JP2017096887A - Hydrogen brittleness evaluation device and hydrogen brittleness evaluation method - Google Patents

Hydrogen brittleness evaluation device and hydrogen brittleness evaluation method Download PDF

Info

Publication number
JP2017096887A
JP2017096887A JP2015232168A JP2015232168A JP2017096887A JP 2017096887 A JP2017096887 A JP 2017096887A JP 2015232168 A JP2015232168 A JP 2015232168A JP 2015232168 A JP2015232168 A JP 2015232168A JP 2017096887 A JP2017096887 A JP 2017096887A
Authority
JP
Japan
Prior art keywords
test piece
hydrogen embrittlement
microcantilever
hydrogen
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015232168A
Other languages
Japanese (ja)
Other versions
JP6547608B2 (en
Inventor
宏太 富松
Kota Tomimatsu
宏太 富松
大村 朋彦
Tomohiko Omura
朋彦 大村
丸山 直紀
Naoki Maruyama
直紀 丸山
光 川田
Hikari Kawada
光 川田
岳文 網野
Takefumi Amino
岳文 網野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015232168A priority Critical patent/JP6547608B2/en
Publication of JP2017096887A publication Critical patent/JP2017096887A/en
Application granted granted Critical
Publication of JP6547608B2 publication Critical patent/JP6547608B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen brittleness evaluation device and a hydrogen brittleness evaluation method capable of evaluating hydrogen influence on peeling strength of a microstructure interface.SOLUTION: A device 100 is configured to evaluate a hydrogen brittleness characteristic of a test piece 1 formed with a minute cantilever 10 extending in a Y direction. The test piece 1 has only one microstructure interface 1b passing between a stationary end 10a and a free end 10b of the minute cantilever 10. The microstructure interface 1b is substantially perpendicular to the Y direction. The minute cantilever 10 has a first surface 10c formed on a surface 1a of the test piece 1, and a second surface 10d substantially perpendicular to the first surface 10c and substantially parallel with the Y direction. The minute cantilever includes: an electrolyte tank 2; a counter electrode 3; an external power supply 4; an indenter 5 provided on a free end 10b side with respect to the microstructure interface 1b on the second surface 10d, and configured to apply a load to a direction substantially perpendicular to the second surface 10d; and a measurement unit 6 configured to measure the displacement and the load of the indenter 5.SELECTED DRAWING: Figure 1

Description

本発明は、水素脆性評価装置および水素脆性評価方法に関する。   The present invention relates to a hydrogen embrittlement evaluation apparatus and a hydrogen embrittlement evaluation method.

高強度鋼、ニッケル合金またはチタン合金等の金属材料では、環境から侵入した水素により破壊が生じることが知られている(水素脆化)。このときの破壊形態は、結晶粒界での破壊となる場合が多い。また、介在物などの第2相と母相との境界(異相界面)が破壊起点になる場合も報告されている。したがって、耐水素脆化性を向上させるには、結晶粒界または異相界面の剥離強度に及ぼす水素の影響を評価する技術が必要とされている。なお、以下の説明において、結晶粒界(双晶界面、ランダム粒界等も含む。)および異相界面等の金属組織内に現れる境界面を総称して、「ミクロ組織界面」ということがある。   It is known that metal materials such as high-strength steel, nickel alloy, and titanium alloy are broken by hydrogen that has entered from the environment (hydrogen embrittlement). In many cases, the fracture mode at this time is fracture at the crystal grain boundary. In addition, it has been reported that the boundary (heterophase interface) between the second phase and the parent phase such as inclusions becomes a fracture starting point. Therefore, in order to improve the hydrogen embrittlement resistance, a technique for evaluating the influence of hydrogen on the peel strength at the crystal grain boundary or the heterogeneous interface is required. In the following description, boundary surfaces appearing in metal structures such as crystal grain boundaries (including twin boundaries, random grain boundaries, etc.) and heterophase interfaces may be collectively referred to as “microstructure interfaces”.

例えば、特許文献1には、粒界を含む柱状の支持梁部を備えた測定用試験片に荷重を加えて曲げ試験を行い、測定用試験片が破壊された時の荷重から破壊特性を算出する結晶粒界破壊特性の測定方法が開示されている。   For example, in Patent Document 1, a bending test is performed by applying a load to a measurement specimen having a columnar support beam including a grain boundary, and the fracture characteristics are calculated from the load when the measurement specimen is broken. A method for measuring grain boundary fracture characteristics is disclosed.

特開2014−174036号公報JP 2014-174036 A

しかしながら、特許文献1に記載の方法は、主にセラミックス試料を対象としたものであり、水素脆化性の評価については一切検討がなされていない。   However, the method described in Patent Document 1 is mainly intended for ceramic samples, and no investigation has been made on the evaluation of hydrogen embrittlement.

また、剥離原因を明確化する上で、曲げ回転軸(曲げの中心となる軸)に垂直な面の塑性変形状態および歪み状態を知ることは重要である。しかし、特許文献1に記載の方法を採用した場合、支持梁部は、試験片の内側に向かって曲げられる。そのため、配置的に電子線後方散乱回折(EBSD)または原子間力顕微鏡(AFM)を用いて、曲げ回転軸に垂直な面の塑性変形状態および歪み状態を知ることはできない。   Further, in clarifying the cause of peeling, it is important to know the plastic deformation state and the strain state of the plane perpendicular to the bending rotation axis (the axis serving as the center of bending). However, when the method described in Patent Document 1 is adopted, the support beam portion is bent toward the inside of the test piece. For this reason, it is impossible to know the plastic deformation state and the strain state of the plane perpendicular to the bending rotation axis by using electron beam backscatter diffraction (EBSD) or atomic force microscope (AFM).

本発明は、上記の問題を解決し、ミクロ組織界面の剥離強度に及ぼす水素の影響を評価することが可能な水素脆性評価装置および水素脆性評価方法を提供することを目的とする。   An object of the present invention is to solve the above problems and provide a hydrogen embrittlement evaluation apparatus and a hydrogen embrittlement evaluation method capable of evaluating the influence of hydrogen on the peel strength at the microstructure interface.

本発明は、上記の問題を解決するためになされたものであり、下記の水素脆性評価装置および水素脆性評価方法を要旨とする。   The present invention has been made in order to solve the above problems, and the gist of the present invention is the following hydrogen embrittlement evaluation apparatus and hydrogen embrittlement evaluation method.

