JP2017083575A - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP2017083575A
JP2017083575A JP2015209938A JP2015209938A JP2017083575A JP 2017083575 A JP2017083575 A JP 2017083575A JP 2015209938 A JP2015209938 A JP 2015209938A JP 2015209938 A JP2015209938 A JP 2015209938A JP 2017083575 A JP2017083575 A JP 2017083575A
Authority
JP
Japan
Prior art keywords
yoke
magnet
optical axis
coil
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015209938A
Other languages
Japanese (ja)
Inventor
高広 森永
Takahiro Morinaga
高広 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2015209938A priority Critical patent/JP2017083575A/en
Publication of JP2017083575A publication Critical patent/JP2017083575A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To attain an imaging device that allows a magnet and yoke constituting an anti-tremor drive unit to be arranged in a saved space, and is excellent in productivity.SOLUTION: A magnet and yoke forming a magnet circuit are supported by any one of a movable member supporting an anti-tremor optical element and a fixing member movably supporting the movable member, and a coil is supported by the other one thereof. The movable member or fixing member supporting the magnet and yoke comprises: a support section that supports the yoke; and a protrusion section that protrudes from the support section. The yoke comprises: a bottom section that is supported to the support section; a hole section that is formed in the bottom section and positions the yoke by allowing the protrusion section to be inserted through; and a plurality of upright wall sections that protrudes toward a coil side from the bottom section. A drive unit comprises at least two magnets, in which the two magnets are supported on the bottom section of the yoke with the magnets spaced apart across the protrusion section, and are further supported so as to face the plurality of upright wall sections of the yoke.SELECTED DRAWING: Figure 12

Description

本発明は、防振(像振れ補正)機構を備えた撮像装置に関する。   The present invention relates to an imaging apparatus provided with an image stabilization (image blur correction) mechanism.

近年の撮像装置では、手振れなどを起因とする像振れを軽減させるための防振機構の搭載が一般的になっている。防振機構は、撮像装置に加わる振動や姿勢変化を検知して、その影響をキャンセルするように、撮像光学系や撮像素子を光軸に対してシフト(光軸と垂直な平面に沿う移動)やチルト(光軸に対して傾ける動作)させる。撮像光学系や撮像素子を駆動する防振駆動用のアクチュエータとして、応答性に優れているボイスコイルモータなどが用いられる。   In recent imaging apparatuses, an anti-vibration mechanism for reducing image blur caused by camera shake or the like is generally mounted. The anti-vibration mechanism shifts the imaging optical system and the imaging element with respect to the optical axis so as to detect the vibration and posture change applied to the imaging device and cancel the influence (movement along a plane perpendicular to the optical axis). Or tilting (tilting with respect to the optical axis). As an anti-vibration driving actuator for driving the imaging optical system and the imaging element, a voice coil motor having excellent responsiveness is used.

撮像装置における防振駆動用のボイスコイルモータは、防振時に動作する光学要素を保持した可動部材と、この可動部材を支持する固定部材の一方に磁石を設け、他方に磁石の磁界内に位置するコイルを設け、コイルに通電して生じる電磁力によって可動部材を駆動する。例えば特許文献1の撮像装置では、外筐に支持されたレンズユニットを、レンズの光軸に直交する2つの支点軸を中心とするヨーイング方向とピッチング方向と、レンズの光軸を中心とするローリング方向とに動作させる第1と第2の駆動部を備えており、各駆動部は、レンズユニットの光軸方向の後端部に取り付けた複数の磁石と、該磁石に対して光軸方向に対向して設けた基板上に支持された複数のコイルによって構成されている。また、特許文献2のように、磁石と共に磁気回路を形成するヨーク(継鉄)を用いて駆動部を構成する場合もある。   A voice coil motor for image stabilization driving in an image pickup apparatus is provided with a magnet on one of a movable member holding an optical element that operates during image stabilization and a fixed member that supports the movable member, and the other is positioned in the magnetic field of the magnet. The movable member is driven by electromagnetic force generated by energizing the coil. For example, in the imaging apparatus of Patent Document 1, a lens unit supported by an outer casing is rolled with a yawing direction and a pitching direction centered on two fulcrum axes orthogonal to the optical axis of the lens, and a center centered on the optical axis of the lens. A first drive unit and a second drive unit that operate in the direction of the optical axis. Each drive unit includes a plurality of magnets attached to a rear end portion in the optical axis direction of the lens unit and an optical axis direction with respect to the magnets. It is comprised by the some coil supported on the board | substrate provided facing. In addition, as in Patent Document 2, a drive unit may be configured using a yoke that forms a magnetic circuit with a magnet.

特開2013-246414号公報JP 2013-246414 A 特開2010-128384号公報JP 2010-128384 A

従来の撮像装置における防振駆動用のボイスコイルモータでは、固定部材や可動部材に形成した穴や溝の内部に磁石やヨークを挿入して固定する構成が一般的であった。しかし、穴や溝を形成するためには磁石やヨークの外側を所定の肉厚で囲む保持部を設ける必要があり、可動部材や固定部材が大型化する原因となってしまう。また、磁石とヨークは可動部材や固定部材に対して接着などで固定されるが、可動部材や固定部材の大型化を伴わずに磁石とコイルの両方を効率よく固定できる接着用の領域を確保することが難しかった。   In a conventional voice coil motor for image stabilization driving in an image pickup apparatus, a configuration in which a magnet or a yoke is inserted and fixed inside a hole or groove formed in a fixed member or a movable member is generally used. However, in order to form a hole or a groove, it is necessary to provide a holding portion that surrounds the outside of the magnet or yoke with a predetermined thickness, which causes an increase in the size of the movable member or the fixed member. In addition, the magnet and yoke are fixed to the movable member and fixed member by bonding, etc., but an area for bonding that can efficiently fix both the magnet and coil without securing the size of the movable member or fixed member is secured. It was difficult to do.

また、防振駆動用のボイスコイルモータに複数の磁石を用いる場合、組み立て段階で磁石同士が吸着してしまったり、ヨークに対して磁石が互いに不適切な位置で吸着してしまったりして、磁石相互の位置精度(間隔)の管理が難しい場合あった。特に磁力が極めて強い磁石の場合には、一旦吸着してしまうと取り外しに手間がかかってしまうため、複数の磁石を用いる場合における製造段階での作業性向上が求められている。   In addition, when using a plurality of magnets for the voice coil motor for anti-vibration driving, the magnets are attracted to each other at the assembly stage, or the magnets are attracted to the yoke at inappropriate positions, In some cases, it was difficult to manage the positional accuracy (interval) between magnets. In particular, in the case of a magnet having a very strong magnetic force, once it is attracted, it takes time to remove it. Therefore, there is a demand for improvement in workability in the manufacturing stage when using a plurality of magnets.

また、特許文献1の撮像装置では、レンズユニットと基板を光軸方向に並べて配置してボイスコイルモータを構成しているため、撮像装置が光軸方向に大型化してしまうという課題がある。   Moreover, in the imaging apparatus of patent document 1, since the voice coil motor is comprised by arranging the lens unit and the substrate side by side in the optical axis direction, there is a problem that the imaging apparatus becomes large in the optical axis direction.

本発明は以上の問題点に鑑みてなされたものであり、防振用の駆動部を構成する磁石とヨークを省スペースに配置可能であり生産性にも優れる撮像装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an imaging apparatus that can arrange a magnet and a yoke constituting a vibration-proof drive unit in a space-saving manner and is excellent in productivity. To do.

本発明は、被写体画像を得る撮像手段の少なくとも一部を支持する可動部材と、可動部材を可動に支持する固定部材と、可動部材に推力を付与して像振れ補正を行う駆動部を備えた撮像装置に関するものである。駆動部は、可動部材と固定部材の一方に支持されて磁気回路を形成する磁石及びヨークと、可動部材と固定部材の他方に支持されるコイルを有し、コイルへの通電によって推力を生じるタイプが適用対象となる。磁石及びヨークを支持する可動部材または固定部材は、ヨークを支持する支持部と、支持部から突出する突出部を備える。ヨークは、支持部に支持される底部と、底部に形成されて突出部を挿通させてヨークの位置を決める穴部と、底部からコイル側へ向けて突出する複数の立壁部を備える。駆動部は少なくとも2つの磁石を備えており、この2つの磁石は、突出部を挟んで離間してヨークの底部上に支持され、かつヨークの複数の立壁部に対向して保持される。   The present invention includes a movable member that supports at least a part of an imaging unit that obtains a subject image, a fixed member that movably supports the movable member, and a drive unit that applies a thrust to the movable member to perform image blur correction. The present invention relates to an imaging device. The drive unit has a magnet and a yoke that are supported by one of the movable member and the fixed member to form a magnetic circuit, and a coil that is supported by the other of the movable member and the fixed member, and generates thrust by energizing the coil. Is subject to application. The movable member or the fixed member that supports the magnet and the yoke includes a support portion that supports the yoke and a protruding portion that protrudes from the support portion. The yoke includes a bottom portion supported by the support portion, a hole portion that is formed on the bottom portion and allows the protruding portion to be inserted to determine the position of the yoke, and a plurality of standing wall portions that protrude from the bottom portion toward the coil side. The drive unit includes at least two magnets, and the two magnets are supported on the bottom portion of the yoke so as to be spaced apart from each other with the protruding portion interposed therebetween, and are held to face the plurality of standing wall portions of the yoke.

駆動部を構成する2つの磁石はそれぞれ細長形状をなし、互いの長手方向を略平行にして短手方向に突出部を挟んだ並列配置でヨークに支持されることが好ましい。   It is preferable that the two magnets constituting the drive unit have an elongated shape and are supported by the yoke in a parallel arrangement in which the longitudinal directions thereof are substantially parallel to each other and the projecting portions are sandwiched in the short direction.

この場合、2つの磁石の長手方向において突出部は各磁石よりも短く、突出部を挟む領域以外で2つの磁石の間に隙間があることが好ましい。この隙間内に、接着剤によって各磁石を突出部とヨークに固定する接着固定部を設けるとよい。   In this case, it is preferable that the projecting portion is shorter than each magnet in the longitudinal direction of the two magnets, and there is a gap between the two magnets except in a region sandwiching the projecting portion. An adhesive fixing part for fixing each magnet to the protruding part and the yoke by an adhesive may be provided in the gap.

ヨークは、2つの磁石の長手方向の両端面に対向する位置に一対の立壁部を備える形態と、2つの磁石のうち突出部を挟んで対向する側面とは反対側の2つの側面に対向する位置に一対の立壁部を備える形態のいずれも選択可能である。   The yoke is provided with a pair of standing wall portions at positions facing the both end surfaces in the longitudinal direction of the two magnets, and two side surfaces opposite to the side surfaces of the two magnets facing each other across the protruding portion. Any form including a pair of standing wall portions at the position can be selected.

ヨークの底部を、撮像手段を構成する光学系の光軸を中心とする円筒面に沿う湾曲形状とし、底部に対して光軸を中心とする径方向にヨークの立壁部を突出させ、2つの磁石をそれぞれヨークの底部に沿う湾曲形状にすることで、駆動部を光軸方向にコンパクトに構成できると共に、撮像光学系周りにおける駆動部のスペース効率を高めることができる。   The bottom of the yoke has a curved shape along a cylindrical surface centered on the optical axis of the optical system constituting the imaging means, and the standing wall of the yoke projects in the radial direction centered on the optical axis with respect to the bottom. By making each magnet a curved shape along the bottom of the yoke, the drive unit can be made compact in the optical axis direction, and the space efficiency of the drive unit around the imaging optical system can be increased.

一例として、光軸を中心とする周方向に位置を異ならせて3つの駆動部を備え、第1の駆動部と第2の駆動部は可動部材に対して光軸の傾きを変化させる2つの異なる方向の推力を付与し、第3の駆動部は可動部材に対して光軸を中心とする回転方向の推力を付与する設定にすると、動作の自由度が高い防振駆動を実現できる。この場合、3つの駆動部を構成する3つのヨークの底部は、光軸を中心とする同一の円筒面上に位置していることが好ましい。   As an example, the three drive units are provided with different positions in the circumferential direction around the optical axis, and the first drive unit and the second drive unit are two units that change the inclination of the optical axis with respect to the movable member. If thrust in different directions is applied and the third drive unit is set to apply thrust in the rotational direction about the optical axis to the movable member, vibration-proof drive with a high degree of freedom of operation can be realized. In this case, it is preferable that the bottoms of the three yokes constituting the three drive units are located on the same cylindrical surface with the optical axis as the center.

3つの駆動部の間の周方向位置に、固定部材に対して可動部材を可動に支持する支持手段を備えることが好ましい。   It is preferable to provide a supporting means for movably supporting the movable member with respect to the fixed member at a circumferential position between the three driving units.

本発明は、磁石及びヨークが可動部材と共に動作するタイプと、コイルが可動部材と共に動作するタイプのいずれの防振機構を備えた撮像装置にも適用が可能である。前者のタイプは、コイルに接続する電気的接続手段の負荷が可動部材や駆動部に影響しない点で優れている。   The present invention can be applied to an image pickup apparatus including any one of a type in which a magnet and a yoke operate with a movable member and a type in which a coil operates with a movable member. The former type is excellent in that the load of the electrical connection means connected to the coil does not affect the movable member and the drive unit.

本発明によれば、可動部材または固定部材に設けた突出部によってヨークの位置を決め、この突出部と底部と複数の立壁を用いてヨーク上に2つの磁石を保持することにより、防振用の駆動部を構成する磁石とヨークを省スペースに配置して撮像装置のコンパクト化を図ることができる。また、ヨークと磁石の組み付け作業を行いやすく、撮像装置の生産性向上を実現できる。   According to the present invention, the position of the yoke is determined by the protrusion provided on the movable member or the fixed member, and the two magnets are held on the yoke by using the protrusion, the bottom, and the plurality of standing walls. The imaging device can be made compact by arranging the magnets and yokes constituting the drive unit in a space-saving manner. In addition, it is easy to perform the work of assembling the yoke and magnet, and the productivity of the imaging apparatus can be improved.

本発明を適用した撮像装置の外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the imaging device to which this invention is applied. 撮像装置の後方斜視図である。It is a back perspective view of an imaging device. 撮像装置の正面図である。It is a front view of an imaging device. 撮像装置の背面図である。It is a rear view of an imaging device. ボールホルダを取り外した状態の撮像装置の背面図である。It is a rear view of an imaging device in the state where a ball holder was removed. 図3のVI矢視図である。FIG. 4 is a view taken along arrow VI in FIG. 3. 図3のVII矢視図である。It is a VII arrow line view of FIG. 図3のVIII矢視図である。It is a VIII arrow line view of FIG. 図3のIX線に沿う断面図である。It is sectional drawing which follows the IX line of FIG. 撮像装置を分解した状態の前方斜視図である。It is a front perspective view of the state where the imaging device was disassembled. 撮像装置を分解した状態の後方斜視図である。It is a back perspective view of the state where the imaging device was disassembled. 可動ユニットを分解した状態の前方斜視図である。It is a front perspective view of the state which disassembled the movable unit. 可動ユニットを分解した状態の正面図である。It is a front view of the state which decomposed | disassembled the movable unit. 可動ユニットを分解した状態の後方斜視図である。It is a back perspective view of the state where the movable unit was disassembled. 可動ユニットを分解した状態の背面図である。It is a rear view of the state which disassembled the movable unit. 可動ユニットの正面図である。It is a front view of a movable unit. 可動ユニットの背面図である。It is a rear view of a movable unit. 図16のXVIII矢視図である。It is a XVIII arrow directional view of FIG. 図16のXIX矢視図である。It is the XIX arrow directional view of FIG. 図16のXX矢視図である。It is a XX arrow line view of FIG. 図16のXXI矢視図である。It is a XXI arrow line view of FIG. 図16のXXII線に沿う断面図である。It is sectional drawing which follows the XXII line of FIG. 可動ユニットと鏡筒とイメージセンサユニットを組み合わせた状態の前方斜視図である。It is a front perspective view of the state which combined the movable unit, the lens-barrel, and the image sensor unit. 可動ユニットと鏡筒とイメージセンサユニットを組み合わせた状態の後方斜視図である。It is a back perspective view of the state which combined the movable unit, the lens-barrel, and the image sensor unit. 固定ユニットを分解した状態の前方斜視図である。It is a front perspective view of the state which disassembled the fixed unit. 固定ユニットを分解した状態の正面図である。It is a front view of the state which decomposed | disassembled the fixing unit. 固定ユニットを分解した状態の後方斜視図である。It is a back perspective view of the state where the fixed unit was disassembled. 固定ユニットを分解した状態の背面図である。It is a rear view of the state which decomposed | disassembled the fixing unit. 完成状態にある固定ユニットを図26のXXIX矢線に沿って見た図である。It is the figure which looked at the fixed unit in a completed state along the XXIX arrow line of FIG. 図26のXXX線に沿う断面図である。It is sectional drawing which follows the XXX line of FIG. 固定ユニットの前方斜視図である。It is a front perspective view of a fixed unit. 固定ユニットの後方斜視図である。It is a back perspective view of a fixed unit. 図7から鏡筒とイメージセンサユニットとコイル支持板を除いた状態の図である。It is a figure of the state which removed the lens-barrel, the image sensor unit, and the coil support plate from FIG. 図33のXXXIV線に沿う断面図である。It is sectional drawing which follows the XXXIV line of FIG. 第2の実施形態の可動ユニットの前方斜視図である。It is a front perspective view of the movable unit of a 2nd embodiment. 同可動ユニットを分解した状態の前方斜視図である。It is a front perspective view of the state which disassembled the movable unit. 同可動ユニットを分解した状態の後方斜視図である。It is a back perspective view of the state which decomposed | disassembled the movable unit. 第2の実施形態で第1磁石ユニットを保持するヨークの単体形状を示す斜視図である。It is a perspective view which shows the single-piece | unit shape of the yoke holding a 1st magnet unit in 2nd Embodiment. 図38に示すヨークに第1磁石ユニットを組み合わせた状態を外径側から見た図である。It is the figure which looked at the state which combined the 1st magnet unit with the yoke shown in FIG. 38 from the outer-diameter side. 図38に示すヨークに第1磁石ユニットを組み合わせた状態を内径側から見た図である。It is the figure which looked at the state which combined the 1st magnet unit with the yoke shown in FIG. 38 from the inner diameter side. 図39のXLI矢視図である。It is a XLI arrow line view of FIG. 第1磁石ユニットとヨークを分離した状態を図41と同方向から見た図である。It is the figure which looked at the state which isolate | separated the 1st magnet unit and the yoke from the same direction as FIG. 第3の実施形態の可動ユニットの斜視図である。It is a perspective view of the movable unit of 3rd Embodiment. 同可動ユニットを分解した状態の斜視図である。It is a perspective view of the state which decomposed | disassembled the movable unit. 同可動ユニットを分解した状態を図44の反対側から見た斜視図である。It is the perspective view which looked at the state which decomposed | disassembled the movable unit from the opposite side of FIG. 第3の実施形態のヨークと磁石ユニットを組み合わせた状態の斜視図である。It is a perspective view of the state which combined the yoke and magnet unit of 3rd Embodiment. 第3の実施形態の可動ユニットの平面図である。It is a top view of the movable unit of a 3rd embodiment. 図47のXLVIII矢視図である。It is a XLVIII arrow directional view of FIG. 図47のXLIX矢視図である。It is a XLIX arrow directional view of FIG.

以下、添付図面を参照しながら本発明の一実施形態に係る撮像装置10について説明する。撮像装置10は、被写体画像を得るための撮像手段として、撮像光学系Lとイメージセンサユニット19を有する。図中の「O」は撮像光学系Lの光軸であり、以下の説明では、光軸Oに沿う方向(光軸Oとその延長線が延びる方向、または光軸Oと平行な直線が延びる方向)を光軸方向とし、光軸方向における被写体(物体)側を前方、像側を後方とする。また、光軸Oを中心とする放射方向(光軸Oと垂直で光軸Oと交差する直線が延びる方向)を径方向とし、径方向において光軸Oに接近する方向を内径方向、光軸Oから離れる方向を外径方向とする。また、光軸Oを中心とする円周方向を周方向とする。なお、特に断りがない場合、光軸Oとは、後述する可動ユニット17及び鏡筒11の傾動を行っていない設計上の初期状態での光軸を意味するものとする。   Hereinafter, an imaging device 10 according to an embodiment of the present invention will be described with reference to the accompanying drawings. The imaging device 10 includes an imaging optical system L and an image sensor unit 19 as imaging means for obtaining a subject image. “O” in the figure is the optical axis of the imaging optical system L. In the following description, the direction along the optical axis O (the direction in which the optical axis O and its extension line extend, or a straight line parallel to the optical axis O extends). Direction) is the optical axis direction, the subject (object) side in the optical axis direction is the front, and the image side is the rear. Further, a radial direction centering on the optical axis O (a direction in which a straight line extending perpendicularly to the optical axis O and intersecting the optical axis O) is a radial direction, and a direction approaching the optical axis O in the radial direction is an inner diameter direction, an optical axis The direction away from O is the outer diameter direction. Further, the circumferential direction around the optical axis O is defined as the circumferential direction. Unless otherwise specified, the optical axis O means an optical axis in an initial design state in which the movable unit 17 and the lens barrel 11 described later are not tilted.

図1ないし図4、図6ないし図8に撮像装置10の外観を示す。図9ないし図11に示すように、撮像装置10は、鏡筒11を挿入支持するバレルホルダ(可動部材)12を備え、鏡筒11とバレルホルダ12の結合体がコイルホルダ13とボールホルダ14からなるハウジング内に可動に支持されるという基本構造を有している。   FIGS. 1 to 4 and FIGS. 6 to 8 show the appearance of the imaging apparatus 10. As shown in FIGS. 9 to 11, the imaging apparatus 10 includes a barrel holder (movable member) 12 for inserting and supporting the lens barrel 11, and a combined body of the lens barrel 11 and the barrel holder 12 includes a coil holder 13 and a ball holder 14. It has a basic structure that is movably supported in the housing.

図9、図12ないし図17、図22、図34に示すように、バレルホルダ12は、光軸Oを囲む筒部12aの内部に光軸方向に貫通する穴である軸方向貫通部12bを有している。軸方向貫通部12bの後端付近には内径方向へ突出して軸方向貫通部12bの内径サイズ(開口径)を小さくさせる環状の挿入規制フランジ12cが形成されている。   As shown in FIGS. 9, 12 to 17, 22, and 34, the barrel holder 12 has an axial through portion 12 b that is a hole penetrating in the optical axis direction inside a cylindrical portion 12 a surrounding the optical axis O. doing. An annular insertion restriction flange 12c is formed near the rear end of the axial through-hole 12b so as to protrude in the inner diameter direction and reduce the inner diameter size (opening diameter) of the axial through-hole 12b.

