27-1 and 27-2 having a circular arc shape with the longitudinal direction oriented in the circumferential direction, and the second magnet unit 28 is also oriented in the circumferential direction in the same manner. It consists of a pair of permanent magnets 28-1 and 28-2 that form a circular arc shape. The permanent magnet 27-1 and the permanent magnet 27-2 have the same shape, and have a larger diameter than the inner peripheral surface 27 a that is a part of the cylindrical surface centered on the optical axis O and the cylindrical surface including the inner peripheral surface 27 a. It has the outer peripheral surface 27b which is a part of concentric cylindrical surface. Each of the permanent magnet 27-1 and the permanent magnet 27-2 has a pair of longitudinal end surfaces 27c that are located at both ends in the longitudinal direction and that radially connect the inner peripheral surface 27a and the outer peripheral surface 27b, and a pair of longitudinal directions. It has a pair of side surfaces 27d and 27e extending in the longitudinal direction between the end surfaces 27c and connecting the inner peripheral surface 27a and the outer peripheral surface 27b in the radial direction. The permanent magnet 28-1 and the permanent magnet 28-2 are both magnets having the same shape as the permanent magnet 27-1 and the permanent magnet 27-2, and have the same inner peripheral surface 28a as the permanent magnets 27-1, 27-2, It has an outer peripheral surface 28b, a pair of longitudinal end surfaces 28c, and a pair of side surfaces 28d and 28e.

第1磁石ユニット27は、永久磁石27-1が前方、永久磁石27-2が後方となる関係で光軸方向(永久磁石27-1と永久磁石27-2の短手方向)に並列してヨーク24上に配置される。図16ないし図18、図21、図23、図24、図34、図36、図37、図41、図43、図44に示すように、永久磁石27-1と永久磁石27-2のそれぞれの内周面27aが底壁24a上に載置され、一対の長手方向端面27cが一対の立壁24bに対向する。内周面27aは底壁24aに沿う湾曲面であり、内周面27aと底壁24aの当接によって永久磁石27-1と永久磁石27-2が径方向に安定して支持される。また、一対の長手方向端面27cを一対の立壁24bで挟むことによって永久磁石27-1と永久磁石27-2の周方向の位置が定められる。さらに、長穴24cを通して突出する磁石支持突起21bを永久磁石27-1の側面27eと永久磁石27-2の側面27dの間に挟むことによって、永久磁石27-1と永久磁石27-2は光軸方向に所定の間隔をもって離間して並列する。磁石支持突起21bは永久磁石27-1と永久磁石27-2よりも周方向に短く、永久磁石27-1と永久磁石27-2の長手方向の中央付近に磁石支持突起21bが挟まれることにより、永久磁石27-1の側面27eと永久磁石27-2の側面27dの間に接着剤注入空間M1が形成される(図18、図21)。以上のヨーク24と磁石支持突起21bによる支持状態で、永久磁石27-1の側面27dはバレルホルダ12の前端面(ヨーク24の前縁部)と略同じ光軸方向位置にあり、永久磁石27-2の側面27eはバレルホルダ12の後端面(ヨーク24の後縁部)と略同じ光軸方向位置にある(図18、図21、図23、図24)。つまり、永久磁石27-1と磁石支持突起21bと永久磁石27-2のそれぞれの光軸方向の幅の和が、バレルホルダ12やヨーク24の光軸方向長と略一致しており、第1磁石ユニット27はバレルホルダ12の前後に突出せずに支持される。   The first magnet unit 27 is arranged in parallel in the optical axis direction (the short direction of the permanent magnet 27-1 and the permanent magnet 27-2) so that the permanent magnet 27-1 is the front and the permanent magnet 27-2 is the rear. Arranged on the yoke 24. As shown in FIGS. 16 to 18, 21, 23, 24, 34, 36, 37, 41, 43, and 44, each of the permanent magnet 27-1 and the permanent magnet 27-2. The inner peripheral surface 27a is placed on the bottom wall 24a, and the pair of longitudinal end surfaces 27c oppose the pair of standing walls 24b. The inner peripheral surface 27a is a curved surface along the bottom wall 24a, and the permanent magnet 27-1 and the permanent magnet 27-2 are stably supported in the radial direction by contact between the inner peripheral surface 27a and the bottom wall 24a. Further, the circumferential positions of the permanent magnet 27-1 and the permanent magnet 27-2 are determined by sandwiching the pair of longitudinal end faces 27c between the pair of standing walls 24b. Further, the permanent magnet 27-1 and the permanent magnet 27-2 are optically sandwiched between the side surface 27e of the permanent magnet 27-1 and the side surface 27d of the permanent magnet 27-2 by sandwiching the magnet support projection 21b protruding through the long hole 24c. Axially spaced apart at a predetermined interval in the axial direction. The magnet support protrusion 21b is shorter in the circumferential direction than the permanent magnet 27-1 and the permanent magnet 27-2, and the magnet support protrusion 21b is sandwiched near the longitudinal center of the permanent magnet 27-1 and the permanent magnet 27-2. An adhesive injection space M1 is formed between the side surface 27e of the permanent magnet 27-1 and the side surface 27d of the permanent magnet 27-2 (FIGS. 18 and 21). In the state supported by the yoke 24 and the magnet support projection 21b, the side surface 27d of the permanent magnet 27-1 is at substantially the same optical axis position as the front end surface of the barrel holder 12 (the front edge portion of the yoke 24). The second side surface 27e is located at substantially the same position in the optical axis direction as the rear end surface of the barrel holder 12 (the rear edge portion of the yoke 24) (FIGS. 18, 21, 23, and 24). That is, the sum of the widths of the permanent magnet 27-1, the magnet support projection 21b, and the permanent magnet 27-2 in the optical axis direction is substantially equal to the length of the barrel holder 12 and the yoke 24 in the optical axis direction. The unit 27 is supported without protruding in front of and behind the barrel holder 12.

第2磁石ユニット28は、永久磁石28-1が前方、永久磁石28-2が後方となる関係で光軸方向(永久磁石28-1と永久磁石28-2の短手方向)に並列してヨーク25上に配置される。図16ないし図18、図20、図23、図24、図34、図36、図37、図41ないし図44に示すように、永久磁石28-1と永久磁石28-2のそれぞれの内周面28aが底壁25a上に載置され、一対の長手方向端面28cが一対の立壁25bに対向する。内周面28aは底壁25aに沿う湾曲面であり、内周面28aと底壁25aの当接によって永久磁石28-1と永久磁石28-2が径方向に安定して支持される。また、一対の長手方向端面28cを一対の立壁25bで挟むことによって永久磁石28-1と永久磁石28-2の周方向の位置が定められる。さらに、長穴25cを通して突出する磁石支持突起22bを永久磁石28-1の側面28eと永久磁石28-2の側面28dの間に挟むことによって、永久磁石28-1と永久磁石28-2は光軸方向に所定の間隔をもって離間して並列する。磁石支持突起22bは永久磁石28-1と永久磁石28-2よりも周方向に短く、永久磁石28-1と永久磁石28-2の長手方向の中央付近に磁石支持突起22bが挟まれることにより、永久磁石28-1の側面28eと永久磁石28-2の側面28dの間に接着剤注入空間M2が形成される(図18、図20、図23、図24)。以上のヨーク25と磁石支持突起22bによる支持状態で、永久磁石28-1の側面28dはバレルホルダ12の前端面(ヨーク25の前縁部)と略同じ光軸方向位置にあり、永久磁石28-2の側面28eはバレルホルダ12の後端面(ヨーク25の後縁部)と略同じ光軸方向位置にある(図18、図20、図23、図24)。つまり、永久磁石28-1と磁石支持突起22bと永久磁石28-2のそれぞれの光軸方向の幅の和が、バレルホルダ12やヨーク25の光軸方向長と略一致しており、第2磁石ユニット28はバレルホルダ12の前後に突出せずに支持される。   The second magnet unit 28 is arranged in parallel in the optical axis direction (the short direction of the permanent magnet 28-1 and the permanent magnet 28-2) so that the permanent magnet 28-1 is the front and the permanent magnet 28-2 is the rear. Arranged on the yoke 25. As shown in FIGS. 16 to 18, 20, 23, 24, 34, 36, 37, 41 to 44, the inner circumferences of the permanent magnet 28-1 and the permanent magnet 28-2, respectively. The surface 28a is placed on the bottom wall 25a, and the pair of longitudinal end surfaces 28c are opposed to the pair of standing walls 25b. The inner peripheral surface 28a is a curved surface along the bottom wall 25a, and the permanent magnet 28-1 and the permanent magnet 28-2 are stably supported in the radial direction by contact between the inner peripheral surface 28a and the bottom wall 25a. Further, the circumferential positions of the permanent magnet 28-1 and the permanent magnet 28-2 are determined by sandwiching the pair of longitudinal end faces 28c between the pair of standing walls 25b. Further, the permanent magnet 28-1 and the permanent magnet 28-2 are made light by sandwiching the magnet support projection 22b protruding through the long hole 25c between the side surface 28e of the permanent magnet 28-1 and the side surface 28d of the permanent magnet 28-2. Axially spaced apart at a predetermined interval in the axial direction. The magnet support projection 22b is shorter in the circumferential direction than the permanent magnet 28-1 and the permanent magnet 28-2, and the magnet support projection 22b is sandwiched near the longitudinal center of the permanent magnet 28-1 and the permanent magnet 28-2. The adhesive injection space M2 is formed between the side surface 28e of the permanent magnet 28-1 and the side surface 28d of the permanent magnet 28-2 (FIGS. 18, 20, 23, and 24). In the state supported by the yoke 25 and the magnet support protrusion 22b, the side surface 28d of the permanent magnet 28-1 is substantially at the same position in the optical axis direction as the front end surface of the barrel holder 12 (the front edge portion of the yoke 25). The second side surface 28e is located at substantially the same position in the optical axis direction as the rear end surface of the barrel holder 12 (the rear edge portion of the yoke 25) (FIGS. 18, 20, 23, and 24). That is, the sum of the widths of the permanent magnet 28-1, the magnet support protrusion 22b, and the permanent magnet 28-2 in the optical axis direction is substantially equal to the length of the barrel holder 12 and the yoke 25 in the optical axis direction. The unit 28 is supported without protruding forward and backward of the barrel holder 12.

図9ないし図17、図19、図20、図22ないし図24、図34、図36、図37、図41ないし図44に示すように、ヨーク26上に第3磁石ユニット(回転用磁石)29が支持される。第3磁石ユニット29は、光軸方向に長手方向を向けた一組の永久磁石29-1と永久磁石29-2からなる。永久磁石29-1と永久磁石29-2は同形状であり、光軸Oを中心とする円筒面の一部である内周面29aと、内周面29aを含む円筒面よりも径の大きい同心状の円筒面の一部である外周面29bを有している。また、永久磁石29-1と永久磁石29-2はそれぞれ、長手方向の両端に位置して内周面29aと外周面29bを径方向に接続する一対の長手方向端面29cと、一対の長手方向端面29cの間を長手方向に延びて内周面29aと外周面29bを径方向に接続する一対の側面29d,29eを有している。   As shown in FIGS. 9 to 17, 19, 20, 22, 22 to 24, 34, 36, 37, and 41 to 44, a third magnet unit (rotating magnet) is provided on the yoke 26. 29 is supported. The third magnet unit 29 includes a pair of permanent magnets 29-1 and 29-2 whose longitudinal direction is directed in the optical axis direction. The permanent magnet 29-1 and the permanent magnet 29-2 have the same shape, and have a larger diameter than the inner peripheral surface 29a, which is a part of the cylindrical surface centered on the optical axis O, and the cylindrical surface including the inner peripheral surface 29a. It has the outer peripheral surface 29b which is a part of concentric cylindrical surface. Each of the permanent magnet 29-1 and the permanent magnet 29-2 is located at both ends in the longitudinal direction and has a pair of longitudinal end surfaces 29c that connect the inner peripheral surface 29a and the outer peripheral surface 29b in the radial direction, and a pair of longitudinal directions. It has a pair of side surfaces 29d and 29e that extend in the longitudinal direction between the end surfaces 29c and connect the inner peripheral surface 29a and the outer peripheral surface 29b in the radial direction.

第1磁石ユニット27や第2磁石ユニット28と異なり、第3磁石ユニット29は、永久磁石29-1と永久磁石29-2を周方向(永久磁石29-1と永久磁石29-2の短手方向)に並列させてヨーク26上に配置される。図9、図16、図17、図19、図22ないし図24、図34、図36、図37、図41、図43、図44に示すように、永久磁石29-1と永久磁石29-2のそれぞれの内周面29aが底壁26a上に載置され、永久磁石29-1の側面29dが一対の立壁26bの一方に対向し、永久磁石29-2の側面29eが一対の立壁26bの他方に対向する。内周面29aは底壁26aに沿う湾曲面であり、内周面29aと底壁26aの当接によって永久磁石29-1と永久磁石29-2が径方向に安定して支持される。長穴26cを通して突出する磁石支持突起23bを永久磁石29-1の側面29eと永久磁石29-2の側面29dの間に挟むことによって、永久磁石29-1と永久磁石29-2は周方向に所定の間隔をもって離間して並列する。磁石支持突起23bは永久磁石29-1と永久磁石29-2よりも光軸方向に短く、永久磁石29-1と永久磁石29-2の長手方向の中央付近に磁石支持突起23bが挟まれることにより、永久磁石29-1の側面29eと永久磁石29-2の側面29dの間に接着剤注入空間M3が形成される(図19、図22)。磁石支持突起23bを挟んだ状態の永久磁石29-1と永久磁石29-2が一対の立壁26bで両側から挟まれて第3磁石ユニット29の周方向の位置が定められる。別言すれば、永久磁石29-1と磁石支持突起23bと永久磁石29-2のそれぞれの周方向の幅の和が、周方向におけるヨーク26の一対の立壁26bの間隔と略一致している。また、永久磁石29-1と永久磁石29-2のそれぞれの光軸方向の長さ(一対の長手方向端面29cの間隔)はバレルホルダ12やヨーク26の光軸方向の長さと略一致しており、永久磁石29-1と永久磁石29-2はそれぞれ、一対の長手方向端面29cがバレルホルダ12の前後の端面(ヨーク26の前後の縁部)と重なり、その前後に突出せずに支持される(図19、図22)。   Unlike the first magnet unit 27 and the second magnet unit 28, the third magnet unit 29 has a permanent magnet 29-1 and a permanent magnet 29-2 arranged in the circumferential direction (the short sides of the permanent magnet 29-1 and the permanent magnet 29-2). Arranged on the yoke 26 in parallel. As shown in FIGS. 9, 16, 17, 19, 22 to 24, 34, 36, 37, 41, 43, and 44, the permanent magnet 29-1 and the permanent magnet 29- 2 are placed on the bottom wall 26a, the side surface 29d of the permanent magnet 29-1 is opposed to one of the pair of standing walls 26b, and the side surface 29e of the permanent magnet 29-2 is paired with the pair of standing walls 26b. Opposite the other. The inner peripheral surface 29a is a curved surface along the bottom wall 26a, and the permanent magnet 29-1 and the permanent magnet 29-2 are stably supported in the radial direction by contact between the inner peripheral surface 29a and the bottom wall 26a. The permanent magnet 29-1 and the permanent magnet 29-2 are circumferentially sandwiched between the side surface 29e of the permanent magnet 29-1 and the side surface 29d of the permanent magnet 29-2 by sandwiching the magnet support protrusion 23b protruding through the long hole 26c. They are spaced in parallel at a predetermined interval. The magnet support protrusion 23b is shorter in the optical axis direction than the permanent magnet 29-1 and the permanent magnet 29-2, and the magnet support protrusion 23b is sandwiched near the center in the longitudinal direction of the permanent magnet 29-1 and the permanent magnet 29-2. Thus, an adhesive injection space M3 is formed between the side surface 29e of the permanent magnet 29-1 and the side surface 29d of the permanent magnet 29-2 (FIGS. 19 and 22). The permanent magnet 29-1 and the permanent magnet 29-2 sandwiching the magnet support protrusion 23b are sandwiched from both sides by a pair of standing walls 26b, and the circumferential position of the third magnet unit 29 is determined. In other words, the sum of the circumferential widths of the permanent magnet 29-1, the magnet support projection 23b, and the permanent magnet 29-2 is substantially equal to the distance between the pair of standing walls 26b of the yoke 26 in the circumferential direction. . The lengths of the permanent magnet 29-1 and the permanent magnet 29-2 in the optical axis direction (the distance between the pair of longitudinal end surfaces 29c) are substantially the same as the lengths of the barrel holder 12 and the yoke 26 in the optical axis direction. Each of the permanent magnet 29-1 and the permanent magnet 29-2 is supported without a pair of longitudinal end faces 29c overlapping the front and rear end faces (front and rear edges of the yoke 26) of the barrel holder 12, and projecting forward and backward. (FIG. 19, FIG. 22).

接着剤注入空間M1,M2,M3のそれぞれに接着剤を注入する。接着剤注入空間M1に注入した接着剤によってヨーク24と第1磁石ユニット27がバレルホルダ12に対して固定され、接着剤注入空間M2に注入した接着剤によって、ヨーク25と第2磁石ユニット28がバレルホルダ12に対して固定され、接着剤注入空間M3に注入した接着剤によって、ヨーク26と第3磁石ユニット29がバレルホルダ12に対して固定される。   Adhesive is injected into each of the adhesive injection spaces M1, M2, and M3. The yoke 24 and the first magnet unit 27 are fixed to the barrel holder 12 by the adhesive injected into the adhesive injection space M1, and the yoke 25 and the second magnet unit 28 are connected to the barrel holder by the adhesive injected into the adhesive injection space M2. 12 and the yoke 26 and the third magnet unit 29 are fixed to the barrel holder 12 by the adhesive injected into the adhesive injection space M3.

以上のようにしてヨーク24,25,26と磁石ユニット27,28,29をバレルホルダ12に組み付けることで、図16ないし図22、図37に示すサブアッセンブリである可動ユニット17になる。可動ユニット17では、ヨーク24と第1磁石ユニット27(磁石支持突起21bを含む)のセットと、ヨーク25と第2磁石ユニット28(磁石支持突起22bを含む)のセットと、ヨーク26と第3磁石ユニット29(磁石支持突起23bを含む)のセットは、それぞれが周方向と光軸方向に略同じサイズとなり、これら3つのセットが周方向に略等間隔(120度間隔)で配置される。   By assembling the yokes 24, 25, and 26 and the magnet units 27, 28, and 29 to the barrel holder 12 as described above, the movable unit 17 that is the subassembly shown in FIGS. In the movable unit 17, a set of the yoke 24 and the first magnet unit 27 (including the magnet support protrusion 21b), a set of the yoke 25 and the second magnet unit 28 (including the magnet support protrusion 22b), the yoke 26 and the third Each set of the magnet units 29 (including the magnet support protrusions 23b) has substantially the same size in the circumferential direction and the optical axis direction, and these three sets are arranged at substantially equal intervals (120 degree intervals) in the circumferential direction.

図5、図16、図17、図34、図36、図37、図43、図44に示すように、可動ユニット17における各磁石ユニット27,28,29は、それぞれの外周面27b,28b,29bが光軸Oを中心とする同一の円筒面上に位置し、外周面27b,28b,29bを含む円筒面よりも径が小さく光軸Oを中心とする別の同一の円筒面上にそれぞれの内周面27a,28a,29aが位置する。   As shown in FIGS. 5, 16, 17, 34, 36, 37, 43, and 44, the magnet units 27, 28, and 29 in the movable unit 17 have outer peripheral surfaces 27b, 28b, 29b is located on the same cylindrical surface centered on the optical axis O, and has a diameter smaller than that of the cylindrical surface including the outer peripheral surfaces 27b, 28b, and 29b, and on another same cylindrical surface centered on the optical axis O. The inner peripheral surfaces 27a, 28a and 29a are located.

可動ユニット17で第1磁石ユニット27,第2磁石ユニット28,第3磁石ユニット29を構成する各永久磁石のN極とS極を図13、図15ないし図17、図36、図37に符号「N」と「S」で概念的に表した。各永久磁石は径方向にN極とS極が並ぶように着磁されており、永久磁石27-1と永久磁石28-2と永久磁石29-1はそれぞれ内径側がS極で外径側がN極であり、永久磁石27-2と永久磁石28-1と永久磁石29-2はそれぞれ内径側がN極で外径側がS極となっている。   The north pole and south pole of each permanent magnet constituting the first magnet unit 27, the second magnet unit 28, and the third magnet unit 29 in the movable unit 17 are denoted by the reference numerals in FIGS. 13, 15 to 17, 36, and 37. “N” and “S” are conceptually represented. Each permanent magnet is magnetized so that the N pole and the S pole are aligned in the radial direction. The permanent magnet 27-1, the permanent magnet 28-2, and the permanent magnet 29-1 have an S inner diameter side and an N outer diameter side, respectively. The permanent magnet 27-2, the permanent magnet 28-1, and the permanent magnet 29-2 each have an N-pole on the inner diameter side and an S-pole on the outer diameter side.

図9、図25ないし図28、図30ないし図32、図35に示すように、コイルホルダ13は、光軸Oを囲む筒部13aの内部に光軸方向に貫通する軸方向貫通部13bを有している。コイルホルダ13の前端には内径方向に突出する前壁13cが形成されており、前壁13cの内縁部として形成された円形の中央開口13dは、軸方向貫通部13bよりも開口径が小さい。   As shown in FIGS. 9, 25 to 28, 30 to 32, and 35, the coil holder 13 includes an axial through portion 13 b that penetrates in the optical axis direction inside a cylindrical portion 13 a that surrounds the optical axis O. Have. A front wall 13c protruding in the inner diameter direction is formed at the front end of the coil holder 13, and the circular central opening 13d formed as the inner edge portion of the front wall 13c has a smaller opening diameter than the axial through-hole 13b.