(1)固定端から自由端に向かって一方向に延びる微小片持ち梁が形成された試験片の水素脆化特性を評価する装置であって、
前記試験片は、前記微小片持ち梁の前記固定端と前記自由端との間を通るミクロ組織界面を1つのみ有し、
前記ミクロ組織界面が前記一方向に略垂直であり、
前記微小片持ち梁は、前記試験片の表面に形成された第1面と、前記第1面に略垂直で、かつ、前記一方向に略平行な第2面とを有し、
前記微小片持ち梁を電解液に浸漬する電解液槽と、
前記電解液に浸漬される対極と、
前記試験片と前記対極との間に電位差を生じさせる外部電源と、
前記第2面の前記ミクロ組織界面より自由端側に、前記第2面と略垂直な方向に荷重を負荷する圧子と、
前記圧子の変位および荷重を測定する測定部と、
を備える、水素脆性評価装置。
(1) An apparatus for evaluating hydrogen embrittlement characteristics of a test piece in which a microcantilever extending in one direction from a fixed end toward a free end is formed,
The test piece has only one microstructure interface passing between the fixed end and the free end of the microcantilever,
The microstructure interface is substantially perpendicular to the one direction;
The micro cantilever has a first surface formed on the surface of the test piece, and a second surface substantially perpendicular to the first surface and substantially parallel to the one direction,
An electrolytic bath for immersing the microcantilever in an electrolytic solution;
A counter electrode immersed in the electrolyte;
An external power source that generates a potential difference between the test piece and the counter electrode;
An indenter for applying a load in a direction substantially perpendicular to the second surface on the free end side of the microstructure interface of the second surface;
A measuring unit for measuring the displacement and load of the indenter;
A hydrogen embrittlement evaluation apparatus.

(2)前記試験片が、前記微小片持ち梁の長さ方向中心点より固定端側に前記ミクロ組織界面を有する、上記(1)に記載の水素脆性評価装置。   (2) The hydrogen embrittlement evaluation apparatus according to (1), wherein the test piece has the microstructure interface on the fixed end side from the longitudinal center point of the microcantilever.

(3)前記第2面と前記ミクロ組織界面との交線に沿って、前記交線の一端から他端まで延びるように切欠きが形成されている、上記(1)または(2)に記載の水素脆性評価装置。   (3) The notch is formed so as to extend from one end of the intersecting line to the other end along the intersecting line between the second surface and the microstructure interface. Hydrogen embrittlement evaluation equipment.

(4)前記試験片に前記微小片持ち梁が複数形成され、
各微小片持ち梁を通る前記ミクロ組織界面が同一である、上記(1)から(3)までのいずれかに記載の水素脆性評価装置。
(4) A plurality of the cantilevers are formed on the test piece,
The hydrogen embrittlement evaluation apparatus according to any one of (1) to (3), wherein the microstructure interface passing through each microcantilever is the same.

(5)前記電解液槽が、底部に貫通孔を有し、前記貫通孔の裏面を囲繞するシール材を介して、前記試験片の前記表面の上に載せられ、前記微小片持ち梁を電解液に浸漬する、上記(1)から(4)までのいずれかに記載の水素脆性評価装置。   (5) The electrolyte bath has a through-hole at the bottom and is placed on the surface of the test piece via a sealing material surrounding the back surface of the through-hole to electrolyze the microcantilever The hydrogen embrittlement evaluation apparatus according to any one of (1) to (4), which is immersed in a liquid.

(6)前記試験片の温度を調整する温度調整部をさらに備える、上記(1)から(5)までのいずれかに記載の水素脆性評価装置。   (6) The hydrogen embrittlement evaluation apparatus according to any one of (1) to (5), further including a temperature adjustment unit that adjusts the temperature of the test piece.

(7)試験片の水素脆化特性を評価する方法であって、
(a)固定端から自由端に向かって一方向に延び、前記試験片の表面に形成された第1面と、前記第1面に略垂直で、かつ、前記一方向に略平行な第2面とを有する微小片持ち梁を、前記試験片が有するミクロ組織界面が前記固定端と前記自由端との間を1つのみ通り、かつ、前記ミクロ組織界面が前記一方向に略垂直となるように形成する工程と、
(b)前記微小片持ち梁を電解液に浸漬する工程と、
(c)前記試験片と、前記電解液に浸漬される対極との間に電位差を生じさせて、前記微小片持ち梁に電気化学的に水素を導入する工程と、
(d)圧子を用いて、前記第2面の前記ミクロ組織界面より自由端側に、前記第2面と略垂直な方向に荷重を負荷する工程と、
(e)前記圧子の変位および荷重を測定する工程と、
を備える、水素脆性評価方法。
(7) A method for evaluating hydrogen embrittlement characteristics of a test piece,
(A) a first surface extending in one direction from the fixed end toward the free end, a second surface formed on the surface of the test piece, and a second surface substantially perpendicular to the first surface and substantially parallel to the one direction A micro-cantilever having a plane, the test specimen has only one microstructure interface between the fixed end and the free end, and the microstructure interface is substantially perpendicular to the one direction. A step of forming
(B) immersing the microcantilever in an electrolyte;
(C) causing a potential difference between the test piece and a counter electrode immersed in the electrolytic solution, and electrochemically introducing hydrogen into the microcantilever;
(D) using an indenter, applying a load in a direction substantially perpendicular to the second surface to the free end side from the microstructure interface of the second surface;
(E) measuring the displacement and load of the indenter;
A method for evaluating hydrogen embrittlement.

(8)前記(a)の工程において、前記第2面と前記ミクロ組織界面との交線に沿って、前記交線の一端から他端まで延びるように切欠きを形成する、上記(7)に記載の水素脆性評価方法。   (8) In the step (a), a notch is formed so as to extend from one end of the intersecting line to the other end along the intersecting line between the second surface and the microstructure interface, (7) The hydrogen embrittlement evaluation method described in 1.

(9)前記(a)の工程において、前記固定端と前記自由端との間に前記ミクロ組織界面を1つのみ有する複数の微小片持ち梁を、各微小片持ち梁を通る前記ミクロ組織界面が同一となるように形成する、上記(7)または(8)に記載の水素脆性評価方法。   (9) In the step (a), a plurality of micro-cantilever beams having only one micro-structure interface between the fixed end and the free end, and the micro-structure interface passing through each micro-cantilever The hydrogen embrittlement evaluation method according to the above (7) or (8), which is formed so as to be the same.

(10)前記複数の微小片持ち梁のうちの一の微小片持ち梁について、前記(a)〜(e)の工程を経て測定された変位および荷重と、
前記複数の微小片持ち梁のうちの他の微小片持ち梁について、前記(a)、(d)および(e)の工程によって測定された変位および荷重とを比較して、
試験片の水素脆化特性を評価する、上記(9)に記載の水素脆性評価方法。
(10) A displacement and a load measured through the steps (a) to (e) for one micro cantilever of the plurality of micro cantilevers,
Comparing the displacement and load measured by the steps (a), (d) and (e) for the other minute cantilever beams among the plurality of minute cantilever beams,
The hydrogen embrittlement evaluation method according to (9), wherein the hydrogen embrittlement characteristics of the test piece are evaluated.

(11)前記複数の微小片持ち梁のうちの一の微小片持ち梁について、前記(a)〜(e)の工程によって測定された変位および荷重と、
前記複数の微小片持ち梁のうちの他の微小片持ち梁について、前記(a)、(b)、(d)および(e)の工程によって測定された変位および荷重とを比較して、
試験片の水素脆化特性を評価する、上記(9)または(10)に記載の水素脆性評価方法。
(11) Displacement and load measured by the steps (a) to (e) for one of the plurality of minute cantilevers,
Compare the displacement and load measured by the steps (a), (b), (d) and (e) for the other micro cantilever beams of the plurality of micro cantilever beams,
The hydrogen embrittlement evaluation method according to (9) or (10), wherein the hydrogen embrittlement characteristics of the test piece are evaluated.