図5、図9、図12ないし図18、図20、図22ないし図24に示すように、バレルホルダ12の筒部12aの外面には3つの揺動案内面(支持手段)20が形成されている。3つの揺動案内面20は周方向に位置を異ならせて設けられており、それぞれを符号20A,20B,20Cで区別する。各揺動案内面20A,20B,20Cは光軸O上の所定の点を中心とする同一の球面の一部であり、この球面の中心を球心揺動中心Q(図9、図22)とする。揺動案内面20A,20B,20Cは周方向に略同じ幅を有しており、かつ周方向に略等間隔(120度間隔)で配されている。   As shown in FIGS. 5, 9, 12 to 18, 20, 22 to 24, three swing guide surfaces (support means) 20 are formed on the outer surface of the cylindrical portion 12 a of the barrel holder 12. Yes. The three swing guide surfaces 20 are provided at different positions in the circumferential direction, and are distinguished by reference numerals 20A, 20B, and 20C. Each of the swing guide surfaces 20A, 20B, and 20C is a part of the same spherical surface with a predetermined point on the optical axis O as the center, and the center of this spherical surface is the spherical center swing center Q (FIGS. 9 and 22). And The swing guide surfaces 20A, 20B, and 20C have substantially the same width in the circumferential direction, and are arranged at substantially equal intervals (120 degree intervals) in the circumferential direction.

図9、図11、図14、図15、図17ないし図22、図24に示すように、バレルホルダ12の後端面には、光軸方向後方へ突出する複数の傾動制限突起30が設けられている。傾動制限突起30は、揺動案内面20Aの両側の周方向位置に設けられた一対の傾動制限突起30A,30Bと、揺動案内面20Bの両側の周方向位置に設けられた一対の傾動制限突起30C,30Dと、揺動案内面20Cの両側の周方向位置に設けられた一対の傾動制限突起30E,30Fの計6つからなる。各傾動制限突起30は先端(光軸方向後方の端部)が半球面状の突起であり、バレルホルダ12の後端面からのそれぞれの突出量が略等しい(図18ないし図22参照)。   As shown in FIGS. 9, 11, 14, 15, 17 to 22, and 24, the rear end surface of the barrel holder 12 is provided with a plurality of tilt limiting protrusions 30 that protrude rearward in the optical axis direction. Yes. The tilt limiting protrusions 30 are a pair of tilt limiting protrusions 30A and 30B provided at the circumferential positions on both sides of the swing guide surface 20A, and a pair of tilt limits provided at the circumferential positions on both sides of the swing guide surface 20B. It consists of a total of six projections 30C, 30D and a pair of tilt limiting projections 30E, 30F provided at circumferential positions on both sides of the swing guide surface 20C. Each tilt limiting projection 30 is a projection having a hemispherical tip (end on the rear side in the optical axis direction), and the amount of protrusion from the rear end surface of the barrel holder 12 is substantially equal (see FIGS. 18 to 22).

図10ないし図18、図21ないし図24、図34に示すように、バレルホルダ12の揺動案内面20A上には、周方向に離間する一対のロール範囲制限突起31が設けられている。球心揺動中心Q(図9、図22)を中心とする球面の一部である揺動案内面20Aは、光軸方向における前端と後端から中央に進むにつれて光軸Oからの距離が大きくなり、一対のロール範囲制限突起31は、光軸Oからの揺動案内面20Aの距離が最も大きくなる光軸方向の中央付近(光軸Oに対して略垂直で球心揺動中心Qを通る平面上)に設けられている。すなわち、揺動案内面20Aのうち最も外径方向に突出している箇所にロール範囲制限突起31が設けられている。   As shown in FIGS. 10 to 18, 21 to 24, and 34, a pair of roll range limiting protrusions 31 that are spaced apart in the circumferential direction are provided on the swing guide surface 20 </ b> A of the barrel holder 12. The swing guide surface 20A, which is a part of a spherical surface centered on the spherical center swing center Q (FIGS. 9 and 22), has a distance from the optical axis O as it advances from the front end and the rear end to the center in the optical axis direction. The pair of roll range restricting protrusions 31 become larger in the vicinity of the center in the optical axis direction where the distance of the swing guide surface 20A from the optical axis O is the largest (substantially perpendicular to the optical axis O and the center of rotation of the spherical center Q On a plane passing through In other words, the roll range limiting projection 31 is provided at the most protruding portion in the outer diameter direction of the swing guide surface 20A.

図12ないし図17、図34に示すように、バレルホルダ12は、3つの揺動案内面20A,20B,20Cの間の周方向位置に3つの支持座21,22,23を有している。支持座21は揺動案内面20Aと揺動案内面20Cの間に位置し、支持座22は揺動案内面20Aと揺動案内面20Bの間に位置し、支持座23は揺動案内面20Bと揺動案内面20Cの間に位置している。支持座21,22,23はそれぞれ、光軸Oを中心とする同一の円筒面の一部である支持面21a,22a,23aと、支持面21a,22a,23aよりも外径方向に突出する磁石支持突起21b,22b,23bを有している。支持面21a,22a,23aはそれぞれ支持座21,22,23の周方向の両端部分に一対が設けられており、各一対の支持面21a,22a,23aの間は凹状になっている。   As shown in FIGS. 12 to 17 and FIG. 34, the barrel holder 12 has three support seats 21, 22, and 23 at circumferential positions between the three swing guide surfaces 20A, 20B, and 20C. The support seat 21 is positioned between the swing guide surface 20A and the swing guide surface 20C, the support seat 22 is positioned between the swing guide surface 20A and the swing guide surface 20B, and the support seat 23 is the swing guide surface. It is located between 20B and the swing guide surface 20C. The support seats 21, 22, and 23 protrude in the outer diameter direction from the support surfaces 21a, 22a, and 23a, which are part of the same cylindrical surface with the optical axis O as the center, and the support surfaces 21a, 22a, and 23a, respectively. It has magnet support protrusions 21b, 22b, and 23b. A pair of support surfaces 21a, 22a, and 23a are provided at both ends in the circumferential direction of the support seats 21, 22, and 23, respectively, and a recess is formed between each pair of support surfaces 21a, 22a, and 23a.

図10ないし図15、図18、図20、図21、図23、図24、図34に示すように、磁石支持突起21bと磁石支持突起22bは、光軸方向の厚みが小さく周方向に長手方向を向けた板状の突起であり、互いの形状は略共通である。磁石支持突起21bと磁石支持突起22bのそれぞれの光軸方向の前面と後面は、互いに略平行で光軸Oに対して略垂直な平面となっている。磁石支持突起21bと磁石支持突起22bはそれぞれ、支持座21と支持座22の光軸方向の略中央に位置している。図5、図9、図12ないし図17、図19、図22、図33、図34に示すように、磁石支持突起23bは周方向の厚みが小さく光軸方向に長手方向を向けた板状の突起である。磁石支持突起23bの周方向の両側面は、互いに略平行で光軸方向に延びる平面となっている。磁石支持突起23bは支持座23の周方向の略中央に位置している。   As shown in FIGS. 10 to 15, 18, 18, 20, 21, 23, 24, and 34, the magnet support protrusion 21b and the magnet support protrusion 22b have a small thickness in the optical axis direction and are elongated in the circumferential direction. These are plate-like protrusions that are directed to each other, and their shapes are substantially common. The front and rear surfaces of the magnet support protrusion 21b and the magnet support protrusion 22b in the optical axis direction are substantially parallel to each other and are substantially perpendicular to the optical axis O. The magnet support protrusions 21b and the magnet support protrusions 22b are located at approximately the center of the support seat 21 and the support seat 22 in the optical axis direction. As shown in FIGS. 5, 9, 12 to 17, 19, 22, 33, and 34, the magnet support protrusion 23 b has a plate shape with a small thickness in the circumferential direction and a longitudinal direction in the optical axis direction. Is a protrusion. Both side surfaces in the circumferential direction of the magnet support protrusion 23b are flat surfaces that are substantially parallel to each other and extend in the optical axis direction. The magnet support protrusion 23b is located at the approximate center of the support seat 23 in the circumferential direction.

3つの支持座21,22,23は、磁石支持突起21b,22b,23bを除く基礎部分(支持面21a,22a,23a)の形状が略共通であり、この基礎部分が周方向に略等間隔(120度間隔)で配されている。図12ないし図24、図34に示すように、支持座21上にヨーク24が支持され、支持座22上にヨーク25が支持され、支持座23上にヨーク26が支持される。各ヨーク24,25,26は金属製の磁性体で形成されており、支持面21a,22a,23aに沿う湾曲形状の底壁24a,25a,26aと、底壁24a,25a,26aの周方向の両端から外径方向に突出する各一対の立壁24b,25b,26bを有する。ヨーク24の底壁24aとヨーク25の底壁25aには周方向に長手方向を向けた長穴24c,25cが貫通形成されており、ヨーク26の底壁26aには光軸方向に長手方向を向けた長穴26cが貫通形成されている。長穴24cと長穴25cはそれぞれ磁石支持突起21bと磁石支持突起22bを挿入可能な形状であり、長穴26cは磁石支持突起23bを挿入可能な形状である。各磁石支持突起21b,22b,23bは対応する長穴24c,25c,26cに対してガタつきなく挿入される断面形状を有しており、この挿入状態でバレルホルダ12に対する各ヨーク24,25,26の光軸方向及び周方向の位置が決まる。3つのヨーク24,25,26は、底壁24a,25a,26aと立壁24b,25b,26bについては略共通の形状を有しており、長穴24c及び長穴25cに対する長穴26cの形状のみが異なっている。   The three support seats 21, 22, and 23 have substantially the same shape of the base portions (support surfaces 21a, 22a, and 23a) except for the magnet support protrusions 21b, 22b, and 23b, and the base portions are substantially equidistant in the circumferential direction. (120 degree intervals). As shown in FIGS. 12 to 24 and 34, the yoke 24 is supported on the support seat 21, the yoke 25 is supported on the support seat 22, and the yoke 26 is supported on the support seat 23. Each of the yokes 24, 25, and 26 is formed of a metal magnetic material, and the curved bottom walls 24a, 25a, and 26a along the support surfaces 21a, 22a, and 23a, and the circumferential direction of the bottom walls 24a, 25a, and 26a. A pair of standing walls 24b, 25b, and 26b projecting in the outer diameter direction from the both ends of each. Long holes 24c and 25c are formed in the bottom wall 24a of the yoke 24 and the bottom wall 25a of the yoke 25 so as to extend in the circumferential direction. The bottom wall 26a of the yoke 26 has a longitudinal direction in the optical axis direction. An elongated hole 26c is formed through. The long hole 24c and the long hole 25c have shapes into which the magnet support protrusion 21b and the magnet support protrusion 22b can be inserted, respectively, and the long hole 26c has a shape into which the magnet support protrusion 23b can be inserted. Each of the magnet support protrusions 21b, 22b, and 23b has a cross-sectional shape that is inserted into the corresponding elongated holes 24c, 25c, and 26c without rattling, and the yokes 24, 25, and 26 with respect to the barrel holder 12 in this inserted state. The positions in the optical axis direction and the circumferential direction are determined. The three yokes 24, 25, 26 have a substantially common shape with respect to the bottom walls 24a, 25a, 26a and the standing walls 24b, 25b, 26b, and only the shape of the long hole 26c with respect to the long hole 24c and the long hole 25c. Is different.

図16、図17、図34に示すように、ヨーク24,25,26はそれぞれ、湾曲形状の底壁24a,25a,26aの内周面を支持面21a,22a,23a上に載せて支持座21,22,23上に支持される。このとき磁石支持突起21b,22b,23bがそれぞれ長穴24c,25c,26cを通して外径方向に突出する。ヨーク24,25,26が支持座21,22,23上に支持された状態で、光軸Oを中心とする同一の円筒面上に底壁24a,25a,26aが位置する。図18ないし図24に示すように、ヨーク24,25,26の光軸方向の長さはバレルホルダ12の光軸方向の長さと略一致しており、各磁石支持突起21b,22b,23bと各長穴24c,25c,26cの係合によって位置を定めた状態で、ヨーク24,25,26の前縁部とバレルホルダ12の前端面の光軸方向位置が重なり、ヨーク24,25,26の後縁部とバレルホルダ12の後端面の光軸方向位置が重なる。   As shown in FIGS. 16, 17, and 34, the yokes 24, 25, and 26 are supported by placing the inner peripheral surfaces of the curved bottom walls 24a, 25a, and 26a on the support surfaces 21a, 22a, and 23a, respectively. 21, 22 and 23 are supported. At this time, the magnet support protrusions 21b, 22b, and 23b protrude in the outer diameter direction through the long holes 24c, 25c, and 26c, respectively. In a state where the yokes 24, 25, and 26 are supported on the support seats 21, 22, and 23, the bottom walls 24a, 25a, and 26a are positioned on the same cylindrical surface with the optical axis O as the center. As shown in FIGS. 18 to 24, the length of the yokes 24, 25, and 26 in the optical axis direction is substantially the same as the length of the barrel holder 12 in the optical axis direction, and the magnet support protrusions 21b, 22b, and 23b With the positions determined by the engagement of the long holes 24c, 25c, and 26c, the positions of the front edges of the yokes 24, 25, and 26 and the front end surface of the barrel holder 12 in the optical axis direction overlap, and the yokes 24, 25, and 26 The edge portion and the position of the rear end surface of the barrel holder 12 in the optical axis direction overlap.

図10ないし図18、図20、図21、図23、図24、図34に示すように、ヨーク24上に第1磁石ユニット27が支持され、ヨーク25上に第2磁石ユニット28が支持される。第1磁石ユニット27は周方向に長手方向を向けた円弧形状をなす一組の永久磁石27-1と永久磁石27-2からなり、第2磁石ユニット28も同様に周方向に長手方向を向けた円弧形状をなす一組の永久磁石28-1と永久磁石28-2からなる。永久磁石27-1と永久磁石27-2は同形状であり、光軸Oを中心とする円筒面の一部である内周面27aと、内周面27aを含む円筒面よりも径の大きい同心状の円筒面の一部である外周面27bを有している。また、永久磁石27-1と永久磁石27-2はそれぞれ、長手方向の両端に位置して内周面27aと外周面27bを径方向に接続する一対の長手方向端面27cと、一対の長手方向端面27cの間を長手方向に延びて内周面27aと外周面27bを径方向に接続する一対の側面27d,27eを有している。永久磁石28-1と永久磁石28-2はいずれも永久磁石27-1及び永久磁石27-2と同形状の磁石であり、永久磁石27-1,27-2と同様の内周面28a、外周面28b、一対の長手方向端面28c、一対の側面28d,28eを有している。   As shown in FIGS. 10 to 18, 20, 21, 23, 24, and 34, the first magnet unit 27 is supported on the yoke 24, and the second magnet unit 28 is supported on the yoke 25. The The first magnet unit 27 is composed of a pair of permanent magnets 27-1 and 27-2 having a circular arc shape with the longitudinal direction oriented in the circumferential direction, and the second magnet unit 28 is also oriented in the circumferential direction in the same manner. It consists of a pair of permanent magnets 28-1 and 28-2 that form a circular arc shape. The permanent magnet 27-1 and the permanent magnet 27-2 have the same shape, and have a larger diameter than the inner peripheral surface 27 a that is a part of the cylindrical surface centered on the optical axis O and the cylindrical surface including the inner peripheral surface 27 a. It has the outer peripheral surface 27b which is a part of concentric cylindrical surface. Each of the permanent magnet 27-1 and the permanent magnet 27-2 has a pair of longitudinal end surfaces 27c that are located at both ends in the longitudinal direction and that radially connect the inner peripheral surface 27a and the outer peripheral surface 27b, and a pair of longitudinal directions. It has a pair of side surfaces 27d and 27e extending in the longitudinal direction between the end surfaces 27c and connecting the inner peripheral surface 27a and the outer peripheral surface 27b in the radial direction. The permanent magnet 28-1 and the permanent magnet 28-2 are both magnets having the same shape as the permanent magnet 27-1 and the permanent magnet 27-2, and have the same inner peripheral surface 28a as the permanent magnets 27-1, 27-2, It has an outer peripheral surface 28b, a pair of longitudinal end surfaces 28c, and a pair of side surfaces 28d and 28e.

第1磁石ユニット27は、永久磁石27-1が前方、永久磁石27-2が後方となる関係で光軸方向(永久磁石27-1と永久磁石27-2の短手方向)に並列してヨーク24上に配置される。図16ないし図18、図21、図23、図24、図34に示すように、永久磁石27-1と永久磁石27-2のそれぞれの内周面27aが底壁24a上に載置され、一対の長手方向端面27cが一対の立壁24bに対向する。内周面27aは底壁24aに沿う湾曲面であり、内周面27aと底壁24aの当接によって永久磁石27-1と永久磁石27-2が径方向に安定して支持される。また、一対の長手方向端面27cを一対の立壁24bで挟むことによって永久磁石27-1と永久磁石27-2の周方向の位置が定められる。さらに、長穴24cを通して突出する磁石支持突起21bを永久磁石27-1の側面27eと永久磁石27-2の側面27dの間に挟むことによって、永久磁石27-1と永久磁石27-2は光軸方向に所定の間隔をもって離間して並列する。磁石支持突起21bは永久磁石27-1と永久磁石27-2よりも周方向に短く、永久磁石27-1と永久磁石27-2の長手方向の中央付近に磁石支持突起21bが挟まれることにより、永久磁石27-1の側面27eと永久磁石27-2の側面27dの間に接着剤注入空間(隙間)M1が形成される(図18、図21)。以上のヨーク24と磁石支持突起21bによる支持状態で、永久磁石27-1の側面27dはバレルホルダ12の前端面(ヨーク24の前縁部)と略同じ光軸方向位置にあり、永久磁石27-2の側面27eはバレルホルダ12の後端面(ヨーク24の後縁部)と略同じ光軸方向位置にある(図18、図21、図23、図24)。つまり、永久磁石27-1と磁石支持突起21bと永久磁石27-2のそれぞれの光軸方向の幅の和が、バレルホルダ12やヨーク24の光軸方向長と略一致しており、第1磁石ユニット27はバレルホルダ12の前後に突出せずに支持される。   The first magnet unit 27 is arranged in parallel in the optical axis direction (the short direction of the permanent magnet 27-1 and the permanent magnet 27-2) so that the permanent magnet 27-1 is the front and the permanent magnet 27-2 is the rear. Arranged on the yoke 24. As shown in FIGS. 16 to 18, 21, 23, 24, and 34, the inner peripheral surfaces 27 a of the permanent magnet 27-1 and the permanent magnet 27-2 are placed on the bottom wall 24 a, The pair of longitudinal end surfaces 27c oppose the pair of standing walls 24b. The inner peripheral surface 27a is a curved surface along the bottom wall 24a, and the permanent magnet 27-1 and the permanent magnet 27-2 are stably supported in the radial direction by contact between the inner peripheral surface 27a and the bottom wall 24a. Further, the circumferential positions of the permanent magnet 27-1 and the permanent magnet 27-2 are determined by sandwiching the pair of longitudinal end faces 27c between the pair of standing walls 24b. Further, the permanent magnet 27-1 and the permanent magnet 27-2 are optically sandwiched between the side surface 27e of the permanent magnet 27-1 and the side surface 27d of the permanent magnet 27-2 by sandwiching the magnet support projection 21b protruding through the long hole 24c. Axially spaced apart at a predetermined interval in the axial direction. The magnet support protrusion 21b is shorter in the circumferential direction than the permanent magnet 27-1 and the permanent magnet 27-2, and the magnet support protrusion 21b is sandwiched near the longitudinal center of the permanent magnet 27-1 and the permanent magnet 27-2. An adhesive injection space (gap) M1 is formed between the side surface 27e of the permanent magnet 27-1 and the side surface 27d of the permanent magnet 27-2 (FIGS. 18 and 21). In the state supported by the yoke 24 and the magnet support projection 21b, the side surface 27d of the permanent magnet 27-1 is at substantially the same optical axis position as the front end surface of the barrel holder 12 (the front edge portion of the yoke 24). The second side surface 27e is located at substantially the same position in the optical axis direction as the rear end surface of the barrel holder 12 (the rear edge portion of the yoke 24) (FIGS. 18, 21, 23, and 24). That is, the sum of the widths of the permanent magnet 27-1, the magnet support projection 21b, and the permanent magnet 27-2 in the optical axis direction is substantially equal to the length of the barrel holder 12 and the yoke 24 in the optical axis direction. The unit 27 is supported without protruding in front of and behind the barrel holder 12.