図5、図9ないし図11、図25ないし図28、図30ないし図32、図34、図35、図41、図43、図44に示すように、コイルホルダ13の軸方向貫通部13b内には、筒部13aの内周面から内径方向へ突出する3つの支持座(内方突出部)40が設けられている。3つの支持座40は周方向に略等間隔(120度間隔)で設けられており、それぞれを符号40A,40B,40Cで区別する。各支持座40は、周方向の両側に側面44を有し、内径方向に進むにつれてこの一対の側面44の間隔(周方向の幅)を狭くする楔状の断面形状を有している。3つの支持座40A,40B,40Cのうち支持座(回転範囲制限手段、固定側回転制限部)40Aの側面44を規制面44Aとし、図34、図41、図43、図44では支持座40B,40Cの側面44の符号を省略し、支持座40Aの側面44(規制面44A)の符号のみを付している。各支持座40の内径側の先端部にボール保持溝41が形成されている。ボール保持溝41は光軸方向に長手方向が向く有底の長溝であり、外径方向に底面が位置して内径方向に開口されている。ボール保持溝41の光軸方向の後端部は開放されており、ボール保持溝41の前端部は前壁13cに隣接する前方規制壁41aによって閉じられている。図9や図30に示すように、前方規制壁41aが設けられているボール保持溝41の前端付近の領域は、その後方部分よりも各支持座40の内径方向への突出量が大きく、ボール保持溝41の深さが大きくなっている。各支持座40の後端面には、内部にネジ溝を有するビス穴42が形成されている。各ビス穴42の周囲の環状の領域に当付面43が形成されている。各当付面43は光軸Oに対して略垂直で後方を向く平面である。   As shown in FIGS. 5, 9 to 11, 25 to 28, 30 to 32, 34, 35, 41, 43, and 44, the coil holder 13 has an axial through-hole 13 b. Are provided with three support seats (inward protruding portions) 40 protruding in the inner diameter direction from the inner peripheral surface of the cylindrical portion 13a. The three support seats 40 are provided at substantially equal intervals (120 degree intervals) in the circumferential direction, and are distinguished by reference numerals 40A, 40B, and 40C. Each support seat 40 has side surfaces 44 on both sides in the circumferential direction, and has a wedge-shaped cross-sectional shape that narrows the distance (width in the circumferential direction) between the pair of side surfaces 44 as it advances in the inner diameter direction. Of the three support seats 40A, 40B, and 40C, the side surface 44 of the support seat (rotation range restricting means, fixed side rotation restricting portion) 40A is a restricting surface 44A, and in FIG. 34, FIG. 41, FIG. , 40C is omitted, and only the side 44 (regulating surface 44A) of the support seat 40A is attached. A ball holding groove 41 is formed at the inner end of each support seat 40. The ball holding groove 41 is a bottomed long groove whose longitudinal direction is oriented in the optical axis direction. The bottom surface is located in the outer diameter direction and is opened in the inner diameter direction. The rear end of the ball holding groove 41 in the optical axis direction is open, and the front end of the ball holding groove 41 is closed by a front regulating wall 41a adjacent to the front wall 13c. As shown in FIG. 9 and FIG. 30, the region near the front end of the ball holding groove 41 provided with the front regulating wall 41a has a larger protruding amount in the inner diameter direction of each support seat 40 than the rear portion thereof, The depth of the holding groove 41 is increased. A screw hole 42 having a thread groove inside is formed in the rear end surface of each support seat 40. A contact surface 43 is formed in an annular region around each screw hole 42. Each contact surface 43 is a plane that is substantially perpendicular to the optical axis O and faces rearward.

図9、図11、図25、図27、図28、図30、図32、図34に示すように、コイルホルダ13の筒部13aには、径方向に貫通する3つの貫通穴45,46,47が形成されている。貫通穴45,46,47は3つの支持座40の間の周方向位置にあり、支持座40Aと支持座40Cの間に貫通穴45が位置し、支持座40Aと支持座40Bの間に貫通穴46が位置し、支持座40Bと支持座40Cの間に貫通穴47が位置する。貫通穴45,46はそれぞれ周方向に長手方向を向けた長穴であり、筒部13aを平面状に展開した場合に略矩形となる展開形状を有している。貫通穴45と貫通穴46の周方向長は略等しく、貫通穴45と貫通穴46の光軸方向長も略等しい。貫通穴47も筒部13aを平面状に展開した場合に略矩形となる展開形状を有しているが、周方向長と光軸方向長の比率が貫通穴45及び貫通穴46とは異なっており、貫通穴47の周方向長は貫通穴45及び貫通穴46の周方向長よりも小さく、貫通穴47の光軸方向長は貫通穴45及び貫通穴46の光軸方向長よりも大きい。周方向における貫通穴45,46,47の長さの中央をそれぞれ周方向の基準位置とした場合、3つの貫通穴45,46,47の基準位置は周方向に略等間隔(120度間隔)の関係である。   As shown in FIGS. 9, 11, 25, 27, 28, 30, 32, and 34, the cylindrical portion 13 a of the coil holder 13 has three through holes 45 and 46 that penetrate in the radial direction. , 47 are formed. The through holes 45, 46, and 47 are located at the circumferential position between the three support seats 40, the through hole 45 is located between the support seat 40A and the support seat 40C, and penetrates between the support seat 40A and the support seat 40B. The hole 46 is located, and the through hole 47 is located between the support seat 40B and the support seat 40C. Each of the through holes 45 and 46 is a long hole having a longitudinal direction in the circumferential direction, and has a developed shape that is substantially rectangular when the cylindrical portion 13a is developed in a planar shape. The circumferential lengths of the through hole 45 and the through hole 46 are substantially equal, and the lengths of the through hole 45 and the through hole 46 in the optical axis direction are also substantially equal. The through hole 47 also has a developed shape that is substantially rectangular when the cylindrical portion 13a is developed in a planar shape, but the ratio of the circumferential length to the optical axis length is different from the through hole 45 and the through hole 46. The circumferential length of the through hole 47 is smaller than the circumferential length of the through hole 45 and the through hole 46, and the optical axis length of the through hole 47 is larger than the optical axis length of the through hole 45 and the through hole 46. When the center of the length of the through holes 45, 46, 47 in the circumferential direction is set as the reference position in the circumferential direction, the reference positions of the three through holes 45, 46, 47 are substantially equally spaced in the circumferential direction (120 degree intervals). It is a relationship.

コイルホルダ13の筒部13aの外周面上には、貫通穴45,46,47の周囲に有底の支持凹部48,49,50が形成されている。支持凹部48,49は周方向に長手方向が向く凹部であり、互いの周方向長と光軸方向長が略等しい。支持凹部50は、支持凹部48,49よりも周方向には短く光軸方向には長い凹部である(図33参照)。   On the outer peripheral surface of the cylindrical portion 13 a of the coil holder 13, bottomed support concave portions 48, 49, 50 are formed around the through holes 45, 46, 47. The support recesses 48 and 49 are recesses whose longitudinal direction faces in the circumferential direction, and the circumferential length and the optical axis length are substantially equal to each other. The support recess 50 is a recess that is shorter in the circumferential direction and longer in the optical axis direction than the support recesses 48 and 49 (see FIG. 33).

図1、図2、図6ないし図11、図25ないし図29、図31、図32、図35に示すように、支持凹部48,49,50上にそれぞれコイル支持板51,52,53が支持される。コイル支持板51,52,53は筒部13aの外周面に沿う湾曲形状の板状部材であり、支持凹部48,49,50上に支持される状態でコイル支持板51,52,53の外面が筒部13aの外周面と略面一になる。すなわち、コイル支持板51,52,53が光軸Oを中心とする同一の円筒面上に位置する。コイル支持板51とコイル支持板52は略共通の形状であり、それぞれの周方向及び光軸方向の中央付近に、内径方向へ突出するコイル支持突起51a,52aが形成され、各コイル支持突起51a,52aの裏側にセンサ支持凹部51b,52bが形成されている。コイル支持板53は、コイル支持板51及びコイル支持板52よりも周方向には短く光軸方向には長い。コイル支持板53の周方向及び光軸方向の中央付近に、内径方向へ突出するコイル支持突起53aが形成され、コイル支持突起53aの裏側にセンサ支持凹部53bが形成されている。コイル支持板51,52,53にはさらに径方向に貫通する貫通穴51c,52c,53cが形成されている。   As shown in FIGS. 1, 2, 6 to 11, 25 to 29, 31, 32, and 35, coil support plates 51, 52, and 53 are provided on the support recesses 48, 49, and 50, respectively. Supported. The coil support plates 51, 52, 53 are curved plate-like members along the outer peripheral surface of the cylindrical portion 13 a, and are outer surfaces of the coil support plates 51, 52, 53 while being supported on the support recesses 48, 49, 50. Is substantially flush with the outer peripheral surface of the cylindrical portion 13a. That is, the coil support plates 51, 52, and 53 are located on the same cylindrical surface with the optical axis O as the center. The coil support plate 51 and the coil support plate 52 have a substantially common shape, and coil support projections 51a and 52a projecting in the inner diameter direction are formed in the vicinity of the respective centers in the circumferential direction and the optical axis direction. , 52a are provided with sensor support recesses 51b, 52b. The coil support plate 53 is shorter in the circumferential direction than the coil support plate 51 and the coil support plate 52 and is longer in the optical axis direction. Near the center of the coil support plate 53 in the circumferential direction and the optical axis direction, a coil support projection 53a that projects in the inner diameter direction is formed, and a sensor support recess 53b is formed on the back side of the coil support projection 53a. The coil support plates 51, 52, 53 are further formed with through holes 51c, 52c, 53c penetrating in the radial direction.

コイル支持板51に第1コイル(傾動用駆動手段、第1の傾動用コイル)54が支持され、コイル支持板52に第2コイル(傾動用駆動手段、第2の傾動用コイル)55が支持され、コイル支持板53に第3コイル(回転用駆動手段、回転用コイル)56が支持される。第1コイル54と第2コイル55はそれぞれ、周方向に延びる各一対の長辺部54a,55aの周方向端部を光軸方向に延びる各一対の短辺部54b,55bで接続した空芯コイルである。第3コイル56は、光軸方向に延びる一対の長辺部56aの光軸方向端部を周方向に延びる一対の短辺部56bで接続した空芯コイルである。第1コイル54と第2コイル55は略同じ形状であり、互いの長辺部54a,55aの周方向長が略等しく、かつ互いの短辺部54b,55bの光軸方向長が略等しい。第3コイル56の長辺部56aの光軸方向長は第1コイル54及び第2コイル55の短辺部54b,55bの光軸方向長よりも大きく、第3コイル56の短辺部56bの周方向長は第1コイル54及び第2コイル55の長辺部54a,55aの周方向長よりも小さい。各コイル54,55,56は、コイル支持板51,52,53の内周面に沿う円筒面の一部である湾曲した外周面54c,55c,56cと、外周面54c,55c,56cを含む円筒面よりも小径の円筒面上に位置する湾曲した内周面54d,55d,56dを有している。   The coil support plate 51 supports a first coil (tilting drive means, first tilting coil) 54, and the coil support plate 52 supports a second coil (tilting drive means, second tilting coil) 55. The third coil (rotation drive means, rotation coil) 56 is supported on the coil support plate 53. Each of the first coil 54 and the second coil 55 has an air core in which circumferential ends of each pair of long side portions 54a and 55a extending in the circumferential direction are connected by a pair of short side portions 54b and 55b extending in the optical axis direction. It is a coil. The third coil 56 is an air-core coil in which end portions in the optical axis direction of the pair of long side portions 56a extending in the optical axis direction are connected by a pair of short side portions 56b extending in the circumferential direction. The first coil 54 and the second coil 55 have substantially the same shape, the circumferential lengths of the long side portions 54a and 55a are substantially equal, and the lengths of the short side portions 54b and 55b in the optical axis direction are substantially equal. The length in the optical axis direction of the long side portion 56 a of the third coil 56 is larger than the length in the optical axis direction of the short side portions 54 b and 55 b of the first coil 54 and the second coil 55, and the short side portion 56 b of the third coil 56. The circumferential length is smaller than the circumferential lengths of the long sides 54 a and 55 a of the first coil 54 and the second coil 55. Each coil 54, 55, 56 includes a curved outer peripheral surface 54c, 55c, 56c, which is a part of a cylindrical surface along the inner peripheral surface of the coil support plate 51, 52, 53, and an outer peripheral surface 54c, 55c, 56c. It has curved inner peripheral surfaces 54d, 55d, 56d located on a cylindrical surface having a smaller diameter than the cylindrical surface.

第1コイル54は、一対の長辺部54aと一対の短辺部54bで囲まれる中空部にコイル支持突起51aを挿入し、外周面54cをコイル支持板51の内周面に当接させてコイル支持板51に取り付けられる。コイル支持板51と第1コイル54は接着などで固定される。この状態でコイル支持板51をコイルホルダ13の支持凹部48上に支持させると、第1コイル54が貫通穴45内に挿入されて内周面54dがコイルホルダ13の内径側に向く(図5、図32、図34、図36、図41、図43、図44)。   The first coil 54 has a coil support protrusion 51a inserted in a hollow portion surrounded by a pair of long side portions 54a and a pair of short side portions 54b, and the outer peripheral surface 54c is brought into contact with the inner peripheral surface of the coil support plate 51. Attached to the coil support plate 51. The coil support plate 51 and the first coil 54 are fixed by adhesion or the like. When the coil support plate 51 is supported on the support recess 48 of the coil holder 13 in this state, the first coil 54 is inserted into the through hole 45 and the inner peripheral surface 54d faces the inner diameter side of the coil holder 13 (FIG. 5). 32, 34, 36, 41, 43, and 44).

第2コイル55は、一対の長辺部55aと一対の短辺部55bで囲まれる中空部にコイル支持突起52aを挿入し、外周面55cをコイル支持板52の内周面に当接させてコイル支持板52に取り付けられる。コイル支持板52と第2コイル55は接着などで固定される。この状態でコイル支持板52をコイルホルダ13の支持凹部49上に支持させると、第2コイル55が貫通穴46内に挿入されて内周面55dがコイルホルダ13の内径側に向く(図5、図34、図36、図41ないし図44)。   The second coil 55 has a coil support protrusion 52a inserted into a hollow portion surrounded by the pair of long side portions 55a and the pair of short side portions 55b, and the outer peripheral surface 55c is brought into contact with the inner peripheral surface of the coil support plate 52. Attached to the coil support plate 52. The coil support plate 52 and the second coil 55 are fixed by bonding or the like. When the coil support plate 52 is supported on the support recess 49 of the coil holder 13 in this state, the second coil 55 is inserted into the through hole 46 and the inner peripheral surface 55d faces the inner diameter side of the coil holder 13 (FIG. 5). 34, 36, 41 to 44).

第3コイル56は、一対の長辺部56aと一対の短辺部56bで囲まれる中空部にコイル支持突起53aを挿入し、外周面56cをコイル支持板53の内周面に当接させてコイル支持板53に取り付けられる。コイル支持板53と第3コイル56は接着などで固定される。この状態でコイル支持板53をコイルホルダ13の支持凹部50上に支持させると、第3コイル56が貫通穴47内に挿入されて内周面56dがコイルホルダ13の内径側に向く(図5、図9、図32、図34、図36、図35、図41、図43、図44)。   The third coil 56 has a coil support protrusion 53a inserted into a hollow portion surrounded by the pair of long side portions 56a and the pair of short side portions 56b, and the outer peripheral surface 56c is brought into contact with the inner peripheral surface of the coil support plate 53. Attached to the coil support plate 53. The coil support plate 53 and the third coil 56 are fixed by adhesion or the like. When the coil support plate 53 is supported on the support recess 50 of the coil holder 13 in this state, the third coil 56 is inserted into the through hole 47 and the inner peripheral surface 56d faces the inner diameter side of the coil holder 13 (FIG. 5). 9, 32, 34, 36, 35, 41, 43, 44).

コイル支持板51,52,53を介してコイルホルダ13に取り付けられた状態の各コイル54,55,56の位置関係を図34に示す。図34から分かるように、各コイル54,55,56は、それぞれの外周面54c,55c,56cが光軸Oを中心とする同一の円筒面上に位置し、外周面54c,55c,56cを含む円筒面よりも径が小さく光軸Oを中心とする別の同一の円筒面上にそれぞれの内周面54d,55d,56dが位置する。   FIG. 34 shows the positional relationship between the coils 54, 55, and 56 attached to the coil holder 13 via the coil support plates 51, 52, and 53. As can be seen from FIG. 34, in each of the coils 54, 55, and 56, the outer peripheral surfaces 54c, 55c, and 56c are positioned on the same cylindrical surface with the optical axis O as the center, and the outer peripheral surfaces 54c, 55c, and 56c are The inner peripheral surfaces 54d, 55d, and 56d are located on the same other cylindrical surface that is smaller in diameter than the included cylindrical surface and that has the optical axis O as the center.

図1、図2、図6ないし図11、図25ないし図29、図31、図32に示すように、コイル支持板51,52,53のセンサ支持凹部51b,52b,53b内にホールセンサ(磁気センサ)57,58,59が取り付けられる。センサ支持凹部51b,52b,53bはそれぞれ、内径方向に突出するコイル支持突起51a,52a,53aの内部空間を利用して凹設されており、外径方向に向けて開放された凹部となっている。そのため、センサ支持凹部51b,52b,53b内に取り付けられたホールセンサ57,58,59は、各コイル54,55,56の中空部分の内側に収まる状態で保持される(図9、図34参照)。図34や図37に示すように、この保持状態における各ホールセンサ57,58,59は、周方向に略等間隔(120度間隔)で位置し、かつ光軸Oを中心とする同一の円筒面上に位置する(光軸Oからの径方向距離が略等しい)。   As shown in FIGS. 1, 2, 6 to 11, 25 to 29, 31, and 32, Hall sensors (in the sensor support recesses 51 b, 52 b, and 53 b of the coil support plates 51, 52, and 53). Magnetic sensors) 57, 58 and 59 are attached. The sensor support recesses 51b, 52b, and 53b are respectively recessed using the internal spaces of the coil support protrusions 51a, 52a, and 53a that protrude in the inner diameter direction, and are recesses that are open toward the outer diameter direction. Yes. Therefore, the Hall sensors 57, 58, 59 attached in the sensor support recesses 51b, 52b, 53b are held in a state of being fitted inside the hollow portions of the coils 54, 55, 56 (see FIGS. 9 and 34). ). As shown in FIGS. 34 and 37, the hall sensors 57, 58, 59 in this holding state are positioned at substantially equal intervals (120 degree intervals) in the circumferential direction, and are the same cylinder centered on the optical axis O. Located on the surface (the radial distance from the optical axis O is substantially equal).

以上のようにしてコイル支持板51,52,53を介して第1コイル54,第2コイル55,第3コイル56とホールセンサ57,58,59をコイルホルダ13に組み付けることで、図29、図31、図32に示すサブアッセンブリである固定ユニット18が構成される。   As described above, by assembling the first coil 54, the second coil 55, the third coil 56 and the hall sensors 57, 58, 59 to the coil holder 13 through the coil support plates 51, 52, 53, FIG. The fixed unit 18 which is the subassembly shown in FIGS. 31 and 32 is configured.

固定ユニット18(コイルホルダ13)の軸方向貫通部13b内に、3つの定位置ボール61と3つの付勢ボール62(図5、図9ないし図11、図35、図37、図41ないし図44)を介して可動ユニット17(バレルホルダ12)が支持される。各定位置ボール61と各付勢ボール62は略同径の金属製の球状体である。コイルホルダ13に設けた3つの支持座40A,40B,40Cの各ボール保持溝41内に定位置ボール61と付勢ボール62が1つずつ挿入され、計6つの定位置ボール61と付勢ボール62でバレルホルダ12を支持する。3つの定位置ボール61はそれぞれ、前方規制壁41aが形成されるボール保持溝41の前端部分に保持され、3つの付勢ボール62はそれぞれ、ボール保持溝41の後端付近に保持される。各定位置ボール61と各付勢ボール62の径とボール保持溝41の溝幅が略一致しており、定位置ボール61と付勢ボール62はボール保持溝41に対する周方向の移動が規制される。   Three fixed-position balls 61 and three biasing balls 62 (FIGS. 5, 9 to 11, 35, 37, 41 to 41) are disposed in the axial through-hole 13b of the fixed unit 18 (coil holder 13). 44), the movable unit 17 (barrel holder 12) is supported. Each fixed-position ball 61 and each biasing ball 62 are metal spherical bodies having substantially the same diameter. One fixed-position ball 61 and one urging ball 62 are inserted into each of the ball holding grooves 41 of the three support seats 40A, 40B, and 40C provided in the coil holder 13, for a total of six fixed-position balls 61 and urging balls. The barrel holder 12 is supported at 62. Each of the three fixed-position balls 61 is held at the front end portion of the ball holding groove 41 where the front restricting wall 41 a is formed, and each of the three urging balls 62 is held near the rear end of the ball holding groove 41. The diameter of each fixed-position ball 61 and each biasing ball 62 and the groove width of the ball holding groove 41 are substantially the same, and the movement of the fixed-position ball 61 and the biasing ball 62 in the circumferential direction with respect to the ball holding groove 41 is restricted. The

可動ユニット17は、バレルホルダ12に形成した揺動案内面20A,20B,20Cの周方向位置をそれぞれ支持座40A,40B,40Cに対応させて(径方向に対向させて)、軸方向貫通部13b内に挿入される。すると、揺動案内面20Aが支持座40Aのボール保持溝41上に支持された定位置ボール61と付勢ボール62に当接し、揺動案内面20Bが支持座40Bのボール保持溝41上に支持された定位置ボール61と付勢ボール62に当接し、揺動案内面20Cが支持座40Cのボール保持溝41上に支持された定位置ボール61と付勢ボール62に当接する。   The movable unit 17 is configured such that the circumferential positions of the swing guide surfaces 20A, 20B, and 20C formed on the barrel holder 12 correspond to the support seats 40A, 40B, and 40C (opposite in the radial direction), and the axial through portion 13b. Inserted inside. Then, the swing guide surface 20A comes into contact with the fixed-position ball 61 and the urging ball 62 supported on the ball holding groove 41 of the support seat 40A, and the swing guide surface 20B is on the ball hold groove 41 of the support seat 40B. The supported fixed-position ball 61 and the biasing ball 62 are in contact with each other, and the swing guide surface 20C is in contact with the fixed-position ball 61 and the biasing ball 62 supported on the ball holding groove 41 of the support seat 40C.