本発明によれば、結晶粒界または異相界面等の境界面における剥離強度に及ぼす水素の影響を評価することができ、かつ、曲げ回転軸と垂直な面の塑性変形状態および歪み状態等を測定することが可能となる。   According to the present invention, it is possible to evaluate the influence of hydrogen on the peel strength at a boundary surface such as a grain boundary or a heterogeneous interface, and measure the plastic deformation state and strain state of a surface perpendicular to the bending rotation axis. It becomes possible to do.

本発明の一実施形態に係る水素脆性評価装置の一例を模式的に示した図である。It is the figure which showed typically an example of the hydrogen embrittlement evaluation apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る微小片持ち梁の形状および荷重の負荷方向を模式的に示した図である。It is the figure which showed typically the shape of the micro cantilever which concerns on one Embodiment of this invention, and the load direction of a load. 比較例における微小片持ち梁の形状および荷重の負荷方向を模式的に示した図である。It is the figure which showed typically the shape of the micro cantilever beam in a comparative example, and the load direction of a load. 比較例における切欠きの形成方法を模式的に説明するための図である。It is a figure for demonstrating typically the formation method of the notch in a comparative example. ビーム軸方向および切欠きの延びる方向のなす角度と切欠き底における硬さとの関係を示した図である。It is the figure which showed the relationship between the angle which the beam axis direction and the notch extension direction make, and the hardness in a notch bottom. 本発明の一実施形態における切欠きの形成方法を模式的に説明するための図である。It is a figure for demonstrating typically the formation method of the notch in one Embodiment of this invention. 切欠きの形状の一例を模式的に示した図である。It is the figure which showed typically an example of the shape of a notch. 圧子の形状の一例を模式的に示した図である。It is the figure which showed typically an example of the shape of an indenter. 実施例において、試験片の表面に加工した微小片持ち梁の寸法を示した図である。In an Example, it is the figure which showed the dimension of the micro cantilever processed on the surface of the test piece. AFMで観察されるすべり線を模式的に示した図である。It is the figure which showed typically the slip line observed by AFM.

添付した図面を参照して、本発明の一実施形態に係る水素脆性評価装置およびそれを用いた評価方法について、詳細に説明する。   A hydrogen embrittlement evaluation apparatus and an evaluation method using the same according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施形態に係る水素脆性評価装置100の一例を模式的に示した図である。また、図2に微小片持ち梁10の形状を模式的に示す。本発明の一実施形態に係る水素脆性評価装置100は、固定端10aから自由端10bに向かって一方向(図2中におけるY方向)に延びる微小片持ち梁10が形成された試験片1の水素脆化特性を評価する装置である。微小片持ち梁10は試験片1の表面1aに形成された第1面10cと、第1面10cに略垂直で、かつ、Y方向に略平行な第2面10dとを有する。試験片1の材質については特に制限は設けず、例えば、鋼材、合金材等を用いることができる。   FIG. 1 is a diagram schematically showing an example of a hydrogen embrittlement evaluation apparatus 100 according to an embodiment of the present invention. FIG. 2 schematically shows the shape of the minute cantilever 10. A hydrogen embrittlement evaluation apparatus 100 according to an embodiment of the present invention includes a test piece 1 in which a microcantilever 10 extending in one direction (Y direction in FIG. 2) from a fixed end 10a toward a free end 10b is formed. An apparatus for evaluating hydrogen embrittlement characteristics. The minute cantilever 10 has a first surface 10c formed on the surface 1a of the test piece 1, and a second surface 10d substantially perpendicular to the first surface 10c and substantially parallel to the Y direction. The material of the test piece 1 is not particularly limited, and for example, a steel material or an alloy material can be used.

図1に示すように、水素脆性評価装置100は、電解液槽2と対極3と外部電源4と圧子5と測定部6とを備える。すなわち、本発明の一実施形態に係る評価方法では、上述の第1面10cおよび第2面10dを有する微小片持ち梁10を形成した後(工程a)、微小片持ち梁10を電解液槽2内の電解液20に浸漬し(工程b)、外部電源4を用いて試験片1と対極3との間に電位差を生じさせて、微小片持ち梁10に電気化学的に水素を導入した状態において(工程c)、第2面10dに対して、圧子5で第2面10dと略垂直な方向に荷重を負荷し(工程d)、圧子5の変位および荷重を測定部6によって測定する(工程e)ことによって、試験片の水素脆化特性を評価することが可能である。各構成要素について以下に詳しく説明する。   As shown in FIG. 1, the hydrogen embrittlement evaluation apparatus 100 includes an electrolytic solution tank 2, a counter electrode 3, an external power supply 4, an indenter 5, and a measurement unit 6. That is, in the evaluation method according to an embodiment of the present invention, after forming the fine cantilever 10 having the first surface 10c and the second surface 10d described above (step a), the fine cantilever 10 is replaced with an electrolytic bath. 2 is immersed in the electrolytic solution 20 (step b), a potential difference is generated between the test piece 1 and the counter electrode 3 using the external power source 4, and hydrogen is electrochemically introduced into the microcantilever 10. In the state (step c), a load is applied to the second surface 10d by the indenter 5 in a direction substantially perpendicular to the second surface 10d (step d), and the displacement and the load of the indenter 5 are measured by the measuring unit 6. By (step e), it is possible to evaluate the hydrogen embrittlement characteristics of the test piece. Each component will be described in detail below.

図2に示すように、微小片持ち梁10は、試験片1が有するミクロ組織界面1bが、固定端10aと自由端10bとの間を1つのみ通り、かつ、ミクロ組織界面1bがY方向に略垂直となるように形成されている。試験片1が有するミクロ組織界面1bは、微小片持ち梁10の長さ方向中心点より固定端10a側に存在することが好ましく、固定端部に存在することがより好ましい。   As shown in FIG. 2, in the microcantilever 10, the microstructure interface 1b of the test piece 1 passes through only one between the fixed end 10a and the free end 10b, and the microstructure interface 1b is in the Y direction. It is formed so as to be substantially perpendicular to. The microstructure interface 1b of the test piece 1 is preferably present on the fixed end 10a side with respect to the longitudinal center point of the microcantilever 10 and more preferably on the fixed end.

ここで、本発明における「ミクロ組織界面」とは、鋼材または合金材等の金属組織内に現れる不連続面を意味し、例えば、結晶粒界(双晶界面、ランダム界面等を含む。)、異相界面等が含まれる。   Here, the “microstructure interface” in the present invention means a discontinuous surface appearing in a metal structure such as a steel material or an alloy material, for example, a crystal grain boundary (including a twin crystal interface, a random interface, etc.), Includes heterogeneous interfaces.

微小片持ち梁10を形成する方法について特に制限はないが、例えば、レーザー加工、集束イオンビーム(FIB)加工を用いることができる。また、微小片持ち梁10の断面形状についても、第1面10cおよび第2面10dが形成される形状であれば特に制限は設けない。上記の方法を用いて形成する場合、図2に示すような直角三角形にすると、加工時間を短縮できるため好ましい。   Although there is no restriction | limiting in particular about the method of forming the micro cantilever 10, For example, laser processing and focused ion beam (FIB) processing can be used. Further, the cross-sectional shape of the minute cantilever 10 is not particularly limited as long as the first surface 10c and the second surface 10d are formed. In the case of forming by using the above method, a right triangle as shown in FIG. 2 is preferable because the processing time can be shortened.