第2磁石ユニット28は、永久磁石28-1が前方、永久磁石28-2が後方となる関係で光軸方向(永久磁石28-1と永久磁石28-2の短手方向)に並列してヨーク25上に配置される。図16ないし図18、図20、図23、図24、図34に示すように、永久磁石28-1と永久磁石28-2のそれぞれの内周面28aが底壁25a上に載置され、一対の長手方向端面28cが一対の立壁25bに対向する。内周面28aは底壁25aに沿う湾曲面であり、内周面28aと底壁25aの当接によって永久磁石28-1と永久磁石28-2が径方向に安定して支持される。また、一対の長手方向端面28cを一対の立壁25bで挟むことによって永久磁石28-1と永久磁石28-2の周方向の位置が定められる。さらに、長穴25cを通して突出する磁石支持突起22bを永久磁石28-1の側面28eと永久磁石28-2の側面28dの間に挟むことによって、永久磁石28-1と永久磁石28-2は光軸方向に所定の間隔をもって離間して並列する。磁石支持突起22bは永久磁石28-1と永久磁石28-2よりも周方向に短く、永久磁石28-1と永久磁石28-2の長手方向の中央付近に磁石支持突起22bが挟まれることにより、永久磁石28-1の側面28eと永久磁石28-2の側面28dの間に接着剤注入空間(隙間)M2が形成される(図18、図20、図23、図24)。以上のヨーク25と磁石支持突起22bによる支持状態で、永久磁石28-1の側面28dはバレルホルダ12の前端面(ヨーク25の前縁部)と略同じ光軸方向位置にあり、永久磁石28-2の側面28eはバレルホルダ12の後端面(ヨーク25の後縁部)と略同じ光軸方向位置にある(図18、図20、図23、図24)。つまり、永久磁石28-1と磁石支持突起22bと永久磁石28-2のそれぞれの光軸方向の幅の和が、バレルホルダ12やヨーク25の光軸方向長と略一致しており、第2磁石ユニット28はバレルホルダ12の前後に突出せずに支持される。   The second magnet unit 28 is arranged in parallel in the optical axis direction (the short direction of the permanent magnet 28-1 and the permanent magnet 28-2) so that the permanent magnet 28-1 is the front and the permanent magnet 28-2 is the rear. Arranged on the yoke 25. As shown in FIGS. 16 to 18, 20, 23, 24, and 34, the inner peripheral surfaces 28 a of the permanent magnet 28-1 and the permanent magnet 28-2 are placed on the bottom wall 25 a, The pair of longitudinal end faces 28c oppose the pair of standing walls 25b. The inner peripheral surface 28a is a curved surface along the bottom wall 25a, and the permanent magnet 28-1 and the permanent magnet 28-2 are stably supported in the radial direction by contact between the inner peripheral surface 28a and the bottom wall 25a. Further, the circumferential positions of the permanent magnet 28-1 and the permanent magnet 28-2 are determined by sandwiching the pair of longitudinal end faces 28c between the pair of standing walls 25b. Further, the permanent magnet 28-1 and the permanent magnet 28-2 are made light by sandwiching the magnet support projection 22b protruding through the long hole 25c between the side surface 28e of the permanent magnet 28-1 and the side surface 28d of the permanent magnet 28-2. Axially spaced apart at a predetermined interval in the axial direction. The magnet support projection 22b is shorter in the circumferential direction than the permanent magnet 28-1 and the permanent magnet 28-2, and the magnet support projection 22b is sandwiched near the longitudinal center of the permanent magnet 28-1 and the permanent magnet 28-2. An adhesive injection space (gap) M2 is formed between the side surface 28e of the permanent magnet 28-1 and the side surface 28d of the permanent magnet 28-2 (FIGS. 18, 20, 23, and 24). In the state supported by the yoke 25 and the magnet support protrusion 22b, the side surface 28d of the permanent magnet 28-1 is substantially at the same position in the optical axis direction as the front end surface of the barrel holder 12 (the front edge portion of the yoke 25). The second side surface 28e is located at substantially the same position in the optical axis direction as the rear end surface of the barrel holder 12 (the rear edge portion of the yoke 25) (FIGS. 18, 20, 23, and 24). That is, the sum of the widths of the permanent magnet 28-1, the magnet support protrusion 22b, and the permanent magnet 28-2 in the optical axis direction is substantially equal to the length of the barrel holder 12 and the yoke 25 in the optical axis direction. The unit 28 is supported without protruding forward and backward of the barrel holder 12.

図9ないし図17、図19、図20、図22ないし図24、図34に示すように、ヨーク26上に第3磁石ユニット29が支持される。第3磁石ユニット29は、光軸方向に長手方向を向けた一組の永久磁石29-1と永久磁石29-2からなる。永久磁石29-1と永久磁石29-2は同形状であり、光軸Oを中心とする円筒面の一部である内周面29aと、内周面29aを含む円筒面よりも径の大きい同心状の円筒面の一部である外周面29bを有している。また、永久磁石29-1と永久磁石29-2はそれぞれ、長手方向の両端に位置して内周面29aと外周面29bを径方向に接続する一対の長手方向端面29cと、一対の長手方向端面29cの間を長手方向に延びて内周面29aと外周面29bを径方向に接続する一対の側面29d,29eを有している。   As shown in FIGS. 9 to 17, 19, 20, 22 to 24, and 34, the third magnet unit 29 is supported on the yoke 26. The third magnet unit 29 includes a pair of permanent magnets 29-1 and 29-2 whose longitudinal direction is directed in the optical axis direction. The permanent magnet 29-1 and the permanent magnet 29-2 have the same shape, and have a larger diameter than the inner peripheral surface 29a, which is a part of the cylindrical surface centered on the optical axis O, and the cylindrical surface including the inner peripheral surface 29a. It has the outer peripheral surface 29b which is a part of concentric cylindrical surface. Each of the permanent magnet 29-1 and the permanent magnet 29-2 is located at both ends in the longitudinal direction and has a pair of longitudinal end surfaces 29c that connect the inner peripheral surface 29a and the outer peripheral surface 29b in the radial direction, and a pair of longitudinal directions. It has a pair of side surfaces 29d and 29e that extend in the longitudinal direction between the end surfaces 29c and connect the inner peripheral surface 29a and the outer peripheral surface 29b in the radial direction.

第1磁石ユニット27や第2磁石ユニット28と異なり、第3磁石ユニット29は、永久磁石29-1と永久磁石29-2を周方向(永久磁石29-1と永久磁石29-2の短手方向)に並列させてヨーク26上に配置される。図9、図16、図17、図19、図22ないし図24、図34に示すように、永久磁石29-1と永久磁石29-2のそれぞれの内周面29aが底壁26a上に載置され、永久磁石29-1の側面29dが一対の立壁26bの一方に対向し、永久磁石29-2の側面29eが一対の立壁26bの他方に対向する。内周面29aは底壁26aに沿う湾曲面であり、内周面29aと底壁26aの当接によって永久磁石29-1と永久磁石29-2が径方向に安定して支持される。長穴26cを通して突出する磁石支持突起23bを永久磁石29-1の側面29eと永久磁石29-2の側面29dの間に挟むことによって、永久磁石29-1と永久磁石29-2は周方向に所定の間隔をもって離間して並列する。磁石支持突起23bは永久磁石29-1と永久磁石29-2よりも光軸方向に短く、永久磁石29-1と永久磁石29-2の長手方向の中央付近に磁石支持突起23bが挟まれることにより、永久磁石29-1の側面29eと永久磁石29-2の側面29dの間に接着剤注入空間(隙間)M3が形成される(図19、図22)。磁石支持突起23bを挟んだ状態の永久磁石29-1と永久磁石29-2が一対の立壁26bで両側から挟まれて第3磁石ユニット29の周方向の位置が定められる。別言すれば、永久磁石29-1と磁石支持突起23bと永久磁石29-2のそれぞれの周方向の幅の和が、周方向におけるヨーク26の一対の立壁26bの間隔と略一致している。また、永久磁石29-1と永久磁石29-2のそれぞれの光軸方向の長さ(一対の長手方向端面29cの間隔)はバレルホルダ12やヨーク26の光軸方向の長さと略一致しており、永久磁石29-1と永久磁石29-2はそれぞれ、一対の長手方向端面29cがバレルホルダ12の前後の端面(ヨーク26の前後の縁部)と重なり、その前後に突出せずに支持される(図19、図22)。   Unlike the first magnet unit 27 and the second magnet unit 28, the third magnet unit 29 has a permanent magnet 29-1 and a permanent magnet 29-2 arranged in the circumferential direction (the short sides of the permanent magnet 29-1 and the permanent magnet 29-2). Arranged on the yoke 26 in parallel. As shown in FIGS. 9, 16, 17, 19, 22 to 24, and 34, the inner peripheral surfaces 29a of the permanent magnet 29-1 and the permanent magnet 29-2 are mounted on the bottom wall 26a. The side surface 29d of the permanent magnet 29-1 faces one of the pair of standing walls 26b, and the side surface 29e of the permanent magnet 29-2 faces the other of the pair of standing walls 26b. The inner peripheral surface 29a is a curved surface along the bottom wall 26a, and the permanent magnet 29-1 and the permanent magnet 29-2 are stably supported in the radial direction by contact between the inner peripheral surface 29a and the bottom wall 26a. The permanent magnet 29-1 and the permanent magnet 29-2 are circumferentially sandwiched between the side surface 29e of the permanent magnet 29-1 and the side surface 29d of the permanent magnet 29-2 by sandwiching the magnet support protrusion 23b protruding through the long hole 26c. They are spaced in parallel at a predetermined interval. The magnet support protrusion 23b is shorter in the optical axis direction than the permanent magnet 29-1 and the permanent magnet 29-2, and the magnet support protrusion 23b is sandwiched near the center in the longitudinal direction of the permanent magnet 29-1 and the permanent magnet 29-2. Thus, an adhesive injection space (gap) M3 is formed between the side surface 29e of the permanent magnet 29-1 and the side surface 29d of the permanent magnet 29-2 (FIGS. 19 and 22). The permanent magnet 29-1 and the permanent magnet 29-2 sandwiching the magnet support protrusion 23b are sandwiched from both sides by a pair of standing walls 26b, and the circumferential position of the third magnet unit 29 is determined. In other words, the sum of the circumferential widths of the permanent magnet 29-1, the magnet support projection 23b, and the permanent magnet 29-2 is substantially equal to the distance between the pair of standing walls 26b of the yoke 26 in the circumferential direction. . The lengths of the permanent magnet 29-1 and the permanent magnet 29-2 in the optical axis direction (the distance between the pair of longitudinal end surfaces 29c) are substantially the same as the lengths of the barrel holder 12 and the yoke 26 in the optical axis direction. Each of the permanent magnet 29-1 and the permanent magnet 29-2 is supported without a pair of longitudinal end faces 29c overlapping the front and rear end faces (front and rear edges of the yoke 26) of the barrel holder 12, and projecting forward and backward. (FIG. 19, FIG. 22).

接着剤注入空間M1,M2,M3のそれぞれに接着剤を注入する。接着剤注入空間M1に注入した接着剤によってヨーク24と第1磁石ユニット27がバレルホルダ12(磁石支持突起21b)に対して固定され、接着剤注入空間M2に注入した接着剤によって、ヨーク25と第2磁石ユニット28がバレルホルダ12(磁石支持突起22b)に対して固定され、接着剤注入空間M3に注入した接着剤によって、ヨーク26と第3磁石ユニット29がバレルホルダ12(磁石支持突起23b)に対して固定される。つまり、接着剤注入空間M1,M2,M3内に、各磁石ユニット27,28,29を構成する各磁石をそれぞれ磁石支持突起21b,22b,23bとヨーク24,25,26に対して接着固定する接着固定部が形成される。   Adhesive is injected into each of the adhesive injection spaces M1, M2, and M3. The yoke 24 and the first magnet unit 27 are fixed to the barrel holder 12 (magnet support protrusion 21b) by the adhesive injected into the adhesive injection space M1, and the yoke 25 and the first magnet unit 27 are fixed by the adhesive injected into the adhesive injection space M2. The two magnet unit 28 is fixed to the barrel holder 12 (magnet support protrusion 22b), and the yoke 26 and the third magnet unit 29 are fixed to the barrel holder 12 (magnet support protrusion 23b) by the adhesive injected into the adhesive injection space M3. Fixed. That is, the magnets constituting the magnet units 27, 28, and 29 are bonded and fixed to the magnet support protrusions 21b, 22b, and 23b and the yokes 24, 25, and 26 in the adhesive injection spaces M1, M2, and M3, respectively. An adhesive fixing part is formed.

以上のようにしてヨーク24,25,26と磁石ユニット27,28,29をバレルホルダ12に組み付けることで、図16ないし図22に示すサブアッセンブリである可動ユニット17になる。可動ユニット17では、ヨーク24と第1磁石ユニット27(磁石支持突起21bを含む)のセットと、ヨーク25と第2磁石ユニット28(磁石支持突起22bを含む)のセットと、ヨーク26と第3磁石ユニット29(磁石支持突起23bを含む)のセットは、それぞれが周方向と光軸方向に略同じサイズとなり、これら3つのセットが周方向に略等間隔(120度間隔)で配置される。   By assembling the yokes 24, 25, and 26 and the magnet units 27, 28, and 29 to the barrel holder 12 as described above, the movable unit 17 that is the subassembly shown in FIGS. In the movable unit 17, a set of the yoke 24 and the first magnet unit 27 (including the magnet support protrusion 21b), a set of the yoke 25 and the second magnet unit 28 (including the magnet support protrusion 22b), the yoke 26 and the third Each set of the magnet units 29 (including the magnet support protrusions 23b) has substantially the same size in the circumferential direction and the optical axis direction, and these three sets are arranged at substantially equal intervals (120 degree intervals) in the circumferential direction.

図5、図16、図17、図34に示すように、可動ユニット17における各磁石ユニット27,28,29は、それぞれの外周面27b,28b,29bが光軸Oを中心とする同一の円筒面上に位置し、外周面27b,28b,29bを含む円筒面よりも径が小さく光軸Oを中心とする別の同一の円筒面上にそれぞれの内周面27a,28a,29aが位置する。   As shown in FIGS. 5, 16, 17, and 34, the magnet units 27, 28, and 29 in the movable unit 17 are the same cylinders whose outer peripheral surfaces 27 b, 28 b, and 29 b are centered on the optical axis O. The inner peripheral surfaces 27a, 28a, and 29a are positioned on different cylindrical surfaces that are positioned on the surface and have a diameter smaller than that of the cylindrical surface including the outer peripheral surfaces 27b, 28b, and 29b and centered on the optical axis O. .

可動ユニット17で第1磁石ユニット27,第2磁石ユニット28,第3磁石ユニット29を構成する各永久磁石のN極とS極を図13、図15ないし図17に符号「N」と「S」で概念的に表した。各永久磁石は径方向にN極とS極が並ぶように着磁されており、永久磁石27-1と永久磁石28-2と永久磁石29-1はそれぞれ内径側がS極で外径側がN極であり、永久磁石27-2と永久磁石28-1と永久磁石29-2はそれぞれ内径側がN極で外径側がS極となっている。各磁石ユニット27,28,29を短手方向に並列する2つの永久磁石に分割した構成にすることで、各磁石ユニット27,28,29を一つの大型の永久磁石で構成する場合よりも着磁を行いやすく、軽量化の面でも有利となる。   The N and S poles of the permanent magnets constituting the first magnet unit 27, the second magnet unit 28, and the third magnet unit 29 in the movable unit 17 are shown as “N” and “S” in FIG. 13 and FIGS. "Conceptually." Each permanent magnet is magnetized so that the N pole and the S pole are aligned in the radial direction. The permanent magnet 27-1, the permanent magnet 28-2, and the permanent magnet 29-1 have an S inner diameter side and an N outer diameter side, respectively. The permanent magnet 27-2, the permanent magnet 28-1, and the permanent magnet 29-2 each have an N-pole on the inner diameter side and an S-pole on the outer diameter side. Each magnet unit 27, 28, 29 is divided into two permanent magnets arranged in parallel in the short direction, so that each magnet unit 27, 28, 29 is worn more than a single large permanent magnet. It is easy to magnetize and is advantageous in terms of weight reduction.

図9、図25ないし図28、図30ないし図32に示すように、コイルホルダ13は、光軸Oを囲む筒部13aの内部に光軸方向に貫通する軸方向貫通部13bを有している。コイルホルダ13の前端には内径方向に突出する前壁13cが形成されており、前壁13cの内縁部として形成された円形の中央開口13dは、軸方向貫通部13bよりも開口径が小さい。   As shown in FIGS. 9, 25 to 28, and 30 to 32, the coil holder 13 has an axial penetration portion 13 b that penetrates in the optical axis direction inside a cylindrical portion 13 a that surrounds the optical axis O. Yes. A front wall 13c protruding in the inner diameter direction is formed at the front end of the coil holder 13, and the circular central opening 13d formed as the inner edge portion of the front wall 13c has a smaller opening diameter than the axial through-hole 13b.

図5、図9ないし図11、図25ないし図28、図30ないし図32、図34に示すように、コイルホルダ13の軸方向貫通部13b内には、筒部13aの内周面から内径方向へ突出する3つの支持座(支持手段)40が設けられている。3つの支持座40は周方向に略等間隔(120度間隔)で設けられており、それぞれを符号40A,40B,40Cで区別する。各支持座40は内径方向に進むにつれて周方向の幅を狭くする楔状の断面形状を有しており、その内径側の先端部にボール保持溝41が形成されている。ボール保持溝41は光軸方向に長手方向が向く有底の長溝であり、外径方向に底面が位置して内径方向に開口されている。ボール保持溝41の光軸方向の後端部は開放されており、ボール保持溝41の前端部は前壁13cに隣接する前方規制壁41aによって閉じられている。図9や図30に示すように、前方規制壁41aが設けられているボール保持溝41の前端付近の領域は、その後方部分よりも各支持座40の内径方向への突出量が大きく、ボール保持溝41の深さが大きくなっている。各支持座40の後端面には、内部にネジ溝を有するビス穴42が形成されている。各ビス穴42の周囲の環状の領域に当付面43が形成されている。各当付面43は光軸Oに対して略垂直で後方を向く平面である。   As shown in FIGS. 5, 9 to 11, 25 to 28, 30 to 32, and 34, the coil holder 13 has an inner diameter from the inner peripheral surface of the cylindrical portion 13 a in the axial direction through portion 13 b. Three support seats (support means) 40 protruding in the direction are provided. The three support seats 40 are provided at substantially equal intervals (120 degree intervals) in the circumferential direction, and are distinguished by reference numerals 40A, 40B, and 40C. Each support seat 40 has a wedge-shaped cross-sectional shape that narrows the width in the circumferential direction as it progresses in the inner diameter direction, and a ball holding groove 41 is formed at the inner end of the inner side. The ball holding groove 41 is a bottomed long groove whose longitudinal direction is oriented in the optical axis direction. The bottom surface is located in the outer diameter direction and is opened in the inner diameter direction. The rear end of the ball holding groove 41 in the optical axis direction is open, and the front end of the ball holding groove 41 is closed by a front regulating wall 41a adjacent to the front wall 13c. As shown in FIG. 9 and FIG. 30, the region near the front end of the ball holding groove 41 provided with the front regulating wall 41a has a larger protruding amount in the inner diameter direction of each support seat 40 than the rear portion thereof, The depth of the holding groove 41 is increased. A screw hole 42 having a thread groove inside is formed in the rear end surface of each support seat 40. A contact surface 43 is formed in an annular region around each screw hole 42. Each contact surface 43 is a plane that is substantially perpendicular to the optical axis O and faces rearward.

図9、図11、図25、図27、図28、図30、図32、図34に示すように、コイルホルダ13の筒部13aには、径方向に貫通する3つの貫通穴45,46,47が形成されている。貫通穴45,46,47は3つの支持座40の間の周方向位置にあり、支持座40Aと支持座40Cの間に貫通穴45が位置し、支持座40Aと支持座40Bの間に貫通穴46が位置し、支持座40Bと支持座40Cの間に貫通穴47が位置する。貫通穴45,46はそれぞれ周方向に長手方向を向けた長穴であり、筒部13aを平面状に展開した場合に略矩形となる展開形状を有している。貫通穴45と貫通穴46の周方向長は略等しく、貫通穴45と貫通穴46の光軸方向長も略等しい。貫通穴47も筒部13aを平面状に展開した場合に略矩形となる展開形状を有しているが、周方向長と光軸方向長の比率が貫通穴45及び貫通穴46とは異なっており、貫通穴47の周方向長は貫通穴45及び貫通穴46の周方向長よりも小さく、貫通穴47の光軸方向長は貫通穴45及び貫通穴46の光軸方向長よりも大きい。周方向における貫通穴45,46,47の長さの中央をそれぞれ周方向の基準位置とした場合、3つの貫通穴45,46,47の基準位置は周方向に略等間隔(120度間隔)の関係である。   As shown in FIGS. 9, 11, 25, 27, 28, 30, 32, and 34, the cylindrical portion 13 a of the coil holder 13 has three through holes 45 and 46 that penetrate in the radial direction. , 47 are formed. The through holes 45, 46, and 47 are located at the circumferential position between the three support seats 40, the through hole 45 is located between the support seat 40A and the support seat 40C, and penetrates between the support seat 40A and the support seat 40B. The hole 46 is located, and the through hole 47 is located between the support seat 40B and the support seat 40C. Each of the through holes 45 and 46 is a long hole having a longitudinal direction in the circumferential direction, and has a developed shape that is substantially rectangular when the cylindrical portion 13a is developed in a planar shape. The circumferential lengths of the through hole 45 and the through hole 46 are substantially equal, and the lengths of the through hole 45 and the through hole 46 in the optical axis direction are also substantially equal. The through hole 47 also has a developed shape that is substantially rectangular when the cylindrical portion 13a is developed in a planar shape, but the ratio of the circumferential length to the optical axis length is different from the through hole 45 and the through hole 46. The circumferential length of the through hole 47 is smaller than the circumferential length of the through hole 45 and the through hole 46, and the optical axis length of the through hole 47 is larger than the optical axis length of the through hole 45 and the through hole 46. When the center of the length of the through holes 45, 46, 47 in the circumferential direction is set as the reference position in the circumferential direction, the reference positions of the three through holes 45, 46, 47 are substantially equally spaced in the circumferential direction (120 degree intervals). It is a relationship.

コイルホルダ13の筒部13aの外周面上には、貫通穴45,46,47の周囲に有底の支持凹部48,49,50が形成されている。支持凹部48,49は周方向に長手方向が向く凹部であり、互いの周方向長と光軸方向長が略等しい。支持凹部50は、支持凹部48,49よりも周方向には短く光軸方向には長い凹部である(図33参照)。   On the outer peripheral surface of the cylindrical portion 13 a of the coil holder 13, bottomed support concave portions 48, 49, 50 are formed around the through holes 45, 46, 47. The support recesses 48 and 49 are recesses whose longitudinal direction faces in the circumferential direction, and the circumferential length and the optical axis length are substantially equal to each other. The support recess 50 is a recess that is shorter in the circumferential direction and longer in the optical axis direction than the support recesses 48 and 49 (see FIG. 33).

図1、図2、図6ないし図11、図25ないし図29、図31、図32に示すように、支持凹部48,49,50上にそれぞれコイル支持板51,52,53が支持される。コイル支持板51,52,53は筒部13aの外周面に沿う湾曲形状の板状部材であり、支持凹部48,49,50上に支持される状態でコイル支持板51,52,53の外面が筒部13aの外周面と略面一になる。すなわち、コイル支持板51,52,53が光軸Oを中心とする同一の円筒面上に位置する。コイル支持板51とコイル支持板52は略共通の形状であり、それぞれの周方向及び光軸方向の中央付近に、内径方向へ突出するコイル支持突起51a,52aが形成され、各コイル支持突起51a,52aの裏側にセンサ支持凹部51b,52bが形成されている。コイル支持板53は、コイル支持板51及びコイル支持板52よりも周方向には短く光軸方向には長い。コイル支持板53の周方向及び光軸方向の中央付近に、内径方向へ突出するコイル支持突起53aが形成され、コイル支持突起53aの裏側にセンサ支持凹部53bが形成されている。コイル支持板51,52,53にはさらに径方向に貫通する貫通穴51c,52c,53cが形成されている。   As shown in FIGS. 1, 2, 6 to 11, 25 to 29, 31, and 32, coil support plates 51, 52, and 53 are supported on the support recesses 48, 49, and 50, respectively. . The coil support plates 51, 52, 53 are curved plate-like members along the outer peripheral surface of the cylindrical portion 13 a, and are outer surfaces of the coil support plates 51, 52, 53 while being supported on the support recesses 48, 49, 50. Is substantially flush with the outer peripheral surface of the cylindrical portion 13a. That is, the coil support plates 51, 52, and 53 are located on the same cylindrical surface with the optical axis O as the center. The coil support plate 51 and the coil support plate 52 have a substantially common shape, and coil support projections 51a and 52a projecting in the inner diameter direction are formed in the vicinity of the respective centers in the circumferential direction and the optical axis direction. , 52a are provided with sensor support recesses 51b, 52b. The coil support plate 53 is shorter in the circumferential direction than the coil support plate 51 and the coil support plate 52 and is longer in the optical axis direction. Near the center of the coil support plate 53 in the circumferential direction and the optical axis direction, a coil support projection 53a that projects in the inner diameter direction is formed, and a sensor support recess 53b is formed on the back side of the coil support projection 53a. The coil support plates 51, 52, 53 are further formed with through holes 51c, 52c, 53c penetrating in the radial direction.