この状態で3つの定位置ボール61は、対応する揺動案内面20A,20B,20Cとボール保持溝41の底面の間に挟まれ、さらに前方規制壁41aに当接することによって、光軸方向と径方向の移動が規制される(位置が定まる)。より詳しくは、図9や図35から分かるように、定位置ボール61は、ボール保持溝41の底面によって外径方向への移動が規制され、前方規制壁41aによって光軸方向前方への移動が規制される。揺動案内面20A,20B,20Cは、ボール保持溝41の光軸方向の前半分に対向する領域では、光軸方向前方から後方に進むにつれて内径側から外径側に進む傾斜を有している(図9、図22、図35参照)。そのため定位置ボール61は、揺動案内面20A,20B,20Cによって内径方向と光軸方向後方への移動が規制される。言い換えれば、揺動案内面20A,20B,20Cと前方規制壁41aとボール保持溝41の底面によって、光軸方向前方から後方に進むにつれて径方向の幅が小さくなる楔状の空間が形成されており、この楔状の空間内に定位置ボール61が移動を規制されて嵌った状態になる。このように定位置ボール61は、可動ユニット17を組み付けることによって、光軸方向と周方向と径方向のいずれの方向にも移動制限された一定位置で保持される。なお、定位置ボール61は、この一定位置における転動(自身の中心位置を一定に保った転がり動作)は可能となっている。   In this state, the three fixed-position balls 61 are sandwiched between the corresponding swing guide surfaces 20A, 20B, and 20C and the bottom surface of the ball holding groove 41, and further abut against the front regulation wall 41a, thereby Movement in the radial direction is restricted (position is determined). More specifically, as can be seen from FIGS. 9 and 35, the fixed-position ball 61 is restricted from moving in the outer diameter direction by the bottom surface of the ball holding groove 41, and is moved forward in the optical axis direction by the front restriction wall 41a. Be regulated. In the region facing the front half of the ball holding groove 41 in the optical axis direction, the swing guide surfaces 20A, 20B, and 20C have an inclination that advances from the inner diameter side to the outer diameter side as it advances from the front to the rear in the optical axis direction. (See FIGS. 9, 22, and 35). Therefore, the fixed-position ball 61 is restricted from moving backward in the inner diameter direction and the optical axis direction by the swing guide surfaces 20A, 20B, and 20C. In other words, the rocking guide surfaces 20A, 20B, 20C, the front regulating wall 41a, and the bottom surface of the ball holding groove 41 form a wedge-shaped space whose width in the radial direction decreases from the front to the rear in the optical axis direction. In this wedge-shaped space, the fixed-position ball 61 is in a state of being fitted with its movement restricted. As described above, the fixed-position ball 61 is held at a fixed position in which movement is restricted in any of the optical axis direction, the circumferential direction, and the radial direction by assembling the movable unit 17. The fixed-position ball 61 can roll at this fixed position (rolling operation with its own center position kept constant).

揺動案内面20A,20B,20Cは、ボール保持溝41の光軸方向の後半分に対向する領域では、光軸方向後方から前方に進むにつれて内径側から外径側に進む傾斜を有している(図9、図22、図35参照)。つまり、揺動案内面20A,20B,20Cは、定位置ボール61に当接する部分と付勢ボール62に当接する部分では、傾斜方向が逆になっている。そのため付勢ボール62は、対応する揺動案内面20A,20B,20Cとボール保持溝41の底面の間に挟まれると、ボール保持溝41の底面によって外径方向への移動が規制されることに加えて、揺動案内面20A,20B,20Cによって内径方向と光軸方向前方への移動が規制される。但し、付勢ボール62はボール保持溝41の後端の開口部付近に位置するため、固定ユニット18にボールホルダ14を取り付けない段階では各付勢ボール62が露出し(図5、図35、図37、図41、図43、図44参照)、光軸方向後方への各付勢ボール62の移動は規制されない。   The swing guide surfaces 20A, 20B, and 20C have a slope that advances from the inner diameter side to the outer diameter side as it advances from the rear to the front in the optical axis direction in the region facing the rear half of the ball holding groove 41 in the optical axis direction. (See FIGS. 9, 22, and 35). That is, the swinging guide surfaces 20A, 20B, and 20C are reversely inclined at the portion that contacts the fixed-position ball 61 and the portion that contacts the biasing ball 62. Therefore, when the urging ball 62 is sandwiched between the corresponding swing guide surfaces 20A, 20B, and 20C and the bottom surface of the ball holding groove 41, movement in the outer diameter direction is restricted by the bottom surface of the ball holding groove 41. In addition, the forward movement in the inner diameter direction and the optical axis direction is restricted by the swing guide surfaces 20A, 20B, and 20C. However, since the urging balls 62 are positioned in the vicinity of the opening at the rear end of the ball holding groove 41, the urging balls 62 are exposed at the stage where the ball holder 14 is not attached to the fixed unit 18 (FIGS. 5, 35, 37, FIG. 41, FIG. 43, and FIG. 44), the movement of each urging ball 62 rearward in the optical axis direction is not restricted.

コイルホルダ13の軸方向貫通部13b内にボールホルダ14が組み付けられる。図9ないし図11に示すように、ボールホルダ14は軸方向貫通部13bの内周部に嵌る径の円盤状部材であり、径方向の中央に位置する円形の中央開口14aと、中央開口14aの外径側を囲む板状の蓋部14bと、蓋部14bの外縁部から光軸方向前方に向けて突出する環状の外周フランジ14cを有している。蓋部14bの前面側には周方向に略等間隔(120度間隔)で3つの前方突出部65が設けられている。各前方突出部65には、光軸方向に貫通するビス挿通穴66が形成され、ビス挿通穴66よりも内径側には前方へ向くボール保持面67が形成されている。さらに蓋部14bの前面側には、中央開口14aを囲む環状の領域に傾動規制面(傾動範囲制限手段、固定側傾動制限部、規制面)68が形成されている。ボール保持面67と傾動規制面68はそれぞれ光軸Oに対して略垂直な平面である。図9に示すように、ビス挿通穴66は内径の大きさを3段階に異ならせており、内径サイズが最も大きい大径部66aと最も小さい小径部66bが光軸方向の最後部と最前部に位置し、その間の光軸方向位置に中間の内径サイズの中間部66cが形成されている。   The ball holder 14 is assembled in the axial through portion 13 b of the coil holder 13. As shown in FIGS. 9 to 11, the ball holder 14 is a disk-shaped member having a diameter that fits in the inner peripheral portion of the axial through-hole 13 b, and includes a circular central opening 14 a located in the radial center and a central opening 14 a. A plate-like lid portion 14b that surrounds the outer diameter side, and an annular outer peripheral flange 14c that protrudes forward from the outer edge portion of the lid portion 14b in the optical axis direction. Three front protrusions 65 are provided on the front surface side of the lid portion 14b at substantially equal intervals (120 degree intervals) in the circumferential direction. Each front protrusion 65 has a screw insertion hole 66 penetrating in the optical axis direction, and a ball holding surface 67 facing forward is formed on the inner diameter side of the screw insertion hole 66. Further, on the front surface side of the lid portion 14b, a tilt restricting surface (tilt range limiting means, fixed side tilt restricting portion, restricting surface) 68 is formed in an annular region surrounding the central opening 14a. Each of the ball holding surface 67 and the tilt regulating surface 68 is a plane substantially perpendicular to the optical axis O. As shown in FIG. 9, the screw insertion hole 66 has three different inner diameters, the largest diameter portion 66a having the largest inner diameter size and the smallest diameter portion 66b having the rearmost portion and the foremost portion in the optical axis direction. An intermediate portion 66c having an intermediate inner diameter size is formed at a position in the optical axis direction therebetween.

ボールホルダ14は、コイルホルダ13の3つの支持座40A,40B,40Cの後面に対して3つの前方突出部65が光軸方向に対向するように周方向位置を定めて、軸方向貫通部13b内へ光軸方向後方から挿入される。支持座40A,40B,40Cに対向する3つの前方突出部65をそれぞれ前方突出部65A,65B,65Cとする。軸方向貫通部13b内に挿入されたボールホルダ14は、3つの固定ビス69を用いてコイルホルダ13に固定される。   The ball holder 14 is circumferentially positioned so that the three front protrusions 65 are opposed to the rear surface of the three support seats 40A, 40B, 40C of the coil holder 13 in the optical axis direction. It is inserted in from the rear in the optical axis direction. Three front protrusions 65 facing the support seats 40A, 40B, and 40C are referred to as front protrusions 65A, 65B, and 65C, respectively. The ball holder 14 inserted into the axial direction through portion 13 b is fixed to the coil holder 13 using three fixing screws 69.

図9ないし図11に示すように、3つの固定ビス69はそれぞれ、ネジ溝を外周面に有する螺合部69aを一端に有し、頭部69bを他端に有し、螺合部69aと頭部69bを軸部69cで接続した構成である。頭部69bの径は、ボールホルダ14におけるビス挿通穴66の中間部66cの内径よりも大きく、大径部66aの内径よりも小さい。軸部69cの径は、ビス挿通穴66の小径部66bの内径と略同じ大きさである。各固定ビス69は螺合部69aを前方に向けて光軸方向後方からビス挿通穴66内に挿入され、螺合部69aがビス穴42内のネジ溝に螺合する。図9に示すように、ビス挿通穴66の中間部66c内には軸部69cを囲む筒状のコイルバネ70が挿入され、コイルバネ70の前端部が小径部66bと中間部66cの間の段部に当接し、コイルバネ70の後端部が固定ビス69の頭部69bに当接する。ビス穴42への螺合部69aの螺合量が大きくなるにつれて、頭部69bの押し込みによってコイルバネ70が圧縮され、圧縮されたコイルバネ70によってボールホルダ14に対して光軸方向前方への付勢力が働く。   As shown in FIGS. 9 to 11, each of the three fixing screws 69 has a threaded portion 69a having a thread groove on the outer peripheral surface at one end, a head 69b at the other end, The head 69b is connected by a shaft 69c. The diameter of the head portion 69 b is larger than the inner diameter of the intermediate portion 66 c of the screw insertion hole 66 in the ball holder 14 and smaller than the inner diameter of the large diameter portion 66 a. The diameter of the shaft portion 69 c is substantially the same as the inner diameter of the small diameter portion 66 b of the screw insertion hole 66. Each fixing screw 69 is inserted into the screw insertion hole 66 from the rear in the optical axis direction with the screwing portion 69a facing forward, and the screwing portion 69a is screwed into the screw groove in the screw hole 42. As shown in FIG. 9, a cylindrical coil spring 70 surrounding the shaft portion 69c is inserted into the intermediate portion 66c of the screw insertion hole 66, and the front end portion of the coil spring 70 is a step portion between the small diameter portion 66b and the intermediate portion 66c. The rear end of the coil spring 70 contacts the head 69b of the fixed screw 69. As the screwing amount of the screwing portion 69a into the screw hole 42 increases, the coil spring 70 is compressed by pushing the head 69b, and the compressed coil spring 70 biases the ball holder 14 forward in the optical axis direction. Work.

各固定ビス69は、軸部69cの前端部がコイルホルダ13の当付面43に当接する図9の位置がビス穴42への締め込みの限界となる。この状態で、ボールホルダ14に形成した各前方突出部65A,65B,65Cのボール保持面67が付勢ボール62に対して後方から当接し、コイルバネ70からボールホルダ14に加わる光軸方向前方への付勢力を各付勢ボール62が受ける。図9に示すように、付勢ボール62が挿入されているボール保持溝41の後端付近では、光軸方向前方に進むにつれてボール保持溝41の底面と揺動案内面20A,20B,20Cの径方向間隔が小さくなる楔状の空間になっており、ボール保持面67から付勢力を受ける付勢ボール62はこの楔状空間が狭くなる方向へ押し込まれるため、光軸方向と径方向のいずれにも安定した状態で付勢ボール62が支持される。また、ボール保持溝41から後方への付勢ボール62の脱落がボール保持面67によって防止される。なお、付勢ボール62とボール保持面67を確実に当接させるために、図9の状態で各前方突出部65A,65B,65Cの前面と当付面43の間には僅かに光軸方向の隙間が確保されている。また、ビス挿通穴66における中間部66cと大径部66aの間の段部と、固定ビス69の頭部69bとの間には、光軸方向へ僅かな隙間がある。そのため、当付面43と頭部69bによって規制される前後範囲の間でボールホルダ14の光軸方向位置や傾きを僅かに変化させることが可能であり、これによって3つの付勢ボール62の位置のばらつきなどを吸収して安定した保持を行うことができる。   Each fixed screw 69 has a limit of tightening into the screw hole 42 at a position in FIG. 9 where the front end portion of the shaft portion 69 c contacts the contact surface 43 of the coil holder 13. In this state, the ball holding surfaces 67 of the front protrusions 65A, 65B, and 65C formed on the ball holder 14 abut against the urging ball 62 from the rear, and forward in the optical axis direction applied to the ball holder 14 from the coil spring 70. Each urging ball 62 receives this urging force. As shown in FIG. 9, in the vicinity of the rear end of the ball holding groove 41 in which the urging ball 62 is inserted, the bottom surface of the ball holding groove 41 and the swing guide surfaces 20A, 20B, and 20C are moved forward in the optical axis direction. The wedge-shaped space in which the radial interval is reduced and the urging ball 62 that receives the urging force from the ball holding surface 67 is pushed in a direction in which the wedge-shaped space is narrowed. The urging ball 62 is supported in a stable state. Further, the ball holding surface 67 prevents the urging ball 62 from falling backward from the ball holding groove 41. In order to ensure that the urging ball 62 and the ball holding surface 67 are in contact with each other, a slight gap between the front surface of each of the front protrusions 65A, 65B, and 65C and the contact surface 43 in the optical axis direction in the state shown in FIG. The gap is secured. Further, there is a slight gap in the optical axis direction between the step portion between the intermediate portion 66 c and the large diameter portion 66 a in the screw insertion hole 66 and the head portion 69 b of the fixed screw 69. Therefore, it is possible to slightly change the position and inclination of the ball holder 14 in the optical axis direction between the front and rear ranges regulated by the contact surface 43 and the head 69b, and thereby the positions of the three biasing balls 62 can be changed. It is possible to perform stable holding by absorbing variations in the thickness.

以上のように3つの定位置ボール61と3つの付勢ボール62を介して固定ユニット18(コイルホルダ13)の軸方向貫通部13b内に支持された可動ユニット17(バレルホルダ12)は、各定位置ボール61及び各付勢ボール62に対する3つの揺動案内面20A,20B,20Cの接触位置を変化させながら、揺動案内面20A,20B,20Cを含む球面の中心である球心揺動中心Qを中心とする方向自在な回転動作を行うことが可能である。この可動ユニット17(バレルホルダ12)の回転動作に際しては、揺動案内面20A,20B,20Cの位置変化に伴って定位置ボール61や付勢ボール62が転動してもよいし、定位置ボール61や付勢ボール62を転動させずに揺動案内面20A,20B,20Cが摺動してもよい。揺動案内面20A,20B,20Cと定位置ボール61及び付勢ボール62は点接触の関係であるため、いずれの態様でも少ない抵抗でスムーズに可動ユニット17を動作させることができる。   As described above, the movable unit 17 (barrel holder 12) supported in the axial through-hole 13b of the fixed unit 18 (coil holder 13) via the three fixed-position balls 61 and the three urging balls 62 has each fixed While changing the contact positions of the three swing guide surfaces 20A, 20B, and 20C with respect to the position ball 61 and each biasing ball 62, a spherical center swing center that is the center of the spherical surface including the swing guide surfaces 20A, 20B, and 20C. It is possible to perform a freely rotating operation around Q. During the rotation of the movable unit 17 (barrel holder 12), the fixed position ball 61 and the urging ball 62 may roll as the position of the swing guide surfaces 20A, 20B, and 20C changes. The swing guide surfaces 20A, 20B, and 20C may slide without causing the 61 or the urging ball 62 to roll. Since the swing guide surfaces 20A, 20B, and 20C and the fixed-position balls 61 and the urging balls 62 are in a point contact relationship, the movable unit 17 can be smoothly operated with little resistance in any aspect.

可動ユニット17を構成するバレルホルダ12内に鏡筒11が支持される。鏡筒11は複数のレンズで構成される撮像光学系L(図9、図35参照)を内部に保持した筒状体である。図9ないし図11に示すように、鏡筒11は光軸方向に進むにつれて段階的に径の大きさを変化させており、光軸方向の最前部に最も径が大きい大径部11aを有し、その後方に大径部11aよりも小径の中間部11bを有し、光軸方向の最後部に最も径が小さい小径部11cを有する。   The lens barrel 11 is supported in the barrel holder 12 constituting the movable unit 17. The lens barrel 11 is a cylindrical body that holds therein an imaging optical system L (see FIGS. 9 and 35) composed of a plurality of lenses. As shown in FIGS. 9 to 11, the diameter of the lens barrel 11 is changed step by step as it advances in the optical axis direction, and the largest diameter portion 11a having the largest diameter is provided at the forefront portion in the optical axis direction. In addition, an intermediate portion 11b having a smaller diameter than the large-diameter portion 11a is provided behind the small-diameter portion 11c having the smallest diameter at the rearmost portion in the optical axis direction.

鏡筒11は、小径部11cを後方に向けて前方からバレルホルダ12の軸方向貫通部12bに挿入され、中間部11bと小径部11cの間の段部が挿入規制フランジ12cの前面に当接することで光軸方向へのそれ以上の挿入が規制される(図9)。図1、図2、図6ないし図9、図23、図24に示すように、この状態で小径部11cは挿入規制フランジ12cの内側を通ってバレルホルダ12の後方に突出し、大径部11aは軸方向貫通部12bに挿入されずにバレルホルダ12の前方に位置する。バレルホルダ12から後方に突出した小径部11cの外周面には周面ネジ11d(図9ないし図11、図35)が形成されており、周面ネジ11dに対して押え環15が取り付けられる。押え環15は周面ネジ11dに螺合するネジ溝を内周面に有する環状体であり、挿入規制フランジ12cの後面に当て付くまで押え環15を締め付けることで、バレルホルダ12に対して鏡筒11が固定される。図9に示すように、ボールホルダ14の中央開口14aの開口径は押え環15の径よりも大きく、コイルホルダ13にボールホルダ14を取り付けた後に、中央開口14aを通して押え環15の着脱が可能である。   The lens barrel 11 is inserted into the axial through portion 12b of the barrel holder 12 from the front with the small-diameter portion 11c facing rearward, and the step portion between the intermediate portion 11b and the small-diameter portion 11c contacts the front surface of the insertion restriction flange 12c. Thus, further insertion in the optical axis direction is restricted (FIG. 9). As shown in FIGS. 1, 2, 6 to 9, 23, and 24, in this state, the small diameter portion 11c protrudes behind the barrel holder 12 through the inside of the insertion restriction flange 12c, and the large diameter portion 11a It is located in front of the barrel holder 12 without being inserted into the axial through-hole 12b. A peripheral screw 11d (FIGS. 9 to 11 and FIG. 35) is formed on the outer peripheral surface of the small diameter portion 11c projecting rearward from the barrel holder 12, and a presser ring 15 is attached to the peripheral screw 11d. The presser ring 15 is an annular body having a thread groove on the inner peripheral surface that is screwed into the peripheral surface screw 11d. The presser ring 15 is tightened until it comes into contact with the rear surface of the insertion restricting flange 12c, so that the barrel is fixed to the barrel holder 12. 11 is fixed. As shown in FIG. 9, the opening diameter of the central opening 14a of the ball holder 14 is larger than the diameter of the presser ring 15. After the ball holder 14 is attached to the coil holder 13, the presser ring 15 can be attached and detached through the central opening 14a. It is.

鏡筒11の大径部11aとバレルホルダ12はそれぞれ、コイルホルダ13の前壁13cの中央開口13dを通過しない径方向の大きさを有しているため、鏡筒11はコイルホルダ13の軸方向貫通部13bに対して光軸方向前方から挿入可能で、バレルホルダ12はコイルホルダ13の軸方向貫通部13bに対して光軸方向後方から挿入可能となる。撮像装置10の組み立ての手順として、コイルホルダ13の軸方向貫通部13bに対してバレルホルダ12を含む可動ユニット17を後方から挿入した上でボールホルダ14を取り付け、続いてバレルホルダ12の軸方向貫通部12bに対して前方から鏡筒11を挿入し、ボールホルダ14の中央開口14aを通して押え環15を組み付けてバレルホルダ12に鏡筒11を固定させるとよい。可動ユニット17の取り付けに際しては、図5、図34、図41、に示すように、一対のロール範囲制限突起31の間に支持座40Aが位置するように周方向位置を定める。すると、一方のロール範囲制限突起31の平面31a及び湾曲面31bが、支持座40Aの一方の規制面44Aに対向し、他方のロール範囲制限突起31の平面31a及び湾曲面31bが、支持座40Aの他方の規制面44Aに対向する。また、コイルホルダ13の軸方向貫通部13bに可動ユニット17を挿入する前に各ボール保持溝41に定位置ボール61を収めておき、可動ユニット17の挿入後に付勢ボール62をボール保持溝41の後端部分に収め、さらにボールホルダ14の取り付けを行う。   Since the large-diameter portion 11a of the lens barrel 11 and the barrel holder 12 have a radial size that does not pass through the central opening 13d of the front wall 13c of the coil holder 13, the lens barrel 11 is in the axial direction of the coil holder 13. The barrel holder 12 can be inserted into the through-hole 13b from the front in the optical axis direction, and the barrel holder 12 can be inserted into the axial through-hole 13b of the coil holder 13 from the rear in the optical axis direction. As a procedure for assembling the imaging device 10, the movable unit 17 including the barrel holder 12 is inserted into the axial penetration portion 13 b of the coil holder 13 from the rear side, and then the ball holder 14 is attached. The lens barrel 11 may be inserted from the front with respect to 12b, and the presser ring 15 is assembled through the central opening 14a of the ball holder 14 to fix the lens barrel 11 to the barrel holder 12. When the movable unit 17 is attached, the circumferential position is determined so that the support seat 40A is positioned between the pair of roll range limiting protrusions 31 as shown in FIGS. Then, the flat surface 31a and the curved surface 31b of the one roll range limiting protrusion 31 are opposed to the one restricting surface 44A of the support seat 40A, and the flat surface 31a and the curved surface 31b of the other roll range limiting protrusion 31 are the support seat 40A. It faces the other restriction surface 44A. Further, the fixed-position balls 61 are stored in the respective ball holding grooves 41 before the movable unit 17 is inserted into the axial direction through portion 13 b of the coil holder 13, and the urging balls 62 are inserted into the ball holding grooves 41 after the movable unit 17 is inserted. And the ball holder 14 is attached.