さらに、微小片持ち梁10の寸法についても制限は設けない。上述のように、微小片持ち梁10の固定端10aと自由端10bとの間を通るミクロ組織界面1bが1つのみとなる必要があるため、試験片1の結晶粒径または介在物等の第2相の大きさに応じた寸法とすることが好ましい。   Furthermore, there is no restriction on the dimensions of the minute cantilever 10. As described above, since it is necessary to have only one microstructure interface 1b passing between the fixed end 10a and the free end 10b of the microcantilever 10, the crystal grain size of the test piece 1 or inclusions, etc. It is preferable to set the dimensions according to the size of the second phase.

曲げ試験の際にミクロ組織界面1bでの剥離が生じやすくなるように、第2面10dとミクロ組織界面1bとの交線に沿って、交線の一端から他端まで延びるように切欠き10eが形成されていてもよい。本発明に係る構成では、試験片1の表面1aに略垂直な第2面10dに切欠き10eを形成するため、切欠き底に損傷を与えることを防止できるだけでなく、切欠きの形状を精確な寸法で付与することが可能になる。これらの効果について、以下に詳しく説明する。   A notch 10e extending from one end of the intersecting line to the other end along the intersection line of the second surface 10d and the microstructure interface 1b so that peeling at the microstructure interface 1b is likely to occur during the bending test. May be formed. In the configuration according to the present invention, since the notch 10e is formed in the second surface 10d substantially perpendicular to the surface 1a of the test piece 1, not only can the damage to the notch bottom be prevented, but also the shape of the notch can be accurately determined. It becomes possible to apply with various dimensions. These effects will be described in detail below.

図3に示すように、本発明に係る構成とは異なり、試験片1の表面1aに形成された第1面10cに対して、圧子5で第1面10cと略垂直な方向に荷重を負荷する場合を考える。この構成では、図4に模式図を示すように、ミクロ組織界面1bでの剥離が生じやすくなるように、第1面10cとミクロ組織界面1bとの交線に沿って、例えば、FIB加工を用いて、切欠き10eを形成することとなる。   As shown in FIG. 3, unlike the configuration according to the present invention, a load is applied to the first surface 10 c formed on the surface 1 a of the test piece 1 in a direction substantially perpendicular to the first surface 10 c by the indenter 5. Consider the case. In this configuration, as shown in the schematic diagram of FIG. 4, for example, FIB processing is performed along the intersection line of the first surface 10c and the microstructure interface 1b so that peeling at the microstructure interface 1b is likely to occur. Using this, the notch 10e is formed.

そのため、FIBのビーム軸の方向(図4におけるZ方向)と切欠き10eの延びる方向(図4におけるX方向)とは、ほぼ垂直となる。その結果、切欠き底にはイオンビームが照射されたことにより、転位等の格子欠陥が導入され、試験精度が低下するという問題が生じる。ビーム軸方向および切欠き10eの延びる方向のなす角度と、切欠き底に付与される転位の影響との関係をより詳細に説明する。   Therefore, the direction of the FIB beam axis (Z direction in FIG. 4) and the direction in which the notch 10e extends (X direction in FIG. 4) are substantially perpendicular. As a result, since the ion beam is irradiated to the notch bottom, lattice defects such as dislocations are introduced, resulting in a problem that test accuracy is lowered. The relationship between the angle between the beam axis direction and the extending direction of the notch 10e and the influence of dislocations applied to the notch bottom will be described in more detail.

図5は、ビーム軸方向および切欠きの延びる方向のなす角度を0°、45°および90°として切欠きを形成した時の、切欠き底における微小硬さ試験を行った結果を示した図である。なお、切欠きの形成はFIB加工を用い、上記のいずれの角度においても20μm四方の領域内を約100nm掘り下げるようにビーム照射を行った。また、微小硬さ試験はナノインデンテーション装置を用いて行い、圧子の押込み深さが30nmのときの硬さを測定した。   FIG. 5 is a diagram showing a result of a microhardness test performed on the notch bottom when the notch is formed with the angle between the beam axis direction and the extending direction of the notch being 0 °, 45 °, and 90 °. It is. The notch was formed using FIB processing, and beam irradiation was performed so as to dig about 100 nm in a 20 μm square region at any of the above angles. The micro hardness test was performed using a nanoindentation device, and the hardness when the indenter indentation depth was 30 nm was measured.

図5から分かるように、電解研磨を行った試料表面の硬さと比較して、ビーム軸方向および切欠きの延びる方向のなす角度が大きくなるほど硬さが増す傾向がある。このことは、切欠き底にはイオンビームが照射されたことにより、転位等の格子欠陥が導入されることを示している。これに対して、本発明に係る構成では、図6に模式図を示すように、FIBのビーム軸の方向と切欠き10eの延びる方向とが平行(図6におけるZ方向)になるため、切欠き底の損傷は最低限に抑えることが可能となる。   As can be seen from FIG. 5, the hardness tends to increase as the angle between the beam axis direction and the direction in which the notch extends increases as compared with the hardness of the sample surface subjected to electropolishing. This indicates that lattice defects such as dislocations are introduced by irradiating the notch bottom with an ion beam. On the other hand, in the configuration according to the present invention, as shown in the schematic diagram of FIG. 6, the direction of the FIB beam axis and the extending direction of the notch 10e are parallel (Z direction in FIG. 6). Damage to the bottom of the bottom can be minimized.

また、イオンビームの照射時間、加速電圧、電流等を変更することによって、切欠きの深さを調整することとなるが、試験片の強度は均一でない場合が多く、ミクロ組織界面を挟んで両側で強度が異なる場合もあるため、意図した寸法の切欠きを形成することは困難である。また切欠き形状についても、図4に示すような矩形に限定されてしまう。   In addition, the depth of the notch will be adjusted by changing the ion beam irradiation time, acceleration voltage, current, etc., but the strength of the specimen is often not uniform, and both sides of the microstructure interface are sandwiched. Since the strength may vary, it is difficult to form a notch with the intended dimensions. Further, the notch shape is also limited to a rectangle as shown in FIG.

図7に示すように、矩形には角部が存在するため、曲げ試験の際に、角部に応力が集中してしまうという問題がある。本発明に係る構成を採用すれば、ミクロ組織界面1bの位置に一点だけ応力の集中部を持つU字形状またはV字形状とすることができるようになるだけでなく、寸法精度も大幅に向上する。   As shown in FIG. 7, there is a problem that stress is concentrated on the corner during the bending test because the corner has a corner. By adopting the configuration according to the present invention, not only can a U-shaped or V-shaped shape having a stress concentration portion at one point in the microstructure interface 1b, but also the dimensional accuracy can be greatly improved. To do.