コイル支持板51に第1コイル54が支持され、コイル支持板52に第2コイル55が支持され、コイル支持板53に第3コイル56が支持される。第1コイル54と第2コイル55はそれぞれ、周方向に延びる各一対の長辺部54a,55aの周方向端部を光軸方向に延びる各一対の短辺部54b,55bで接続した空芯コイルである。第3コイル56は、光軸方向に延びる一対の長辺部56aの光軸方向端部を周方向に延びる一対の短辺部56bで接続した空芯コイルである。第1コイル54と第2コイル55は略同じ形状であり、互いの長辺部54a,55aの周方向長が略等しく、かつ互いの短辺部54b,55bの光軸方向長が略等しい。第3コイル56の長辺部56aの光軸方向長は第1コイル54及び第2コイル55の短辺部54b,55bの光軸方向長よりも大きく、第3コイル56の短辺部56bの周方向長は第1コイル54及び第2コイル55の長辺部54a,55aの周方向長よりも小さい。各コイル54,55,56は、コイル支持板51,52,53の内周面に沿う円筒面の一部である湾曲した外周面54c,55c,56cと、外周面54c,55c,56cを含む円筒面よりも小径の円筒面上に位置する湾曲した内周面54d,55d,56dを有している。   The first coil 54 is supported on the coil support plate 51, the second coil 55 is supported on the coil support plate 52, and the third coil 56 is supported on the coil support plate 53. Each of the first coil 54 and the second coil 55 has an air core in which circumferential ends of each pair of long side portions 54a and 55a extending in the circumferential direction are connected by a pair of short side portions 54b and 55b extending in the optical axis direction. It is a coil. The third coil 56 is an air-core coil in which end portions in the optical axis direction of the pair of long side portions 56a extending in the optical axis direction are connected by a pair of short side portions 56b extending in the circumferential direction. The first coil 54 and the second coil 55 have substantially the same shape, the circumferential lengths of the long side portions 54a and 55a are substantially equal, and the lengths of the short side portions 54b and 55b in the optical axis direction are substantially equal. The length in the optical axis direction of the long side portion 56 a of the third coil 56 is larger than the length in the optical axis direction of the short side portions 54 b and 55 b of the first coil 54 and the second coil 55, and the short side portion 56 b of the third coil 56. The circumferential length is smaller than the circumferential lengths of the long sides 54 a and 55 a of the first coil 54 and the second coil 55. Each coil 54, 55, 56 includes a curved outer peripheral surface 54c, 55c, 56c, which is a part of a cylindrical surface along the inner peripheral surface of the coil support plate 51, 52, 53, and an outer peripheral surface 54c, 55c, 56c. It has curved inner peripheral surfaces 54d, 55d, 56d located on a cylindrical surface having a smaller diameter than the cylindrical surface.

第1コイル54は、一対の長辺部54aと一対の短辺部54bで囲まれる中空部にコイル支持突起51aを挿入し、外周面54cをコイル支持板51の内周面に当接させてコイル支持板51に取り付けられる。コイル支持板51と第1コイル54は接着などで固定される。この状態でコイル支持板51をコイルホルダ13の支持凹部48上に支持させると、第1コイル54が貫通穴45内に挿入されて内周面54dがコイルホルダ13の内径側に向く(図5、図32、図34)。   The first coil 54 has a coil support protrusion 51a inserted in a hollow portion surrounded by a pair of long side portions 54a and a pair of short side portions 54b, and the outer peripheral surface 54c is brought into contact with the inner peripheral surface of the coil support plate 51. Attached to the coil support plate 51. The coil support plate 51 and the first coil 54 are fixed by adhesion or the like. When the coil support plate 51 is supported on the support recess 48 of the coil holder 13 in this state, the first coil 54 is inserted into the through hole 45 and the inner peripheral surface 54d faces the inner diameter side of the coil holder 13 (FIG. 5). 32 and 34).

第2コイル55は、一対の長辺部55aと一対の短辺部55bで囲まれる中空部にコイル支持突起52aを挿入し、外周面55cをコイル支持板52の内周面に当接させてコイル支持板52に取り付けられる。コイル支持板52と第2コイル55は接着などで固定される。この状態でコイル支持板52をコイルホルダ13の支持凹部49上に支持させると、第2コイル55が貫通穴46内に挿入されて内周面55dがコイルホルダ13の内径側に向く(図5、図34)。   The second coil 55 has a coil support protrusion 52a inserted into a hollow portion surrounded by the pair of long side portions 55a and the pair of short side portions 55b, and the outer peripheral surface 55c is brought into contact with the inner peripheral surface of the coil support plate 52. Attached to the coil support plate 52. The coil support plate 52 and the second coil 55 are fixed by bonding or the like. When the coil support plate 52 is supported on the support recess 49 of the coil holder 13 in this state, the second coil 55 is inserted into the through hole 46 and the inner peripheral surface 55d faces the inner diameter side of the coil holder 13 (FIG. 5). , FIG. 34).

第3コイル56は、各一対の長辺部56aと短辺部56bで囲まれる中空部にコイル支持突起53aを挿入し、外周面56cをコイル支持板53の内周面に当接させてコイル支持板53に取り付けられる。コイル支持板53と第3コイル56は接着などで固定される。この状態でコイル支持板53をコイルホルダ13の支持凹部50上に支持させると、第3コイル56が貫通穴47内に挿入されて内周面56dがコイルホルダ13の内径側に向く(図5、図9、図32、図34)。 The third coil 56 is formed by inserting a coil support protrusion 53a into a hollow portion surrounded by each pair of the long side portion 56a and the short side portion 56b and bringing the outer peripheral surface 56c into contact with the inner peripheral surface of the coil support plate 53. Attached to the support plate 53. The coil support plate 53 and the third coil 56 are fixed by adhesion or the like. When the coil support plate 53 is supported on the support recess 50 of the coil holder 13 in this state, the third coil 56 is inserted into the through hole 47 and the inner peripheral surface 56d faces the inner diameter side of the coil holder 13 (FIG. 5). 9, FIG. 32, FIG. 34).

コイル支持板51,52,53を介してコイルホルダ13に取り付けられた状態の各コイル54,55,56の位置関係を図34に示す。図34から分かるように、各コイル54,55,56は、それぞれの外周面54c,55c,56cが光軸Oを中心とする同一の円筒面上に位置し、外周面54c,55c,56cを含む円筒面よりも径が小さく光軸Oを中心とする別の同一の円筒面上にそれぞれの内周面54d,55d,56dが位置する。   FIG. 34 shows the positional relationship between the coils 54, 55, and 56 attached to the coil holder 13 via the coil support plates 51, 52, and 53. As can be seen from FIG. 34, in each of the coils 54, 55, and 56, the outer peripheral surfaces 54c, 55c, and 56c are positioned on the same cylindrical surface with the optical axis O as the center, and the outer peripheral surfaces 54c, 55c, and 56c are The inner peripheral surfaces 54d, 55d, and 56d are located on the same other cylindrical surface that is smaller in diameter than the included cylindrical surface and that has the optical axis O as the center.

図1、図2、図6ないし図11、図25ないし図29、図31、図32に示すように、コイル支持板51,52,53のセンサ支持凹部51b,52b,53b内にホールセンサ(磁気センサ)57,58,59が取り付けられる。センサ支持凹部51b,52b,53bはそれぞれ、内径方向に突出するコイル支持突起51a,52a,53aの内部空間を利用して凹設されており、外径方向に向けて開放された凹部となっている。そのため、センサ支持凹部51b,52b,53b内に取り付けられたホールセンサ57,58,59は、各コイル54,55,56の中空部分の内側に収まる状態で保持される(図9、図34参照)。図34に示すように、この保持状態における各ホールセンサ57,58,59は、周方向に略等間隔(120度間隔)で位置し、かつ光軸Oを中心とする同一の円筒面上に位置する(光軸Oからの径方向距離が略等しい)。   As shown in FIGS. 1, 2, 6 to 11, 25 to 29, 31, and 32, Hall sensors (in the sensor support recesses 51 b, 52 b, and 53 b of the coil support plates 51, 52, and 53). Magnetic sensors) 57, 58 and 59 are attached. The sensor support recesses 51b, 52b, and 53b are respectively recessed using the internal spaces of the coil support protrusions 51a, 52a, and 53a that protrude in the inner diameter direction, and are recesses that are open toward the outer diameter direction. Yes. Therefore, the Hall sensors 57, 58, 59 attached in the sensor support recesses 51b, 52b, 53b are held in a state of being fitted inside the hollow portions of the coils 54, 55, 56 (see FIGS. 9 and 34). ). As shown in FIG. 34, the hall sensors 57, 58, 59 in this holding state are positioned at substantially equal intervals (120 degree intervals) in the circumferential direction, and on the same cylindrical surface centered on the optical axis O. Located (the radial distance from the optical axis O is substantially equal).

以上のようにしてコイル支持板51,52,53を介して第1コイル54,第2コイル55,第3コイル56とホールセンサ57,58,59をコイルホルダ13に組み付けることで、図29、図31、図32に示すサブアッセンブリである固定ユニット18が構成される。   As described above, by assembling the first coil 54, the second coil 55, the third coil 56 and the hall sensors 57, 58, 59 to the coil holder 13 through the coil support plates 51, 52, 53, FIG. The fixed unit 18 which is the subassembly shown in FIGS. 31 and 32 is configured.

固定ユニット18(コイルホルダ13)の軸方向貫通部13b内に、3つの定位置ボール(支持手段)61と3つの付勢ボール(支持手段)62(図5、図9ないし図11)を介して可動ユニット17(バレルホルダ12)が支持される。各定位置ボール61と各付勢ボール62は略同径の金属製の球状体である。コイルホルダ13に設けた3つの支持座40A,40B,40Cの各ボール保持溝41内に定位置ボール61と付勢ボール62が1つずつ挿入され、計6つの定位置ボール61と付勢ボール62でバレルホルダ12を支持する。3つの定位置ボール61はそれぞれ、前方規制壁41aが形成されるボール保持溝41の前端部分に保持され、3つの付勢ボール62はそれぞれ、ボール保持溝41の後端付近に保持される。各定位置ボール61と各付勢ボール62の径とボール保持溝41の溝幅が略一致しており、定位置ボール61と付勢ボール62はボール保持溝41に対する周方向の移動が規制される。   Three fixed-position balls (support means) 61 and three biasing balls (support means) 62 (FIGS. 5, 9 to 11) are inserted into the axially penetrating portion 13b of the fixed unit 18 (coil holder 13). Thus, the movable unit 17 (barrel holder 12) is supported. Each fixed-position ball 61 and each biasing ball 62 are metal spherical bodies having substantially the same diameter. One fixed-position ball 61 and one urging ball 62 are inserted into each of the ball holding grooves 41 of the three support seats 40A, 40B, and 40C provided in the coil holder 13, for a total of six fixed-position balls 61 and urging balls. The barrel holder 12 is supported at 62. Each of the three fixed-position balls 61 is held at the front end portion of the ball holding groove 41 where the front restricting wall 41 a is formed, and each of the three urging balls 62 is held near the rear end of the ball holding groove 41. The diameter of each fixed-position ball 61 and each biasing ball 62 and the groove width of the ball holding groove 41 are substantially the same, and the movement of the fixed-position ball 61 and the biasing ball 62 in the circumferential direction with respect to the ball holding groove 41 is restricted. The

可動ユニット17は、バレルホルダ12に形成した揺動案内面20A,20B,20Cの周方向位置をそれぞれ支持座40A,40B,40Cに対応させて(径方向に対向させて)、軸方向貫通部13b内に挿入される。すると、揺動案内面20Aが支持座40Aのボール保持溝41上に支持された定位置ボール61と付勢ボール62に当接し、揺動案内面20Bが支持座40Bのボール保持溝41上に支持された定位置ボール61と付勢ボール62に当接し、揺動案内面20Cが支持座40Cのボール保持溝41上に支持された定位置ボール61と付勢ボール62に当接する。   The movable unit 17 is configured such that the circumferential positions of the swing guide surfaces 20A, 20B, and 20C formed on the barrel holder 12 correspond to the support seats 40A, 40B, and 40C (opposite in the radial direction), and the axial through portion 13b. Inserted inside. Then, the swing guide surface 20A comes into contact with the fixed-position ball 61 and the urging ball 62 supported on the ball holding groove 41 of the support seat 40A, and the swing guide surface 20B is on the ball hold groove 41 of the support seat 40B. The supported fixed-position ball 61 and the biasing ball 62 are in contact with each other, and the swing guide surface 20C is in contact with the fixed-position ball 61 and the biasing ball 62 supported on the ball holding groove 41 of the support seat 40C.

この状態で3つの定位置ボール61は、対応する揺動案内面20A,20B,20Cとボール保持溝41の底面の間に挟まれ、さらに前方規制壁41aに当接することによって、光軸方向と径方向の移動が規制される(位置が定まる)。より詳しくは、図9から分かるように、定位置ボール61は、ボール保持溝41の底面によって外径方向への移動が規制され、前方規制壁41aによって光軸方向前方への移動が規制される。揺動案内面20A,20B,20Cは、ボール保持溝41の光軸方向の前半分に対向する領域では、光軸方向前方から後方に進むにつれて内径側から外径側に進む傾斜を有している(図9、図22参照)。そのため定位置ボール61は、揺動案内面20A,20B,20Cによって内径方向と光軸方向後方への移動が規制される。言い換えれば、揺動案内面20A,20B,20Cと前方規制壁41aとボール保持溝41の底面によって、光軸方向前方から後方に進むにつれて径方向の幅が小さくなる楔状の空間が形成されており、この楔状の空間内に定位置ボール61が移動を規制されて嵌った状態になる。このように定位置ボール61は、可動ユニット17を組み付けることによって、光軸方向と周方向と径方向のいずれの方向にも移動制限された一定位置で保持される。なお、定位置ボール61は、この一定位置における転動(自身の中心位置を一定に保った転がり動作)は可能となっている。   In this state, the three fixed-position balls 61 are sandwiched between the corresponding swing guide surfaces 20A, 20B, and 20C and the bottom surface of the ball holding groove 41, and further abut against the front regulation wall 41a, thereby Movement in the radial direction is restricted (position is determined). More specifically, as can be seen from FIG. 9, the fixed-position ball 61 is restricted from moving in the outer diameter direction by the bottom surface of the ball holding groove 41, and is restricted from moving forward in the optical axis direction by the front restriction wall 41a. . In the region facing the front half of the ball holding groove 41 in the optical axis direction, the swing guide surfaces 20A, 20B, and 20C have an inclination that advances from the inner diameter side to the outer diameter side as it advances from the front to the rear in the optical axis direction. (See FIGS. 9 and 22). Therefore, the fixed-position ball 61 is restricted from moving backward in the inner diameter direction and the optical axis direction by the swing guide surfaces 20A, 20B, and 20C. In other words, the rocking guide surfaces 20A, 20B, 20C, the front regulating wall 41a, and the bottom surface of the ball holding groove 41 form a wedge-shaped space whose width in the radial direction decreases from the front to the rear in the optical axis direction. In this wedge-shaped space, the fixed-position ball 61 is in a state of being fitted with its movement restricted. As described above, the fixed-position ball 61 is held at a fixed position in which movement is restricted in any of the optical axis direction, the circumferential direction, and the radial direction by assembling the movable unit 17. The fixed-position ball 61 can roll at this fixed position (rolling operation with its own center position kept constant).

揺動案内面20A,20B,20Cは、ボール保持溝41の光軸方向の後半分に対向する領域では、光軸方向後方から前方に進むにつれて内径側から外径側に進む傾斜を有している(図9、図22参照)。つまり、揺動案内面20A,20B,20Cは、定位置ボール61に当接する部分と付勢ボール62に当接する部分では、傾斜方向が逆になっている。そのため付勢ボール62は、対応する揺動案内面20A,20B,20Cとボール保持溝41の底面の間に挟まれると、ボール保持溝41の底面によって外径方向への移動が規制されることに加えて、揺動案内面20A,20B,20Cによって内径方向と光軸方向前方への移動が規制される。但し、付勢ボール62はボール保持溝41の後端の開口部付近に位置するため、固定ユニット18にボールホルダ14を取り付けない段階では各付勢ボール62が露出し(図5参照)、光軸方向後方への各付勢ボール62の移動は規制されない。   The swing guide surfaces 20A, 20B, and 20C have a slope that advances from the inner diameter side to the outer diameter side as it advances from the rear to the front in the optical axis direction in the region facing the rear half of the ball holding groove 41 in the optical axis direction. (See FIGS. 9 and 22). That is, the swinging guide surfaces 20A, 20B, and 20C are reversely inclined at the portion that contacts the fixed-position ball 61 and the portion that contacts the biasing ball 62. Therefore, when the urging ball 62 is sandwiched between the corresponding swing guide surfaces 20A, 20B, and 20C and the bottom surface of the ball holding groove 41, movement in the outer diameter direction is restricted by the bottom surface of the ball holding groove 41. In addition, the forward movement in the inner diameter direction and the optical axis direction is restricted by the swing guide surfaces 20A, 20B, and 20C. However, since the urging balls 62 are located in the vicinity of the opening at the rear end of the ball holding groove 41, the urging balls 62 are exposed at the stage where the ball holder 14 is not attached to the fixed unit 18 (see FIG. 5). Movement of each biasing ball 62 rearward in the axial direction is not restricted.

コイルホルダ13の軸方向貫通部13b内にボールホルダ14が組み付けられる。図9ないし図11に示すように、ボールホルダ14は軸方向貫通部13bの内周部に嵌る径の円盤状部材であり、径方向の中央に位置する円形の中央開口14aと、中央開口14aの外径側を囲む板状の蓋部14bと、蓋部14bの外縁部から光軸方向前方に向けて突出する環状の外周フランジ14cを有している。蓋部14bの前面側には周方向に略等間隔(120度間隔)で3つの前方突出部65が設けられている。各前方突出部65には、光軸方向に貫通するビス挿通穴66が形成され、ビス挿通穴66よりも内径側には前方へ向くボール保持面67が形成されている。さらに蓋部14bの前面側には、中央開口14aを囲む環状の領域に傾動規制面68が形成されている。ボール保持面67と傾動規制面68はそれぞれ光軸Oに対して略垂直な平面である。図9に示すように、ビス挿通穴66は内径の大きさを3段階に異ならせており、内径サイズが最も大きい大径部66aと最も小さい小径部66bが光軸方向の最後部と最前部に位置し、その間の光軸方向位置に中間の内径サイズの中間部66cが形成されている。   The ball holder 14 is assembled in the axial through portion 13 b of the coil holder 13. As shown in FIGS. 9 to 11, the ball holder 14 is a disk-shaped member having a diameter that fits in the inner peripheral portion of the axial through-hole 13 b, and includes a circular central opening 14 a located in the radial center and a central opening 14 a. A plate-like lid portion 14b that surrounds the outer diameter side, and an annular outer peripheral flange 14c that protrudes forward from the outer edge portion of the lid portion 14b in the optical axis direction. Three front protrusions 65 are provided on the front surface side of the lid portion 14b at substantially equal intervals (120 degree intervals) in the circumferential direction. Each front protrusion 65 has a screw insertion hole 66 penetrating in the optical axis direction, and a ball holding surface 67 facing forward is formed on the inner diameter side of the screw insertion hole 66. Further, a tilt regulating surface 68 is formed on the front surface side of the lid portion 14b in an annular region surrounding the central opening 14a. Each of the ball holding surface 67 and the tilt regulating surface 68 is a plane substantially perpendicular to the optical axis O. As shown in FIG. 9, the screw insertion hole 66 has three different inner diameters, the largest diameter portion 66a having the largest inner diameter size and the smallest diameter portion 66b having the rearmost portion and the foremost portion in the optical axis direction. An intermediate portion 66c having an intermediate inner diameter size is formed at a position in the optical axis direction therebetween.

ボールホルダ14は、コイルホルダ13の3つの支持座40A,40B,40Cの後面に対して3つの前方突出部65が光軸方向に対向するように周方向位置を定めて、軸方向貫通部13b内へ光軸方向後方から挿入される。支持座40A,40B,40Cに対向する3つの前方突出部65をそれぞれ前方突出部65A,65B,65Cとする。軸方向貫通部13b内に挿入されたボールホルダ14は、3つの固定ビス69を用いてコイルホルダ13に固定される。   The ball holder 14 is circumferentially positioned so that the three front protrusions 65 are opposed to the rear surface of the three support seats 40A, 40B, 40C of the coil holder 13 in the optical axis direction. It is inserted in from the rear in the optical axis direction. Three front protrusions 65 facing the support seats 40A, 40B, and 40C are referred to as front protrusions 65A, 65B, and 65C, respectively. The ball holder 14 inserted into the axial direction through portion 13 b is fixed to the coil holder 13 using three fixing screws 69.