バレルホルダ12の軸方向貫通部12bに挿入した状態の鏡筒11は、大径部11aがコイルホルダ13の前方に突出し、小径部11bの後端部分がコイルホルダ13の後方に突出しており、大径部11aの外周部に環状のバランサ16を取り付け、小径部11bの後端部分にイメージセンサユニット19を取り付ける。鏡筒11と可動ユニット17は、先に述べた球心揺動中心Qを中心とする方向自在な回転動作を一体的に行う。鏡筒11の後端部分に設けたイメージセンサユニット19に対して、鏡筒11の前端部分にバランサ16を設けることで、鏡筒11と可動ユニット17からなる可動部分の重心が球心揺動中心Qと略一致するように重量バランスをとっている。   The lens barrel 11 inserted in the axial through-hole 12b of the barrel holder 12 has a large-diameter portion 11a protruding forward of the coil holder 13 and a rear end portion of the small-diameter portion 11b protruding rearward of the coil holder 13. An annular balancer 16 is attached to the outer periphery of the diameter portion 11a, and an image sensor unit 19 is attached to the rear end portion of the small diameter portion 11b. The lens barrel 11 and the movable unit 17 integrally perform a freely rotating operation around the above-described ball center swing center Q. By providing the balancer 16 at the front end portion of the lens barrel 11 with respect to the image sensor unit 19 provided at the rear end portion of the lens barrel 11, the center of gravity of the movable portion consisting of the lens barrel 11 and the movable unit 17 swings in the center of the ball. The weight is balanced so as to substantially coincide with the center Q.

イメージセンサユニット19は光軸O上に受光面が位置するイメージセンサ19a(図9)を有しており、撮像光学系Lを通して得られる被写体像がイメージセンサ19aにより光電変換され、その画像信号がフレキシブル基板19bを通して伝送される。フレキシブル基板19bは撮像装置10を制御する制御回路71(図9に概念的に示す)に接続し、制御回路71において画像信号の処理を行い、表示デバイスへの画像表示や記録媒体への画像データの記録を行う。制御回路71にはさらに、撮像装置10の姿勢を検知する姿勢検知センサ72(図9)からの信号が入力される。   The image sensor unit 19 has an image sensor 19a (FIG. 9) whose light receiving surface is located on the optical axis O. A subject image obtained through the imaging optical system L is photoelectrically converted by the image sensor 19a, and the image signal is converted into an image signal. It is transmitted through the flexible substrate 19b. The flexible substrate 19b is connected to a control circuit 71 (conceptually shown in FIG. 9) that controls the imaging apparatus 10, and processes image signals in the control circuit 71 to display an image on a display device and image data on a recording medium. Record. Further, a signal from an attitude detection sensor 72 (FIG. 9) that detects the attitude of the imaging apparatus 10 is input to the control circuit 71.

コイルホルダ13に対する各コイル54,55,56と各ホールセンサ57,58,59の組み付けは、コイルホルダ13に可動ユニット17や鏡筒11を取り付ける前と取り付けた後の任意の段階で行うことができる。前述のように、各コイル54,55,56を取り付けた状態のコイル支持板51,52,53をコイルホルダ13の支持凹部48,49,50上に載せて接着などで固定することで、各コイル54,55,56が貫通穴45,46,47内に挿入される。貫通穴45を通してコイルホルダ13の軸方向貫通部13b内に露出した第1コイル54の内周面54dが、可動ユニット17を構成する第1磁石ユニット27の各永久磁石27-1,27-2の外周面27bに対向して位置する。同様に、貫通穴46を通してコイルホルダ13の軸方向貫通部13b内に露出した第2コイル55の内周面55dが、第2磁石ユニット28の各永久磁石28-1,28-2の外周面28bに対向して位置し、貫通穴47を通してコイルホルダ13の軸方向貫通部13b内に露出した第3コイル56の内周面56dが、第3磁石ユニット29の各永久磁石29-1,29-2の外周面29bに対向して位置する。防振駆動を行っていない初期状態の撮像装置10における各磁石ユニット27,28,29と各コイル54,55,56の位置関係を図36に示し、同じく初期状態における各磁石ユニット27,28,29と各ホールセンサ57,58,59の位置関係を図37に示した。図36から分かる通り、径方向に対向する第1コイル54と第1磁石ユニット27が第1アクチュエータ(傾動用駆動手段)V1を構成し、径方向に対向する第2コイル55と第2磁石ユニット28が第2アクチュエータ(傾動用駆動手段)V2を構成し、径方向に対向する第3コイル56と第3磁石ユニット29が第3アクチュエータ(回転用駆動手段)V3を構成する。   The coils 54, 55, 56 and the hall sensors 57, 58, 59 are assembled to the coil holder 13 at any stage before and after the movable unit 17 and the lens barrel 11 are attached to the coil holder 13. it can. As described above, the coil support plates 51, 52, 53 with the coils 54, 55, 56 attached are placed on the support recesses 48, 49, 50 of the coil holder 13 and fixed by bonding or the like. Coils 54, 55, 56 are inserted into the through holes 45, 46, 47. The inner peripheral surface 54d of the first coil 54 exposed through the through hole 45 and into the axial through portion 13b of the coil holder 13 is the permanent magnets 27-1 and 27-2 of the first magnet unit 27 constituting the movable unit 17. Is located opposite the outer peripheral surface 27b. Similarly, the inner peripheral surface 55d of the second coil 55 exposed in the axial through portion 13b of the coil holder 13 through the through hole 46 is the outer peripheral surface of each of the permanent magnets 28-1, 28-2 of the second magnet unit 28. The inner peripheral surface 56d of the third coil 56 that is located opposite to the b 28b and is exposed through the through hole 47 in the axial through portion 13b of the coil holder 13 is the permanent magnets 29-1, 29 of the third magnet unit 29. -2 is located opposite the outer peripheral surface 29b. FIG. 36 shows the positional relationship between each of the magnet units 27, 28, and 29 and each of the coils 54, 55, and 56 in the imaging apparatus 10 in the initial state where the image stabilization drive is not performed. FIG. 37 shows the positional relationship between the reference numeral 29 and each hall sensor 57, 58, 59. As can be seen from FIG. 36, the first coil 54 and the first magnet unit 27 that face in the radial direction constitute a first actuator (tilting drive means) V1, and the second coil 55 and the second magnet unit that face in the radial direction. 28 constitutes a second actuator (tilting drive means) V2, and the third coil 56 and the third magnet unit 29 facing in the radial direction constitute a third actuator (rotation drive means) V3.

各アクチュエータV1,V2,V3と各ホールセンサ57,58,59の位置の基準となる磁束検出軸C1,C2,C3を図36と図37に示した。磁束検出軸C1,C2,C3はそれぞれ第1の平面T1(図18、図21、図22)上に位置して揺動中心Qを通る仮想の軸線であり、各磁石ユニット27,28,29でN極とS極が並ぶ径方向に向けて延びている。磁束検出軸(第2の磁束検出軸)C1は、揺動中心Qから第1アクチュエータV1側に向けて延びてヨーク24と第1磁石ユニット27と第1コイル54のそれぞれの外形中心(周方向及び光軸方向の中央)を通る。そして磁束検出軸C1上にホールセンサ57の中心が位置する。磁束検出軸(第3の磁束検出軸)C2は、揺動中心Qから第2アクチュエータV2側に向けて延びてヨーク25と第2磁石ユニット28と第2コイル55のそれぞれの外形中心(周方向及び光軸方向の中央)を通る。そして磁束検出軸C2上にホールセンサ58の中心が位置する。磁束検出軸(第1の磁束検出軸)C3は、揺動中心Qから第3アクチュエータV3側に向けて延びてヨーク26と第3磁石ユニット29と第3コイル56のそれぞれの外形中心(周方向及び光軸方向の中央)を通る。そして磁束検出軸C3上にホールセンサ59の中心が位置する。磁束検出軸C1と磁束検出軸C2と磁束検出軸C3は、光軸Oを中心として周方向に略等間隔(光軸Oを中心とする互いの中心角が120度)の関係にある。   The magnetic flux detection axes C1, C2, and C3 that serve as references for the positions of the actuators V1, V2, and V3 and the hall sensors 57, 58, and 59 are shown in FIGS. The magnetic flux detection axes C1, C2, and C3 are virtual axes that are located on the first plane T1 (FIGS. 18, 21, and 22) and that pass through the swing center Q, and each of the magnet units 27, 28, and 29. The N pole and the S pole extend in the radial direction. The magnetic flux detection axis (second magnetic flux detection axis) C1 extends from the swing center Q toward the first actuator V1 and extends to the outer center of each of the yoke 24, the first magnet unit 27, and the first coil 54 (circumferential direction). And the center in the optical axis direction). The center of the hall sensor 57 is positioned on the magnetic flux detection axis C1. The magnetic flux detection axis (third magnetic flux detection axis) C2 extends from the swing center Q toward the second actuator V2 side, and the respective outer shape centers (circumferential directions) of the yoke 25, the second magnet unit 28, and the second coil 55. And the center in the optical axis direction). The center of the hall sensor 58 is located on the magnetic flux detection axis C2. The magnetic flux detection axis (first magnetic flux detection axis) C3 extends from the swing center Q toward the third actuator V3 side, and the outer center (circumferential direction) of each of the yoke 26, the third magnet unit 29, and the third coil 56. And the center in the optical axis direction). The center of the hall sensor 59 is positioned on the magnetic flux detection axis C3. The magnetic flux detection axis C1, the magnetic flux detection axis C2, and the magnetic flux detection axis C3 are in a relationship of substantially equal intervals in the circumferential direction with the optical axis O as the center (the mutual center angle with respect to the optical axis O is 120 degrees).

第1アクチュエータV1では第1磁石ユニット27と共にヨーク24が磁気回路を形成し、第2アクチュエータV2では第2磁石ユニット28と共にヨーク25が磁気回路を形成し、第3アクチュエータV3では第3磁石ユニット29と共にヨーク26が磁気回路を形成する。ヨーク24,25,26は、底壁24a,25a,26aと立壁24b,25b,26bで各磁石ユニット27,28,29を囲み、立壁24b,25b,26bの先端を外径方向に位置するコイル54,55,56に向けることによって、各磁石ユニット27,28,29の磁力線をコイル54,55,56側(外周面27b,28b,29bと立壁24b,25b,26bの先端の間)に集中させて、コイル54,55,56に作用する磁力を増幅させる。先に述べたように、ヨーク24,25,26はさらに、対応する磁石ユニット27,28,29を保持する機能を有する。   In the first actuator V1, the yoke 24 together with the first magnet unit 27 forms a magnetic circuit, in the second actuator V2, the yoke 25 forms a magnetic circuit together with the second magnet unit 28, and in the third actuator V3, the third magnet unit 29. At the same time, the yoke 26 forms a magnetic circuit. The yokes 24, 25, 26 are coils in which the bottom walls 24a, 25a, 26a and the standing walls 24b, 25b, 26b surround the magnet units 27, 28, 29, and the tips of the standing walls 24b, 25b, 26b are positioned in the outer diameter direction. By directing it toward 54, 55, 56, the magnetic lines of force of the magnet units 27, 28, 29 are concentrated on the coil 54, 55, 56 side (between the outer peripheral surfaces 27b, 28b, 29b and the tips of the standing walls 24b, 25b, 26b). Thus, the magnetic force acting on the coils 54, 55 and 56 is amplified. As described above, the yokes 24, 25, and 26 further have a function of holding the corresponding magnet units 27, 28, and 29.

各ホールセンサ57,58,59は、コイル支持板51,52,53のセンサ支持凹部51b,52b,53b内に組み付けられることで、各磁石ユニット27,28,29の外周面27b,28b,29bに対して径方向に若干の隙間を有する状態で位置する(図9、図34、図37参照)。ホールセンサ(第2のセンサ)57によって第1アクチュエータV1(第1磁石ユニット27)における磁界の変化を検出し、ホールセンサ(第3のセンサ)58によって第2アクチュエータV2(第2磁石ユニット28)における磁界の変化を検出し、ホールセンサ(第1のセンサ)59によって第3アクチュエータV3(第3磁石ユニット29)における磁界の変化を検出する。各アクチュエータV1,V2,V3の外形中心と球心揺動中心Qを通る磁束検出軸C1,C2,C3上に各ホールセンサ57,58,59が位置することで、高精度な検出を行うことができる。センサ支持凹部51b,52b,53bは内径方向に突出するコイル支持突起51a,52a,53aの内部空間を利用して凹設されているので、優れたスペース効率でホールセンサ57,58,59を配置することができる。また、ホールセンサ57,58,59を磁石ユニット27,28,29に近づけて位置させて、検出の精度をさらに高めることができる。   The hall sensors 57, 58, 59 are assembled in the sensor support recesses 51b, 52b, 53b of the coil support plates 51, 52, 53, so that the outer peripheral surfaces 27b, 28b, 29b of the magnet units 27, 28, 29 are obtained. In contrast, it is positioned with a slight gap in the radial direction (see FIGS. 9, 34, and 37). The Hall sensor (second sensor) 57 detects a change in the magnetic field in the first actuator V1 (first magnet unit 27), and the Hall sensor (third sensor) 58 detects the second actuator V2 (second magnet unit 28). Is detected, and a Hall sensor (first sensor) 59 detects a magnetic field change in the third actuator V3 (third magnet unit 29). Highly accurate detection is achieved by positioning the hall sensors 57, 58, and 59 on the magnetic flux detection axes C1, C2, and C3 passing through the outer center of each actuator V1, V2, and V3 and the center of rotation of the spherical center Q. Can do. The sensor support recesses 51b, 52b, 53b are recessed using the internal space of the coil support protrusions 51a, 52a, 53a protruding in the inner diameter direction, so that the hall sensors 57, 58, 59 are arranged with excellent space efficiency. can do. Further, the Hall sensors 57, 58, 59 are positioned close to the magnet units 27, 28, 29, so that the detection accuracy can be further improved.

コイル支持板51,52,53の外周面上に図示を省略するフレキシブル基板が配設される。フレキシブル基板は、センサ支持凹部51b,52b,53b内のホールセンサ57,58,59に接続するセンサ接続部と、貫通穴51c,52c,53cを通して第1コイル54と第2コイル55と第3コイル56のそれぞれに接続するコイル接続部を有している。フレキシブル基板は制御回路71(図9)に接続し、ホールセンサ57,58,59で得られる磁界の情報がフレキシブル基板を介して制御回路71に送られ、このセンサ情報に基づいて可動ユニット17と鏡筒11の姿勢が検出される。また、制御回路71によって第1コイル54,第2コイル55,第3コイル56への通電制御が行われる。なお、図9では制御回路71と第3コイル56及びホールセンサ59の接続関係のみを示しているが、第1コイル54、第2コイル55、ホールセンサ57,58についても同様に制御回路71と電気的に接続される。   A flexible substrate (not shown) is disposed on the outer peripheral surfaces of the coil support plates 51, 52, and 53. The flexible substrate includes a sensor connection portion connected to the hall sensors 57, 58, and 59 in the sensor support recess portions 51b, 52b, and 53b, and the first coil 54, the second coil 55, and the third coil through the through holes 51c, 52c, and 53c. A coil connecting portion connected to each of 56 is provided. The flexible substrate is connected to the control circuit 71 (FIG. 9), and information on the magnetic field obtained by the Hall sensors 57, 58, 59 is sent to the control circuit 71 via the flexible substrate. Based on this sensor information, the movable unit 17 and The attitude of the lens barrel 11 is detected. Further, the control circuit 71 performs energization control to the first coil 54, the second coil 55, and the third coil 56. 9 shows only the connection relationship between the control circuit 71, the third coil 56, and the hall sensor 59, the same applies to the control circuit 71 and the first coil 54, the second coil 55, and the hall sensors 57, 58. Electrically connected.

第1アクチュエータV1では、第1コイル54の一対の長辺部54aと第1磁石ユニット27の各永久磁石27-1,27-2のそれぞれの長手方向が周方向を向き、前側の長辺部54aと永久磁石27-1が径方向に対向し、後側の長辺部54aと永久磁石27-2が径方向に対向している。永久磁石27-1と永久磁石27-2はそれぞれ図13、図15ないし図17、図36、図37に示すように着磁されているため、第1コイル54に通電すると、フレミングの左手の法則により、第1コイル54の長辺部54aに沿って電流の流れる方向と、永久磁石27-1,27-2による長辺部54a周りの磁界の向きに対して略垂直な方向の推力が働く。この第1アクチュエータV1による推力を図6、図18、図21、図29に矢印F11と矢印F12で概念的に示した。第1コイル54の電流の方向によって推力の作用方向がF11とF12に切り替わる。第1アクチュエータV1では、第1磁石ユニット27の長手方向と第1コイル54の長辺部54aがそれぞれ周方向に長く延びている。これによって推力F11,F12を効率良く生じさせることができる。   In the first actuator V1, the longitudinal direction of each of the pair of long side portions 54a of the first coil 54 and the permanent magnets 27-1, 27-2 of the first magnet unit 27 faces the circumferential direction, and the long side portion on the front side 54a and the permanent magnet 27-1 are opposed to each other in the radial direction, and the rear long side portion 54a and the permanent magnet 27-2 are opposed to each other in the radial direction. Since the permanent magnet 27-1 and the permanent magnet 27-2 are respectively magnetized as shown in FIGS. 13, 15 to 17, 36, and 37, when the first coil 54 is energized, the left hand of Fleming According to the law, there is a thrust in a direction substantially perpendicular to the direction of current flow along the long side portion 54a of the first coil 54 and the direction of the magnetic field around the long side portion 54a by the permanent magnets 27-1, 27-2. work. The thrust generated by the first actuator V1 is conceptually shown in FIGS. 6, 18, 21, and 29 by arrows F11 and F12. The direction of the thrust is switched between F11 and F12 depending on the direction of the current of the first coil 54. In the first actuator V1, the longitudinal direction of the first magnet unit 27 and the long side portion 54a of the first coil 54 extend in the circumferential direction. As a result, the thrusts F11 and F12 can be generated efficiently.

第2アクチュエータV2では、第2コイル55の一対の長辺部55aと第2磁石ユニット28の各永久磁石28-1,28-2のそれぞれの長手方向が周方向を向き、前側の長辺部55aと永久磁石28-1が径方向に対向し、後側の長辺部55aと永久磁石28-2が径方向に対向している。永久磁石28-1と永久磁石28-2はそれぞれ図13、図15ないし図17、図36、図37に示すように着磁されているため、第2コイル55に通電すると、フレミングの左手の法則により、第2コイル55の長辺部55aに沿って電流の流れる方向と、永久磁石28-1,28-2による長辺部55a周りの磁界の向きに対して略垂直な方向の推力が働く。この第2アクチュエータV2による推力を図6、図8、図18、図20に矢印F21と矢印F22で概念的に示した。第2コイル55の電流の方向によって推力の作用方向がF21とF22に切り替わる。第2アクチュエータV2では、第2磁石ユニット28の長手方向と第2コイル55の長辺部55aがそれぞれ周方向に長く延びている。これによって推力F21,F22を効率良く生じさせることができる。   In the second actuator V2, the longitudinal directions of the pair of long side portions 55a of the second coil 55 and the permanent magnets 28-1 and 28-2 of the second magnet unit 28 face the circumferential direction, and the long side portion on the front side 55a and the permanent magnet 28-1 are opposed to each other in the radial direction, and the rear long side portion 55a and the permanent magnet 28-2 are opposed to each other in the radial direction. Since the permanent magnet 28-1 and the permanent magnet 28-2 are respectively magnetized as shown in FIGS. 13, 15 to 17, 36, and 37, when the second coil 55 is energized, the left hand of Fleming According to the law, there is a thrust in a direction substantially perpendicular to the direction in which current flows along the long side portion 55a of the second coil 55 and the direction of the magnetic field around the long side portion 55a by the permanent magnets 28-1, 28-2. work. The thrust by the second actuator V2 is conceptually shown in FIGS. 6, 8, 18, and 20 by arrows F21 and F22. The direction in which the thrust acts is switched between F21 and F22 depending on the direction of the current in the second coil 55. In the second actuator V2, the longitudinal direction of the second magnet unit 28 and the long side portion 55a of the second coil 55 extend in the circumferential direction. As a result, the thrusts F21 and F22 can be generated efficiently.

第3アクチュエータV3では、第3コイル56の一対の長辺部56aと第3磁石ユニット29の各永久磁石29-1,29-2のそれぞれの長手方向が光軸方向に延び、一方の長辺部56aと永久磁石29-1が径方向に対向し、他方の長辺部56aと永久磁石29-2が径方向に対向している。永久磁石29-1と永久磁石29-2はそれぞれ図13、図15ないし図17、図36、図37に示すように着磁されているため、第3コイル56に通電すると、フレミングの左手の法則により、第3コイル56の長辺部56aに沿って電流の流れる方向と、永久磁石29-1,29-2による長辺部56a周りの磁界の向きに対して略垂直な方向の推力が働く。この第3アクチュエータV3による推力を図7、図8、図19、図20、図33に矢印F31と矢印F32で概念的に示した。第3コイル56の電流の方向によって推力の作用方向がF31とF32に切り替わる。第1アクチュエータV1及び第2アクチュエータV2と異なり、第3アクチュエータV3では、第3磁石ユニット29の長手方向と第3コイル56の長辺部56aが延びる方向がそれぞれ、周方向ではなく光軸方向になっている。これによってローリング方向の推力F31,F32を効率良く生じさせることができる。   In the third actuator V3, the longitudinal directions of the pair of long side portions 56a of the third coil 56 and the permanent magnets 29-1, 29-2 of the third magnet unit 29 extend in the optical axis direction, and one of the long sides The portion 56a and the permanent magnet 29-1 are opposed to each other in the radial direction, and the other long side portion 56a and the permanent magnet 29-2 are opposed to each other in the radial direction. Since the permanent magnet 29-1 and the permanent magnet 29-2 are magnetized as shown in FIGS. 13, 15 to 17, 36, and 37, respectively, when the third coil 56 is energized, the left hand of Fleming According to the law, there is a thrust in a direction substantially perpendicular to the direction in which the current flows along the long side portion 56a of the third coil 56 and the direction of the magnetic field around the long side portion 56a by the permanent magnets 29-1, 29-2. work. The thrust by the third actuator V3 is conceptually shown in FIGS. 7, 8, 19, 20, and 33 by arrows F31 and F32. The direction in which the thrust acts is switched between F31 and F32 depending on the direction of the current in the third coil 56. Unlike the first actuator V1 and the second actuator V2, in the third actuator V3, the longitudinal direction of the third magnet unit 29 and the direction in which the long side portion 56a of the third coil 56 extends are not in the circumferential direction but in the optical axis direction. It has become. Thereby, thrusts F31 and F32 in the rolling direction can be generated efficiently.