電解液槽2は、微小片持ち梁10を電解液20に浸漬し、微小片持ち梁10に電気化学的に水素を導入するためのものである。電解液槽2の構造について特に制限はないが、図1に示すように、底部に貫通孔2aを有し、貫通孔2aの裏面を囲繞するシール材2bを介して、試験片1の表面1aの上に載せられ、微小片持ち梁10を電解液20に浸漬する構成とすることができる。   The electrolytic solution tank 2 is for immersing the fine cantilever 10 in the electrolytic solution 20 and electrochemically introducing hydrogen into the fine cantilever 10. Although there is no restriction | limiting in particular about the structure of the electrolyte solution tank 2, as shown in FIG. 1, the surface 1a of the test piece 1 is provided through the sealing material 2b which has the through-hole 2a in the bottom part and surrounds the back surface of the through-hole 2a. The cantilever 10 can be soaked in the electrolytic solution 20.

対極3は、電解液20に浸漬されている。そして、外部電源4を用いて試験片1と対極3との間に電位差を生じさせ、試験片1を対極3に対して負電位にすることによって、微小片持ち梁10に電気化学的に水素を導入する。対極3の材質について特に制限はないが、例えば白金を用いることができる。   The counter electrode 3 is immersed in the electrolytic solution 20. Then, a potential difference is generated between the test piece 1 and the counter electrode 3 by using the external power source 4, and the test piece 1 is set to a negative potential with respect to the counter electrode 3, thereby electrochemically hydrogenating the microcantilever 10. Is introduced. Although there is no restriction | limiting in particular about the material of the counter electrode 3, For example, platinum can be used.

図1に示すように、必要に応じて、参照極7を対極3とともに電解液20に浸漬させてもよい。対極3のみでは電流制御でしか微小片持ち梁10に水素を導入できないが、参照極7を用いることによって、電位制御でも水素を導入することが可能となる。   As shown in FIG. 1, the reference electrode 7 may be immersed in the electrolytic solution 20 together with the counter electrode 3 as necessary. Although only the counter electrode 3 can introduce hydrogen into the microcantilever 10 only by current control, the use of the reference electrode 7 makes it possible to introduce hydrogen even by potential control.

試験片1、対極3および参照極7はそれぞれ導線40を介して外部電源4に接続されている。水素の導入を電位制御で行う場合には、外部電源4にポテンショスタットを用いる。一方、水素の導入を電流制御で行う場合には、外部電源4にガルバノスタットを用い、参照極7は省略する。   The test piece 1, the counter electrode 3, and the reference electrode 7 are each connected to an external power source 4 via a conductive wire 40. When introducing hydrogen by controlling the potential, a potentiostat is used for the external power source 4. On the other hand, when hydrogen is introduced by current control, a galvanostat is used for the external power source 4 and the reference electrode 7 is omitted.

そして、圧子5を用いて微小片持ち梁10に荷重を負荷することによって、曲げ試験を実施する。ミクロ組織界面1bにおける剥離強度を評価することを目的としているため、微小片持ち梁10のミクロ組織界面1bより自由端10b側に荷重を負荷する必要がある。また、本発明に係る構成では、第2面10dに対して、第2面10dと略垂直な方向(図2におけるX方向)に荷重を負荷する。そのため、試験片1の表面1aに形成された第1面10cが、曲げ回転軸の方向(図2におけるZ方向)と略垂直な面となる。これにより、曲げ回転軸に垂直な面の塑性変形状態および歪み状態を容易に調査することが可能になる。塑性変形状態および歪み状態の調査方法については特に制限はなく、例えば、EBSDまたはAFMを用いた測定を行うことができる。   Then, a bending test is performed by applying a load to the minute cantilever 10 using the indenter 5. Since the purpose is to evaluate the peel strength at the microstructure interface 1b, it is necessary to apply a load to the free end 10b side of the microstructure interface 1b of the microcantilever 10. In the configuration according to the present invention, a load is applied to the second surface 10d in a direction substantially perpendicular to the second surface 10d (X direction in FIG. 2). Therefore, the first surface 10c formed on the surface 1a of the test piece 1 is a surface substantially perpendicular to the direction of the bending rotation axis (Z direction in FIG. 2). This makes it possible to easily investigate the plastic deformation state and the strain state of the surface perpendicular to the bending rotation axis. There is no restriction | limiting in particular about the investigation method of a plastic deformation state and a distortion state, For example, the measurement using EBSD or AFM can be performed.

圧子5の先端形状について特に制限はないが、例えば、図8に示すように先端が円柱状の圧子(a)、開き角が60°以下の円錐形状の圧子(b)、または稜線の1つがZ方向と略平行な三角錐形状の圧子(c)を用いることができる。また、圧子5の材質についても特に制限はなく、例えば、ダイヤモンド製またはセラミックス製の圧子を用いることができる。   Although there is no restriction | limiting in particular about the front-end | tip shape of the indenter 5, For example, as shown in FIG. 8, the tip is a cylindrical indenter (a), the conical indenter (b) whose opening angle is 60 ° or less, or one of the ridge lines A triangular pyramid shaped indenter (c) substantially parallel to the Z direction can be used. The material of the indenter 5 is not particularly limited, and for example, a diamond or ceramic indenter can be used.

曲げ試験の際の圧子5の変位および荷重は、測定部6によって測定される。ミクロ組織界面1bが剥離すると記録された荷重−変位関係に不連続変化が生じる。この不連続変化が発生した荷重から、水素環境中のミクロ組織界面1bの剥離強度を評価する。   The displacement and load of the indenter 5 during the bending test are measured by the measuring unit 6. When the microstructure interface 1b peels, a discontinuous change occurs in the recorded load-displacement relationship. From the load at which this discontinuous change occurs, the peel strength at the microstructure interface 1b in the hydrogen environment is evaluated.

なお、本発明の一実施形態に係る装置は、試験片1の温度を調整する図示しない温度調整部をさらに備えていてもよい。温度調整部を備えることによって、全ての実験において温度を同一として、実験条件を揃えたり、または、温度を変えて種々の実験を繰り返すことによって、ミクロ組織界面1bの剥離強度に及ぼす温度の影響を評価したりすることが可能となる。   Note that the apparatus according to an embodiment of the present invention may further include a temperature adjusting unit (not shown) that adjusts the temperature of the test piece 1. By providing the temperature adjustment unit, the temperature is the same in all experiments, the experiment conditions are aligned, or the various effects are repeated by changing the temperature, thereby affecting the influence of the temperature on the peel strength of the microstructure interface 1b. It becomes possible to evaluate.

試験片1の表面1aには、微小片持ち梁10が複数形成されていてもよい。複数の微小片持ち梁10について上記の曲げ試験を実施することによって、例えば、同一の実験を複数回実施した場合における結果のばらつきを調査して分析精度の検証を行ったり、または、異なる環境下での試験結果を比較することで、水素の影響をより詳細に評価したりすることが可能となる。ただし、複数の微小片持ち梁10を形成する場合には、実験条件を統一するため、各微小片持ち梁10を通るミクロ組織界面1bが同一の境界面となるようにする必要がある。   A plurality of micro cantilevers 10 may be formed on the surface 1 a of the test piece 1. By performing the above bending test on a plurality of microcantilevers 10, for example, investigating variation in results when the same experiment is performed a plurality of times, or verifying analysis accuracy, or under different environments It becomes possible to evaluate the influence of hydrogen in more detail by comparing the test results in. However, when forming a plurality of microcantilever beams 10, it is necessary to make the microstructure interface 1b passing through each microcantilever beam 10 have the same boundary surface in order to unify the experimental conditions.