図9ないし図11に示すように、3つの固定ビス69はそれぞれ、ネジ溝を外周面に有する螺合部69aを一端に有し、頭部69bを他端に有し、螺合部69aと頭部69bを軸部69cで接続した構成である。頭部69bの径は、ボールホルダ14におけるビス挿通穴66の中間部66cの内径よりも大きく、大径部66aの内径よりも小さい。軸部69cの径は、ビス挿通穴66の小径部66bの内径と略同じ大きさである。各固定ビス69は螺合部69aを前方に向けて光軸方向後方からビス挿通穴66内に挿入され、螺合部69aがビス穴42内のネジ溝に螺合する。図9に示すように、ビス挿通穴66の中間部66c内には軸部69cを囲む筒状のコイルバネ70が挿入され、コイルバネ70の前端部が小径部66bと中間部66cの間の段部に当接し、コイルバネ70の後端部が固定ビス69の頭部69bに当接する。ビス穴42への螺合部69aの螺合量が大きくなるにつれて、頭部69bの押し込みによってコイルバネ70が圧縮され、圧縮されたコイルバネ70によってボールホルダ14に対して光軸方向前方への付勢力が働く。   As shown in FIGS. 9 to 11, each of the three fixing screws 69 has a threaded portion 69a having a thread groove on the outer peripheral surface at one end, a head 69b at the other end, The head 69b is connected by a shaft 69c. The diameter of the head portion 69 b is larger than the inner diameter of the intermediate portion 66 c of the screw insertion hole 66 in the ball holder 14 and smaller than the inner diameter of the large diameter portion 66 a. The diameter of the shaft portion 69 c is substantially the same as the inner diameter of the small diameter portion 66 b of the screw insertion hole 66. Each fixing screw 69 is inserted into the screw insertion hole 66 from the rear in the optical axis direction with the screwing portion 69a facing forward, and the screwing portion 69a is screwed into the screw groove in the screw hole 42. As shown in FIG. 9, a cylindrical coil spring 70 surrounding the shaft portion 69c is inserted into the intermediate portion 66c of the screw insertion hole 66, and the front end portion of the coil spring 70 is a step portion between the small diameter portion 66b and the intermediate portion 66c. The rear end of the coil spring 70 contacts the head 69b of the fixed screw 69. As the screwing amount of the screwing portion 69a into the screw hole 42 increases, the coil spring 70 is compressed by pushing the head 69b, and the compressed coil spring 70 biases the ball holder 14 forward in the optical axis direction. Work.

各固定ビス69は、軸部69cの前端部がコイルホルダ13の当付面43に当接する図9の位置がビス穴42への締め込みの限界となる。この状態で、ボールホルダ14に形成した各前方突出部65A,65B,65Cのボール保持面67が付勢ボール62に対して後方から当接し、コイルバネ70からボールホルダ14に加わる光軸方向前方への付勢力を各付勢ボール62が受ける。図9に示すように、付勢ボール62が挿入されているボール保持溝41の後端付近では、光軸方向前方に進むにつれてボール保持溝41の底面と揺動案内面20A,20B,20Cの径方向間隔が小さくなる楔状の空間になっており、ボール保持面67から付勢力を受ける付勢ボール62はこの楔状空間が狭くなる方向へ押し込まれるため、光軸方向と径方向のいずれにも安定した状態で付勢ボール62が支持される。また、ボール保持溝41から後方への付勢ボール62の脱落がボール保持面67によって防止される。なお、付勢ボール62とボール保持面67を確実に当接させるために、図9の状態で各前方突出部65A,65B,65Cの前面と当付面43の間には僅かに光軸方向の隙間が確保されている。また、ビス挿通穴66における中間部66cと大径部66aの間の段部と、固定ビス69の頭部69bとの間には、光軸方向へ僅かな隙間がある。そのため、当付面43と頭部69bによって規制される前後範囲の間でボールホルダ14の光軸方向位置や傾きを僅かに変化させることが可能であり、これによって3つの付勢ボール62の位置のばらつきなどを吸収して安定した保持を行うことができる。   Each fixed screw 69 has a limit of tightening into the screw hole 42 at a position in FIG. 9 where the front end portion of the shaft portion 69 c contacts the contact surface 43 of the coil holder 13. In this state, the ball holding surfaces 67 of the front protrusions 65A, 65B, and 65C formed on the ball holder 14 abut against the urging ball 62 from the rear, and forward in the optical axis direction applied to the ball holder 14 from the coil spring 70. Each urging ball 62 receives this urging force. As shown in FIG. 9, in the vicinity of the rear end of the ball holding groove 41 in which the urging ball 62 is inserted, the bottom surface of the ball holding groove 41 and the swing guide surfaces 20A, 20B, and 20C are moved forward in the optical axis direction. The wedge-shaped space in which the radial interval is reduced and the urging ball 62 that receives the urging force from the ball holding surface 67 is pushed in a direction in which the wedge-shaped space is narrowed. The urging ball 62 is supported in a stable state. Further, the ball holding surface 67 prevents the urging ball 62 from falling backward from the ball holding groove 41. In order to ensure that the urging ball 62 and the ball holding surface 67 are in contact with each other, a slight gap between the front surface of each of the front protrusions 65A, 65B, and 65C and the contact surface 43 in the optical axis direction in the state shown in FIG. The gap is secured. Further, there is a slight gap in the optical axis direction between the step portion between the intermediate portion 66 c and the large diameter portion 66 a in the screw insertion hole 66 and the head portion 69 b of the fixed screw 69. Therefore, it is possible to slightly change the position and inclination of the ball holder 14 in the optical axis direction between the front and rear ranges regulated by the contact surface 43 and the head 69b, and thereby the positions of the three biasing balls 62 can be changed. It is possible to perform stable holding by absorbing variations in the thickness.

以上のように3つの定位置ボール61と3つの付勢ボール62を介して固定ユニット18(コイルホルダ13)の軸方向貫通部13b内に支持された可動ユニット17(バレルホルダ12)は、各定位置ボール61及び各付勢ボール62に対する3つの揺動案内面20A,20B,20Cの接触位置を変化させながら、揺動案内面20A,20B,20Cを含む球面の中心である球心揺動中心Qを中心とする方向自在な回転動作を行うことが可能である。この可動ユニット17(バレルホルダ12)の回転動作に際しては、揺動案内面20A,20B,20Cの位置変化に伴って定位置ボール61や付勢ボール62が転動してもよいし、定位置ボール61や付勢ボール62を転動させずに揺動案内面20A,20B,20Cが摺動してもよい。揺動案内面20A,20B,20Cと定位置ボール61及び付勢ボール62は点接触の関係であるため、いずれの態様でも少ない抵抗でスムーズに可動ユニット17を動作させることができる。   As described above, the movable unit 17 (barrel holder 12) supported in the axial through-hole 13b of the fixed unit 18 (coil holder 13) via the three fixed-position balls 61 and the three urging balls 62 has each fixed While changing the contact positions of the three swing guide surfaces 20A, 20B, and 20C with respect to the position ball 61 and each biasing ball 62, a spherical center swing center that is the center of the spherical surface including the swing guide surfaces 20A, 20B, and 20C. It is possible to perform a freely rotating operation around Q. During the rotation of the movable unit 17 (barrel holder 12), the fixed position ball 61 and the urging ball 62 may roll as the position of the swing guide surfaces 20A, 20B, and 20C changes. The swing guide surfaces 20A, 20B, and 20C may slide without causing the 61 or the urging ball 62 to roll. Since the swing guide surfaces 20A, 20B, and 20C and the fixed-position balls 61 and the urging balls 62 are in a point contact relationship, the movable unit 17 can be smoothly operated with little resistance in any aspect.

可動ユニット17を構成するバレルホルダ12内に鏡筒11が支持される。鏡筒11は複数のレンズで構成される撮像光学系L(図9参照)を内部に保持した筒状体である。図9ないし図11に示すように、鏡筒11は光軸方向に進むにつれて段階的に径の大きさを変化させており、光軸方向の最前部に最も径が大きい大径部11aを有し、その後方に大径部11aよりも小径の中間部11bを有し、光軸方向の最後部に最も径が小さい小径部11cを有する。   The lens barrel 11 is supported in the barrel holder 12 constituting the movable unit 17. The lens barrel 11 is a cylindrical body in which an imaging optical system L (see FIG. 9) composed of a plurality of lenses is held. As shown in FIGS. 9 to 11, the diameter of the lens barrel 11 is changed step by step as it advances in the optical axis direction, and the largest diameter portion 11a having the largest diameter is provided at the forefront portion in the optical axis direction. In addition, an intermediate portion 11b having a smaller diameter than the large-diameter portion 11a is provided behind the small-diameter portion 11c having the smallest diameter at the rearmost portion in the optical axis direction.

鏡筒11は、小径部11cを後方に向けて前方からバレルホルダ12の軸方向貫通部12bに挿入され、中間部11bと小径部11cの間の段部が挿入規制フランジ12cの前面に当接することで光軸方向へのそれ以上の挿入が規制される(図9)。図1、図2、図6ないし図9、図23、図24に示すように、この状態で小径部11cは挿入規制フランジ12cの内側を通ってバレルホルダ12の後方に突出し、大径部11aは軸方向貫通部12bに挿入されずにバレルホルダ12の前方に位置する。バレルホルダ12から後方に突出した小径部11cの外周面には周面ネジ11d(図9ないし図11)が形成されており、周面ネジ11dに対して押え環15が取り付けられる。押え環15は周面ネジ11dに螺合するネジ溝を内周面に有する環状体であり、挿入規制フランジ12cの後面に当て付くまで押え環15を締め付けることで、バレルホルダ12に対して鏡筒11が固定される。図9に示すように、ボールホルダ14の中央開口14aの開口径は押え環15の径よりも大きく、コイルホルダ13にボールホルダ14を取り付けた後に、中央開口14aを通して押え環15の着脱が可能である。   The lens barrel 11 is inserted into the axial through portion 12b of the barrel holder 12 from the front with the small-diameter portion 11c facing rearward, and the step portion between the intermediate portion 11b and the small-diameter portion 11c contacts the front surface of the insertion restriction flange 12c. Thus, further insertion in the optical axis direction is restricted (FIG. 9). As shown in FIGS. 1, 2, 6 to 9, 23, and 24, in this state, the small diameter portion 11c protrudes behind the barrel holder 12 through the inside of the insertion restriction flange 12c, and the large diameter portion 11a It is located in front of the barrel holder 12 without being inserted into the axial through-hole 12b. A peripheral screw 11d (FIGS. 9 to 11) is formed on the outer peripheral surface of the small diameter portion 11c protruding rearward from the barrel holder 12, and a presser ring 15 is attached to the peripheral screw 11d. The presser ring 15 is an annular body having a thread groove on the inner peripheral surface that is screwed into the peripheral surface screw 11d. The presser ring 15 is tightened until it comes into contact with the rear surface of the insertion restricting flange 12c, so that the barrel is fixed to the barrel holder 12. 11 is fixed. As shown in FIG. 9, the opening diameter of the central opening 14a of the ball holder 14 is larger than the diameter of the presser ring 15. After the ball holder 14 is attached to the coil holder 13, the presser ring 15 can be attached and detached through the central opening 14a. It is.

鏡筒11の大径部11aとバレルホルダ12はそれぞれ、コイルホルダ13の前壁13cの中央開口13dを通過しない径方向の大きさを有しているため、鏡筒11はコイルホルダ13の軸方向貫通部13bに対して光軸方向前方から挿入可能で、バレルホルダ12はコイルホルダ13の軸方向貫通部13bに対して光軸方向後方から挿入可能となる。撮像装置10の組み立ての手順として、コイルホルダ13の軸方向貫通部13bに対してバレルホルダ12を含む可動ユニット17を後方から挿入した上でボールホルダ14を取り付け、続いてバレルホルダ12の軸方向貫通部12bに対して前方から鏡筒11を挿入し、ボールホルダ14の中央開口14aを通して押え環15を組み付けてバレルホルダ12に鏡筒11を固定させるとよい。可動ユニット17の取り付けに際しては、一対のロール範囲制限突起31の間に支持座40Aが位置するように周方向位置を定める。また、コイルホルダ13の軸方向貫通部13bに可動ユニット17を挿入する前に各ボール保持溝41に定位置ボール61を収めておき、可動ユニット17の挿入後に付勢ボール62をボール保持溝41の後端部分に収め、さらにボールホルダ14の取り付けを行う。   Since the large-diameter portion 11a of the lens barrel 11 and the barrel holder 12 have a radial size that does not pass through the central opening 13d of the front wall 13c of the coil holder 13, the lens barrel 11 is in the axial direction of the coil holder 13. The barrel holder 12 can be inserted into the through-hole 13b from the front in the optical axis direction, and the barrel holder 12 can be inserted into the axial through-hole 13b of the coil holder 13 from the rear in the optical axis direction. As a procedure for assembling the imaging device 10, the movable unit 17 including the barrel holder 12 is inserted into the axial penetration portion 13 b of the coil holder 13 from the rear side, and then the ball holder 14 is attached. The lens barrel 11 may be inserted from the front with respect to 12b, and the presser ring 15 is assembled through the central opening 14a of the ball holder 14 to fix the lens barrel 11 to the barrel holder 12. When mounting the movable unit 17, the circumferential position is determined so that the support seat 40 </ b> A is positioned between the pair of roll range limiting protrusions 31. Further, the fixed-position balls 61 are stored in the respective ball holding grooves 41 before the movable unit 17 is inserted into the axial direction through portion 13 b of the coil holder 13, and the urging balls 62 are inserted into the ball holding grooves 41 after the movable unit 17 is inserted. And the ball holder 14 is attached.

バレルホルダ12の軸方向貫通部12bに挿入した状態の鏡筒11は、大径部11aがコイルホルダ13の前方に突出し、小径部11bの後端部分がコイルホルダ13の後方に突出しており、大径部11aの外周部に環状のバランサ16を取り付け、小径部11bの後端部分にイメージセンサユニット19を取り付ける。鏡筒11と可動ユニット17は、先に述べた球心揺動中心Qを中心とする方向自在な回転動作を一体的に行う。鏡筒11の後端部分に設けたイメージセンサユニット19に対して、鏡筒11の前端部分にバランサ16を設けることで、鏡筒11と可動ユニット17からなる可動部分の重心が球心揺動中心Qと略一致するように重量バランスをとっている。   The lens barrel 11 inserted in the axial through-hole 12b of the barrel holder 12 has a large-diameter portion 11a protruding forward of the coil holder 13 and a rear end portion of the small-diameter portion 11b protruding rearward of the coil holder 13. An annular balancer 16 is attached to the outer periphery of the diameter portion 11a, and an image sensor unit 19 is attached to the rear end portion of the small diameter portion 11b. The lens barrel 11 and the movable unit 17 integrally perform a freely rotating operation around the above-described ball center swing center Q. By providing the balancer 16 at the front end portion of the lens barrel 11 with respect to the image sensor unit 19 provided at the rear end portion of the lens barrel 11, the center of gravity of the movable portion consisting of the lens barrel 11 and the movable unit 17 swings in the center of the ball. The weight is balanced so as to substantially coincide with the center Q.

イメージセンサユニット19は光軸O上に受光面が位置するイメージセンサ19a(図9)を有しており、撮像光学系Lを通して得られる被写体像がイメージセンサ19aにより光電変換され、その画像信号がフレキシブル基板19bを通して伝送される。フレキシブル基板19bは撮像装置10を制御する制御回路71(図9に概念的に示す)に接続し、制御回路71において画像信号の処理を行い、表示デバイスへの画像表示や記録媒体への画像データの記録を行う。制御回路71にはさらに、撮像装置10の姿勢を検知する姿勢検知センサ72(図9)からの信号が入力される。   The image sensor unit 19 has an image sensor 19a (FIG. 9) whose light receiving surface is located on the optical axis O. A subject image obtained through the imaging optical system L is photoelectrically converted by the image sensor 19a, and the image signal is converted into an image signal. It is transmitted through the flexible substrate 19b. The flexible substrate 19b is connected to a control circuit 71 (conceptually shown in FIG. 9) that controls the imaging apparatus 10, and processes image signals in the control circuit 71 to display an image on a display device and image data on a recording medium. Record. Further, a signal from an attitude detection sensor 72 (FIG. 9) that detects the attitude of the imaging apparatus 10 is input to the control circuit 71.

コイルホルダ13に対する各コイル54,55,56と各ホールセンサ57,58,59の組み付けは、コイルホルダ13に可動ユニット17や鏡筒11を取り付ける前と取り付けた後の任意の段階で行うことができる。前述のように、各コイル54,55,56を取り付けた状態のコイル支持板51,52,53をコイルホルダ13の支持凹部48,49,50上に載せて接着などで固定することで、各コイル54,55,56が貫通穴45,46,47内に挿入される。貫通穴45を通してコイルホルダ13の軸方向貫通部13b内に露出した第1コイル54の内周面54dが、可動ユニット17を構成する第1磁石ユニット27の各永久磁石27-1,27-2の外周面27bに対向して位置する。同様に、貫通穴46を通してコイルホルダ13の軸方向貫通部13b内に露出した第2コイル55の内周面55dが、第2磁石ユニット28の各永久磁石28-1,28-2の外周面28bに対向して位置し、貫通穴47を通してコイルホルダ13の軸方向貫通部13b内に露出した第3コイル56の内周面56dが、第3磁石ユニット29の各永久磁石29-1,29-2の外周面29bに対向して位置する。径方向に対向する第1コイル54と第1磁石ユニット27が第1のアクチュエータ(駆動部)を構成し、径方向に対向する第2コイル55と第2磁石ユニット28が第2のアクチュエータ(駆動部)を構成し、径方向に対向する第3コイル56と第3磁石ユニット29が第3のアクチュエータ(駆動部)を構成する。   The coils 54, 55, 56 and the hall sensors 57, 58, 59 are assembled to the coil holder 13 at any stage before and after the movable unit 17 and the lens barrel 11 are attached to the coil holder 13. it can. As described above, the coil support plates 51, 52, 53 with the coils 54, 55, 56 attached are placed on the support recesses 48, 49, 50 of the coil holder 13 and fixed by bonding or the like. Coils 54, 55, 56 are inserted into the through holes 45, 46, 47. The inner peripheral surface 54d of the first coil 54 exposed through the through hole 45 and into the axial through portion 13b of the coil holder 13 is the permanent magnets 27-1 and 27-2 of the first magnet unit 27 constituting the movable unit 17. Is located opposite the outer peripheral surface 27b. Similarly, the inner peripheral surface 55d of the second coil 55 exposed in the axial through portion 13b of the coil holder 13 through the through hole 46 is the outer peripheral surface of each of the permanent magnets 28-1, 28-2 of the second magnet unit 28. The inner peripheral surface 56d of the third coil 56 that is located opposite to the b 28b and is exposed through the through hole 47 in the axial through portion 13b of the coil holder 13 is the permanent magnets 29-1, 29 of the third magnet unit 29. -2 is located opposite the outer peripheral surface 29b. The first coil 54 and the first magnet unit 27 that face in the radial direction constitute a first actuator (driving unit), and the second coil 55 and the second magnet unit 28 that face in the radial direction constitute a second actuator (drive). The third coil 56 and the third magnet unit 29 facing each other in the radial direction form a third actuator (drive unit).

第1のアクチュエータでは第1磁石ユニット27と共にヨーク24が磁気回路を形成し、第2のアクチュエータでは第2磁石ユニット28と共にヨーク25が磁気回路を形成し、第3のアクチュエータでは第3磁石ユニット29と共にヨーク26が磁気回路を形成する。ヨーク24,25,26は、底壁24a,25a,26aと立壁24b,25b,26bで各磁石ユニット27,28,29を囲み、立壁24b,25b,26bの先端を外径方向に位置するコイル54,55,56に向けることによって、各磁石ユニット27,28,29の磁力線をコイル54,55,56側(外周面27b,28b,29bと立壁24b,25b,26bの先端の間)に集中させて、コイル54,55,56に作用する磁力を増幅させる。先に述べたように、ヨーク24,25,26はさらに、対応する磁石ユニット27,28,29を保持する機能を有する。   In the first actuator, the yoke 24 forms a magnetic circuit together with the first magnet unit 27, in the second actuator the yoke 25 forms a magnetic circuit together with the second magnet unit 28, and in the third actuator, the third magnet unit 29. At the same time, the yoke 26 forms a magnetic circuit. The yokes 24, 25, 26 are coils in which the bottom walls 24a, 25a, 26a and the standing walls 24b, 25b, 26b surround the magnet units 27, 28, 29, and the tips of the standing walls 24b, 25b, 26b are positioned in the outer diameter direction. By directing it toward 54, 55, 56, the magnetic lines of force of the magnet units 27, 28, 29 are concentrated on the coil 54, 55, 56 side (between the outer peripheral surfaces 27b, 28b, 29b and the tips of the standing walls 24b, 25b, 26b). Thus, the magnetic force acting on the coils 54, 55 and 56 is amplified. As described above, the yokes 24, 25, and 26 further have a function of holding the corresponding magnet units 27, 28, and 29.

各ホールセンサ57,58,59は、コイル支持板51,52,53のセンサ支持凹部51b,52b,53b内に組み付けられることで、各磁石ユニット27,28,29の外周面27b,28b,29bに対して径方向に若干の隙間を有する状態で位置する(図9、図34参照)。各ホールセンサ57,58,59は、対応する各コイル54,55,56の長手方向及び短手方向の略中心(径方向に延びる直線に沿って各コイル54,55,56を平面視したときの各コイル54,55,56の外形中心)に位置している(図6ないし図8、図29、図31ないし図34参照)。ホールセンサ57によって第1のアクチュエータ(第1磁石ユニット27)における磁界の変化を検出し、ホールセンサ58によって第2のアクチュエータ(第2磁石ユニット28)における磁界の変化を検出し、ホールセンサ59によって第3のアクチュエータ(第3磁石ユニット29)における磁界の変化を検出する。センサ支持凹部51b,52b,53bは内径方向に突出するコイル支持突起51a,52a,53aの内部空間を利用して凹設されているので、優れたスペース効率でホールセンサ57,58,59を配置することができる。また、ホールセンサ57,58,59を磁石ユニット27,28,29に近づけて位置させて、検出の精度を高めることができる。   The hall sensors 57, 58, 59 are assembled in the sensor support recesses 51b, 52b, 53b of the coil support plates 51, 52, 53, so that the outer peripheral surfaces 27b, 28b, 29b of the magnet units 27, 28, 29 are obtained. In contrast, it is positioned with a slight gap in the radial direction (see FIGS. 9 and 34). Each Hall sensor 57, 58, 59 is substantially centered in the longitudinal direction and short direction of the corresponding coil 54, 55, 56 (when each coil 54, 55, 56 is viewed in plan along a straight line extending in the radial direction). (Refer to FIGS. 6 to 8, 29, and 31 to 34). A change in the magnetic field in the first actuator (first magnet unit 27) is detected by the hall sensor 57, a change in the magnetic field in the second actuator (second magnet unit 28) is detected by the hall sensor 58, and the hall sensor 59 A change in the magnetic field in the third actuator (third magnet unit 29) is detected. The sensor support recesses 51b, 52b, 53b are recessed using the internal space of the coil support protrusions 51a, 52a, 53a protruding in the inner diameter direction, so that the hall sensors 57, 58, 59 are arranged with excellent space efficiency. can do. In addition, the Hall sensors 57, 58, and 59 can be positioned close to the magnet units 27, 28, and 29 to improve detection accuracy.