各コイル54,55,56はコイルホルダ13に固定的に支持されているので、各アクチュエータV1,V2,V3の推力は、各磁石ユニット27,28,29を有する可動ユニット17を動作させる力として働く。前述の通り、可動ユニット17は球心揺動中心Qを中心として回転自在に支持されており、第1アクチュエータV1と第2アクチュエータV2の推力F11,F12,F21,F22によって、可動ユニット17と鏡筒11は球心揺動中心Qを中心として光軸Oを傾けるチルト動作を行う。例えば、第1アクチュエータV1を通る磁束検出軸C1と第2アクチュエータV2を通る磁束検出軸C2の中間の周方向位置を通りチルト前の光軸Oを含む仮想平面P1(図3、図36、図37)と、仮想平面P1に垂直でチルト前の光軸Oを含む仮想平面P2(図3、図36、図37)を設定し、仮想平面P1に沿う可動ユニット17と鏡筒11の傾動をピッチング方向Y1,Y2(図8、図21、図22参照)の動作、仮想平面P2に沿う可動ユニット17と鏡筒11の傾動をヨーイング方向X1,X2(図6、図7、図18、図19、図33参照)の動作とすると、第1アクチュエータV1と第2アクチュエータV2の推力F11,F12,F21,F22によって、ピッチング方向Y1,Y2の成分とヨーイング方向X1,X2の成分を含むあらゆる方向のチルト動作を可動ユニット17と鏡筒11に行わせることができる。磁束検出軸C3は仮想平面P1に含まれる。図38ないし図42は、磁束検出軸C2と初期状態の光軸Oを含む平面に沿って可動ユニット17と鏡筒11を傾動させた状態を示しており、この傾動によって撮像光学系Lの光軸は、初期状態の光軸Oに対して傾いた光軸O’に変化している。可動ユニット17のチルト動作が所定量まで達すると、バレルホルダ12に計6つ設けた傾動制限突起30A,30B,30C,30D,30E,30Fのいずれかが、ボールホルダ14の傾動規制面68に当接し、それ以上の可動ユニット17の傾動が機械的に制限される。図38ないし図42では傾動制限突起30Bと傾動制限突起30Cが傾動規制面68に当接している。   Since each coil 54, 55, 56 is fixedly supported by the coil holder 13, the thrust of each actuator V1, V2, V3 is a force for operating the movable unit 17 having each magnet unit 27, 28, 29. work. As described above, the movable unit 17 is supported so as to be rotatable about the pivot center Q of the ball, and the movable unit 17 and the mirror are mirrored by the thrusts F11, F12, F21, and F22 of the first actuator V1 and the second actuator V2. The cylinder 11 performs a tilting operation in which the optical axis O is tilted about the ball center swing center Q. For example, the virtual plane P1 including the optical axis O before tilting through the intermediate circumferential position between the magnetic flux detection axis C1 passing through the first actuator V1 and the magnetic flux detection axis C2 passing through the second actuator V2 (FIGS. 3, 36, and 36) 37) and a virtual plane P2 (FIGS. 3, 36, and 37) perpendicular to the virtual plane P1 and including the optical axis O before tilting are set, and the movable unit 17 and the lens barrel 11 are tilted along the virtual plane P1. The operations in the pitching directions Y1 and Y2 (see FIGS. 8, 21, and 22), the tilting of the movable unit 17 and the lens barrel 11 along the virtual plane P2, and the yawing directions X1 and X2 (FIGS. 6, 7, 18, and FIG. 19 and FIG. 33), the components in the pitching directions Y1, Y2 and the yawing directions X1, X2 are generated by the thrusts F11, F12, F21, F22 of the first actuator V1 and the second actuator V2. It can be performed on the movable unit 17 and the lens barrel 11 to all directions of the tilt operation including. The magnetic flux detection axis C3 is included in the virtual plane P1. 38 to 42 show a state in which the movable unit 17 and the lens barrel 11 are tilted along a plane including the magnetic flux detection axis C2 and the optical axis O in the initial state, and the light of the imaging optical system L is tilted by this tilting. The axis changes to an optical axis O ′ inclined with respect to the optical axis O in the initial state. When the tilting operation of the movable unit 17 reaches a predetermined amount, any of the six tilt limiting protrusions 30A, 30B, 30C, 30D, 30E, 30F provided on the barrel holder 12 hits the tilt restricting surface 68 of the ball holder 14. In contact therewith, further tilting of the movable unit 17 is mechanically limited. 38 to 42, the tilt limiting protrusion 30B and the tilt limiting protrusion 30C are in contact with the tilt restricting surface 68.

第3アクチュエータV3の推力F31,F32によって、可動ユニット17と鏡筒11は光軸Oを中心とするローリング方向の回転動作(ロール動作)を行う。可動ユニット17と鏡筒11が第1アクチュエータV1と第2アクチュエータV2の駆動によって初期状態からチルトした状態にあるときには、第3アクチュエータV3の推力のうち、チルトした状態の光軸を中心とする回転方向の推力成分により回転動作を行う。図43と図44に示すように、可動ユニット17のロール動作が所定量まで達すると、バレルホルダ12に設けた一対の範囲制限突起31の一方と他方が支持座40Aの一方と他方の規制面44Aに当接し、それ以上の可動ユニット17のロール動作が機械的に制限される。図43は可動ユニット17が矢印R1の方向にロール動作して一方の範囲制限突起31が支持座40Aに当接した回転制限状態を示しており、図44は可動ユニット17が矢印R2の方向にロール動作して他方の範囲制限突起31が支持座40Aに当接した回転制限状態を示している。   The movable unit 17 and the lens barrel 11 perform a rotation operation (roll operation) in the rolling direction around the optical axis O by the thrusts F31 and F32 of the third actuator V3. When the movable unit 17 and the lens barrel 11 are tilted from the initial state by driving the first actuator V1 and the second actuator V2, the rotation of the third actuator V3 about the optical axis in the tilted state is centered. Rotation is performed by the direction thrust component. As shown in FIGS. 43 and 44, when the roll operation of the movable unit 17 reaches a predetermined amount, one and the other of the pair of range limiting protrusions 31 provided on the barrel holder 12 are connected to one of the support seats 40A and the other restricting surface 44A. A further roll operation of the movable unit 17 is mechanically restricted. FIG. 43 shows a rotation restricting state in which the movable unit 17 rolls in the direction of the arrow R1 and one range restricting projection 31 contacts the support seat 40A. FIG. 44 shows the movable unit 17 in the direction of the arrow R2. The rotation limit state in which the other range limit protrusion 31 is in contact with the support seat 40A by the roll operation is shown.

以上のように、第1から第3のアクチュエータを用いて、可動ユニット17と鏡筒11にピッチング、ヨーイング、ローリングの各動作成分を含む自在な方向の動作(球心揺動中心Qを中心とする回転)を行わせることができる。この動作によって、光軸O(O’)の向き(イメージセンサ19aの受光面の傾き)や、光軸O(O’)を中心とするイメージセンサ19aの回転方向位置を変化させることができる。例えば、撮像装置10に手振れによる振動などが作用した場合に、その姿勢変化に伴うイメージセンサ19a上での画像の振れを軽減させる方向及び大きさに可動ユニット17と鏡筒11を動作させて撮影画像品質の低下を軽減する防振(像振れ補正)制御を行うことができる。防振制御は、姿勢検知センサ72(図9)による撮像装置10の姿勢情報と、ホールセンサ57,58,59による可動ユニット17及び鏡筒11の位置情報に基づいて、制御回路71が各コイル54,55,56の通電を制御することで実行される。特に本実施形態の撮像装置10では、撮像光学系Lとイメージセンサユニット19を支持する鏡筒11を方向自在に回転可能に支持することで、光軸Oと垂直な平面に沿って光学系を動作させるタイプの撮像装置に比して、コンパクトな構成でありながら対応可能な像振れ補正角を大きくすることが可能になっている。そのため、手持ちで撮影することを前提としたカメラのみならず、身体の任意の位置に取り付けられるウエアラブルカメラや、自動車などの移動機械に搭載されるカメラのような、大きな像振れが生じやすい条件の撮像装置においても、優れた防振補正効果を得ることができる。   As described above, the first to third actuators are used to move the movable unit 17 and the lens barrel 11 in any direction including the pitching, yawing, and rolling motion components (centered on the pivot center Q). Rotation). By this operation, the direction of the optical axis O (O ′) (the inclination of the light receiving surface of the image sensor 19a) and the rotational direction position of the image sensor 19a around the optical axis O (O ′) can be changed. For example, when vibration due to camera shake or the like is applied to the image pickup apparatus 10, the movable unit 17 and the lens barrel 11 are operated in a direction and size to reduce the image shake on the image sensor 19a due to the posture change. It is possible to perform image stabilization (image blur correction) control that reduces image quality degradation. In the image stabilization control, the control circuit 71 controls each coil based on the posture information of the imaging device 10 by the posture detection sensor 72 (FIG. 9) and the positional information of the movable unit 17 and the lens barrel 11 by the hall sensors 57, 58, and 59. It is executed by controlling the energization of 54, 55 and 56. In particular, in the imaging apparatus 10 according to the present embodiment, the optical system is arranged along a plane perpendicular to the optical axis O by supporting the imaging cylinder L that supports the imaging optical system L and the image sensor unit 19 in a freely rotatable manner. Compared to the type of imaging device to be operated, it is possible to increase the image blur correction angle that can be accommodated with a compact configuration. For this reason, not only a camera that is supposed to be photographed by hand, but also a wearable camera that can be attached to any position of the body, or a camera that is mounted on a mobile machine such as an automobile, conditions that cause large image blurring. Even in the imaging apparatus, an excellent anti-shake correction effect can be obtained.

また、可動ユニット17と鏡筒11を含む可動部分の重心と球心揺動中心Qが略一致するため、可動ユニット17と鏡筒11を駆動する際の負荷変動が少なく、小型軽量な第1,第2及び第3のアクチュエータでレスポンス良く高精度に可動ユニット17と鏡筒11の動作を制御することができる。   Further, since the center of gravity of the movable part including the movable unit 17 and the lens barrel 11 and the ball center swing center Q substantially coincide with each other, the load variation when driving the movable unit 17 and the lens barrel 11 is small, and the first is small and light. The operations of the movable unit 17 and the lens barrel 11 can be controlled with high response and high accuracy by the second and third actuators.

前述のように撮像装置10では、可動ユニット17と鏡筒11は第3アクチュエータV3の推力によってロール動作を行い、このロール動作は図43と図44に示す機械的な移動端で制限される。また、可動ユニット17と鏡筒11は、第1アクチュエータV1と第2アクチュエータV2の推力によってチルト動作を行い、このチルト動作は図38ないし図42に一例を示す機械的な移動端で制限される。これらの機械的なリミットを設けることによって、各アクチュエータV1,V2,V3を構成する各磁石ユニット27,28,29と各コイル54,55,56の位置関係が過度にずれて位置制御不能になってしまうことを防止できる。また、撮像装置10の起動時や防振機能が無効状態から有効状態に切り替わったときなどに、これらの機械的移動端をホールセンサ57,58,59による検出の基準位置として参照して、防振制御に関するイニシャライズ(初期化)を行う。なお、イニシャライズ時以外の通常の防振制御は、機械的な移動端に達しない範囲内で可動ユニット17と鏡筒11を動作させる。   As described above, in the imaging apparatus 10, the movable unit 17 and the lens barrel 11 perform a roll operation by the thrust of the third actuator V <b> 3, and this roll operation is limited by the mechanical moving end shown in FIGS. 43 and 44. In addition, the movable unit 17 and the lens barrel 11 are tilted by the thrust of the first actuator V1 and the second actuator V2, and this tilting operation is limited by a mechanical moving end as shown in FIG. 38 to FIG. . By providing these mechanical limits, the positional relationship between the magnet units 27, 28, and 29 and the coils 54, 55, and 56 constituting the actuators V1, V2, and V3 is excessively shifted so that the position cannot be controlled. Can be prevented. Further, when the image pickup apparatus 10 is started up or when the image stabilization function is switched from the invalid state to the valid state, these mechanical moving ends are referred to as the reference positions for detection by the Hall sensors 57, 58, 59, and the Initialize (initialize) vibration control. Note that, in normal vibration isolation control other than at the time of initialization, the movable unit 17 and the lens barrel 11 are operated within a range that does not reach the mechanical moving end.

まず、ロール動作用の機械的な移動制限の詳細について説明する。前述のように、バレルホルダ12の揺動案内面20A上に設けた一対のロール範囲制限突起31が、コイルホルダ13に設けた支持座40Aに対して当接することによって、ロール動作の範囲が制限される。図5や図34に示すように、一対のロール範囲制限突起31の周方向間隔は支持座40Aの一対の規制面44Aを結ぶ周方向幅よりも大きく、この各ロール範囲制限突起31と支持座40Aの各規制面44Aの間の周方向の隙間が、ローリング方向への可動ユニット17(バレルホルダ12)の可動量となる。図5と図34に示す初期状態では、一対のロール範囲制限突起31が、支持座40Aの周方向の中央を通る仮想平面P1(図3、図36、図37)に関して略対称に位置しており、支持座40Aの一方の規制面44Aとこれに対向する一方のロール範囲制限突起31の間との周方向間隔と、支持座40Aの他方の規制面44Aとこれに対向する他方のロール範囲制限突起31との間の周方向間隔は略同じ大きさである。そのため、初期状態(図5、図34)から図43に示す矢印R1のローリング方向の移動端までのロール動作量(回転角)と、初期状態(図5、図34)から図44に示す矢印R2のローリング方向の移動端までのロール動作量(回転角)は略等しい。   First, details of mechanical movement restriction for roll operation will be described. As described above, the pair of roll range limiting protrusions 31 provided on the swing guide surface 20A of the barrel holder 12 abut against the support seat 40A provided on the coil holder 13, thereby limiting the range of roll operation. The As shown in FIGS. 5 and 34, the circumferential interval between the pair of roll range limiting projections 31 is larger than the circumferential width connecting the pair of regulating surfaces 44A of the support seat 40A. A circumferential gap between the restricting surfaces 44A of 40A is a movable amount of the movable unit 17 (barrel holder 12) in the rolling direction. In the initial state shown in FIGS. 5 and 34, the pair of roll range limiting protrusions 31 are positioned substantially symmetrically with respect to a virtual plane P1 (FIGS. 3, 36, and 37) passing through the center in the circumferential direction of the support seat 40A. The circumferential interval between one regulating surface 44A of the support seat 40A and the one roll range limiting projection 31 facing this, and the other roll range facing the other regulating surface 44A of the support seat 40A. The circumferential interval between the limiting protrusions 31 is substantially the same. Therefore, the roll operation amount (rotation angle) from the initial state (FIGS. 5 and 34) to the moving end in the rolling direction of the arrow R1 shown in FIG. 43 and the arrow shown in FIG. 44 from the initial state (FIGS. 5 and 34) The roll operation amount (rotation angle) up to the moving end of R2 in the rolling direction is substantially equal.

図18、図21、図22に示すように、可動ユニット17が前述したチルト動作を行っていない初期状態では、光軸Oに対して略垂直で球心揺動中心Qを通る第1の平面T1(図18、図21、図22)上に一対のロール範囲制限突起31が位置している。より詳しくは、図18に示すように、各ロール範囲制限突起31の平面31aの光軸方向の略中央を第1の平面T1が通る構成になっている。支持座40Aの一対の規制面44Aはそれぞれ、初期状態の光軸Oを中心とする径方向に向く平面である。規制面44Aと同様に各ロール範囲制限突起31の平面31a(図18)も、光軸Oを中心とする径方向に向く平面となっている。そのため、初期状態からチルト動作を伴わずにロール動作を行った場合は、各ロール範囲制限突起31の平面31aが支持座40Aの一対の規制面44Aに正対して当接する。   As shown in FIGS. 18, 21, and 22, in the initial state in which the movable unit 17 is not performing the tilt operation described above, the first plane that is substantially perpendicular to the optical axis O and passes through the spherical center swing center Q. A pair of roll range limiting protrusions 31 is positioned on T1 (FIGS. 18, 21, and 22). More specifically, as shown in FIG. 18, the first plane T1 passes through the approximate center in the optical axis direction of the plane 31a of each roll range limiting protrusion 31. Each of the pair of restricting surfaces 44A of the support seat 40A is a plane that faces in the radial direction around the optical axis O in the initial state. Similarly to the restricting surface 44A, the flat surface 31a (FIG. 18) of each roll range limiting protrusion 31 is also a flat surface facing the radial direction with the optical axis O as the center. Therefore, when the roll operation is performed without the tilt operation from the initial state, the flat surface 31a of each roll range limiting protrusion 31 comes into contact with the pair of restricting surfaces 44A of the support seat 40A.

可動ユニット17がチルト動作を行うと、バレルホルダ12の傾きに応じて一対のロール範囲制限突起31の位置が変化する。仮想平面P1に沿うチルト動作(すなわち図8、図21、図22に示すピッチング方向Y1,Y2の成分のみのチルト動作)では、一対のロール範囲制限突起31は仮想平面P1に対する対称配置を維持しながら光軸方向の位置を変化させるので、各ロール範囲制限突起31と支持座40Aの周方向間隔や、支持座40Aの各規制面44Aに対する各ロール範囲制限突起31の平面31aの向きは変化しない。一方、仮想平面P2に沿うヨーイング方向X1,X2(図6、図7、図18、図19、図33)の成分を含むチルト動作を行うと、図45のように、支持座40Aの周方向の中央を通る仮想平面P1に対して一対のロール範囲制限突起31が非対称な関係になり、支持座40Aの各規制面44Aに対する各ロール範囲制限突起31の距離と向きが変化する。なお、図45では、初期状態の光軸Oからチルトした光軸O’に変化したことに伴い、一対のロール範囲制限突起31が位置する第1の平面T1’と、6つの傾動制限突起30の端部が位置する第2の平面T2’の向きも初期状態から変化している。ここで、光軸O(O’)と略垂直で球心揺動中心Qを通る第1の平面T1(T1’)上に一対のロール範囲制限突起31を配置することにより、チルト動作を行った際の支持座40Aに対する各ロール範囲制限突起31の周方向の位置変化を最小にすることができる。   When the movable unit 17 performs a tilting operation, the position of the pair of roll range limiting protrusions 31 changes according to the inclination of the barrel holder 12. In the tilting operation along the virtual plane P1 (that is, the tilting operation of only the components in the pitching directions Y1 and Y2 shown in FIGS. 8, 21, and 22), the pair of roll range limiting protrusions 31 maintain a symmetrical arrangement with respect to the virtual plane P1. However, since the position in the optical axis direction is changed, the circumferential distance between each roll range limiting protrusion 31 and the support seat 40A and the orientation of the plane 31a of each roll range limiting protrusion 31 with respect to each regulating surface 44A of the support seat 40A do not change. . On the other hand, when a tilting operation including components in the yawing directions X1 and X2 (FIGS. 6, 7, 18, 19, and 33) along the virtual plane P2 is performed, the circumferential direction of the support seat 40A as shown in FIG. The pair of roll range limiting projections 31 are asymmetric with respect to the virtual plane P1 passing through the center of the center, and the distance and direction of each roll range limiting projection 31 with respect to each regulating surface 44A of the support seat 40A change. In FIG. 45, in accordance with the change from the optical axis O in the initial state to the tilted optical axis O ′, the first plane T1 ′ where the pair of roll range limiting protrusions 31 are located and the six tilt limiting protrusions 30 are located. The direction of the second plane T2 ′ on which the end of is located also changes from the initial state. Here, the tilt operation is performed by arranging the pair of roll range limiting protrusions 31 on the first plane T1 (T1 ′) that is substantially perpendicular to the optical axis O (O ′) and passes through the spherical center swing center Q. It is possible to minimize a change in the circumferential position of each roll range limiting protrusion 31 with respect to the support seat 40A.

比較例として、第1の平面T1(T1’)から離れたバレルホルダ12の後端付近に一対のロール範囲制限突起80を設けた場合を図46に示した。図46における可動ユニット17のチルトの向き及び大きさは図45と共通である。この比較例では、一方のロール範囲制限突起80が支持座140Aと重なってしまう位置まで仮想平面P1に接近しているのに対し、他方のロール範囲制限突起80は仮想平面P1からの離間量が大きくなっており、ロール動作の可動量の差が正逆方向で大きくなっている。この正逆のローリング方向の可動量のアンバランスは、第1の平面T1(T1’)からのロール範囲制限突起80の距離が大きくなるほど増大する。このようにチルト動作によるローリング方向の機械的移動端のずれが大きくなると、機械的移動端を参照するイニシャライズの精度に悪影響が生じてしまう。また、図46の比較例では片側のロール範囲制限突起80が支持座140Aと干渉してしまうので、一対のロール範囲制限突起80の周方向間隔を広げる等の対策が必要となり、可動ユニット17全体の大型化を招くおそれがある。   As a comparative example, FIG. 46 shows a case where a pair of roll range limiting protrusions 80 is provided near the rear end of the barrel holder 12 away from the first plane T1 (T1 '). The direction and magnitude of the tilt of the movable unit 17 in FIG. 46 are the same as those in FIG. In this comparative example, one roll range limiting projection 80 is close to the virtual plane P1 up to a position where it overlaps with the support seat 140A, whereas the other roll range limiting projection 80 has a distance from the virtual plane P1. The difference in the movable amount of the roll operation increases in the forward and reverse directions. The unbalance of the movable amount in the forward and reverse rolling directions increases as the distance of the roll range limiting protrusion 80 from the first plane T1 (T1 ') increases. As described above, when the displacement of the mechanical moving end in the rolling direction due to the tilting operation becomes large, the accuracy of initialization referring to the mechanical moving end is adversely affected. In addition, in the comparative example of FIG. 46, the roll range limiting protrusion 80 on one side interferes with the support seat 140A. Therefore, it is necessary to take measures such as widening the circumferential interval between the pair of roll range limiting protrusions 80. There is a risk of increasing the size.