例えば、上記のように複数の微小片持ち梁を形成した場合においては、そのうちの1つの微小片持ち梁については、電解液に浸漬し水素を導入した状態(上記の工程a〜eを経た状態)で曲げ試験を実施し、他の微小片持ち梁については、大気中(上記の工程a、dおよびeを経た状態)または電解液に浸漬するだけで水素を導入しない状態(上記の工程a、b、dおよびeを経た状態)で曲げ試験を実施し、それぞれの試験で測定された変位および荷重を比較することによって試験片の水素脆化特性をより詳細に評価することが可能となる。   For example, in the case where a plurality of microcantilever beams are formed as described above, one of the microcantilever beams is in a state in which hydrogen is introduced by immersion in an electrolytic solution (the state after the above steps a to e). The other microcantilever beam is subjected to a bending test in the atmosphere (the state after the above steps a, d, and e) or in a state in which hydrogen is not introduced only by being immersed in the electrolytic solution (the above step a). , B, d and e), the hydrogen embrittlement characteristics of the test piece can be evaluated in more detail by comparing the displacement and load measured in each test. .

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.

表1の化学組成を有するJIS SCM435鋼の旧オーステナイト(γ)粒界およびNi−Cr合金の双晶界面について、剥離強度に及ぼす水素の影響を評価した。SCM435鋼は旧γ粒径が40μmで引張強度が1488MPaのものを、そして、Ni−Cr合金は粒径が50μmで引張強度が600MPaのものを用いた。   The influence of hydrogen on peel strength was evaluated for the prior austenite (γ) grain boundaries of JIS SCM435 steel having the chemical composition shown in Table 1 and the twin interface of Ni—Cr alloy. The SCM435 steel had an old γ grain size of 40 μm and a tensile strength of 1488 MPa, and the Ni—Cr alloy had a grain size of 50 μm and a tensile strength of 600 MPa.

Figure 2017096887
Figure 2017096887

電子線後方散乱回折およびFIB装置を用いて、試験片の表面と垂直に交差する旧γ粒界・双晶界面を探した。そして、それぞれの試験片について、FIB装置を用いて、同一の旧γ粒界・双晶界面のみが含まれるように複数の微小片持ち梁を加工した。加工した微小片持ち梁の寸法を図9に示す。微小片持ち梁の自由端から固定端までの長さは20μmとし、微小片持ち梁の断面形状は、第1面および第2面の幅が4μmとなる直角二等辺三角形とした。また、旧γ粒界・双晶界面と微小片持ち梁の固定端との距離は2μmとし、第2面と旧γ粒界・双晶界面との交線上にV字形状の切欠き(開き角60°、切欠き深さ1.5μm、切欠き底半径0.5μm)を付与した。   Using an electron beam backscatter diffraction and FIB apparatus, the old γ grain boundary / twin interface that intersected the surface of the specimen perpendicularly was searched. For each test piece, a plurality of micro-cantilevers were processed using the FIB apparatus so that only the same old γ grain boundary / twin crystal interface was included. The dimension of the processed minute cantilever is shown in FIG. The length from the free end to the fixed end of the microcantilever was 20 μm, and the cross-sectional shape of the microcantilever was a right isosceles triangle with the width of the first and second surfaces being 4 μm. The distance between the old γ grain boundary / twin interface and the fixed end of the microcantilever is 2 μm, and a V-shaped notch (open) on the intersection line between the second surface and the old γ grain boundary / twin interface (Angle 60 °, notch depth 1.5 μm, notch bottom radius 0.5 μm).

試験片への水素の導入は電解液に白金の対極を浸漬することで行った。電解液にはホウ酸緩衝液(pH:8.6)を用い、電流密度は5.1A/mとし、電流制御で水素を導入した。また、圧子には、直径5μmの円柱形のダイヤモンド圧子を用いた。微小片持ち梁の先端から3μmの位置に、変位制御で最大変位2μmまで圧子を変位させ、荷重と圧子変位の関係を測定した。曲げ試験はそれぞれの試験片において、大気雰囲気および水素雰囲気で実施した。 Hydrogen was introduced into the test piece by immersing a counter electrode of platinum in the electrolytic solution. A borate buffer solution (pH: 8.6) was used as the electrolyte, the current density was 5.1 A / m 2, and hydrogen was introduced under current control. A cylindrical diamond indenter with a diameter of 5 μm was used as the indenter. The indenter was displaced to a maximum displacement of 2 μm by displacement control at a position of 3 μm from the tip of the microcantilever, and the relationship between the load and the indenter displacement was measured. The bending test was performed on each test piece in an air atmosphere and a hydrogen atmosphere.

表2に曲げ試験によるき裂発生の有無を示す。SCM435鋼では、大気雰囲気で曲げを付与した場合には、最大変位までき裂の発生は認められず、水素雰囲気で曲げを付与した場合には、弾性領域で旧γ粒界にき裂が発生した。一方、Ni−Cr合金では、大気雰囲気および水素雰囲気の双方において最大変位までき裂の発生は認められなかった。このように、SCM435鋼の旧γ粒界は、水素により剥離強度が低下することが判明した。また、Ni−Cr合金の双晶界面は、水素雰囲気でも十分に高い剥離強度を有することが判明した。   Table 2 shows the presence or absence of cracking in the bending test. In SCM435 steel, when bending was applied in an air atmosphere, cracks were not observed until the maximum displacement, and when bending was applied in a hydrogen atmosphere, cracks occurred at the old γ grain boundary in the elastic region. did. On the other hand, in the Ni—Cr alloy, no crack was observed up to the maximum displacement in both the air atmosphere and the hydrogen atmosphere. Thus, it has been found that the peel strength of the old γ grain boundary of SCM435 steel is reduced by hydrogen. Further, it has been found that the twin interface of the Ni—Cr alloy has a sufficiently high peel strength even in a hydrogen atmosphere.

Figure 2017096887
Figure 2017096887

さらに、曲げ試験後の微小片持ち梁に対し、曲げの回転軸と垂直な面をAFMとEBSDで測定を試みた。その結果、測定面が試験片表面と平行であるため、AFM像、EBSD像ともに容易に得られた。この結果、例えば、水素環境中で曲げたNi−Cr合金の微小片持ち梁では、図10に模式図を示すように、取得されたAFM像より、双晶界面を挟んだ両側の結晶粒内にすべり線が形成されることが分かった。また、取得されたEBSD像より、双晶界面付近の結晶粒内で特に大きく塑性変形していることが分かった。   Furthermore, the surface perpendicular to the bending axis of the microcantilever after the bending test was measured by AFM and EBSD. As a result, since the measurement surface was parallel to the test piece surface, both an AFM image and an EBSD image were easily obtained. As a result, for example, in a Ni—Cr alloy microcantilever bent in a hydrogen environment, as shown in the schematic diagram of FIG. It was found that a slip line was formed. Moreover, it was found from the acquired EBSD image that the plastic deformation was particularly large in the crystal grains near the twin interface.