コイル支持板51,52,53の外周面上に図示を省略するフレキシブル基板が配設される。フレキシブル基板は、センサ支持凹部51b,52b,53b内のホールセンサ57,58,59に接続するセンサ接続部と、貫通穴51c,52c,53cを通して第1コイル54と第2コイル55と第3コイル56のそれぞれに接続するコイル接続部を有している。フレキシブル基板は制御回路71(図9)に接続し、ホールセンサ57,58,59で得られる磁界の情報がフレキシブル基板を介して制御回路71に送られ、このセンサ情報に基づいて可動ユニット17と鏡筒11の姿勢が検出される。また、制御回路71によって第1コイル54,第2コイル55,第3コイル56への通電制御が行われる。なお、図9では制御回路71と第3コイル56及びホールセンサ59の接続関係のみを示しているが、第1コイル54、第2コイル55、ホールセンサ57,58についても同様に制御回路71と電気的に接続される。   A flexible substrate (not shown) is disposed on the outer peripheral surfaces of the coil support plates 51, 52, and 53. The flexible substrate includes a sensor connection portion connected to the hall sensors 57, 58, and 59 in the sensor support recess portions 51b, 52b, and 53b, and the first coil 54, the second coil 55, and the third coil through the through holes 51c, 52c, and 53c. A coil connecting portion connected to each of 56 is provided. The flexible substrate is connected to the control circuit 71 (FIG. 9), and information on the magnetic field obtained by the Hall sensors 57, 58, 59 is sent to the control circuit 71 via the flexible substrate. Based on this sensor information, the movable unit 17 and The attitude of the lens barrel 11 is detected. Further, the control circuit 71 performs energization control to the first coil 54, the second coil 55, and the third coil 56. 9 shows only the connection relationship between the control circuit 71, the third coil 56, and the hall sensor 59, the same applies to the control circuit 71 and the first coil 54, the second coil 55, and the hall sensors 57, 58. Electrically connected.

第1のアクチュエータでは、第1コイル54の一対の長辺部54aと第1磁石ユニット27の各永久磁石27-1,27-2のそれぞれの長手方向が周方向を向き、前側の長辺部54aと永久磁石27-1が径方向に対向し、後側の長辺部54aと永久磁石27-2が径方向に対向している。永久磁石27-1と永久磁石27-2はそれぞれ図13、図15ないし図17に示すように着磁されているため、第1コイル54に通電すると、フレミングの左手の法則により、第1コイル54の長辺部54aに沿って電流の流れる方向と、永久磁石27-1,27-2による長辺部54a周りの磁界の向きに対して略垂直な方向の推力が働く。この第1のアクチュエータによる推力を図6、図18、図21、図29に矢印F11と矢印F12で概念的に示した。第1コイル54の電流の方向によって推力の作用方向がF11とF12に切り替わる。第1のアクチュエータでは、第1磁石ユニット27の長手方向と第1コイル54の長辺部54aがそれぞれ周方向に長く延びている。これによって推力F11,F12を効率良く生じさせることができる。   In the first actuator, the pair of long side portions 54a of the first coil 54 and the longitudinal directions of the permanent magnets 27-1, 27-2 of the first magnet unit 27 face the circumferential direction, and the long side portion on the front side. 54a and the permanent magnet 27-1 are opposed to each other in the radial direction, and the rear long side portion 54a and the permanent magnet 27-2 are opposed to each other in the radial direction. Since the permanent magnet 27-1 and the permanent magnet 27-2 are magnetized as shown in FIGS. 13 and 15 to 17, respectively, when the first coil 54 is energized, the first coil is obeyed according to Fleming's left-hand rule. Thrust in a direction substantially perpendicular to the direction in which current flows along the long side portion 54a of 54 and the direction of the magnetic field around the long side portion 54a by the permanent magnets 27-1 and 27-2 acts. The thrust by the first actuator is conceptually shown by arrows F11 and F12 in FIG. 6, FIG. 18, FIG. 21, and FIG. The direction of the thrust is switched between F11 and F12 depending on the direction of the current of the first coil 54. In the first actuator, the longitudinal direction of the first magnet unit 27 and the long side portion 54a of the first coil 54 extend in the circumferential direction. As a result, the thrusts F11 and F12 can be generated efficiently.

第2のアクチュエータでは、第2コイル55の一対の長辺部55aと第2磁石ユニット28の各永久磁石28-1,28-2のそれぞれの長手方向が周方向を向き、前側の長辺部55aと永久磁石28-1が径方向に対向し、後側の長辺部55aと永久磁石28-2が径方向に対向している。永久磁石28-1と永久磁石28-2はそれぞれ図13、図15ないし図17に示すように着磁されているため、第2コイル55に通電すると、フレミングの左手の法則により、第2コイル55の長辺部55aに沿って電流の流れる方向と、永久磁石28-1,28-2による長辺部55a周りの磁界の向きに対して略垂直な方向の推力が働く。この第2のアクチュエータによる推力を図6、図8、図18、図20に矢印F21と矢印F22で概念的に示した。第2コイル55の電流の方向によって推力の作用方向がF21とF22に切り替わる。第2のアクチュエータでは、第2磁石ユニット28の長手方向と第2コイル55の長辺部55aがそれぞれ周方向に長く延びている。これによって推力F21,F22を効率良く生じさせることができる。   In the second actuator, the pair of long side portions 55a of the second coil 55 and the respective longitudinal directions of the permanent magnets 28-1, 28-2 of the second magnet unit 28 face the circumferential direction, and the long side portion on the front side. 55a and the permanent magnet 28-1 are opposed to each other in the radial direction, and the rear long side portion 55a and the permanent magnet 28-2 are opposed to each other in the radial direction. Since the permanent magnet 28-1 and the permanent magnet 28-2 are magnetized as shown in FIGS. 13, 15 to 17, respectively, when the second coil 55 is energized, the second coil 55 is subjected to Fleming's left-hand rule. A thrust in a direction substantially perpendicular to the direction in which the current flows along the long side portion 55a of 55 and the direction of the magnetic field around the long side portion 55a by the permanent magnets 28-1, 28-2 acts. The thrust by the second actuator is conceptually shown by arrows F21 and F22 in FIGS. 6, 8, 18, and 20. FIG. The direction in which the thrust acts is switched between F21 and F22 depending on the direction of the current in the second coil 55. In the second actuator, the longitudinal direction of the second magnet unit 28 and the long side portion 55a of the second coil 55 respectively extend in the circumferential direction. As a result, the thrusts F21 and F22 can be generated efficiently.

第3のアクチュエータでは、第3コイル56の一対の長辺部56aと第3磁石ユニット29の各永久磁石29-1,29-2のそれぞれの長手方向が光軸方向に延び、一方の長辺部56aと永久磁石29-1が径方向に対向し、他方の長辺部56aと永久磁石29-2が径方向に対向している。永久磁石29-1と永久磁石29-2はそれぞれ図13、図15ないし図17に示すように着磁されているため、第3コイル56に通電すると、フレミングの左手の法則により、第3コイル56の長辺部56aに沿って電流の流れる方向と、永久磁石29-1,29-2による長辺部56a周りの磁界の向きに対して略垂直な方向の推力が働く。この第3のアクチュエータによる推力を図7、図8、図19、図20、図33に矢印F31と矢印F32で概念的に示した。第3コイル56の電流の方向によって推力の作用方向がF31とF32に切り替わる。第1及び第2のアクチュエータと異なり、第3のアクチュエータでは、第3磁石ユニット29の長手方向と第3コイル56の長辺部56aが延びる方向がそれぞれ、周方向ではなく光軸方向になっている。これによってローリング方向の推力F31,F32を効率良く生じさせることができる。   In the third actuator, the pair of long sides 56a of the third coil 56 and the respective permanent magnets 29-1, 29-2 of the third magnet unit 29 extend in the optical axis direction, and one of the long sides The portion 56a and the permanent magnet 29-1 are opposed to each other in the radial direction, and the other long side portion 56a and the permanent magnet 29-2 are opposed to each other in the radial direction. Since the permanent magnet 29-1 and the permanent magnet 29-2 are magnetized as shown in FIGS. 13, 15 to 17, respectively, when the third coil 56 is energized, the third coil 56 is obeyed according to Fleming's left-hand rule. A thrust in a direction substantially perpendicular to the direction in which current flows along the long side portion 56a of 56 and the direction of the magnetic field around the long side portion 56a by the permanent magnets 29-1, 29-2 is applied. The thrust by the third actuator is conceptually shown by arrows F31 and F32 in FIGS. 7, 8, 19, 20, and 33. FIG. The direction in which the thrust acts is switched between F31 and F32 depending on the direction of the current in the third coil 56. Unlike the first and second actuators, in the third actuator, the longitudinal direction of the third magnet unit 29 and the direction in which the long side portion 56a of the third coil 56 extends are not in the circumferential direction but in the optical axis direction. Yes. Thereby, thrusts F31 and F32 in the rolling direction can be generated efficiently.

各コイル54,55,56はコイルホルダ13に固定的に支持されているので、各アクチュエータの推力は、各磁石ユニット27,28,29を有する可動ユニット17を動作させる力として働く。前述の通り、可動ユニット17は球心揺動中心Qを中心として回転自在に支持されており、第1のアクチュエータと第2のアクチュエータの推力F11,F12,F21,F22によって、可動ユニット17と鏡筒11は球心揺動中心Qを中心として光軸Oを傾けるチルト動作を行う。例えば、第1のアクチュエータと第2のアクチュエータの中間の周方向位置を通りチルト前の光軸Oを含む仮想平面P1(図3)と、仮想平面P1に垂直でチルト前の光軸Oを含む仮想平面P2(図3)を設定し、仮想平面P1に沿う可動ユニット17と鏡筒11の傾動をピッチング方向の動作、仮想平面P2に沿う可動ユニット17と鏡筒11の傾動をヨーイング方向の動作とすると、第1のアクチュエータと第2のアクチュエータの推力F11,F12,F21,F22によって、ピッチング方向の成分とヨーイング方向の成分を含むあらゆる方向のチルト動作を可動ユニット17と鏡筒11に行わせることができる。   Since each coil 54, 55, 56 is fixedly supported by the coil holder 13, the thrust of each actuator acts as a force for operating the movable unit 17 having each magnet unit 27, 28, 29. As described above, the movable unit 17 is supported so as to be rotatable about the center of swinging of the spherical center Q, and the movable unit 17 and the mirror are mirrored by the thrusts F11, F12, F21, and F22 of the first actuator and the second actuator. The cylinder 11 performs a tilting operation in which the optical axis O is tilted about the ball center swing center Q. For example, the virtual plane P1 (FIG. 3) including the optical axis O before the tilt passing through the intermediate circumferential position between the first actuator and the second actuator and the optical axis O before the tilt perpendicular to the virtual plane P1 is included. The virtual plane P2 (FIG. 3) is set, and the tilting of the movable unit 17 and the lens barrel 11 along the virtual plane P1 is performed in the pitching direction. Then, the movable unit 17 and the lens barrel 11 are tilted in all directions including the components in the pitching direction and the components in the yawing direction by the thrusts F11, F12, F21, and F22 of the first actuator and the second actuator. be able to.

また、第3のアクチュエータの推力F31,F32によって、可動ユニット17と鏡筒11は光軸Oを中心とするローリング方向の回転動作(周方向の角度変化)を行う。可動ユニット17と鏡筒11が第1と第2のアクチュエータの駆動によって初期状態からチルトした状態にあるときには、第3アクチュエータV3の推力F31,F32のうち、チルトした状態の光軸を中心とする回転方向の推力成分により回転動作を行う。   Further, the movable unit 17 and the lens barrel 11 rotate in the rolling direction around the optical axis O (change in the angle in the circumferential direction) by the thrusts F31 and F32 of the third actuator. When the movable unit 17 and the lens barrel 11 are tilted from the initial state by driving the first and second actuators, the tilted optical axis is centered on the thrust F31, F32 of the third actuator V3. Rotation is performed by the thrust component in the rotation direction.

ピッチング方向やヨーイング方向の成分を含む可動ユニット17のチルト動作が所定量まで達すると、バレルホルダ12に計6つ設けた傾動制限突起30A,30B, 30C,30D,30E,30Fのいずれかが、ボールホルダ14の傾動規制面68に当接し、それ以上の可動ユニット17の傾動が機械的に制限される。6つの傾動制限突起30A,30B, 30C,30D,30E,30Fは、光軸Oからの径方向距離が略同じで、光軸方向の位置も同じであり、かつ隣り合う2つの傾動制限突起30の周方向間隔が全て略一致している。別言すれば、図15や図17のように光軸Oに沿って見た状態で、周方向に隣り合う傾動制限突起30A,30B, 30C,30D,30E,30Fの中心を順に直線で接続すると正六角形となる。このように配置したことで、可動ユニット17のチルト動作量を、特定の方向に偏りを持たずに概ね均等に制限することができる。特に、光軸Oを含む平面のうち、隣接する2つの傾動制限突起30から等距離を通る平面に沿って可動ユニット17が傾動した場合には、該2つの傾動制限突起30が共に傾動規制面68に当接する。例えば、第1コイル54の周方向の中央を通り光軸Oを含む平面に沿って可動ユニット17が傾動した場合、傾動制限突起30A,30Fのペアまたは傾動制限突起30C,30Dのペアが傾動規制面68に当接する。第2コイル55の周方向の中央を通りと光軸Oを含む平面に沿って可動ユニット17が傾動した場合、傾動制限突起30B,30Cのペアまたは傾動制限突起30E,30Fのペアが傾動規制面68に当接する。第3コイル56の周方向の中央を通り光軸Oを含む平面(仮想平面P1)に沿って可動ユニット17が傾動した場合、傾動制限突起30A,30Bのペアまたは傾動制限突起30D,30Eのペアが傾動規制面68に当接する。2つの傾動制限突起30が傾動規制面68に当接するこれらの状態では、1つの傾動制限突起30が傾動規制面68に当接する状態よりも可動ユニット17の高い安定性と精度を得ることができ、撮像装置10の起動時や防振機能が無効状態から有効状態に切り替わったときなどに、これらの傾動の機械的移動端を基準位置として参照して、チルト動作に関するホールセンサ57,58,59(特にホールセンサ57,58)による検出のイニシャライズ(初期化)を行う。特に、第1コイル54の周方向の中央を通り光軸Oを含む平面に沿って可動ユニット17が傾動する場合(傾動制限突起30A,30Fのペアまたは傾動制限突起30C,30Dのペアが傾動規制面68に当接する場合)と、第2コイル55の周方向の中央を通り光軸Oを含む平面に沿って可動ユニット17が傾動する場合(傾動制限突起30B,30Cのペアまたは傾動制限突起30E,30Fのペアが傾動規制面68に当接する場合)が、ホールセンサ57,58で検出される磁束密度変化量が大きいため、この2つの平面に沿う傾動方向でイニシャライズを行うと効果的である。   When the tilting operation of the movable unit 17 including components in the pitching direction and yawing direction reaches a predetermined amount, any of the six tilt limiting protrusions 30A, 30B, 30C, 30D, 30E, and 30F provided on the barrel holder 12 is Abutting on the tilt regulating surface 68 of the holder 14, further tilting of the movable unit 17 is mechanically limited. The six tilt limiting projections 30A, 30B, 30C, 30D, 30E, and 30F have substantially the same radial distance from the optical axis O, the same position in the optical axis direction, and two adjacent tilt limiting projections 30. All the circumferential intervals are substantially the same. In other words, the centers of the tilt limiting protrusions 30A, 30B, 30C, 30D, 30E, and 30F adjacent in the circumferential direction are connected in a straight line in order in the state viewed along the optical axis O as shown in FIGS. Then it becomes a regular hexagon. By arranging in this way, the amount of tilting operation of the movable unit 17 can be limited almost uniformly without being biased in a specific direction. In particular, when the movable unit 17 tilts along a plane that is equidistant from two adjacent tilt limiting projections 30 among the plane including the optical axis O, the two tilt limiting projections 30 are both tilt limiting surfaces. 68 abuts. For example, when the movable unit 17 tilts along the plane including the optical axis O through the center of the first coil 54 in the circumferential direction, the pair of tilt limiting protrusions 30A and 30F or the pair of tilt limiting protrusions 30C and 30D is tilt controlled. Abuts on surface 68. When the movable unit 17 tilts along the plane including the optical axis O and passes through the center of the second coil 55 in the circumferential direction, the pair of tilt limiting protrusions 30B and 30C or the pair of tilt limiting protrusions 30E and 30F is tilted restricting surface. 68 abuts. When the movable unit 17 tilts along the plane including the optical axis O (virtual plane P1) passing through the center of the third coil 56 in the circumferential direction, the pair of tilt limiting protrusions 30A and 30B or the pair of tilt limiting protrusions 30D and 30E. Comes into contact with the tilt regulating surface 68. In these states in which the two tilt limiting protrusions 30 are in contact with the tilt restricting surface 68, higher stability and accuracy of the movable unit 17 can be obtained than in the state in which one tilt restricting protrusion 30 is in contact with the tilt restricting surface 68. When the image pickup apparatus 10 is started up or when the image stabilization function is switched from the invalid state to the valid state, the Hall movement sensors 57, 58, and 59 relating to the tilt operation are referred to with reference to the mechanical movement end of the tilt as a reference position. (In particular, initialization of detection by the hall sensors 57 and 58) is performed. In particular, when the movable unit 17 tilts along the plane including the optical axis O through the center of the first coil 54 in the circumferential direction (the pair of tilt limiting protrusions 30A and 30F or the pair of tilt limiting protrusions 30C and 30D is tilt controlled). And the case where the movable unit 17 tilts along the plane including the optical axis O through the center of the second coil 55 in the circumferential direction (a pair of tilt limiting protrusions 30B and 30C or a tilt limiting protrusion 30E). , 30F abuts against the tilt regulating surface 68), since the amount of change in magnetic flux density detected by the Hall sensors 57, 58 is large, it is effective to perform initialization in the tilt directions along these two planes. .

6つの傾動制限突起30A,30B, 30C,30D,30E,30Fの光軸方向の突出量を等しくすることで、イニシャライズ時の移動量計算や部品管理が容易になるという利点がある。但し、各傾動制限突起30の突出量を異なるものにすることも可能である。   By making the protrusion amounts in the optical axis direction of the six tilt limiting protrusions 30A, 30B, 30C, 30D, 30E, and 30F equal, there is an advantage that the movement amount calculation and component management at the time of initialization can be facilitated. However, it is possible to make the amount of protrusion of each tilt limiting protrusion 30 different.

ローリング方向に可動ユニット17が回転動作すると、その動作方向に応じて、バレルホルダ12の揺動案内面20A上に設けた一対のロール範囲制限突起31の一方と他方が支持座40Aの一方と他方の側面に当接することで、動作範囲が制限される。図5に示すように、一対のロール範囲制限突起31の周方向間隔は支持座40Aの周方向幅よりも大きく、各ロール範囲制限突起31と支持座40Aの間の周方向の隙間が、ローリング方向への可動ユニット17(バレルホルダ12)の可動量となる。撮像装置10の起動時や防振機能が無効状態から有効状態に切り替わったときなどに、各ロール範囲制限突起31が支持座40Aに当接する機械的移動端を基準位置として参照して、ロール動作に関するホールセンサ57,58,59(特にホールセンサ59)による検出のイニシャライズを行う。   When the movable unit 17 rotates in the rolling direction, one and the other of the pair of roll range restricting protrusions 31 provided on the swing guide surface 20A of the barrel holder 12 correspond to the one and the other of the support seat 40A. The operating range is limited by contacting the side surface. As shown in FIG. 5, the circumferential interval between the pair of roll range limiting projections 31 is larger than the circumferential width of the support seat 40A, and the circumferential gap between each roll range limiting projection 31 and the support seat 40A is rolling. The movable unit 17 (barrel holder 12) moves in the direction. When the image pickup apparatus 10 is started up or when the anti-vibration function is switched from the invalid state to the valid state, the roll operation is performed with reference to the mechanical moving end where each roll range limiting protrusion 31 contacts the support seat 40A as a reference position. The detection by the hall sensors 57, 58 and 59 (particularly the hall sensor 59) is initialized.

以上のように、第1から第3のアクチュエータを用いて、可動ユニット17と鏡筒11にピッチング、ヨーイング、ローリングの各動作成分を含む自在な方向の動作(球心揺動中心Qを中心とする回転)を行わせることができる。この動作によって、光軸Oの向き(イメージセンサ19aの受光面の傾き)や、光軸Oを中心とするイメージセンサ19aの回転方向位置を変化させることができる。例えば、撮像装置10に手振れによる振動などが作用した場合に、その姿勢変化に伴うイメージセンサ19a上での画像の振れを軽減させる方向及び大きさに可動ユニット17と鏡筒11を動作させて撮影画像品質の低下を軽減する防振(像振れ補正)制御を行うことができる。防振制御は、姿勢検知センサ72(図9)による撮像装置10の姿勢情報と、ホールセンサ57,58,59による可動ユニット17及び鏡筒11の位置情報に基づいて、制御回路71が各コイル54,55,56の通電を制御することで実行される。特に本実施形態の撮像装置10では、撮像光学系Lとイメージセンサユニット19を支持する鏡筒11を方向自在に回転可能に支持することで、光軸Oと垂直な平面に沿って光学系を動作させるタイプの撮像装置に比して、コンパクトな構成でありながら対応可能な像振れ補正角を大きくすることが可能になっている。そのため、手持ちで撮影することを前提としたカメラのみならず、身体の任意の位置に取り付けられるウエアラブルカメラや、自動車などの移動機械に搭載されるカメラのような、大きな像振れが生じやすい条件の撮像装置においても、優れた防振補正効果を得ることができる。   As described above, the first to third actuators are used to move the movable unit 17 and the lens barrel 11 in any direction including the pitching, yawing, and rolling motion components (centered on the pivot center Q). Rotation). By this operation, the direction of the optical axis O (the inclination of the light receiving surface of the image sensor 19a) and the rotation direction position of the image sensor 19a around the optical axis O can be changed. For example, when vibration due to camera shake or the like is applied to the image pickup apparatus 10, the movable unit 17 and the lens barrel 11 are operated in a direction and size to reduce the image shake on the image sensor 19a due to the posture change. It is possible to perform image stabilization (image blur correction) control that reduces image quality degradation. In the image stabilization control, the control circuit 71 controls each coil based on the posture information of the imaging device 10 by the posture detection sensor 72 (FIG. 9) and the positional information of the movable unit 17 and the lens barrel 11 by the hall sensors 57, 58, and 59. It is executed by controlling the energization of 54, 55 and 56. In particular, in the imaging apparatus 10 according to the present embodiment, the optical system is arranged along a plane perpendicular to the optical axis O by supporting the imaging cylinder L that supports the imaging optical system L and the image sensor unit 19 in a freely rotatable manner. Compared to the type of imaging device to be operated, it is possible to increase the image blur correction angle that can be accommodated with a compact configuration. For this reason, not only a camera that is supposed to be photographed by hand, but also a wearable camera that can be attached to any position of the body, or a camera that is mounted on a mobile machine such as an automobile, conditions that cause large image blurring. Even in the imaging apparatus, an excellent anti-shake correction effect can be obtained.