これに対して、第1の平面T1(T1’)上に一対のロール範囲制限突起31が位置する本実施形態の構成では、チルト動作による各ロール範囲制限突起31の周方向の位置変化が最小限に抑えられるので、ローリング方向に関して高精度なイニシャライズを実現できる。また、ロール動作の範囲を制限する機構の小型化を実現できる。   On the other hand, in the configuration of the present embodiment in which the pair of roll range limiting protrusions 31 are positioned on the first plane T1 (T1 ′), the positional change in the circumferential direction of each roll range limiting protrusion 31 due to the tilt operation is minimal. Therefore, highly accurate initialization can be realized in the rolling direction. Further, it is possible to reduce the size of the mechanism that limits the range of the roll operation.

前述のように、チルト動作を行っていない状態や、ピッチング方向Y1,Y2の成分のみのチルト動作を行った状態では、ロール範囲制限突起31の平面31aが支持座40Aの規制面44Aに正対した関係にあり、ロール動作の制限時に平面31aが規制面44Aに当接する。これに対して、可動ユニット17がヨーイング方向X1,X2の成分を含むチルト動作を行って支持座40Aに対する各ロール範囲制限突起31の傾きが大きくなると、ロール動作の制限時に湾曲面31bが支持座40Aの規制面44Aに当接するようになる。図18に示すように、湾曲面31bは、平面31aから離れて光軸方向の前後に進むにつれて支持座40Aとの周方向間隔を大きくする滑らかな円弧形状であるため、チルト動作によりロール範囲制限突起31の向きが変化してもガタつき等を生じずに安定して支持座40Aに当接することができる。   As described above, when the tilt operation is not performed or when the tilt operation is performed only for the components in the pitching directions Y1 and Y2, the flat surface 31a of the roll range limiting protrusion 31 faces the restriction surface 44A of the support seat 40A. The flat surface 31a abuts on the restricting surface 44A when the roll operation is restricted. On the other hand, when the movable unit 17 performs a tilt operation including components in the yawing directions X1 and X2 and the inclination of each roll range limiting projection 31 with respect to the support seat 40A increases, the curved surface 31b is supported by the support seat when the roll operation is limited. It comes into contact with the restricting surface 44A of 40A. As shown in FIG. 18, the curved surface 31b has a smooth arc shape that increases the circumferential interval with the support seat 40A as it moves away from the plane 31a and back and forth in the optical axis direction. Even if the orientation of the protrusion 31 changes, the support seat 40A can be stably contacted without causing rattling or the like.

コイルホルダ13に設けた3つの支持座40A,40B,40Cは共通の構成である。そのため、図示実施形態とは異なるロール動作範囲の制限機構として、支持座40Bや支持座40Cの各側面44に対して当接する位置に一対のロール範囲制限突起31を設けることも可能である。但し、図示実施形態のように、ローリング方向の駆動用の第3アクチュエータV3の磁界変化を検出するホールセンサ59と、一対のロール範囲制限突起31が当接する規制面44Aを有する支持座40Aを、光軸Oを含む仮想平面P1上に並べて配置した(別言すれば、光軸Oを中心とする周方向でホールセンサ59と支持座40Aが180度の関係にある)構成の方が、イニシャライズの精度上有利である。   The three support seats 40A, 40B, and 40C provided on the coil holder 13 have a common configuration. Therefore, as a roll operating range limiting mechanism different from the illustrated embodiment, it is also possible to provide a pair of roll range limiting projections 31 at positions where they abut against the side surfaces 44 of the support seat 40B and the support seat 40C. However, as in the illustrated embodiment, a support seat 40A having a Hall sensor 59 that detects a magnetic field change of the third actuator V3 for driving in the rolling direction and a restriction surface 44A with which the pair of roll range restriction protrusions 31 abut, The configuration in which the sensors are arranged side by side on the virtual plane P1 including the optical axis O (in other words, the Hall sensor 59 and the support seat 40A have a 180-degree relationship in the circumferential direction around the optical axis O) is initialized. This is advantageous in terms of accuracy.

続いて、チルト動作用の機械的な移動制限の詳細について説明する。前述のように、バレルホルダ12に設けた6つの傾動制限突起30A,30B,30C,30D,30E,30Fが、ボールホルダ14に設けた傾動規制面68に対して当接することによって、チルト動作の範囲が制限される。図37に示すように、仮想平面P2上に2つの傾動制限突起30C,30Fが位置しており、仮想平面P2に沿うヨーイング方向X1,X2のチルト動作を限界まで行うと、傾動制限突起30C,30Fのいずれかが傾動規制面68に当接する。図37に示すように、光軸Oを通り仮想平面P1に関して略対称に交差する仮想平面P3と仮想平面P4のうち、仮想平面P3上に2つの傾動制限突起30A,30Dが位置し、仮想平面P4上に2つの傾動制限突起30B,30Eが位置しており、仮想平面P3に沿うチルト動作では傾動制限突起30A,30Dのいずれかが傾動規制面68に当接し、仮想平面P4に沿うチルト動作では傾動制限突起30B,30Eのいずれかが傾動規制面68に当接する。仮想平面P2,P3,P4に沿う方向以外の方向のチルト動作では、そのチルト動作によってボールホルダ14に最も接近する位置にあるいずれかの傾動制限突起30が傾動規制面68に当接する。   Next, details of the mechanical movement restriction for the tilt operation will be described. As described above, the six tilt limiting protrusions 30A, 30B, 30C, 30D, 30E, and 30F provided on the barrel holder 12 are brought into contact with the tilt restricting surface 68 provided on the ball holder 14, so that the range of the tilt operation is achieved. Is limited. As shown in FIG. 37, the two tilt limiting projections 30C and 30F are positioned on the virtual plane P2, and when the tilting operation in the yawing directions X1 and X2 along the virtual plane P2 is performed to the limit, the tilt limiting projections 30C and 30F Any one of 30F abuts against the tilt regulating surface 68. As shown in FIG. 37, two tilt limiting protrusions 30A and 30D are located on the virtual plane P3 among the virtual plane P3 and the virtual plane P4 that pass through the optical axis O and intersect substantially symmetrically with respect to the virtual plane P1, and the virtual plane Two tilt restricting projections 30B and 30E are located on P4, and in the tilting operation along the virtual plane P3, any one of the tilt restricting projections 30A and 30D abuts on the tilt restricting surface 68, and the tilt operation along the virtual plane P4 is performed. Then, one of the tilt limiting protrusions 30 </ b> B and 30 </ b> E contacts the tilt restricting surface 68. In a tilting operation in a direction other than the direction along the virtual planes P2, P3, and P4, any tilting restricting protrusion 30 that is closest to the ball holder 14 is brought into contact with the tilting restricting surface 68 by the tilting operation.

6つの傾動制限突起30A,30B,30C,30D,30E,30Fの端部はいずれも光軸O(O’)と略垂直な第2の平面T2(T2’)上に位置し、傾動規制面68は光軸Oと略垂直な平面であるため、チルト動作を行っていない初期状態では、各傾動制限突起30A,30B,30C,30D,30E,30Fと傾動規制面68の光軸方向の間隔は同じである。また、各傾動制限突起30A,30B,30C,30D,30E,30Fは、光軸O(O’)を中心とする同一円周面上に位置し(光軸O(O’)からの径方向距離が一致し)、周方向に略等間隔で設けられている。よって、各傾動制限突起30A,30B,30C,30D,30E,30Fが傾動規制面68に当接するまでのチルト動作量(可動ユニット17の傾動角)は略一致している。各傾動制限突起30A,30B,30C,30D,30E,30Fは半球状の先端部分を傾動規制面68に当接させるため、チルト動作の方向を問わずに円滑に安定して傾動規制面68への当接状態を得ることができる。   The end portions of the six tilt limiting protrusions 30A, 30B, 30C, 30D, 30E, and 30F are all located on the second plane T2 (T2 ′) substantially perpendicular to the optical axis O (O ′), and the tilt limiting surfaces Since 68 is a plane substantially perpendicular to the optical axis O, in the initial state where the tilting operation is not performed, the distance between the tilt limiting projections 30A, 30B, 30C, 30D, 30E, 30F and the tilt restricting surface 68 in the optical axis direction. Are the same. Further, each of the tilt limiting protrusions 30A, 30B, 30C, 30D, 30E, and 30F is located on the same circumferential surface with the optical axis O (O ′) as the center (the radial direction from the optical axis O (O ′)). The distances coincide with each other) and are provided at substantially equal intervals in the circumferential direction. Therefore, the tilt operation amount (tilt angle of the movable unit 17) until each tilt limiting protrusion 30A, 30B, 30C, 30D, 30E, 30F comes into contact with the tilt regulating surface 68 is substantially the same. Since each of the tilt limiting protrusions 30A, 30B, 30C, 30D, 30E, and 30F makes the hemispherical tip portion contact the tilt restricting surface 68, the tilt restricting projection 68 is smoothly and stably moved to the tilt restricting surface 68 regardless of the direction of the tilt operation. Can be obtained.

図37から分かるように、磁束検出軸C1と光軸Oを含む平面、磁束検出軸C2と光軸Oを含む平面、磁束検出軸C3と光軸Oを含む平面(仮想平面P1)の3つの平面に沿うチルト動作では、当該平面に対して略対称な関係の2つの傾動制限突起30が傾動規制面68に当接する。   As can be seen from FIG. 37, there are three planes: a plane including the magnetic flux detection axis C1 and the optical axis O, a plane including the magnetic flux detection axis C2 and the optical axis O, and a plane including the magnetic flux detection axis C3 and the optical axis O (virtual plane P1). In the tilting operation along the plane, the two tilt limiting protrusions 30 that are substantially symmetrical with respect to the plane come into contact with the tilt regulating surface 68.

具体的には、磁束検出軸C1と光軸Oを含む平面のうち、第1アクチュエータV1の推力F11の作用方向(第1の傾動方向とする)に可動ユニット17をチルト動作させた場合、傾動制限突起30Cと傾動制限突起30Dが傾動規制面68に当接する。磁束検出軸C1と光軸Oを含む平面のうち、第1アクチュエータV1の推力F12の作用方向(第2の傾動方向とする)に可動ユニット17をチルト動作させた場合、傾動制限突起30Cと傾動制限突起30Dに対して光軸Oを挟んで反対側に位置する傾動制限突起30Aと傾動制限突起30Fが傾動規制面68に当接する。磁束検出軸C2と光軸Oを含む平面のうち、第2アクチュエータV2の推力F21の作用方向(第3の傾動方向とする)に可動ユニット17をチルト動作させた場合、傾動制限突起30Eと傾動制限突起30Fが傾動規制面68に当接する。磁束検出軸C2と光軸Oを含む平面のうち、第2アクチュエータV2の推力F22の作用方向(第4の傾動方向とする)に可動ユニット17をチルト動作させた場合、傾動制限突起30Eと傾動制限突起30Fに対して光軸Oを挟んで反対側に位置する傾動制限突起30Bと傾動制限突起30Cが傾動規制面68に当接する。図38ないし図42は第4の傾動方向にチルト動作させた場合を示している。このように、第1アクチュエータV1の推力F11,F12と第2アクチュエータV2の推力F21,F22が働く第1ないし第4の傾動方向へ可動ユニット17がチルト動作(磁束検出軸C1,C2を含む平面に沿うチルト動作)を行うときには、磁束検出軸C1または磁束検出軸C2に関して略対称に配置した2つの傾動制限突起30が傾動規制面68に対して当接する。   Specifically, when the movable unit 17 is tilted in the acting direction (first tilt direction) of the thrust F11 of the first actuator V1 in the plane including the magnetic flux detection axis C1 and the optical axis O, the tilting is performed. The restricting protrusion 30C and the tilt restricting protrusion 30D are in contact with the tilt restricting surface 68. When the movable unit 17 is tilted in the direction in which the thrust F12 of the first actuator V1 is applied (the second tilt direction) in the plane including the magnetic flux detection axis C1 and the optical axis O, the tilt limit protrusion 30C and tilt The tilt limiting projection 30A and the tilt limiting projection 30F located on the opposite sides of the limiting projection 30D with respect to the optical axis O abut against the tilt regulating surface 68. When the movable unit 17 is tilted in the direction of action of the thrust F21 of the second actuator V2 (referred to as the third tilting direction) out of the plane including the magnetic flux detection axis C2 and the optical axis O, the tilting restriction protrusion 30E and tilting are performed. The restricting protrusion 30 </ b> F contacts the tilt restricting surface 68. When the movable unit 17 is tilted in the acting direction (the fourth tilting direction) of the thrust F22 of the second actuator V2 in the plane including the magnetic flux detection axis C2 and the optical axis O, the tilt limiting protrusion 30E and tilting are performed. The tilt limiting projection 30B and the tilt limiting projection 30C located on the opposite sides of the limiting projection 30F with respect to the optical axis O abut against the tilt regulating surface 68. 38 to 42 show a case where the tilt operation is performed in the fourth tilt direction. As described above, the movable unit 17 is tilted in the first to fourth tilt directions in which the thrusts F11 and F12 of the first actuator V1 and the thrusts F21 and F22 of the second actuator V2 work (a plane including the magnetic flux detection axes C1 and C2). 2), the two tilt restriction protrusions 30 arranged substantially symmetrically with respect to the magnetic flux detection axis C1 or the magnetic flux detection axis C2 abut against the tilt restriction surface 68.

また、磁束検出軸C3と光軸Oを含む平面(仮想平面P1)のうち、ピッチング方向Y1(第5の傾動方向とする)に可動ユニット17をチルト動作させた場合、傾動制限突起30Dと傾動制限突起30Eが傾動規制面68に当接する。磁束検出軸C3と光軸Oを含む平面(仮想平面P1)のうち、ピッチング方向Y2(第6の傾動方向とする)に可動ユニット17をチルト動作させた場合、光軸Oを挟んで傾動制限突起30Aと傾動制限突起30Eと反対側に位置する傾動制限突起30Aと傾動制限突起30Bが傾動規制面68に当接する。このように、磁束検出軸C3を含む平面に沿うチルト動作を行うときには、磁束検出軸C3に関して略対称に配置した2つの傾動制限突起30が傾動規制面68に対して当接する。   Further, when the movable unit 17 is tilted in the pitching direction Y1 (the fifth tilting direction) in the plane (virtual plane P1) including the magnetic flux detection axis C3 and the optical axis O, the tilting restriction protrusion 30D and the tilting are tilted. The restricting protrusion 30 </ b> E contacts the tilt restricting surface 68. When the movable unit 17 is tilted in the pitching direction Y2 (referred to as the sixth tilting direction) in the plane including the magnetic flux detection axis C3 and the optical axis O (virtual plane P1), tilting is limited with the optical axis O in between. The tilt restricting protrusion 30A and the tilt restricting protrusion 30B located on the opposite side of the protrusion 30A and the tilt restricting protrusion 30E are in contact with the tilt restricting surface 68. As described above, when the tilting operation is performed along the plane including the magnetic flux detection axis C3, the two tilt restriction protrusions 30 arranged substantially symmetrically with respect to the magnetic flux detection axis C3 are brought into contact with the tilt restriction surface 68.

まとめると、光軸Oを含み周方向に略等間隔(120度間隔)の関係である第1グループの3つの仮想平面(仮想平面P2,P3,P4)上にそれぞれ、光軸Oに関して略対称な位置関係で対をなす(すなわち計6つの)傾動制限突起30が設けられている。球心揺動中心Qを中心として光軸Oの向きを変化させるチルト動作を可動ユニット17と鏡筒11が行うと、可動ユニット17の後端部分に位置する6つの傾動制限突起30A,30B,30C,30D,30E,30Fの光軸方向の位置関係が変化し、このうち最も後方に突出した状態になる傾動制限突起30がボールホルダ14の傾動規制面68に当接して傾動を規制する。特に、第1グループの3つの仮想平面から周方向位置を60度ずらせた第2グループの3つの仮想平面(磁束検出軸C1を含む平面、磁束検出軸C2を含む平面、磁束検出軸C3を含む平面(仮想平面P1))に沿ってチルト動作(第1から第6の傾動方向のチルト動作)を行う場合は、2つの傾動制限突起30が傾動規制面68に当接する。2つの傾動制限突起30が傾動規制面68に当接する状態では、1つの傾動制限突起30のみが傾動規制面68に当接する状態に比して、可動ユニット17に高度な安定性と位置精度が得られる。そして、2つの傾動制限突起30が傾動規制面68に当接するこれらの機械的な移動端を基準位置として参照して防振動作のイニシャライズを行う。これによりチルト動作に関する高精度なイニシャライズを実現でき、イニシャライズ精度が向上することで防振制御の性能向上を図ることができる。特に、前述した第1と第2の傾動方向はホールセンサ57で検出される磁束密度変化量(ホールセンサ57に対する第1磁石ユニット27の相対位置変化)が大きく、第3と第4の傾動方向はホールセンサ58で検出される磁束密度変化量(ホールセンサ58に対する第2磁石ユニット28の相対位置変化)が大きいため、これらの傾動方向に可動ユニット17を傾動させてイニシャライズを行うことが望ましい。   In summary, each of the three virtual planes (virtual planes P2, P3, P4) of the first group, which includes the optical axis O and has a substantially equal interval (120 degree interval) in the circumferential direction, is substantially symmetrical with respect to the optical axis O. Tilt restricting protrusions 30 that are paired in a proper positional relationship (that is, a total of six) are provided. When the movable unit 17 and the lens barrel 11 perform a tilting operation that changes the direction of the optical axis O around the center of swinging of the spherical center Q, the six tilt limiting protrusions 30A, 30B, The positional relationship in the optical axis direction of 30C, 30D, 30E, and 30F changes, and the tilt restricting protrusion 30 that protrudes to the rearmost of these contacts the tilt restricting surface 68 of the ball holder 14 to restrict the tilt. In particular, the three virtual planes of the second group (the plane including the magnetic flux detection axis C1, the plane including the magnetic flux detection axis C2, and the magnetic flux detection axis C3 are included in which the circumferential position is shifted 60 degrees from the three virtual planes of the first group. When the tilting operation (tilting operation in the first to sixth tilt directions) is performed along the plane (virtual plane P1)), the two tilt limiting protrusions 30 abut on the tilt limiting surface 68. In the state in which the two tilt limiting protrusions 30 are in contact with the tilt restricting surface 68, the movable unit 17 has higher stability and positional accuracy than in the state in which only one tilt restricting protrusion 30 is in contact with the tilt restricting surface 68. can get. Then, the anti-vibration operation is initialized with reference to these mechanical moving ends where the two tilt restriction protrusions 30 are in contact with the tilt regulating surface 68 as reference positions. As a result, highly accurate initialization regarding the tilt operation can be realized, and the performance of the image stabilization control can be improved by improving the initialization accuracy. In particular, the first and second tilt directions described above have a large amount of change in magnetic flux density detected by the Hall sensor 57 (change in the relative position of the first magnet unit 27 with respect to the Hall sensor 57), and the third and fourth tilt directions. Since the amount of change in magnetic flux density detected by the hall sensor 58 (the change in the relative position of the second magnet unit 28 with respect to the hall sensor 58) is large, it is desirable to perform initialization by tilting the movable unit 17 in these tilt directions.

図17において、第1の傾動方向で傾動規制面68に当接する傾動制限突起30C,30Dを第1組30-1、第2の傾動方向で傾動規制面68に当接する傾動制限突起30A,30Fを第2組30-2、第3の傾動方向で傾動規制面68に当接する傾動制限突起30E,30Fを第3組30-3、第4の傾動方向で傾動規制面68に当接する傾動制限突起30B,30Cを第4組30-4としてそれぞれ一点鎖線で囲んで示した。同図から分かるように、第1組30-1と第4組30-4は傾動制限突起30Cを共有しており(傾動制限突起30Cが共有の制限部であり)、第2組30-2と第3組30-3は傾動制限突起30Fを共有している(傾動制限突起30Fが共有の制限部である)。これにより、傾動制限突起30の数を少なくしてシンプルでスペース効率に優れた構成にすることができる。   In FIG. 17, the tilt limiting protrusions 30C and 30D that abut on the tilt restricting surface 68 in the first tilt direction are the first set 30-1, and the tilt restricting protrusions 30A and 30F that abut on the tilt restricting surface 68 in the second tilt direction. Tilt restriction protrusions 30E and 30F that contact the tilt restriction surface 68 in the second set 30-2 and the third tilt direction are tilt restriction that contact the tilt restriction surface 68 in the third set 30-3 and the fourth tilt direction. The protrusions 30B and 30C are shown as a fourth set 30-4 surrounded by a one-dot chain line. As can be seen from the figure, the first set 30-1 and the fourth set 30-4 share the tilt limiting projection 30C (the tilt limiting projection 30C is a shared limiting portion), and the second set 30-2. And the third set 30-3 share the tilt limiting projection 30F (the tilt limiting projection 30F is a common limiting portion). Thereby, the number of the tilt limiting protrusions 30 can be reduced, and a simple and space efficient configuration can be obtained.

図17から分かるように、第1組30-1を構成する2つの傾動制限突起30C,30Dの間に揺動案内面20Bが位置し、第3組30-3を構成する2つの傾動制限突起30E,30Fの間に揺動案内面20Cが位置し、第2組の30-1の傾動制限突起30Aと第4組30-4の傾動制限突起30Bの間に揺動案内面20Cが位置している。そのため、3つの揺動案内面20A,20B,20Cと6つの傾動制限突起30A,30B,30C,30D,30E,30Fが互いに干渉せずに周方向にスペース効率良く配置されている。   As can be seen from FIG. 17, the swing guide surface 20B is positioned between the two tilt limiting projections 30C and 30D constituting the first set 30-1, and the two tilt limiting projections constituting the third set 30-3. The swing guide surface 20C is positioned between 30E and 30F, and the swing guide surface 20C is positioned between the second set 30-1 tilt limit protrusion 30A and the fourth set 30-4 tilt limit protrusion 30B. ing. Therefore, the three swing guide surfaces 20A, 20B, and 20C and the six tilt limiting protrusions 30A, 30B, 30C, 30D, 30E, and 30F are arranged in a circumferentially efficient manner without interfering with each other.

なお、2つのチルト動作用アクチュエータの推力の作用方向でのチルト動作の移動規制を安定させる構成としては、図47に示すような変形例にすることも可能である。この変形例では、撮像光学系Lを保持するバレルホルダ112の光軸方向の後端部に、光軸Oを中心として周方向に略等間隔(90度間隔)で4つの傾動制限突起(傾動範囲制限手段、可動側傾動制限部、光軸方向突出部)130(130A,130B,130C,130D)を備えている。光軸Oから外径方向に延びる磁束検出軸C11上に、図示を省略する第1アクチュエータを構成する磁石ユニット及びコイルの外形中心と、図示を省略するホールセンサの中心が位置しており、光軸Oから外径方向に延びる磁束検出軸C12上に、図示を省略する第2アクチュエータを構成する磁石ユニット及びコイルの外形中心と、図示を省略するホールセンサの中心が位置している。磁束検出軸C11と通る磁束検出軸C12の中間の周方向位置を通り光軸Oを含む仮想平面P11上に傾動制限突起130Aと傾動制限突起130Cが位置し、仮想平面P1に垂直で光軸Oを含む仮想平面P12上に傾動制限突起130Bと傾動制限突起130Dが位置している。4つの傾動制限突起130A,130B,130C,130Dは、光軸Oからの径方向距離が略一致している。つまり、傾動制限突起130A,130B,130C,130Dは、光軸Oを中心とする同一円周上に略等間隔で位置している。   As a configuration for stabilizing the movement restriction of the tilt operation in the direction of the thrust force of the two actuators for tilt operation, a modified example as shown in FIG. 47 can be used. In this modified example, four tilt limiting protrusions (tilt ranges) are provided at the rear end portion in the optical axis direction of the barrel holder 112 that holds the imaging optical system L at substantially equal intervals (90-degree intervals) in the circumferential direction around the optical axis O. A limiting means, a movable side tilt limiting portion, and an optical axis direction protruding portion) 130 (130A, 130B, 130C, 130D). On the magnetic flux detection axis C11 extending in the outer diameter direction from the optical axis O, the outer center of the magnet unit and the coil constituting the first actuator (not shown) and the center of the hall sensor (not shown) are positioned. On the magnetic flux detection axis C12 extending in the outer diameter direction from the axis O, the outer center of the magnet unit and coil constituting the second actuator (not shown) and the center of the hall sensor (not shown) are located. The tilt limiting projection 130A and the tilt limiting projection 130C are positioned on the virtual plane P11 including the optical axis O, passing through the intermediate circumferential position of the magnetic flux detection axis C12 passing through the magnetic flux detection axis C11, and perpendicular to the virtual plane P1 and the optical axis O. The tilt limiting projection 130B and the tilt limiting projection 130D are positioned on the virtual plane P12 including The four tilt limiting protrusions 130A, 130B, 130C, and 130D have substantially the same radial distance from the optical axis O. That is, the tilt limiting protrusions 130A, 130B, 130C, and 130D are positioned at substantially equal intervals on the same circumference with the optical axis O as the center.

図47の変形例において、第1のアクチュエータによって光軸方向の正逆方向(前後方向)の推力を付与すると、バレルホルダ112が磁束検出軸C11と光軸Oを含む平面に沿って第1の傾動方向と第2の傾動方向にチルト動作を行い、第2のアクチュエータによって光軸方向の正逆方向(前後方向)の推力を付与すると、バレルホルダ112が磁束検出軸C12と光軸Oを含む平面に沿って第3の傾動方向と第4の傾動方向にチルト動作を行う。バレルホルダ112の第1の傾動方向では、第1組130-1の一対の傾動制限突起130B,130Cがボールホルダ14の傾動規制面68(図47には表れていない)に当接してそれ以上の傾動を規制する。バレルホルダ112の第2の傾動方向では、第2組130-2の一対の傾動制限突起130A,130Dがボールホルダ14の傾動規制面68に当接してそれ以上の傾動を規制する。バレルホルダ112の第3の傾動方向では、第3組130-3の一対の傾動制限突起130C,130Dがボールホルダ14の傾動規制面68に当接してそれ以上の傾動を規制する。バレルホルダ112の第4の傾動方向では、第4組130-4の一対の傾動制限突起130A,130Bがボールホルダ14の傾動規制面68に当接してそれ以上の傾動を規制する。第1ないし第4の傾動方向のいずれも、2つの傾動制限突起130が傾動規制面68に当接するので高い精度と安定性でバレルホルダ112のチルト動作の移動端を定めることができ、高精度なイニシャライズを実現できる。そして、第1組130-1から第4組130-4はいずれも、各組を構成する一対の傾動制限突起130の両方を隣接する2つの組と共有しているため、傾動制限突起130の数が少なくさらにシンプルな構成になる。   In the modification of FIG. 47, when the thrust in the forward and backward direction (front-rear direction) in the optical axis direction is applied by the first actuator, the barrel holder 112 is tilted first along the plane including the magnetic flux detection axis C11 and the optical axis O. When the tilting operation is performed in the direction and the second tilting direction, and the thrust in the forward / backward direction (front-rear direction) of the optical axis direction is applied by the second actuator, the barrel holder 112 is brought into a plane including the magnetic flux detection axis C12 and the optical axis O. A tilt operation is performed along the third tilt direction and the fourth tilt direction. In the first tilt direction of the barrel holder 112, the pair of tilt limit protrusions 130B and 130C of the first set 130-1 abuts on the tilt restricting surface 68 (not shown in FIG. 47) of the ball holder 14 and beyond. Regulate tilting. In the second tilting direction of the barrel holder 112, the pair of tilt limiting protrusions 130A and 130D of the second set 130-2 abuts on the tilt restricting surface 68 of the ball holder 14 to restrict further tilting. In the third tilt direction of the barrel holder 112, the pair of tilt limiting protrusions 130C and 130D of the third set 130-3 abuts on the tilt restricting surface 68 of the ball holder 14 to restrict further tilting. In the fourth tilting direction of the barrel holder 112, the pair of tilt limiting protrusions 130A and 130B of the fourth group 130-4 abuts on the tilt restricting surface 68 of the ball holder 14 to restrict further tilting. In any of the first to fourth tilt directions, since the two tilt limiting projections 130 abut against the tilt restricting surface 68, the moving end of the tilting operation of the barrel holder 112 can be determined with high accuracy and stability. Initialize can be realized. Since each of the first group 130-1 to the fourth group 130-4 shares both of the pair of tilt limiting protrusions 130 constituting each group with two adjacent groups, It becomes a simpler configuration with fewer numbers.

以上、図示実施形態に基づいて本発明を説明したが、本発明は要旨の範囲内において図示実施形態とは異なる形態にすることが可能である。例えば、ロール動作の移動端を制限する部位として、図示実施形態では、可動ユニット17を構成するバレルホルダ12に一対のロール範囲制限突起31を設け、固定ユニット18を構成するコイルホルダ13に支持座40Aを設けているが、固定ユニット18側に一対の回転制限部(固定側回転制限部)を設け、可動ユニット17側に一つの回転制限部(可動側回転制限部)を設ける構成にしてもよい。また、径方向に突出する突起同士を当接させる構成に代えて、可動ユニット17と固定ユニット18の一方に凹部(穴)を形成し、他方に突起を形成し、凹部の周方向の両端部に突起が当接することによってロール動作の範囲を制限する構成も可能である。さらに、この凹部(穴)の光軸方向の端部と突起の当接によってチルト動作の範囲を制限するようにすることも可能である。   As mentioned above, although this invention was demonstrated based on illustration embodiment, this invention can be made into a different form from illustration embodiment in the range of a summary. For example, in the illustrated embodiment, a pair of roll range limiting protrusions 31 is provided on the barrel holder 12 that constitutes the movable unit 17 as a part that restricts the moving end of the roll operation, and the support holder 40 </ b> A is provided on the coil holder 13 that constitutes the fixed unit 18. However, a pair of rotation restricting portions (fixed side rotation restricting portions) may be provided on the fixed unit 18 side, and one rotation restricting portion (movable side rotation restricting portion) may be provided on the movable unit 17 side. . Further, instead of the configuration in which the protrusions projecting in the radial direction are brought into contact with each other, a recess (hole) is formed in one of the movable unit 17 and the fixed unit 18, and a protrusion is formed in the other, and both end portions in the circumferential direction of the recess A configuration is also possible in which the range of the roll operation is restricted by the protrusions coming into contact with the protrusions. Further, it is possible to limit the range of the tilting operation by the contact between the end of the recess (hole) in the optical axis direction and the protrusion.

図示実施形態では、バレルホルダ12の光軸方向の略中央に一対のロール範囲制限突起31が位置し、バレルホルダ12の光軸方向の後端部に傾動制限突起30が位置しており、第1の平面T1と第2の平面T2の光軸方向位置が異なっている。この構成によると、バレルホルダ12の大型化(特に大径化)を防ぎながらロール範囲制限突起31と傾動制限突起30をスペース効率良く配置することができる。但し、スペース的に許容される場合は、ロール範囲制限突起31に加えて傾動制限突起30に相当する部位も球心揺動中心Qを通る第1の平面T1上に位置する構成を選択することができる。   In the illustrated embodiment, a pair of roll range limiting projections 31 is positioned at the approximate center of the barrel holder 12 in the optical axis direction, and the tilt limiting projection 30 is positioned at the rear end of the barrel holder 12 in the optical axis direction. The positions in the optical axis direction of the plane T1 and the second plane T2 are different. According to this configuration, the roll range restricting protrusion 31 and the tilt restricting protrusion 30 can be arranged in a space-efficient manner while preventing the barrel holder 12 from becoming large (particularly having a large diameter). However, if space is allowed, a configuration in which a portion corresponding to the tilt limiting projection 30 in addition to the roll range limiting projection 31 is also located on the first plane T1 passing through the spherical center swing center Q is selected. Can do.

図示実施形態ではバレルホルダ12に設けた6つの傾動制限突起30A,30B,30C,30D,30E,30Fの光軸方向の突出量が等しい。この構成によるとイニシャライズ時の移動量計算や部品の管理が容易になるという利点がある。但し、各傾動制限突起30の突出量(光軸方向の位置)を異ならせることも可能である。各傾動制限突起30が傾動規制面68に当接するまでチルト動作を行わせるのはイニシャライズ時のみであり、イニシャライズ時以外の通常の防振制御は各傾動制限突起30が傾動規制面68に当接しない範囲内で行われるため、防振のための実用上のチルト動作量を確保できるという条件を満たしていれば、各傾動制限突起30の光軸方向の突出量が異なっていても支障なく防振動作を行うことができる。なお、各傾動制限突起30の突出量を異ならせる場合でも、イニシャライズ時には図示実施形態と同様に2つの傾動制限突起30が傾動規制面68に当接することが望ましい。   In the illustrated embodiment, the protrusion amounts in the optical axis direction of the six tilt limiting protrusions 30A, 30B, 30C, 30D, 30E, and 30F provided on the barrel holder 12 are equal. According to this configuration, there is an advantage that it is easy to calculate the movement amount at the time of initialization and to manage the parts. However, the protrusion amount (position in the optical axis direction) of each tilt limiting protrusion 30 can be varied. The tilting operation is performed only at the time of initialization until each tilting restricting projection 30 comes into contact with the tilting restricting surface 68. In the normal anti-vibration control other than at the time of initializing, each tilting restricting projection 30 comes into contact with the tilting restricting surface 68. Therefore, as long as the condition that a practical tilt operation amount for vibration isolation can be secured is satisfied, even if the protrusion amount of each tilt limiting projection 30 in the optical axis direction is different, it can be prevented without any problem. A vibration operation can be performed. Even when the amount of protrusion of each tilt restricting projection 30 is varied, it is desirable that the two tilt restricting projections 30 abut on the tilt restricting surface 68 at the time of initialization as in the illustrated embodiment.

図示実施形態では、チルト動作の移動端を制限する部位として、可動ユニット17を構成するバレルホルダ12に複数の傾動制限突起30,130を設け、固定ユニット18を構成するボールホルダ14に傾動規制面68を設けているが、可動ユニット17側に傾動規制面68相当の部位を形成し、固定ユニット18側に傾動制限突起30,130のような突出部を設ける構成にすることも可能である。   In the illustrated embodiment, a plurality of tilt limiting protrusions 30 and 130 are provided on the barrel holder 12 constituting the movable unit 17 as a part for limiting the moving end of the tilt operation, and the tilt regulating surface 68 is provided on the ball holder 14 constituting the fixed unit 18. However, it is also possible to form a portion corresponding to the tilt restricting surface 68 on the movable unit 17 side and to provide protrusions such as the tilt limiting protrusions 30 and 130 on the fixed unit 18 side.

防振用の推力を付与する駆動手段については、図示実施形態のアクチュエータV1,V2,V3とは異なるものを採用することができる。例えば、図示実施形態のアクチュエータV1,V2,V3は、磁石ユニットとコイルを光軸Oを中心とする湾曲形状にすることで、防振動作時の磁石ユニットとコイルとホールセンサの間のギャップ変動が小さくなり、スペース効率にも優れるという利点がある。しかし、湾曲しない平板状の磁石ユニットやコイルで構成したアクチュエータを用いた場合でも、本発明を適用することで所要の効果を得ることができる。   As the drive means for applying the vibration-proof thrust, a different one from the actuators V1, V2, and V3 in the illustrated embodiment can be employed. For example, the actuators V1, V2, and V3 in the illustrated embodiment have the magnet unit and the coil bent in a shape centered on the optical axis O, so that the gap variation between the magnet unit, the coil, and the Hall sensor during the vibration isolating operation. There is an advantage that the size is small and the space efficiency is also excellent. However, even when an actuator composed of a flat magnet unit or a coil that is not curved is used, the required effect can be obtained by applying the present invention.

図示実施形態では、各ホールセンサ57,58,59と光軸Oを結ぶ磁束検出軸C1,C2,C3が、各アクチュエータV1,V2,V3における各磁石ユニット27,28,29の外形中心を通るように、各ホールセンサ57,58,59と各磁石ユニット27,28,29の位置関係を設定している。この位置設定は、防振動作時の可動ユニット17の駆動精度に関して有利であると共に、ホールセンサ57,58,59の出力を用いた位置算出が容易になるという利点がある。但し、磁束検出軸C1,C2,C3に対して各磁石ユニット27,28,29の外形中心がある程度ずれている構成を採用しても、可動ユニット17の駆動及び制御を行うことが可能である。また、各ホールセンサ57,58,59による磁束検出に関して重要性が高いのは、各磁石ユニット27,28,29との位置関係である。そのため、図示実施形態とは異なる構成として、各アクチュエータV1,V2,V3における各コイル54,55,56の外形中心の位置が磁束検出軸C1,C2,C3と一致しない配置を採用することも可能である。   In the illustrated embodiment, the magnetic flux detection axes C1, C2, C3 connecting the hall sensors 57, 58, 59 and the optical axis O pass through the outer shape centers of the magnet units 27, 28, 29 in the actuators V1, V2, V3. As described above, the positional relationship between the hall sensors 57, 58, 59 and the magnet units 27, 28, 29 is set. This position setting is advantageous in terms of driving accuracy of the movable unit 17 during the image stabilization operation, and has an advantage that position calculation using the outputs of the Hall sensors 57, 58, and 59 becomes easy. However, the movable unit 17 can be driven and controlled even when a configuration in which the outer center of each of the magnet units 27, 28, 29 is deviated to some extent with respect to the magnetic flux detection axes C1, C2, C3 is adopted. . Further, the positional relationship with the magnet units 27, 28, and 29 is highly important for magnetic flux detection by the hall sensors 57, 58, 59. Therefore, as a configuration different from the illustrated embodiment, it is possible to adopt an arrangement in which the positions of the outer centers of the coils 54, 55, 56 in the actuators V1, V2, V3 do not coincide with the magnetic flux detection axes C1, C2, C3. It is.

図示実施形態は、防振動作時に移動する可動部材(バレルホルダ12)に磁石とヨークを支持し、防振動作時に移動しない固定部材(コイルホルダ13)にコイルを支持したムービングマグネットタイプの防振機構に適用したものである。ムービングマグネットタイプは、フレキシブル基板などによる電気的接続を要する各コイル54,55,56や各ホールセンサ57,58,59が移動しないので、こうした電気的接続手段による負荷がかからないという利点がある。但し、ムービングコイルタイプの防振機構にも本発明は適用可能である。ムービングコイルタイプの変形例を第1の実施形態の撮像装置10に適用した場合、バレルホルダ12に支持される各コイル54,55,56の外径方向に対向してコイルホルダ13に支持される各磁石ユニット27,28,29が位置し、コイルホルダ13から内径方向に向けて磁石支持突起21b,22b,23bが突出し、さらにヨーク24,25,26は立壁24b,25b,26bを内径方向に向けて突出させてコイルホルダ13に支持される構成となる。ホールセンサ57,58,59はバレルホルダ12に支持される。   In the illustrated embodiment, a moving magnet type vibration isolating mechanism in which a magnet and a yoke are supported on a movable member (barrel holder 12) that moves during an anti-vibration operation, and a coil is supported on a fixed member (coil holder 13) that does not move during the anti-vibration operation. Is applied. The moving magnet type has an advantage that the coils 54, 55, and 56 and the hall sensors 57, 58, and 59 that need to be electrically connected by a flexible substrate or the like do not move, so that a load by such an electrical connecting means is not applied. However, the present invention can also be applied to a moving coil type vibration isolation mechanism. When the moving coil type modification is applied to the imaging apparatus 10 of the first embodiment, each coil 54, 55, 56 supported by the barrel holder 12 is supported by the coil holder 13 so as to be opposed to the outer diameter direction. The magnet units 27, 28, and 29 are positioned, the magnet support protrusions 21b, 22b, and 23b protrude from the coil holder 13 toward the inner diameter direction, and the yokes 24, 25, and 26 face the standing walls 24b, 25b, and 26b in the inner diameter direction. And is supported by the coil holder 13. Hall sensors 57, 58, 59 are supported by barrel holder 12.

10 撮像装置
11 鏡筒
11a 大径部
11b 中間部
11c 小径部
11d 周面ネジ
12 バレルホルダ(可動部材)
12a 筒部
12b 軸方向貫通部
12c 挿入規制フランジ
13 コイルホルダ(固定部材)
13a 筒部
13b 軸方向貫通部
13c 前壁
13d 中央開口
14 ボールホルダ(固定部材)
14a 中央開口
14b 蓋部
14c 外周フランジ
15 押え環
16 バランサ
17 可動ユニット
18 固定ユニット
19 イメージセンサユニット(撮像手段)
19a イメージセンサ
19b フレキシブル基板
20(20A 20B 20C) 揺動案内面(球面)
21 22 23 支持座
21a 22a 23a 支持面
21b 22b 23b 磁石支持突起
24 25 26 ヨーク
24a 25a 26a 底壁
24b 25b 26b 立壁
24c 25c 26c 長穴
27 第1磁石ユニット(第1の傾動用磁石)
28 第2磁石ユニット(第2の傾動用磁石)
29 第3磁石ユニット(回転用磁石)
27-1 28-1 29-1 永久磁石
27-2 28-2 29-2 永久磁石
27a 28a 29a 内周面
27b 28b 29b 外周面
27c 28c 29c 長手方向端面
27d 27e 28d 28e 29d 29e 側面
30 傾動制限突起(傾動範囲制限手段、可動側傾動制限部、光軸方向突出部)
30A 傾動制限突起(第2組の傾動制限突起)
30B 傾動制限突起(第4組の傾動制限突起)
30C 傾動制限突起(第1組と第4組の傾動制限突起、共有制限部)
30D 傾動制限突起(第1組の傾動制限突起)
30E 傾動制限突起(第3組の傾動制限突起)
30F 傾動制限突起(第2組と第3組の傾動制限突起、共有制限部)
30-1 第1組の傾動制限突起
30-2 第2組の傾動制限突起
30-3 第3組の傾動制限突起
30-4 第4組の傾動制限突起
31 ロール範囲制限突起(回転範囲制限手段、可動側回転制限部、外方突出部)
31a 平面
31b 湾曲面
40 支持座
40A 支持座(回転範囲制限手段、固定側回転制限部、内方突出部)
40B 支持座(内方突出部)
40C 支持座(内方突出部)
41 ボール保持溝
41a 前方規制壁
42 ビス穴
43 当付面
44 側面
44A 規制面
45 46 47 貫通穴
48 49 50 支持凹部
51 52 53 コイル支持板
51a 52a 53a コイル支持突起
51b 52b 53b センサ支持凹部
51c 52c 53c 貫通穴
54 第1コイル(傾動用駆動手段、第1の傾動用コイル)
55 第2コイル(傾動用駆動手段、第2の傾動用コイル)
56 第3コイル(回転用駆動手段、回転用コイル)
54a 55a 56a 長辺部
54b 55b 56b 短辺部
54c 55c 56c 外周面
54d 55d 56d 内周面
57 ホールセンサ(第2のセンサ)
58 ホールセンサ(第3のセンサ)
59 ホールセンサ(第1のセンサ)
61 定位置ボール
62 付勢ボール
65(65A,65B,65C) 前方突出部
66 ビス挿通穴
66a 大径部
66b 小径部
66c 中間部
67 ボール保持面
68 傾動規制面(傾動範囲制限手段、固定側傾動制限部、規制面)
69 固定ビス
69a 螺合部
69b 頭部
69c 軸部
70 コイルバネ
71 制御回路
72 姿勢検知センサ
112 バレルホルダ(可動部材)
130 傾動制限突起(傾動範囲制限手段、可動側傾動制限部、光軸方向突出部)
130A 傾動制限突起(第2組と第4組の傾動制限突起、共有制限部)
130B 傾動制限突起(第1組と第4組の傾動制限突起、共有制限部)
130C 傾動制限突起(第1組と第3組の傾動制限突起、共有制限部)
130D 傾動制限突起(第2組と第3組の傾動制限突起、共有制限部)
130-1 第1組の傾動制限突起
130-2 第2組の傾動制限突起
130-3 第3組の傾動制限突起
130-4 第4組の傾動制限突起
C1 C11 磁束検出軸(第2の磁束検出軸)
C2 C12 磁束検出軸(第3の磁束検出軸)
C3 磁束検出軸(第1の磁束検出軸)
L 撮像光学系(撮像手段)
M1 M2 M3 M4 接着剤注入空間
O O’ 光軸
P1 P2 P3 P4 P11 P12 仮想平面
Q 球心揺動中心
T1 T1’ 第1の平面
T2 T2’ 第2の平面
V1 第1アクチュエータ(傾動用駆動手段)
V2 第2アクチュエータ(傾動用駆動手段)
V3 第3アクチュエータ(回転用駆動手段)
X1 X2 ピッチング方向
Y1 Y2 ヨーイング方向
DESCRIPTION OF SYMBOLS 10 Imaging device 11 Lens tube 11a Large diameter part 11b Middle part 11c Small diameter part 11d Peripheral screw 12 Barrel holder (movable member)
12a Tube portion 12b Axial through portion 12c Insertion restriction flange 13 Coil holder (fixing member)
13a cylinder part 13b axial direction penetration part 13c front wall 13d center opening 14 ball holder (fixing member)
14a Center opening 14b Lid portion 14c Outer peripheral flange 15 Presser ring 16 Balancer 17 Movable unit 18 Fixed unit 19 Image sensor unit (imaging means)
19a Image sensor 19b Flexible substrate 20 (20A 20B 20C) Swing guide surface (spherical surface)
21 22 23 Support seat 21a 22a 23a Support surface 21b 22b 23b Magnet support projection 24 25 26 Yoke 24a 25a 26a Bottom wall 24b 25b 26b Standing wall 24c 25c 26c Slot 27 First magnet unit (first tilting magnet)
28 Second magnet unit (second tilting magnet)
29 3rd magnet unit (magnet for rotation)
27-1 28-1 29-1 Permanent magnet 27-2 28-2 29-2 Permanent magnet 27a 28a 29a Inner peripheral surface 27b 28b 29b Outer peripheral surface 27c 28c 29c Longitudinal end surface 27d 27e 28d 28e 29d 29e Side surface 30 Tilt limiting projection (Tilt range limiting means, movable side tilt limiter, optical axis direction protrusion)
30A Tilt limiting projection (second set of tilt limiting projection)
30B Tilt limiting protrusion (fourth set of tilt limiting protrusion)
30C Tilt limiting protrusion (first and fourth sets of tilt limiting protrusion, shared limiting portion)
30D Tilt-limiting projection (first set of tilt-limiting projection)
30E Tilt limiting protrusion (third set of tilt limiting protrusion)
30F Tilt limiting projection (2nd and 3rd tilt limiting projection, shared limiting section)
30-1 First set of tilt limiting projections 30-2 Second set of tilt limiting projections 30-3 Third set of tilt limiting projections 30-4 Fourth set of tilt limiting projections 31 Roll range limiting projection (rotation range limiting means) , Movable side rotation limiter, outward projection)
31a plane 31b curved surface 40 support seat 40A support seat (rotation range limiting means, fixed side rotation limiting portion, inward protruding portion)
40B Support seat (inward protrusion)
40C Support seat (inward protrusion)
41 Ball holding groove 41a Front restricting wall 42 Screw hole 43 Abutting surface 44 Side surface 44A Restricting surface 45 46 47 Through hole 48 49 50 Support recess 51 52 53 Coil support plate 51a 52a 53a Coil support protrusion 51b 52b 53b Sensor support recess 51c 52c 53c Through-hole 54 First coil (tilting drive means, first tilting coil)
55 Second coil (tilting drive means, second tilting coil)
56 Third coil (rotation drive means, rotation coil)
54a 55a 56a Long side portion 54b 55b 56b Short side portion 54c 55c 56c Outer peripheral surface 54d 55d 56d Inner peripheral surface 57 Hall sensor (second sensor)
58 Hall sensor (third sensor)
59 Hall sensor (first sensor)
61 Fixed-position ball 62 Energizing ball 65 (65A, 65B, 65C) Front projecting portion 66 Screw insertion hole 66a Large diameter portion 66b Small diameter portion 66c Intermediate portion 67 Ball holding surface 68 Tilt restricting surface (tilting range limiting means, fixed side tilting) (Restriction section, regulatory aspects)
69 Fixing screw 69a Screwing part 69b Head part 69c Shaft part 70 Coil spring 71 Control circuit 72 Attitude detection sensor 112 Barrel holder (movable member)
130 Tilt limiting protrusion (Tilt range limiting means, movable side tilt limiting portion, optical axis direction protruding portion)
130A Tilt limiting projection (2nd and 4th tilt limiting projection, shared limiting section)
130B Tilt limiting protrusion (first and fourth sets of tilt limiting protrusion, shared limiting portion)
130C Tilt limiting projection (first and third set tilt limiting projection, shared limiting section)
130D Tilt limiting projection (2nd and 3rd tilt limiting projection, shared limiting section)
130-1 First set of tilt limiting projections 130-2 Second set of tilt limiting projections 130-3 Third set of tilt limiting projections 130-4 Fourth set of tilt limiting projections C1 C11 Magnetic flux detection axis (second magnetic flux) Detection axis)
C2 C12 Magnetic flux detection axis (third magnetic flux detection axis)
C3 Magnetic flux detection axis (first magnetic flux detection axis)
L Imaging optical system (imaging means)
M1 M2 M3 M4 Adhesive injection space O O ′ Optical axis P1 P2 P3 P4 P11 P12 Virtual plane Q Ball center swing center T1 T1 ′ First plane T2 T2 ′ Second plane V1 First actuator (tilting drive means )
V2 second actuator (drive means for tilting)
V3 3rd actuator (drive means for rotation)
X1 X2 Pitching direction Y1 Y2 Yawing direction

Claims (15)

被写体画像を得る撮像手段の少なくとも一部を支持する可動部材;
上記可動部材を、上記撮像手段を構成する光学系の光軸上の揺動中心を中心として球心揺動可能に支持する固定部材;
上記光軸の傾きを変化させる傾動方向の力を上記可動部材に付与する傾動用駆動手段;
上記光軸を中心とする回転方向の力を上記可動部材に付与する回転用駆動手段;
上記傾動方向での上記固定部材に対する上記可動部材の動作範囲を機械的に制限する傾動範囲制限手段;及び
上記回転方向での上記固定部材に対する上記可動部材の動作範囲を機械的に制限する回転範囲制限手段;
を備え、
上記回転範囲制限手段は、上記固定部材に設けた固定側回転制限部と、上記可動部材に設けられ上記回転動作によって上記固定側回転制限部に当接して回転を規制する可動側回転制限部を備え、上記固定側回転制限部と上記可動側回転制限部は、上記揺動中心を通り上記光軸に垂直な第1の平面上に位置していることを特徴とする撮像装置。
A movable member that supports at least part of the imaging means for obtaining a subject image;
A fixed member that supports the movable member so as to be capable of pivoting around a pivot center on an optical axis of an optical system constituting the imaging means;
A tilt drive means for applying a force in a tilt direction to change the tilt of the optical axis to the movable member;
A drive means for rotation for applying a force in the rotational direction about the optical axis to the movable member;
A tilting range limiting means for mechanically limiting an operating range of the movable member relative to the fixed member in the tilting direction; and a rotational range for mechanically limiting the operating range of the movable member relative to the fixed member in the rotating direction. Restriction means;
With
The rotation range limiting means includes a fixed side rotation limiting portion provided on the fixed member, and a movable side rotation limiting portion provided on the movable member and contacting the fixed side rotation limiting portion by the rotation operation to restrict rotation. The imaging apparatus according to claim 1, wherein the fixed-side rotation limiting unit and the movable-side rotation limiting unit are located on a first plane that passes through the swing center and is perpendicular to the optical axis.
請求項1記載の撮像装置において、
上記固定部材は、上記光軸を中心とする径方向で上記可動部材の外側を囲む筒状体であり、
上記固定側回転制限部は、上記固定部材に内径方向に向けて突設した内方突出部であり、
上記可動側回転制限部は、上記可動部材に外径方向に向けて突設して上記回転方向で上記内方突出部の両側に位置する一対の外方突出部であり、該一対の外方突出部は上記第1の平面上に位置し、
上記内方突出部は上記一対の外方突出部よりも上記光軸に沿う方向の長さが大きい撮像装置。
The imaging device according to claim 1,
The fixed member is a cylindrical body that surrounds the outside of the movable member in a radial direction centered on the optical axis,
The fixed-side rotation limiting portion is an inward protruding portion that protrudes toward the inner diameter direction on the fixed member,
The movable side rotation restricting portions are a pair of outward projecting portions that project from the movable member toward the outer diameter direction and are positioned on both sides of the inward projecting portion in the rotational direction. The protrusion is located on the first plane,
The imaging device in which the inward protruding portion is longer in the direction along the optical axis than the pair of outward protruding portions.
請求項2記載の撮像装置において、
上記可動部材は上記揺動中心を中心とする球面を備え、
上記固定部材は、上記内方突出部を含む複数の内方突出部を上記回転方向に位置を異ならせて備え、該複数の内方突出部を介して上記球面を上記球心揺動可能に支持する撮像装置。
The imaging apparatus according to claim 2, wherein
The movable member includes a spherical surface centered on the swing center,
The fixing member includes a plurality of inward projecting portions including the inward projecting portions at different positions in the rotational direction, and the spherical surface can be pivoted through the plurality of inward projecting portions. Supporting imaging device.
請求項2または3記載の撮像装置において、
上記回転用駆動手段は、上記固定部材と上記可動部材の一方に支持される回転用コイルと、上記固定部材と上記可動部材の他方に支持される回転用磁石を備え、上記回転用コイルと上記回転用磁石は上記径方向に対向しかつ上記光軸に沿う方向でそれぞれの一部が上記第1の平面上に位置し、
上記固定部材と上記可動部材のうち上記回転用コイルを支持する側に支持され、上記回転用磁石の位置変化を検出する第1のセンサを備え、
上記第1のセンサは、上記第1の平面内で上記揺動中心を通り上記回転用磁石と上記回転用コイルに向けて延びる第1の磁束検出軸上に位置し、
上記第1の平面内で上記第1の磁束検出軸に関して略対称に上記一対の外方突出部が位置する撮像装置。
The imaging device according to claim 2 or 3,
The rotation drive means includes a rotation coil supported by one of the fixed member and the movable member, and a rotation magnet supported by the other of the fixed member and the movable member, and the rotation coil and the above The rotating magnets are opposed to the radial direction and each part thereof is positioned on the first plane in the direction along the optical axis,
A first sensor that is supported on a side of the fixed member and the movable member that supports the rotating coil and detects a change in the position of the rotating magnet;
The first sensor is located on a first magnetic flux detection axis that extends through the oscillation center in the first plane and extends toward the rotating magnet and the rotating coil,
An imaging apparatus in which the pair of outward projecting portions are positioned substantially symmetrically with respect to the first magnetic flux detection axis in the first plane.
請求項1ないし4のいずれか1項記載の撮像装置において、上記傾動範囲制限手段は、上記固定部材に設けた固定側傾動制限部と、上記可動部材に設けた複数の可動側傾動制限部を備え、
上記可動部材の上記傾動方向に応じて、上記複数の可動側傾動制限部のいずれかが上記固定側傾動制限部に当接して傾動を規制する撮像装置。
5. The imaging apparatus according to claim 1, wherein the tilt range limiting unit includes a fixed-side tilt limiting unit provided on the fixed member and a plurality of movable-side tilt limiting units provided on the movable member. Prepared,
An imaging apparatus that regulates tilting by any one of the plurality of movable side tilt limiting portions contacting the fixed side tilt limiting portion according to the tilt direction of the movable member.
請求項5記載の撮像装置において、
上記複数の可動側傾動制限部は、上記可動部材から上記光軸に沿う方向に向けて突出する複数の光軸方向突出部であり、
上記固定側傾動制限部は、上記傾動していない状態の上記光軸に対して略垂直な規制面であり、
上記複数の光軸方向突出部の端部と上記規制面が上記光軸に沿う方向で対向している撮像装置。
The imaging device according to claim 5.
The plurality of movable side tilt restricting portions are a plurality of optical axis direction projecting portions projecting from the movable member in a direction along the optical axis,
The fixed-side tilt limiting portion is a regulating surface that is substantially perpendicular to the optical axis in the non-tilted state,
The imaging device with which the edge part of the said some optical axis direction protrusion part and the said control surface are facing in the direction in alignment with the said optical axis.
請求項6記載の撮像装置において、上記複数の光軸方向突出部の端部は、上記第1の平面と略平行な第2の平面上に位置する撮像装置。 The imaging device according to claim 6, wherein end portions of the plurality of optical axis direction protruding portions are positioned on a second plane substantially parallel to the first plane. 請求項7記載の撮像装置において、上記複数の光軸方向突出部の端部は、上記第2の平面内で上記光軸を中心とする同一円周上に位置している撮像装置。 The imaging device according to claim 7, wherein ends of the plurality of projecting portions in the optical axis direction are located on the same circumference around the optical axis in the second plane. 請求項6ないし8のいずれか1項記載の撮像装置において、上記複数の光軸方向突出部の端部は半球形状である撮像装置。 9. The imaging device according to claim 6, wherein ends of the plurality of projecting portions in the optical axis direction have a hemispherical shape. 請求項5ないし9のいずれか1項記載の撮像装置において、上記傾動用駆動手段は、
上記固定部材と上記可動部材の一方に上記回転方向に互いの位置を異ならせて配した、それぞれの一部が上記第1の平面上に位置する第1の傾動用コイルと第2の傾動用コイル;及び
上記固定部材と上記可動部材の他方に上記回転方向に位置を異ならせて配した、上記第1の傾動用コイルに対して上記径方向に対向して位置する第1の傾動用磁石と、上記第2の傾動用コイルに対して上記径方向に対向して位置する第2の傾動用磁石;
を備え、
上記固定部材と上記可動部材のうち上記第1の傾動用コイルと上記第2の傾動用コイルを支持する側に支持された、上記第1の傾動用磁石の位置変化を検出する第2のセンサと、上記第2の傾動用磁石の位置変化を検出する第3のセンサを備え、
上記第2のセンサは、上記第1の平面内で上記揺動中心を通り上記第1の傾動用磁石と上記第1の傾動用コイルに向けて延びる第2の磁束検出軸上に位置し、
上記第3のセンサは、上記第1の平面内で上記揺動中心を通り上記第2の傾動用磁石と上記第2の傾動用コイルに向けて延びる第3の磁束検出軸上に位置する撮像装置。
The imaging device according to any one of claims 5 to 9, wherein the tilting drive means includes:
A first tilting coil and a second tilting coil, each of which is disposed on one of the fixed member and the movable member so that their positions are different from each other in the rotational direction, each of which is located on the first plane. A first tilting magnet positioned opposite to the first tilting coil in the radial direction and arranged on the other of the fixed member and the movable member in the rotational direction. And a second tilting magnet positioned opposite to the second tilting coil in the radial direction;
With
A second sensor for detecting a change in position of the first tilting magnet supported on the side of the fixed member and the movable member that supports the first tilting coil and the second tilting coil. And a third sensor for detecting a position change of the second tilting magnet,
The second sensor is located on a second magnetic flux detection axis that extends toward the first tilting magnet and the first tilting coil through the swing center in the first plane,
The third sensor is located on a third magnetic flux detection axis extending in the first plane through the swing center and extending toward the second tilting magnet and the second tilting coil. apparatus.
請求項10記載の撮像装置において、上記複数の可動側傾動制限部は、
上記第2の磁束検出軸と上記光軸を含む平面に関して略対称な位置に一対設けられ、上記第1の傾動用磁石と上記第1の傾動用コイルにより正方向の推力を付与したときの第1の傾動方向への上記可動部材の傾動端を上記固定側傾動制限部への当接によって決める第1組の可動側傾動制限部;
上記第2の磁束検出軸と上記光軸を含む平面に関して略対称な位置に一対設けられ、上記第1の傾動用磁石と上記第1の傾動用コイルにより上記正方向と逆方向の推力を付与したときの第2の傾動方向への上記可動部材の傾動端を上記固定側傾動制限部への当接によって決める第2組の可動側傾動制限部;
上記第3の磁束検出軸と上記光軸を含む平面に関して略対称に位置して一対設けられ、上記第2の傾動用磁石と上記第2の傾動用コイルにより正方向の推力を付与したときの第3の傾動方向への上記可動部材の傾動端を上記固定側傾動制限部への当接によって決める第3組の可動側傾動制限部;及び
上記第3の磁束検出軸と上記光軸を含む平面に関して略対称に位置して一対設けられ、上記第2の傾動用磁石と上記第2の傾動用コイルにより上記正方向と逆方向の推力を付与したときの第4の傾動方向への上記可動部材の傾動端を上記固定側傾動制限部への当接によって決める第4組の可動側傾動制限部;
を備えている撮像装置。
The imaging apparatus according to claim 10, wherein the plurality of movable side tilt restriction units are
A pair is provided at substantially symmetrical positions with respect to the plane including the second magnetic flux detection axis and the optical axis, and a positive thrust is applied by the first tilting magnet and the first tilting coil. A first set of movable-side tilt limiting portions that determine a tilting end of the movable member in the tilting direction of 1 by contact with the fixed-side tilt limiting portion;
A pair is provided at substantially symmetrical positions with respect to the plane including the second magnetic flux detection axis and the optical axis, and thrust in the direction opposite to the forward direction is applied by the first tilting magnet and the first tilting coil. A second set of movable-side tilt limiting portions that determine the tilting end of the movable member in the second tilting direction by contact with the fixed-side tilt limiting portion;
A pair of the magnetic flux detection axis and the optical axis is provided symmetrically with respect to the plane including the third magnetic flux detection axis, and a positive thrust is applied by the second tilting magnet and the second tilting coil. A third set of movable side tilt limiting portions that determine a tilting end of the movable member in the third tilt direction by contact with the fixed side tilt limiting portion; and the third magnetic flux detection axis and the optical axis. A pair provided substantially symmetrically with respect to the plane, and movable in the fourth tilt direction when thrust in the direction opposite to the positive direction is applied by the second tilt magnet and the second tilt coil. A fourth set of movable side tilt limiting portions that determine the tilting end of the member by contacting the fixed side tilt limiting portion;
An imaging apparatus comprising:
請求項11記載の撮像装置において、
上記第1組の可動側傾動制限部と上記第4組の可動側傾動制限部は、上記第1の傾動方向と上記第4の傾動方向の両方で上記固定側傾動制限部に当接する一つの共有制限部を共有しており、
上記第2組の可動側傾動制限部と上記第3組の可動側傾動制限部は、上記第2の傾動方向と上記第3の傾動方向の両方で上記固定側傾動制限部に当接する別の一つの共有制限部を共有している撮像装置。
The imaging device according to claim 11, wherein
The first set of movable-side tilt limiting portions and the fourth set of movable-side tilt limiting portions are in contact with the fixed-side tilt limiting portion in both the first tilt direction and the fourth tilt direction. Share sharing restrictions,
The second set of movable side tilt limiting portions and the third set of movable side tilt limiting portions are different from each other in contact with the fixed side tilt limiting portion in both the second tilt direction and the third tilt direction. An imaging apparatus sharing one sharing restriction unit.
請求項12記載の撮像装置において、
上記第1組の可動側傾動制限部と上記第2組の可動側傾動制限部は、上記第1の傾動方向と上記第2の傾動方向の両方で上記固定側傾動制限部に当接する一つの共有制限部を共有しており、
上記第3組の可動側傾動制限部と上記第4組の可動側傾動制限部は、上記第3の傾動方向と上記第4の傾動方向の両方で上記固定側傾動制限部に当接する別の一つの共有制限部を共有している撮像装置。
The imaging device according to claim 12, wherein
The first set of movable side tilt limiting portions and the second set of movable side tilt limiting portions are in contact with the fixed side tilt limiting portion in both the first tilt direction and the second tilt direction. Share sharing restrictions,
The third set of movable side tilt restricting portions and the fourth set of movable side tilt restricting portions are different from each other in contact with the fixed side tilt restricting portion in both the third tilt direction and the fourth tilt direction. An imaging apparatus sharing one sharing restriction unit.
請求項4記載の撮像装置において、上記回転用コイルと上記第1のセンサが上記固定部材に支持され、上記回転用磁石が上記可動部材に支持される撮像装置。 5. The imaging apparatus according to claim 4, wherein the rotating coil and the first sensor are supported by the fixed member, and the rotating magnet is supported by the movable member. 請求項10記載の撮像装置において、上記第1の傾動用コイル、上記第2の傾動用コイル、上記第2のセンサ及び上記第3のセンサが上記固定部材に支持され、上記第1の傾動用磁石と上記第2の傾動用磁石が上記可動部材に支持される撮像装置。 11. The imaging device according to claim 10, wherein the first tilting coil, the second tilting coil, the second sensor, and the third sensor are supported by the fixing member, and the first tilting coil is used. An imaging apparatus in which a magnet and the second tilting magnet are supported by the movable member.
JP2015229033A 2015-11-24 2015-11-24 Imaging apparatus Pending JP2017097167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015229033A JP2017097167A (en) 2015-11-24 2015-11-24 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015229033A JP2017097167A (en) 2015-11-24 2015-11-24 Imaging apparatus

Publications (1)

Publication Number Publication Date
JP2017097167A true JP2017097167A (en) 2017-06-01

Family

ID=58816701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015229033A Pending JP2017097167A (en) 2015-11-24 2015-11-24 Imaging apparatus

Country Status (1)

Country Link
JP (1) JP2017097167A (en)

Similar Documents

Publication Publication Date Title
JP2017083582A (en) Imaging device
JP6598676B2 (en) Imaging device
JP2017173756A (en) Imaging apparatus
JP6613005B1 (en) Anti-vibration mechanism for bending imaging apparatus, camera, and portable electronic device
JP6883468B2 (en) Optical unit with runout correction function
JP5769712B2 (en) Tilt correction unit
US9423629B2 (en) Imaging apparatus
US9020334B1 (en) Imaging apparatus
JP2008058391A (en) Imaging lens unit and imaging apparatus
KR20150091017A (en) Imaging apparatus
JP2011022250A (en) Optical apparatus with image stabilizing device
JP2006053358A (en) Shake correcting mechanism and imaging apparatus using the same
US9063346B2 (en) Imaging apparatus
US9063347B2 (en) Imaging apparatus
JP3559586B2 (en) Optical device
JP2012215605A (en) Image blur correction device
JP2010152182A (en) Optical correction unit, lens barrel, and imaging device
JP4784453B2 (en) Rotating device, light beam deflecting device, shake correcting device, and optical device
JP2017173757A (en) Imaging device
US20220252895A1 (en) Camera module
JP5104423B2 (en) Camera device and lens barrel device
JP2017111377A (en) Imaging device
JP2017097167A (en) Imaging apparatus
JP7100777B1 (en) Imaging devices and portable electronic devices
JP2017083575A (en) Imaging device