本発明によれば、結晶粒界または異相界面等の境界面における剥離強度に及ぼす水素の影響を評価することができ、かつ、曲げ回転軸と垂直な面の塑性変形状態および歪み状態等を測定することが可能となる。   According to the present invention, it is possible to evaluate the influence of hydrogen on the peel strength at a boundary surface such as a grain boundary or a heterogeneous interface, and measure the plastic deformation state and strain state of a surface perpendicular to the bending rotation axis. It becomes possible to do.

Claims (11)

固定端から自由端に向かって一方向に延びる微小片持ち梁が形成された試験片の水素脆化特性を評価する装置であって、
前記試験片は、前記微小片持ち梁の前記固定端と前記自由端との間を通るミクロ組織界面を1つのみ有し、
前記ミクロ組織界面が前記一方向に略垂直であり、
前記微小片持ち梁は、前記試験片の表面に形成された第1面と、前記第1面に略垂直で、かつ、前記一方向に略平行な第2面とを有し、
前記微小片持ち梁を電解液に浸漬する電解液槽と、
前記電解液に浸漬される対極と、
前記試験片と前記対極との間に電位差を生じさせる外部電源と、
前記第2面の前記ミクロ組織界面より自由端側に、前記第2面と略垂直な方向に荷重を負荷する圧子と、
前記圧子の変位および荷重を測定する測定部と、
を備える、水素脆性評価装置。
An apparatus for evaluating hydrogen embrittlement characteristics of a test piece formed with a microcantilever extending in one direction from a fixed end toward a free end,
The test piece has only one microstructure interface passing between the fixed end and the free end of the microcantilever,
The microstructure interface is substantially perpendicular to the one direction;
The micro cantilever has a first surface formed on the surface of the test piece, and a second surface substantially perpendicular to the first surface and substantially parallel to the one direction,
An electrolytic bath for immersing the microcantilever in an electrolytic solution;
A counter electrode immersed in the electrolyte;
An external power source that generates a potential difference between the test piece and the counter electrode;
An indenter for applying a load in a direction substantially perpendicular to the second surface on the free end side of the microstructure interface of the second surface;
A measuring unit for measuring the displacement and load of the indenter;
A hydrogen embrittlement evaluation apparatus.
前記試験片が、前記微小片持ち梁の長さ方向中心点より固定端側に前記ミクロ組織界面を有する、請求項1に記載の水素脆性評価装置。   2. The hydrogen embrittlement evaluation apparatus according to claim 1, wherein the test piece has the microstructure interface on a fixed end side with respect to a longitudinal center point of the minute cantilever. 3. 前記第2面と前記ミクロ組織界面との交線に沿って、前記交線の一端から他端まで延びるように切欠きが形成されている、請求項1または請求項2に記載の水素脆性評価装置。   The hydrogen embrittlement evaluation according to claim 1 or 2, wherein a notch is formed so as to extend from one end of the intersection line to the other end along the intersection line between the second surface and the microstructure interface. apparatus. 前記試験片に前記微小片持ち梁が複数形成され、
各微小片持ち梁を通る前記ミクロ組織界面が同一である、請求項1から請求項3までのいずれかに記載の水素脆性評価装置。
A plurality of the cantilever beams are formed on the test piece,
The hydrogen embrittlement evaluation apparatus according to any one of claims 1 to 3, wherein the microstructure interface passing through each minute cantilever is the same.
前記電解液槽が、底部に貫通孔を有し、前記貫通孔の裏面を囲繞するシール材を介して、前記試験片の前記表面の上に載せられ、前記微小片持ち梁を電解液に浸漬する、請求項1から請求項4までのいずれかに記載の水素脆性評価装置。   The electrolyte bath has a through-hole at the bottom, and is placed on the surface of the test piece via a sealing material surrounding the back surface of the through-hole, and the microcantilever is immersed in the electrolyte The hydrogen embrittlement evaluation apparatus according to any one of claims 1 to 4. 前記試験片の温度を調整する温度調整部をさらに備える、請求項1から請求項5までのいずれかに記載の水素脆性評価装置。   The hydrogen embrittlement evaluation apparatus according to claim 1, further comprising a temperature adjustment unit that adjusts a temperature of the test piece. 試験片の水素脆化特性を評価する方法であって、
(a)固定端から自由端に向かって一方向に延び、前記試験片の表面に形成された第1面と、前記第1面に略垂直で、かつ、前記一方向に略平行な第2面とを有する微小片持ち梁を、前記試験片が有するミクロ組織界面が前記固定端と前記自由端との間を1つのみ通り、かつ、前記ミクロ組織界面が前記一方向に略垂直となるように形成する工程と、
(b)前記微小片持ち梁を電解液に浸漬する工程と、
(c)前記試験片と、前記電解液に浸漬される対極との間に電位差を生じさせて、前記微小片持ち梁に電気化学的に水素を導入する工程と、
(d)圧子を用いて、前記第2面の前記ミクロ組織界面より自由端側に、前記第2面と略垂直な方向に荷重を負荷する工程と、
(e)前記圧子の変位および荷重を測定する工程と、
を備える、水素脆性評価方法。
A method for evaluating the hydrogen embrittlement characteristics of a test piece,
(A) a first surface extending in one direction from the fixed end toward the free end, a second surface formed on the surface of the test piece, and a second surface substantially perpendicular to the first surface and substantially parallel to the one direction A micro-cantilever having a plane, the test specimen has only one microstructure interface between the fixed end and the free end, and the microstructure interface is substantially perpendicular to the one direction. A step of forming
(B) immersing the microcantilever in an electrolyte;
(C) causing a potential difference between the test piece and a counter electrode immersed in the electrolytic solution, and electrochemically introducing hydrogen into the microcantilever;
(D) using an indenter, applying a load in a direction substantially perpendicular to the second surface to the free end side from the microstructure interface of the second surface;
(E) measuring the displacement and load of the indenter;
A method for evaluating hydrogen embrittlement.
前記(a)の工程において、前記第2面と前記ミクロ組織界面との交線に沿って、前記交線の一端から他端まで延びるように切欠きを形成する、請求項7に記載の水素脆性評価方法。   8. The hydrogen according to claim 7, wherein, in the step (a), a notch is formed so as to extend from one end of the intersecting line to the other end along the intersecting line between the second surface and the microstructure interface. Brittleness evaluation method. 前記(a)の工程において、前記固定端と前記自由端との間に前記ミクロ組織界面を1つのみ有する複数の微小片持ち梁を、各微小片持ち梁を通る前記ミクロ組織界面が同一となるように形成する、請求項7または請求項8に記載の水素脆性評価方法。   In the step (a), a plurality of microcantilever beams having only one microstructure interface between the fixed end and the free end, and the microstructure interfaces passing through the microcantilever beams are the same. The hydrogen embrittlement evaluation method according to claim 7 or 8, wherein the hydrogen embrittlement evaluation method is formed as described above. 前記複数の微小片持ち梁のうちの一の微小片持ち梁について、前記(a)〜(e)の工程を経て測定された変位および荷重と、
前記複数の微小片持ち梁のうちの他の微小片持ち梁について、前記(a)、(d)および(e)の工程によって測定された変位および荷重とを比較して、
試験片の水素脆化特性を評価する、請求項9に記載の水素脆性評価方法。
Displacement and load measured through the steps (a) to (e) for one micro cantilever of the plurality of micro cantilevers,
Comparing the displacement and load measured by the steps (a), (d) and (e) for the other minute cantilever beams among the plurality of minute cantilever beams,
The hydrogen embrittlement evaluation method according to claim 9, wherein the hydrogen embrittlement characteristics of the test piece are evaluated.
前記複数の微小片持ち梁のうちの一の微小片持ち梁について、前記(a)〜(e)の工程によって測定された変位および荷重と、
前記複数の微小片持ち梁のうちの他の微小片持ち梁について、前記(a)、(b)、(d)および(e)の工程によって測定された変位および荷重とを比較して、
試験片の水素脆化特性を評価する、請求項9または請求項10に記載の水素脆性評価方法。
Displacement and load measured by the steps (a) to (e) for one micro cantilever of the plurality of micro cantilevers,
Compare the displacement and load measured by the steps (a), (b), (d) and (e) for the other micro cantilever beams of the plurality of micro cantilever beams,
The hydrogen embrittlement evaluation method according to claim 9 or 10, wherein the hydrogen embrittlement characteristics of the test piece are evaluated.
JP2015232168A 2015-11-27 2015-11-27 Hydrogen embrittlement evaluation apparatus and hydrogen embrittlement evaluation method Expired - Fee Related JP6547608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015232168A JP6547608B2 (en) 2015-11-27 2015-11-27 Hydrogen embrittlement evaluation apparatus and hydrogen embrittlement evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015232168A JP6547608B2 (en) 2015-11-27 2015-11-27 Hydrogen embrittlement evaluation apparatus and hydrogen embrittlement evaluation method