また、可動ユニット17と鏡筒11を含む可動部分の重心と球心揺動中心Qが略一致するため、可動ユニット17と鏡筒11を駆動する際の負荷変動が少なく、小型軽量な第1,第2及び第3のアクチュエータでレスポンス良く高精度に可動ユニット17と鏡筒11の動作を制御することができる。   Further, since the center of gravity of the movable part including the movable unit 17 and the lens barrel 11 and the ball center swing center Q substantially coincide with each other, the load variation when driving the movable unit 17 and the lens barrel 11 is small, and the first is small and light. The operations of the movable unit 17 and the lens barrel 11 can be controlled with high response and high accuracy by the second and third actuators.

以上の撮像装置10は、各アクチュエータを構成する磁石ユニット27,28,29を省スペースに支持することができ、その組み付け時の作業性にも優れた構成になっている。まず、バレルホルダ12の支持座21,22,23上に支持したヨーク24,25,26の底壁24a,25a,26aと一対の立壁24b,25b,26bによって各磁石ユニット27,28,29を保持しており、バレルホルダ12において各磁石ユニット27,28,29や各ヨーク24,25,26の外側を囲繞する壁部を要さない構成としたので、磁石ユニット27,28,29の周囲のスペース効率を高めることができる。例えば、バレルホルダ12とコイルホルダ13の間の径方向空間のうち、各磁石ユニット27,28,29と各ヨーク24,25,26の間に周方向のスペースを得ることができ、この周方向スペースを3つの支持座40A,40B,40C(固定ユニット18によって可動ユニット17を可動に支持する手段)の配置スペースとして活用することができる。また、光軸方向においても各磁石ユニット27,28,29と各ヨーク24,25,26の厚み以上のスペースを要さないため、可動ユニット17の光軸方向サイズを小型化できる。   The above imaging device 10 can support the magnet units 27, 28, and 29 constituting each actuator in a space-saving manner, and has a configuration excellent in workability at the time of assembly. First, the magnet units 27, 28, 29 are held by the bottom walls 24a, 25a, 26a of the yokes 24, 25, 26 supported on the support seats 21, 22, 23 of the barrel holder 12 and a pair of standing walls 24b, 25b, 26b. In addition, since the barrel holder 12 does not require a wall portion that surrounds the outer sides of the magnet units 27, 28, 29 and the yokes 24, 25, 26, a space around the magnet units 27, 28, 29 is provided. Efficiency can be increased. For example, in the radial space between the barrel holder 12 and the coil holder 13, a circumferential space can be obtained between each magnet unit 27, 28, 29 and each yoke 24, 25, 26, and this circumferential space. Can be utilized as an arrangement space for the three support seats 40A, 40B, and 40C (means for movably supporting the movable unit 17 by the fixed unit 18). Moreover, since the space beyond the thickness of each magnet unit 27, 28, 29 and each yoke 24, 25, 26 is not required also in the optical axis direction, the size of the movable unit 17 in the optical axis direction can be reduced.

各ヨーク24,25,26は、支持座21,22,23から突出する磁石支持突起21b,22b,23bを長穴24c,25c,26cに挿入させることにより容易に位置決めできる。磁石支持突起21b,22b,23bは、各磁石ユニット27,28,29を構成する永久磁石27-1,27-2のペアと永久磁石28-1,28-2のペアと永久磁石29-1,29-2のペアの間に隙間を持たせるスペーサとしても機能し、生産工程においてこれらの対をなす永久磁石が不用意に吸着してしまう可能性を軽減することができる。特に防振駆動用のアクチュエータでは強力な磁石を用いる場合が多いため、この構成が有効である。それぞれの永久磁石は、磁石支持突起21b,22b,23bによって隔てられたヨーク24,25,26内のスペースに無駄なく収まる形状であり、ヨーク24,25,26に対する個々の永久磁石の位置決めの手間もかからない。さらに、磁石ユニット27,28,29は対応するヨーク24,25,26内に収めた段階で磁力によりヨーク24,25,26に吸着されるため、接着によって最終的に固定する前の仮組みの段階でも安定した保持状態が得られる。   The yokes 24, 25, and 26 can be easily positioned by inserting the magnet support protrusions 21b, 22b, and 23b protruding from the support seats 21, 22, and 23 into the long holes 24c, 25c, and 26c. The magnet support protrusions 21b, 22b, and 23b are formed of a pair of permanent magnets 27-1, 27-2, a pair of permanent magnets 28-1, 28-2, and a permanent magnet 29-1 constituting each magnet unit 27, 28, 29. , 29-2 also functions as a spacer for providing a gap between the pair, and the possibility that the permanent magnets forming the pair inadvertently adsorb in the production process can be reduced. In particular, a strong magnet is often used in an actuator for anti-vibration driving, so this configuration is effective. Each permanent magnet has a shape that fits in the space within the yokes 24, 25, and 26 separated by the magnet support protrusions 21b, 22b, and 23b without waste. It doesn't take. Further, since the magnet units 27, 28, and 29 are attracted to the yokes 24, 25, and 26 by the magnetic force when they are accommodated in the corresponding yokes 24, 25, and 26, the temporary assembly before being finally fixed by bonding is used. A stable holding state can be obtained even at the stage.

磁石支持突起21b,22b,23bを各磁石ユニット27,28,29の長手方向の大きさよりも短くして、永久磁石27-1,27-2のペア、永久磁石28-1,28-2のペア、永久磁石29-1,29-2のペアのそれぞれの間に接着剤注入空間M1,M2,M3が形成されている。そのため、各磁石ユニット27,28,29の外側に接着剤注入用のスペースを要さず、アクチュエータ周りの大型化を伴わずに各磁石ユニット27,28,29と各ヨーク24,25,26を接着固定させることができる。接着剤注入空間M1,M2,M3への接着剤の注入によって各磁石ユニット27,28,29と各ヨーク24,25,26を同時にバレルホルダ12に対して固定できるため、作業工数も少なくて済む。また、ヨーク24,25については、各一対の立壁24b,25bによって接着剤注入空間M1,M2の周方向端部を塞いでいるので、接着剤注入空間M1,M2からの接着剤の漏出が生じにくく、接着時の作業性向上に寄与する。   The magnet support protrusions 21b, 22b, and 23b are made shorter than the longitudinal size of each of the magnet units 27, 28, and 29 so that the pair of permanent magnets 27-1 and 27-2 and the permanent magnets 28-1 and 28-2 Adhesive injection spaces M1, M2, and M3 are formed between the pair of permanent magnets 29-1 and 29-2. Therefore, the space for injecting the adhesive is not required outside the magnet units 27, 28, 29, and the magnet units 27, 28, 29 and the yokes 24, 25, 26 are connected without increasing the size of the actuator. It can be bonded and fixed. Since the magnet units 27, 28, 29 and the yokes 24, 25, 26 can be simultaneously fixed to the barrel holder 12 by injecting the adhesive into the adhesive injection spaces M1, M2, M3, the number of work steps can be reduced. In addition, since the yokes 24 and 25 have the circumferential ends of the adhesive injection spaces M1 and M2 closed by the pair of standing walls 24b and 25b, leakage of the adhesive from the adhesive injection spaces M1 and M2 occurs. Contributes to improved workability during bonding.

各ヨーク24,25,26の立壁24b,25b,26bは金属板の曲げ加工によって形成可能であり、長穴24c,25c,26cは金属板の打ち抜き加工によって形成可能である。また、バレルホルダ12の材質を合成樹脂とする場合、光軸方向に移動する成形用の型などによって磁石支持突起21b,22b,23bを形成可能である。これらの製造手法はいずれも安価で手間のかからないものであり、撮像装置10の生産コストを抑えつつ上記の効果を得ることができる。   The standing walls 24b, 25b, and 26b of the yokes 24, 25, and 26 can be formed by bending a metal plate, and the long holes 24c, 25c, and 26c can be formed by punching the metal plate. When the material of the barrel holder 12 is a synthetic resin, the magnet support protrusions 21b, 22b, and 23b can be formed by a molding die that moves in the optical axis direction. Any of these manufacturing methods is inexpensive and hassle-free, and the above-described effects can be obtained while suppressing the production cost of the imaging device 10.

図35ないし図42は、第2の実施形態に係る可動ユニット117とその構成要素を示している。可動ユニット117は、バレルホルダ12と第1磁石ユニット27については先に説明した第1の実施形態の可動ユニット17と共通の構成であり、これらの共通要素には同じ符号を付している。また可動ユニット117以外の構成要素については第1の実施形態と共通しており、図示を省略している。   35 to 42 show the movable unit 117 and its components according to the second embodiment. The movable unit 117 has the same configuration as that of the movable unit 17 of the first embodiment described above with respect to the barrel holder 12 and the first magnet unit 27, and these common elements are denoted by the same reference numerals. The components other than the movable unit 117 are the same as those in the first embodiment, and are not shown.

可動ユニット117におけるヨーク124は、バレルホルダ12の支持座21上に載置される湾曲形状の底壁(底部)124aを有する点と、底壁124aに磁石支持突起21bを挿通させる長穴(穴部)124cが形成されている点では先の実施形態のヨーク24と共通しているが、底壁124aの周方向の端部ではなく、底壁124aの光軸方向の前後縁部から外径方向に突出する一対の立壁(立壁部)124bを有している点が異なっている。光軸方向前方の立壁124bは永久磁石27-1の前方を向く側面27dに対向し、光軸方向後方の立壁124bは永久磁石27-2の後方を向く側面27eに対向しており、一対の立壁124bが光軸方向の両側から永久磁石27-1と永久磁石27-2を挟んで保持する構成となっている。一対の立壁124bの光軸方向の間隔は、光軸方向における永久磁石27-1と磁石支持突起21bと永久磁石27-2の幅の和と略一致しており、一対の立壁124bと磁石支持突起21bの間の2つのスペースに永久磁石27-1と永久磁石27-2がそれぞれガタつくことなく収まる。一対の立壁124bの周方向長は、永久磁石27-1,27-2の周方向長よりも僅かに大きく、第1磁石ユニット27の長手方向の全体をカバーすることができる。   The yoke 124 in the movable unit 117 has a curved bottom wall (bottom part) 124a placed on the support seat 21 of the barrel holder 12, and a long hole (hole part) through which the magnet support protrusion 21b is inserted into the bottom wall 124a. ) 124c is formed in common with the yoke 24 of the previous embodiment, but it is not in the circumferential direction of the bottom wall 124a but from the front and rear edges in the optical axis direction of the bottom wall 124a. The difference is that it has a pair of standing walls (standing wall portions) 124b projecting toward each other. The standing wall 124b at the front in the optical axis direction faces the side surface 27d facing the front of the permanent magnet 27-1, and the standing wall 124b at the rear in the direction of the optical axis faces the side surface 27e facing the rear of the permanent magnet 27-2. The standing wall 124b is configured to hold the permanent magnet 27-1 and the permanent magnet 27-2 from both sides in the optical axis direction. The distance between the pair of standing walls 124b in the optical axis direction is substantially equal to the sum of the widths of the permanent magnet 27-1, the magnet support protrusion 21b, and the permanent magnet 27-2 in the optical axis direction. The permanent magnet 27-1 and the permanent magnet 27-2 are accommodated in the two spaces between the protrusions 21b without rattling. The circumferential length of the pair of standing walls 124b is slightly larger than the circumferential length of the permanent magnets 27-1, 27-2, and can cover the entire longitudinal direction of the first magnet unit 27.

ヨーク124における一対の立壁124bは、第1磁石ユニット27の外径方向に配置されたコイル54(図1ないし図34に示す第1の実施形態を参照)に向けて突出しており、第1の実施形態のヨーク24と同様に、永久磁石27-1及び永久磁石27-2の外周面27bと立壁124bの先端の間に磁力線を集中させて、コイル54に作用する磁力を強めることができる。   The pair of standing walls 124b in the yoke 124 protrudes toward the coil 54 (see the first embodiment shown in FIGS. 1 to 34) disposed in the outer diameter direction of the first magnet unit 27, and the first Similar to the yoke 24 of the embodiment, the magnetic force acting on the coil 54 can be strengthened by concentrating the magnetic lines of force between the outer peripheral surface 27b of the permanent magnet 27-1 and the permanent magnet 27-2 and the tip of the standing wall 124b.

図35ないし図42では、第1の実施形態における第2磁石ユニット28と第3磁石ユニット29については図示を省略しているが、これらの磁石ユニットを保持するヨークについてもヨーク124と同様に立壁の突出位置を変更することが可能である。すなわち、第1の実施形態のヨーク25とヨーク26では、底壁25a,26aの周方向の両端から外径方向に突出する各一対の立壁25b,26bを備えているが、これに代えて、底壁25a,26aの光軸方向の前後の縁部から外径方向に突出する一対の立壁を設けることができる。   In FIGS. 35 to 42, the second magnet unit 28 and the third magnet unit 29 in the first embodiment are not shown, but the yoke that holds these magnet units is also a standing wall in the same manner as the yoke 124. It is possible to change the protruding position. That is, the yoke 25 and the yoke 26 of the first embodiment include a pair of standing walls 25b and 26b that protrude in the outer diameter direction from both ends in the circumferential direction of the bottom walls 25a and 26a. A pair of standing walls protruding in the outer diameter direction from the front and rear edges of the bottom walls 25a and 26a in the optical axis direction can be provided.

図43ないし図49は、第3の実施形態に係る可動ユニット217とその構成要素を示している。この可動ユニット217は、磁石ユニット227とヨーク224がそれぞれ湾曲せずに平らな形状を有している点で、第1の実施形態の可動ユニット17や第2の実施形態の可動ユニット117とは異なる。   43 to 49 show a movable unit 217 and its constituent elements according to the third embodiment. The movable unit 217 is different from the movable unit 17 of the first embodiment and the movable unit 117 of the second embodiment in that the magnet unit 227 and the yoke 224 are flat without being curved. Different.

磁石ユニット227を構成する永久磁石227-1と永久磁石227-2は略共通の直方体形状であり、各永久磁石227-1,227-2は、長手方向に延びる底面227a及びコイル対向面227bと、一対の長手方向端面227cと、底面227a及びコイル対向面227bに対して略垂直で長手方向に延びる側面227d及び側面227eを有している。   The permanent magnet 227-1 and the permanent magnet 227-2 constituting the magnet unit 227 have a substantially common rectangular parallelepiped shape, and each of the permanent magnets 227-1 and 227-2 has a bottom surface 227 a and a coil facing surface 227 b extending in the longitudinal direction. And a pair of longitudinal end surfaces 227c, and a side surface 227d and a side surface 227e extending in the longitudinal direction substantially perpendicular to the bottom surface 227a and the coil facing surface 227b.

ヨーク224は、各永久磁石227-1,227-2の底面227aを支持する長方形状の底壁(底部)224aと、底壁224aの長手方向端部から底壁224aに対して略垂直に突出する一対の立壁(立壁部)224bと、底壁224aの短手方向の略中央に長手方向へ向けて形成した長穴(穴部)224cを有している。   The yoke 224 protrudes substantially perpendicularly to the bottom wall 224a from a rectangular bottom wall (bottom) 224a that supports the bottom surface 227a of each permanent magnet 227-1, 227-2, and a longitudinal end of the bottom wall 224a. And a long hole (hole portion) 224c formed in the longitudinal direction at the approximate center in the short side direction of the bottom wall 224a.

可動部材212は第1及び第2の実施形態におけるバレルホルダ12に相当する部材であり、図中には可動部材212のうちバレルホルダ12の支持座21に相当する支持座221のみを示している。支持座221は、ヨーク224の底壁224aを支持する平面状の支持面(支持部)221aと、支持面221aに対して略垂直に突出する薄板状の磁石支持突起(突出部)221bを有している。支持面221aに沿う平面内での磁石支持突起221bの長さは、永久磁石227-1及び永久磁石227-2の長手方向の長さよりも短い。   The movable member 212 is a member corresponding to the barrel holder 12 in the first and second embodiments, and only the support seat 221 corresponding to the support seat 21 of the barrel holder 12 is shown in the drawing. The support seat 221 has a flat support surface (support portion) 221a that supports the bottom wall 224a of the yoke 224, and a thin plate-like magnet support protrusion (projection portion) 221b that protrudes substantially perpendicular to the support surface 221a. doing. The length of the magnet support protrusion 221b in the plane along the support surface 221a is shorter than the lengths of the permanent magnet 227-1 and the permanent magnet 222-2 in the longitudinal direction.

ヨーク224は、長穴224cに磁石支持突起221bに挿通させ、支持面221aに底壁224aを載置させて支持座221上に支持される。永久磁石227-1は側面227eを磁石支持突起221b側に向けてヨーク224上に取り付けられ、永久磁石227-2は側面227dを磁石支持突起221b側に向けてヨーク224上に取り付けられる。各永久磁石227-1,227-2は、底面227aがヨーク224の底壁224a上に載置され、一対の長手方向端面227cがヨーク224の一対の立壁224bに対向して挟まれる状態で支持される。そして、永久磁石227-1の側面227eと永久磁石227-2の側面227dの間に形成された接着剤注入空間(隙間)M4(図43、図47)に接着剤を注入して、支持座221に対してヨーク224と磁石ユニット227を固定する。   The yoke 224 is supported on the support seat 221 by inserting the magnet support protrusion 221b through the long hole 224c and placing the bottom wall 224a on the support surface 221a. The permanent magnet 227-1 is mounted on the yoke 224 with the side surface 227e facing the magnet support projection 221b, and the permanent magnet 227-2 is mounted on the yoke 224 with the side surface 227d facing the magnet support projection 221b. Each permanent magnet 227-1, 227-2 is supported in a state where the bottom surface 227 a is placed on the bottom wall 224 a of the yoke 224 and the pair of longitudinal end surfaces 227 c are sandwiched between the pair of standing walls 224 b of the yoke 224. Is done. Then, an adhesive is injected into an adhesive injection space (gap) M4 (FIGS. 43 and 47) formed between the side surface 227e of the permanent magnet 227-1 and the side surface 227d of the permanent magnet 222-2, and the support seat The yoke 224 and the magnet unit 227 are fixed to the 221.

図43ないし図49には図示を省略しているが、磁石ユニット227のコイル対向面227bに対向する位置にコイルが設けられる。コイルは永久磁石227-1,227-2の長手方向に沿って延びる一対の辺部と、該一対の辺部を接続する一対に接続部を有する扁平形状の空芯コイルであり、コイルに通電すると電流の方向に応じて図47と図49に矢印で示す推力F41,F42が生じる。   Although not shown in FIGS. 43 to 49, a coil is provided at a position facing the coil facing surface 227 b of the magnet unit 227. The coil is a flat air core coil having a pair of side portions extending along the longitudinal direction of the permanent magnets 227-1 and 227-2 and a pair of connecting portions connecting the pair of side portions. Then, thrusts F41 and F42 indicated by arrows in FIGS. 47 and 49 are generated according to the direction of the current.

可動ユニット217は、第1及び第2の実施形態における可動ユニット17,117と同様に、可動部材212がピッチング方向やヨーイング方向の成分を含むチルト動作(光軸Oを含む平面に沿う傾動)やローリング動作(光軸Oを中心とする回転)を行うように構成することができる。この場合、球心揺動中心Q(図9、図22)を中心とする円弧の接線方向に推力F41,F42が向くように、磁石ユニット227とヨーク224を含むアクチュエータを配置するとよい。そして、このアクチュエータとは別に同様のアクチュエータを2つ以上追加してそれぞれの推力の作用方向を異ならせた配置にすることで、第1の実施形態と同等の防振動作を実現できる。   Similar to the movable units 17 and 117 in the first and second embodiments, the movable unit 217 includes a tilting operation (tilting along a plane including the optical axis O) in which the movable member 212 includes components in the pitching direction and the yawing direction. A rolling operation (rotation around the optical axis O) can be performed. In this case, an actuator including the magnet unit 227 and the yoke 224 may be arranged so that the thrusts F41 and F42 are directed in the tangential direction of the arc centered on the ball center swing center Q (FIGS. 9 and 22). Further, by adding two or more similar actuators separately from this actuator and arranging them so that the direction of the action of each thrust is different, the vibration isolating operation equivalent to that of the first embodiment can be realized.

可動ユニット217は、第1の実施形態とは異なり、可動部材212を平面的に移動させる形態にすることも可能である。詳しくは、支持座221における支持面221aを含む平面に沿って可動部材212を移動可能に支持することにより、推力F41,F42の作用方向に直線的に可動部材212を動作させることができる。そして推力F41,F42と交差する方向への推力を発生する同様の構成のアクチュエータを少なくとも1つ追加することにより、支持面221aを含む平面に沿う任意の方向に可動部材212が移動可能となる。この場合、光学系の光軸に対して支持面221a(可動部材212の移動平面)が垂直となるように配置することによって、可動部材212が保持する光学要素が光軸直交平面に沿って移動するタイプの防振機構として成立する。   Unlike the first embodiment, the movable unit 217 can be configured to move the movable member 212 in a planar manner. Specifically, the movable member 212 can be operated linearly in the direction in which the thrusts F41 and F42 act by supporting the movable member 212 movably along a plane including the support surface 221a of the support seat 221. The movable member 212 can be moved in any direction along the plane including the support surface 221a by adding at least one actuator having a similar configuration that generates thrust in a direction intersecting the thrusts F41 and F42. In this case, by arranging the support surface 221a (moving plane of the movable member 212) to be perpendicular to the optical axis of the optical system, the optical element held by the movable member 212 moves along the plane orthogonal to the optical axis. It is established as a type of anti-vibration mechanism.

なお、第2の実施形態のヨーク124と同様に、ヨーク224は、底壁224aの長手方向の端部ではなく、短手方向の端部から一対の立壁224bを突出させる形態に変更することも可能である。この場合、一対の立壁224bによって、永久磁石227-1の側面227dと永久磁石227-2の側面227eを挟む形態となる。   Similar to the yoke 124 of the second embodiment, the yoke 224 may be changed to a configuration in which the pair of standing walls 224b protrude from the ends in the short direction instead of the ends in the longitudinal direction of the bottom wall 224a. Is possible. In this case, the pair of standing walls 224b sandwich the side surface 227d of the permanent magnet 227-1 and the side surface 227e of the permanent magnet 227-2.

第3の実施形態から分かるように、本発明における磁石とヨークは、撮像光学系の光軸Oを中心として湾曲した形状には限定されず、防振駆動の態様や撮像装置の内部構造に応じて磁石やヨークの形状を適宜変更することができる。   As can be seen from the third embodiment, the magnet and the yoke in the present invention are not limited to a curved shape around the optical axis O of the imaging optical system, and depend on the image stabilization drive mode and the internal structure of the imaging device. Thus, the shape of the magnet or yoke can be changed as appropriate.

以上の各実施形態では各ヨークに一対の立壁を設けているが、各ヨークにおいて磁石ユニットを囲む3つ以上の立壁を設けることも可能である。例えば、第1の実施形態のヨーク24の変形例として、第1磁石ユニット27の長手方向端面27cに対向する一対の立壁24bに加えて、永久磁石27-1の側面27dに対向する立壁(第2の実施形態のヨーク124における光軸方向前方の立壁124bと同様の部位)や、永久磁石27-2の側面27eに対向する立壁(第2の実施形態のヨーク124における光軸方向後方の立壁124bと同様の部位)を設けることができる。このようにヨークの立壁による磁石ユニットの囲繞範囲を増やすことで、ヨークの外側への磁束漏れを低減させる効果が得られる。なお、図示実施形態よりもヨークの立壁を増やす場合、磁石ユニットの三方ではなく四方の全てを囲むように立壁を形成する方が、ホールセンサによる検出精度に関して有利である。   In each of the above embodiments, each yoke is provided with a pair of standing walls. However, it is also possible to provide three or more standing walls surrounding the magnet unit in each yoke. For example, as a modification of the yoke 24 of the first embodiment, in addition to a pair of standing walls 24b facing the longitudinal end surface 27c of the first magnet unit 27, a standing wall (first wall) facing the side surface 27d of the permanent magnet 27-1. In the yoke 124 of the second embodiment in the same direction as the standing wall 124b on the front side in the optical axis direction) or a standing wall facing the side surface 27e of the permanent magnet 27-2 (the standing wall on the rear side in the optical axis direction in the yoke 124 of the second embodiment). The same part as 124b can be provided. Thus, by increasing the surrounding range of the magnet unit by the standing wall of the yoke, an effect of reducing magnetic flux leakage to the outside of the yoke can be obtained. In addition, when increasing the standing wall of the yoke as compared with the illustrated embodiment, it is advantageous in terms of detection accuracy by the Hall sensor to form the standing wall so as to surround all four sides of the magnet unit.

以上、図示実施形態に基づいて本発明を説明したが、本発明は要旨の範囲内において図示実施形態とは異なる形態にすることが可能である。例えば、第1の実施形態の撮像装置10は3つのアクチュエータを備えているが、第3磁石ユニット29とヨーク26と第3コイル56からなる第3のアクチュエータを省略して、光軸Oを中心とするローリング方向の動作を行わないタイプの防振機構とした撮像装置にも適用が可能である。また、第1の実施形態の撮像装置10では、第1磁石ユニット27とヨーク24と第1コイル54からなる第1のアクチュエータと、第2磁石ユニット28とヨーク25と第2コイル55からなる第2のアクチュエータによって可動ユニット17及び鏡筒11のチルト動作を行わせているが、チルト動作用のアクチュエータを3つ以上にすることも可能である。   As mentioned above, although this invention was demonstrated based on illustration embodiment, this invention can be made into a different form from illustration embodiment in the range of a summary. For example, the imaging apparatus 10 of the first embodiment includes three actuators, but the third actuator including the third magnet unit 29, the yoke 26, and the third coil 56 is omitted, and the optical axis O is the center. The present invention can also be applied to an imaging device that is a type of vibration isolation mechanism that does not perform an operation in the rolling direction. In the imaging device 10 of the first embodiment, the first actuator including the first magnet unit 27, the yoke 24, and the first coil 54, and the second actuator including the second magnet unit 28, the yoke 25, and the second coil 55. Although the movable unit 17 and the lens barrel 11 are tilted by the two actuators, it is possible to use three or more actuators for the tilting operation.

図示の各実施形態は、防振動作時に移動する可動部材(バレルホルダ12や可動部材212)に磁石とヨークを支持し、防振動作時に移動しない固定部材(コイルホルダ13)にコイルを支持した、いわゆるムービングマグネットタイプの防振機構に適用したものである。ムービングマグネットタイプは、フレキシブル基板などによる電気的接続を要する各コイル54,55,56や各ホールセンサ57,58,59が移動しないので、こうした電気的接続手段による負荷がかからないという利点がある。但し、ムービングコイルタイプの防振機構にも本発明は適用可能である。ムービングコイルタイプの変形例を第1の実施形態の撮像装置10に適用した場合、バレルホルダ12に支持される各コイル54,55,56の外径方向に対向してコイルホルダ13に支持される各磁石ユニット27,28,29が位置し、コイルホルダ13から内径方向に向けて磁石支持突起21b,22b,23bが突出し、さらにヨーク24,25,26は立壁24b,25b,26bを内径方向に向けて突出させてコイルホルダ13に支持される構成となる。ホールセンサ57,58,59はバレルホルダ12に支持される。   In each illustrated embodiment, a magnet and a yoke are supported on a movable member (barrel holder 12 and movable member 212) that moves during a vibration isolating operation, and a coil is supported on a fixed member (coil holder 13) that does not move during the vibration isolating operation. This is applied to a so-called moving magnet type vibration isolation mechanism. The moving magnet type has an advantage that the coils 54, 55, and 56 and the hall sensors 57, 58, and 59 that need to be electrically connected by a flexible substrate or the like do not move, so that a load by such an electrical connecting means is not applied. However, the present invention can also be applied to a moving coil type vibration isolation mechanism. When the moving coil type modification is applied to the imaging apparatus 10 of the first embodiment, each coil 54, 55, 56 supported by the barrel holder 12 is supported by the coil holder 13 so as to be opposed to the outer diameter direction. The magnet units 27, 28, and 29 are positioned, the magnet support protrusions 21b, 22b, and 23b protrude from the coil holder 13 toward the inner diameter direction, and the yokes 24, 25, and 26 face the standing walls 24b, 25b, and 26b in the inner diameter direction. And is supported by the coil holder 13. Hall sensors 57, 58, 59 are supported by barrel holder 12.

第1の実施形態の撮像装置10では、撮像光学系Lとイメージセンサユニット19を含む撮像手段の全体にチルト動作やローリング動作を行わせているが、撮像光学系Lの一部のレンズ(レンズ群)やイメージセンサ19aのみを動作させて像振れ補正を行うタイプの撮像装置にも本発明を適用可能である。   In the image pickup apparatus 10 of the first embodiment, the entire image pickup unit including the image pickup optical system L and the image sensor unit 19 performs a tilt operation and a rolling operation. Group) or an image sensor that performs image blur correction by operating only the image sensor 19a.

10 撮像装置
11 鏡筒
11a 大径部
11b 中間部
11c 小径部
11d 周面ネジ
12 バレルホルダ(可動部材)
12a 筒部
12b 軸方向貫通部
12c 挿入規制フランジ
13 コイルホルダ(固定部材)
13a 筒部
13b 軸方向貫通部
13c 前壁
13d 中央開口
14 ボールホルダ
14a 中央開口
14b 蓋部
14c 外周フランジ
15 押え環
16 バランサ
17 可動ユニット
18 固定ユニット
19 イメージセンサユニット(撮像手段)
19a イメージセンサ
19b フレキシブル基板
20(20A 20B 20C) 揺動案内面(支持手段)
21 22 23 支持座
21a 22a 23a 支持面(支持部)
21b 22b 23b 磁石支持突起(突出部)
24 25 26 ヨーク
24a 25a 26a 底壁(底部)
24b 25b 26b 立壁(立壁部)
24c 25c 26c 長穴(穴部)
27 第1磁石ユニット
28 第2磁石ユニット
29 第3磁石ユニット
27-1 28-1 29-1 永久磁石
27-2 28-2 29-2 永久磁石
27a 28a 29a 内周面
27b 28b 29b 外周面
27c 28c 29c 長手方向端面
27d 27e 28d 28e 29d 29e 側面
30(30A 30B 30C 30D 30E 30F) 傾動制限突起
31 ロール範囲制限突起
40(40A 40B 40C) 支持座(支持手段)
41 ボール保持溝
41a 前方規制壁
42 ビス穴
43 当付面
45 46 47 貫通穴
48 49 50 支持凹部
51 52 53 コイル支持板
51a 52a 53a コイル支持突起
51b 52b 53b センサ支持凹部
51c 52c 53c 貫通穴
54 第1コイル
55 第2コイル
56 第3コイル
54a 55a 56a 長辺部
54b 55b 56b 短辺部
54c 55c 56c 外周面
54d 55d 56d 内周面
57 58 59 ホールセンサ
61 定位置ボール(支持手段)
62 付勢ボール(支持手段)
65(65A,65B,65C) 前方突出部
66 ビス挿通穴
66a 大径部
66b 小径部
66c 中間部
67 ボール保持面
68 傾動規制面
69 固定ビス
69a 螺合部
69b 頭部
69c 軸部
70 コイルバネ
71 制御回路
72 姿勢検知センサ
117 可動ユニット
124 ヨーク
124a 底壁(底部)
124b 立壁(立壁部)
124c 長穴(穴部)
217 可動ユニット
212 可動部材
221 支持座
221a 支持面(支持部)
221b 磁石支持突起(突出部)
224 ヨーク
224a 底壁(底部)
224b 立壁(立壁部)
224c 長穴(穴部)
227 磁石ユニット
227-1 227-2 永久磁石
227a 底面
227b コイル対向面
227c 長手方向端面
227d 227e 側面
L 撮像光学系(撮像手段)
M1 M2 M3 M4 接着剤注入空間(隙間)
O 光軸
Q 球心揺動中心
DESCRIPTION OF SYMBOLS 10 Imaging device 11 Lens tube 11a Large diameter part 11b Middle part 11c Small diameter part 11d Peripheral screw 12 Barrel holder (movable member)
12a Tube portion 12b Axial through portion 12c Insertion restriction flange 13 Coil holder (fixing member)
13a Tube portion 13b Axial through portion 13c Front wall 13d Center opening 14 Ball holder 14a Center opening 14b Cover portion 14c Outer flange 15 Presser ring 16 Balancer 17 Movable unit 18 Fixed unit 19 Image sensor unit
19a Image sensor 19b Flexible substrate 20 (20A 20B 20C) Swing guide surface (supporting means)
21 22 23 Support seat 21a 22a 23a Support surface (support part)
21b 22b 23b Magnet support protrusion (protrusion)
24 25 26 Yoke 24a 25a 26a Bottom wall (bottom)
24b 25b 26b Standing wall (standing wall part)
24c 25c 26c Slotted hole (hole)
27 First magnet unit 28 Second magnet unit 29 Third magnet unit 27-1 28-1 29-1 Permanent magnet 27-2 28-2 29-2 Permanent magnet 27a 28a 29a Inner peripheral surface 27b 28b 29b Outer peripheral surface 27c 28c 29c Longitudinal end face 27d 27e 28d 28e 29d 29e Side face 30 (30A 30B 30C 30D 30E 30F) Tilt restriction protrusion 31 Roll range restriction protrusion 40 (40A 40B 40C) Support seat (support means)
41 Ball holding groove 41a Front regulating wall 42 Screw hole 43 Abutting surface 45 46 47 Through hole 48 49 50 Support recess 51 52 53 Coil support plate 51a 52a 53a Coil support projection 51b 52b 53b Sensor support recess 51c 52c 53c Through hole 54 1 coil 55 2nd coil 56 3rd coil 54a 55a 56a Long side part 54b 55b 56b Short side part 54c 55c 56c Outer peripheral surface 54d 55d 56d Inner peripheral surface 57 58 59 Hall sensor 61 Fixed position ball (support means)
62 Biasing ball (support means)
65 (65A, 65B, 65C) Forward projecting portion 66 Screw insertion hole 66a Large diameter portion 66b Small diameter portion 66c Intermediate portion 67 Ball holding surface 68 Tilt restricting surface 69 Fixed screw 69a Screwing portion 69b Head portion 69c Shaft portion 70 Coil spring 71 Control Circuit 72 Attitude detection sensor 117 Movable unit 124 Yoke 124a Bottom wall (bottom)
124b Standing wall (standing wall)
124c oblong hole (hole)
217 Movable unit 212 Movable member 221 Support seat 221a Support surface (support part)
221b Magnet support protrusion (protrusion)
224 Yoke 224a Bottom wall (bottom)
224b Standing wall (standing wall)
224c oblong hole (hole)
227 Magnet unit 227-1 227-2 Permanent magnet 227 a Bottom surface 227 b Coil facing surface 227 c Longitudinal end surface 227 d 227 e Side surface L Imaging optical system (imaging means)
M1 M2 M3 M4 Adhesive injection space (gap)
O Optical axis Q Ball center swing center

Claims (11)

被写体画像を得る撮像手段の少なくとも一部を支持する可動部材;
上記可動部材を可動に支持する固定部材;
上記可動部材と上記固定部材の一方に支持されて磁気回路を形成する磁石及びヨークと、上記可動部材と上記固定部材の他方に支持されるコイルを有し、上記コイルへの通電によって上記可動部材に推力を付与して像振れ補正を行う駆動部;
を備えた撮像装置において、
上記磁石及びヨークを支持する上記一方の上記可動部材または上記固定部材に、上記ヨークを支持する支持部と、上記支持部から突出する突出部を備え、
上記ヨークは、上記支持部に支持される底部と、上記底部に形成されて上記突出部を挿通させて上記ヨークの位置を決める穴部と、上記底部から上記コイル側へ向けて突出する複数の立壁部を備え、
上記駆動部は少なくとも2つの上記磁石を備え、上記2つの磁石は、上記突出部を挟んで離間して上記ヨークの上記底部上に支持され、かつ上記複数の立壁部に対向して保持されることを特徴とする撮像装置。
A movable member that supports at least part of the imaging means for obtaining a subject image;
A fixed member that movably supports the movable member;
A magnet and a yoke supported by one of the movable member and the fixed member to form a magnetic circuit; and a coil supported by the other of the movable member and the fixed member. A drive unit that applies image thrust to correct image blur;
In an imaging apparatus comprising:
The one movable member or the fixed member that supports the magnet and the yoke includes a support portion that supports the yoke, and a protruding portion that protrudes from the support portion,
The yoke includes a bottom portion supported by the support portion, a hole portion that is formed in the bottom portion and passes through the protruding portion to determine the position of the yoke, and a plurality of protrusions that protrude from the bottom portion toward the coil side. With a standing wall,
The drive unit includes at least two magnets, and the two magnets are supported on the bottom portion of the yoke while being spaced apart from each other with the protruding portion interposed therebetween, and are held to face the plurality of standing wall portions. An imaging apparatus characterized by that.
請求項1記載の撮像装置において、上記2つの磁石はそれぞれ細長形状をなし、互いの長手方向を略平行にして短手方向に上記突出部を挟んだ並列配置で上記ヨークに支持されている撮像装置。 2. The imaging apparatus according to claim 1, wherein each of the two magnets has an elongated shape, and is supported by the yoke in a parallel arrangement in which the protrusions are sandwiched in the short direction with the longitudinal directions thereof being substantially parallel to each other. apparatus. 請求項2記載の撮像装置において、上記2つの磁石の長手方向において上記突出部は上記各磁石よりも短く、上記突出部を挟む領域以外で上記2つの磁石の間に隙間がある撮像装置。 The imaging apparatus according to claim 2, wherein the protruding portion is shorter than the magnets in the longitudinal direction of the two magnets, and there is a gap between the two magnets except in a region sandwiching the protruding portion. 請求項3記載の撮像装置において、上記隙間内に、接着剤によって上記各磁石を上記突出部と上記ヨークに固定する接着固定部を有する撮像装置。 The imaging apparatus according to claim 3, further comprising an adhesive fixing portion that fixes each of the magnets to the protruding portion and the yoke with an adhesive in the gap. 請求項2ないし4のいずれか1項記載の撮像装置において、上記ヨークは、上記2つの磁石の長手方向の両端面に対向する一対の上記立壁部を備えている撮像装置。 5. The imaging apparatus according to claim 2, wherein the yoke includes a pair of standing wall portions facing both end faces in the longitudinal direction of the two magnets. 6. 請求項2ないし4のいずれか1項記載の撮像装置において、上記ヨークは、上記2つの磁石のうち上記突出部を挟んで対向する側面とは反対側の2つの側面に対向する一対の上記立壁部を備えている撮像装置。 5. The imaging device according to claim 2, wherein the yoke is a pair of standing walls facing two side surfaces opposite to a side surface facing the projecting portion of the two magnets. 6. An imaging device comprising a unit. 請求項1ないし6のいずれか1項記載の撮像装置において、
上記ヨークの上記底部は、上記撮像手段を構成する光学系の光軸を中心とする円筒面に沿う湾曲形状を有し、上記ヨークの上記立壁部は、上記底部に対して上記光軸を中心とする径方向に突出し、
上記2つの磁石はそれぞれ上記ヨークの底部に沿う湾曲形状を有している撮像装置。
The imaging device according to any one of claims 1 to 6,
The bottom portion of the yoke has a curved shape along a cylindrical surface centering on the optical axis of the optical system constituting the imaging means, and the standing wall portion of the yoke is centered on the optical axis with respect to the bottom portion. Projecting in the radial direction and
The imaging device in which each of the two magnets has a curved shape along the bottom of the yoke.
請求項7記載の撮像装置において、上記光軸を中心とする周方向に位置を異ならせて3つの上記駆動部を備えており、第1の上記駆動部と第2の上記駆動部は上記可動部材に対して上記光軸の傾きを変化させる2つの異なる方向の推力を付与し、第3の上記駆動部は上記可動部材に対して上記光軸を中心とする回転方向の推力を付与する撮像装置。 8. The imaging device according to claim 7, wherein the three driving units are provided at different positions in a circumferential direction around the optical axis, and the first driving unit and the second driving unit are movable. Imaging in which thrust in two different directions for changing the inclination of the optical axis is applied to the member, and the third driving unit applies thrust in the rotational direction about the optical axis to the movable member. apparatus. 請求項8記載の撮像装置において、上記3つの駆動部を構成する3つの上記ヨークの底部は、上記光軸を中心とする同一の円筒面上に位置している撮像装置。 The imaging device according to claim 8, wherein bottoms of the three yokes constituting the three driving units are located on the same cylindrical surface with the optical axis as a center. 請求項8または9記載の撮像装置において、上記3つの駆動部の間の周方向位置に、上記固定部材に対して上記可動部材を可動に支持する支持手段を備える撮像装置。 10. The imaging apparatus according to claim 8, further comprising a supporting unit that movably supports the movable member with respect to the fixed member at a circumferential position between the three driving units. 請求項1ないし10のいずれか1項記載の撮像装置において、上記可動部材に上記磁石と上記ヨークが支持され、上記固定部材に上記コイルが支持される撮像装置。 11. The imaging apparatus according to claim 1, wherein the magnet and the yoke are supported by the movable member, and the coil is supported by the fixed member.
JP2015209938A 2015-10-26 2015-10-26 Imaging device Pending JP2017083575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015209938A JP2017083575A (en) 2015-10-26 2015-10-26 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015209938A JP2017083575A (en) 2015-10-26 2015-10-26 Imaging device

Publications (1)

Publication Number Publication Date
JP2017083575A true JP2017083575A (en) 2017-05-18

Family

ID=58712963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015209938A Pending JP2017083575A (en) 2015-10-26 2015-10-26 Imaging device

Country Status (1)

Country Link
JP (1) JP2017083575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090639A1 (en) * 2018-11-02 2020-05-07 ミツミ電機株式会社 Actuator for camera, camera module, and device with camera

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090639A1 (en) * 2018-11-02 2020-05-07 ミツミ電機株式会社 Actuator for camera, camera module, and device with camera
JP2020071450A (en) * 2018-11-02 2020-05-07 ミツミ電機株式会社 Camera actuator, camera module, and camera mounting device
CN113168071A (en) * 2018-11-02 2021-07-23 三美电机株式会社 Camera actuator, camera module, and camera mounting device
US20220019127A1 (en) * 2018-11-02 2022-01-20 Mitsumi Electric Co., Ltd. Camera actuator, camera module, and camera mount device
CN113168071B (en) * 2018-11-02 2022-12-13 三美电机株式会社 Camera actuator, camera module, and camera mounting device
JP7227456B2 (en) 2018-11-02 2023-02-22 ミツミ電機株式会社 Actuator for camera, camera module, and camera mounting device

Similar Documents

Publication Publication Date Title
JP2017083582A (en) Imaging device
JP6598676B2 (en) Imaging device
JP6613005B1 (en) Anti-vibration mechanism for bending imaging apparatus, camera, and portable electronic device
JP2017173756A (en) Imaging apparatus
US9423629B2 (en) Imaging apparatus
US9020334B1 (en) Imaging apparatus
US9606370B2 (en) Imaging apparatus
JP6883468B2 (en) Optical unit with runout correction function
JP5140572B2 (en) Optical unit with shake correction function
WO2012015010A1 (en) Tilt-correction unit
US9063346B2 (en) Imaging apparatus
JP2008058391A (en) Imaging lens unit and imaging apparatus
JP5394727B2 (en) Optical correction unit, lens barrel and imaging device
JP2015099360A (en) Imaging device
JPH07248522A (en) Optical device
JP4695011B2 (en) Lens drive device
JP2011128529A (en) Lens driving device, autofocus camera and cellular phone with camera
JP2017173757A (en) Imaging device
JP5104423B2 (en) Camera device and lens barrel device
JP2007292821A5 (en)
JP2017083575A (en) Imaging device
WO2014208195A1 (en) Lens unit and imaging device
JP2007171299A (en) Lens barrel
JP7100777B1 (en) Imaging devices and portable electronic devices
KR20210041947A (en) Camera actuator and camera device comprising the same