Publications (2)

Publication Number Publication Date
JP2017096887A true JP2017096887A (en) 2017-06-01
JP6547608B2 JP6547608B2 (en) 2019-07-24

Family

ID=58818185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015232168A Expired - Fee Related JP6547608B2 (en) 2015-11-27 2015-11-27 Hydrogen embrittlement evaluation apparatus and hydrogen embrittlement evaluation method

Country Status (1)

Country Link
JP (1) JP6547608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108489802A (en) * 2018-03-29 2018-09-04 武汉钢铁有限公司 The device and method of metal material hydrogen embrittlement energy is detected under the conditions of dynamic bending
CN108871972A (en) * 2018-07-11 2018-11-23 合肥工业大学 Flexible hinge micro structures bend testing apparatus with large range high precision

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124998A (en) * 2011-12-16 2013-06-24 Jfe Steel Corp Hydrogen embrittlement resistance characteristic evaluation method for thin steel sheet
JP2014174036A (en) * 2013-03-11 2014-09-22 Yokohama National Univ Method of measuring intergranular fracture characteristics, specimen for measuring the characteristics, and method for manufacturing the specimen
JP2015059785A (en) * 2013-09-18 2015-03-30 新日鐵住金株式会社 Electrochemical nano-indentation tester and electrochemical nano-indentation testing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124998A (en) * 2011-12-16 2013-06-24 Jfe Steel Corp Hydrogen embrittlement resistance characteristic evaluation method for thin steel sheet
JP2014174036A (en) * 2013-03-11 2014-09-22 Yokohama National Univ Method of measuring intergranular fracture characteristics, specimen for measuring the characteristics, and method for manufacturing the specimen
JP2015059785A (en) * 2013-09-18 2015-03-30 新日鐵住金株式会社 Electrochemical nano-indentation tester and electrochemical nano-indentation testing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108489802A (en) * 2018-03-29 2018-09-04 武汉钢铁有限公司 The device and method of metal material hydrogen embrittlement energy is detected under the conditions of dynamic bending
CN108871972A (en) * 2018-07-11 2018-11-23 合肥工业大学 Flexible hinge micro structures bend testing apparatus with large range high precision
CN108871972B (en) * 2018-07-11 2021-03-09 合肥工业大学 Flexible hinge micro-component bending test device with wide range and high precision

Also Published As

Publication number Publication date
JP6547608B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
Best et al. Small-scale fracture toughness of ceramic thin films: the effects of specimen geometry, ion beam notching and high temperature on chromium nitride toughness evaluation
Berto et al. Brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression loading
Szczepanski et al. Microstructural influences on very-high-cycle fatigue-crack initiation in Ti-6246
Alfreider et al. In-situ elastic-plastic fracture mechanics on the microscale by means of continuous dynamical testing
Amar et al. Influence of the microstructure and laser shock processing (LSP) on the corrosion behaviour of the AA2050-T8 aluminium alloy
CN107976457B (en) Preparation method of galvanized sheet surface coating electron back scattering diffraction sample
KR102047065B1 (en) Estimation Apparatus and Method of Creep Crack Rate and Relevant Growth Fracture Parameters for Small Punch Specimen with a Micro Groove
JP6354476B2 (en) Characterization method for hydrogen embrittlement of steel
Johanns et al. In-situ tensile testing of single-crystal molybdenum-alloy fibers with various dislocation densities in a scanning electron microscope
Rugg et al. In-service materials support for safety critical applications–A case study of a high strength Ti-alloy using advanced experimental and modelling techniques
Yoo et al. Quantitative damage and detwinning analysis of nanotwinned copper foil under cyclic loading
JP6547608B2 (en) Hydrogen embrittlement evaluation apparatus and hydrogen embrittlement evaluation method
Armstrong et al. Micromechanical testing of stress corrosion cracking of individual grain boundaries
Jeong et al. Fracture toughness of granite measured using micro to macro scale specimens
JP6724761B2 (en) Hydrogen embrittlement evaluation apparatus, hydrogen embrittlement evaluation method, and test piece used therein
JP2014041073A (en) Steel material evaluation method
Rubino et al. The effect of manufacturing defects on the high-cycle fatigue of electron-beam-welded Ti-6Al-4V titanium alloy: experimental and numerical analysis
JP6544220B2 (en) Hydrogen embrittlement evaluation apparatus and hydrogen embrittlement evaluation method
Rinaldi et al. Nanomechanics for MEMS: a structural design perspective
Gallo et al. Experimental characterization at nanoscale of single crystal silicon fracture toughness
CN110940582B (en) Method for predicting fatigue strength of metal material through tensile test
Liu et al. Nano-deformation behavior of a thermally aged duplex stainless steel investigated by nanoindentation, FIB and TEM
Kalashnikov et al. Strength properties of ultrasonic-assisted laser welded stainless steel 321
Sebastiani et al. Focused ion beam and nanomechanical tests for high resolution surface characterisation: new resources for platinum group metals testing
Geathers et al. Examining the role of water vapor on small fatigue crack growth behavior in Ti-6242S using ultrasonic fatigue and scanning electron microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R151 Written notification of patent or utility model registration

Ref document number: 6547608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees