JP2017096597A - Air conditioner and electromagnetic valve kit - Google Patents

Air conditioner and electromagnetic valve kit Download PDF

Info

Publication number
JP2017096597A
JP2017096597A JP2015231631A JP2015231631A JP2017096597A JP 2017096597 A JP2017096597 A JP 2017096597A JP 2015231631 A JP2015231631 A JP 2015231631A JP 2015231631 A JP2015231631 A JP 2015231631A JP 2017096597 A JP2017096597 A JP 2017096597A
Authority
JP
Japan
Prior art keywords
pressure gas
gas pipe
pipe
kit
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015231631A
Other languages
Japanese (ja)
Inventor
一善 友近
Kazuyoshi Tomochika
一善 友近
立慈 川端
Tatsuji Kawabata
立慈 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015231631A priority Critical patent/JP2017096597A/en
Publication of JP2017096597A publication Critical patent/JP2017096597A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Valves (AREA)
  • Magnetically Actuated Valves (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress temperature rise of an electromagnetic coil of an electromagnetic valve.SOLUTION: In an air conditioner 10 provided with high pressure gas pipe electromagnetic valves 204a, 204b, 204c and low pressure gas pipe electromagnetic valves 206a, 206b, 206c which can be switched so that during cooling operation, indoor units 300a, 300b, 300c and a low pressure gas pipe 130 are communicated, whereas during heating operation, a high pressure gas pipe 120 and indoor units 300a, 300b, 300c are communicated, there are provided: decompressors 203a, 203b, 203c decompressing coolants of the high pressure gas pipe 120 and flowing them in a liquid pipe 110; and heat exchange parts 202a, 202b, 202c performing heat exchange between the coolants that have passed the decompressors 203a, 203b, 203c, electromagnetic coils 208 of the high pressure gas pipe electromagnetic valves 204a, 204b, 204c, and low pressure gas pipe electromagnetic valves 206a, 206b, 206c.SELECTED DRAWING: Figure 1

Description

本発明は、空気調和装置、及び、電磁弁キットに関する。   The present invention relates to an air conditioner and a solenoid valve kit.

室外ユニットと、複数台の室内ユニットと、電磁弁キットを備え、電磁弁キットは、室外ユニットと室内ユニットの間に設置されるとともに、一方を室外ユニットに対して高圧ガス管、液管、及び、低圧ガス管で接続され、他方を室内ユニットに対して室内ユニット側の液管、及び、ガス管で接続されており、高圧ガス管及び低圧ガス管と、ガス管との連通を電磁弁により切り替え可能な空気調和装置が知られている。このような空気調和装置では、複数台の室内ユニットを冷房もしくは暖房のいずれか一方で運転可能であり、且つ、複数台の室内ユニットを冷房及び暖房を混在して運転可能である。
上記空気調和装置では、圧縮機および室外熱交換器を備えた室外ユニットと、室内熱交換器を備えた複数台の室内ユニットとがユニット間配管により電磁弁キットを介して接続されている。そして、室外熱交換器の一端が、圧縮機の冷媒吐出管と冷媒吸込管とに択一に分岐して接続され、ユニット間配管が、上記冷媒吐出管に接続された高圧ガス管と、上記冷媒吸込管に接続された低圧ガス管と、上記室外熱交換器の他端に接続された液管とを有している。電磁弁キットは上記高圧ガス管、低圧ガス管、及び、液管を切り替えて、冷房運転もしくは暖房運転、または、暖房運転と冷房運転を混在して実施可能な構成となっている。
上記構成によると、室内ユニットを暖房運転として運転する場合、電磁弁キット内の室外ユニットと室内ユニットとを接続する高圧ガス管に設置された電磁弁を開状態とし、低圧ガス管に設置された電磁弁を閉状態とする。室内ユニットを冷房運転として運転する場合、電磁弁キット内の室外ユニットと室内ユニットとを接続する高圧ガス管に設置された電磁弁を閉状態とし、低圧ガス管に設置された電磁弁を開状態とする。
従来の構成では、室内ユニットを暖房運転として運転する場合、高圧ガス管に設置された電磁弁を高温高圧の冷媒が通過するため、電磁弁の電磁コイルの温度が上昇してしまうという問題があった。また、室内ユニットを冷房運転として運転する場合、低圧ガス管に設置された電磁弁を低温低圧の冷媒が通過するが、電磁弁が設置されている場所の周囲温度が高いため、電磁コイルの温度が上昇してしまうという問題と、液管及び低圧ガス管は周囲温度よりも低温となるため、液管及び低圧ガス管の表面に結露が発生してしまうという問題があった。
これらの課題を解決するため、電磁弁のケーシングを電磁弁本体と電磁コイルとが別空間となるように分割し、電磁弁本体側の空間は発泡樹脂を充填することで結露を防止し、電磁コイル側の空間は開放されることで放熱性を確保するものが提案されている(例えば、特許文献1参照)。また、複数の室内ユニットに接続できる電磁弁キット(集合電磁弁キット)について、電磁弁本体側を発泡樹脂で充填し、電磁コイルを開放空間に配置し、さらに、電磁コイルが温度上昇により故障した際の交換作業を容易とするために集合電磁弁キットの側面を開放空間とするものが提案されている(例えば、特許文献2参照)。
An outdoor unit, a plurality of indoor units, and a solenoid valve kit, the solenoid valve kit being installed between the outdoor unit and the indoor unit, one of which is connected to the outdoor unit with a high-pressure gas pipe, a liquid pipe, and Are connected by a low pressure gas pipe, and the other is connected to the indoor unit by a liquid pipe and a gas pipe on the indoor unit side, and the high pressure gas pipe and the low pressure gas pipe are connected to the gas pipe by an electromagnetic valve. A switchable air conditioner is known. In such an air conditioner, a plurality of indoor units can be operated by either cooling or heating, and a plurality of indoor units can be operated by mixing cooling and heating.
In the air conditioner, an outdoor unit including a compressor and an outdoor heat exchanger and a plurality of indoor units including the indoor heat exchanger are connected to each other by an inter-unit pipe via an electromagnetic valve kit. And one end of the outdoor heat exchanger is alternatively branched and connected to the refrigerant discharge pipe and the refrigerant suction pipe of the compressor, the inter-unit pipe is connected to the refrigerant discharge pipe, and the high-pressure gas pipe A low-pressure gas pipe connected to the refrigerant suction pipe and a liquid pipe connected to the other end of the outdoor heat exchanger. The solenoid valve kit has a configuration in which the high-pressure gas pipe, the low-pressure gas pipe, and the liquid pipe are switched to perform a cooling operation or a heating operation, or a mixture of the heating operation and the cooling operation.
According to the above configuration, when the indoor unit is operated as a heating operation, the electromagnetic valve installed in the high pressure gas pipe connecting the outdoor unit and the indoor unit in the electromagnetic valve kit is opened and installed in the low pressure gas pipe. Close the solenoid valve. When the indoor unit is operated for cooling operation, the solenoid valve installed in the high-pressure gas pipe connecting the outdoor unit and the indoor unit in the solenoid valve kit is closed, and the solenoid valve installed in the low-pressure gas pipe is opened. And
In the conventional configuration, when the indoor unit is operated as a heating operation, since the high-temperature and high-pressure refrigerant passes through the electromagnetic valve installed in the high-pressure gas pipe, the temperature of the electromagnetic coil of the electromagnetic valve increases. It was. Also, when the indoor unit is operated for cooling operation, the low-temperature and low-pressure refrigerant passes through the electromagnetic valve installed in the low-pressure gas pipe, but the temperature of the electromagnetic coil is high because the ambient temperature in the place where the electromagnetic valve is installed is high. And the liquid pipe and the low-pressure gas pipe have a temperature lower than the ambient temperature, and therefore there is a problem that condensation occurs on the surfaces of the liquid pipe and the low-pressure gas pipe.
In order to solve these problems, the solenoid valve casing is divided so that the solenoid valve body and the solenoid coil are separated from each other, and the space on the solenoid valve body side is filled with foamed resin to prevent condensation. There has been proposed one that secures heat dissipation by opening the space on the coil side (see, for example, Patent Document 1). For solenoid valve kits (collective solenoid valve kits) that can be connected to multiple indoor units, the solenoid valve body side is filled with foamed resin, the solenoid coil is placed in an open space, and the solenoid coil has failed due to temperature rise. In order to facilitate the replacement work at the time, there has been proposed one in which the side surface of the collective solenoid valve kit is an open space (for example, see Patent Document 2).

実開平3−73842号公報Japanese Utility Model Publication No. 3-73842 特開2014−163657号公報JP 2014-163657 A

しかしながら、電磁弁がコーナー部などの壁に囲まれた通気性の悪い場所に配置される場合や、屋上近くで日射の影響を強く受ける場合や、近くに大きな発熱体がある場合などの周囲温度が高くなる場所に配置される場合は、十分な放熱が行えず、電磁コイルの温度が上昇してしまうという課題があった。また、集合電磁弁キットの場合、連結数が多くなると電磁コイルの数が増えて発熱量が大きくなることに加え、中央部に配置されて両側に隣接する電磁コイルの影響を受ける電磁コイルなどは、電磁コイルを開放空間に配置したとしても十分な放熱が行えず、電磁コイルの温度が上昇し易くなる。
本発明は、上記課題を解決するものであり、電磁弁の電磁コイルの温度上昇を抑制できるようにすることを目的とする。
However, the ambient temperature when the solenoid valve is placed in a poorly ventilated area surrounded by walls such as corners, when it is strongly affected by solar radiation near the rooftop, or when there is a large heating element nearby. When it is arranged in a place where the height is high, there is a problem that sufficient heat radiation cannot be performed and the temperature of the electromagnetic coil rises. In addition, in the case of the collective solenoid valve kit, as the number of connections increases, the number of electromagnetic coils increases and the amount of heat generation increases, as well as the electromagnetic coils that are located in the center and are affected by the adjacent electromagnetic coils on both sides Even if the electromagnetic coil is disposed in the open space, sufficient heat radiation cannot be performed, and the temperature of the electromagnetic coil is likely to rise.
This invention solves the said subject, and it aims at enabling it to suppress the temperature rise of the electromagnetic coil of a solenoid valve.

上記目的を達成するため、本発明は、室外ユニットと、複数台の室内ユニットと、前記室外ユニットを複数台の前記室内ユニット側に接続する高圧ガス管、液管、及び、低圧ガス管とを備え、冷房運転の時は前記室内ユニットと前記低圧ガス管とを連通させるとともに、暖房運転の時は前記高圧ガス管と前記室内ユニットとを連通させるように切り替えられる電磁弁を備え、少なくとも1台の前記室内ユニットを冷房もしくは暖房のいずれか一方で運転可能であり、且つ、複数台の前記室内ユニットを冷房及び暖房を混在して運転可能な空気調和装置において、前記高圧ガス管の冷媒を減圧し前記液管に流す減圧器と、前記減圧器を通過した後の冷媒と前記電磁弁の電磁コイルとの熱交換を行う熱交換部とを備えたことを特徴とする。   In order to achieve the above object, the present invention includes an outdoor unit, a plurality of indoor units, and a high-pressure gas pipe, a liquid pipe, and a low-pressure gas pipe that connect the outdoor unit to the plurality of indoor units. At least one electromagnetic valve that is switched to communicate the indoor unit and the low-pressure gas pipe during cooling operation and to communicate the high-pressure gas pipe and the indoor unit during heating operation. In the air conditioner capable of operating the indoor unit by either cooling or heating and operating a plurality of the indoor units by mixing cooling and heating, the refrigerant in the high-pressure gas pipe is decompressed. And a heat exchanger for exchanging heat between the refrigerant after passing through the pressure reducer and the electromagnetic coil of the electromagnetic valve.

また、本発明は、前記室外ユニットと複数台の前記室内ユニットとの間に接続される電磁弁キットを備え、前記電磁弁キットは、前記高圧ガス管、前記液管、及び、前記低圧ガス管で前記室外ユニットに接続されるとともに、室内ユニット側液管及びガス管で前記室内ユニットに接続され、前記高圧ガス管は、前記電磁弁キット内に配置されるキット内高圧ガス管を備え、前記液管は、前記電磁弁キット内に配置されるキット内液管を備え、前記低圧ガス管は、前記電磁弁キット内に配置されるキット内低圧ガス管を備え、前記電磁弁は、冷房運転の時は前記ガス管と前記キット内低圧ガス管とを連通させるとともに、暖房運転の時は前記キット内高圧ガス管と前記ガス管とを連通させるように切り替えられ、前記高圧ガス管と前記液管とを前記減圧器を介して接続する冷媒回路は、前記キット内高圧ガス管と前記キット内液管とを接続するバイパス管であることを特徴とする。
また、本発明は、前記高圧ガス管と前記液管とを前記減圧器を介して接続する冷媒回路の一端は、前記高圧ガス管の下部に接続されていることを特徴とする。
The present invention further includes an electromagnetic valve kit connected between the outdoor unit and the plurality of indoor units, wherein the electromagnetic valve kit includes the high-pressure gas pipe, the liquid pipe, and the low-pressure gas pipe. Connected to the outdoor unit, and connected to the indoor unit by an indoor unit side liquid pipe and a gas pipe, and the high pressure gas pipe includes an in-kit high pressure gas pipe disposed in the solenoid valve kit, The liquid pipe includes an in-kit liquid pipe disposed in the electromagnetic valve kit, the low-pressure gas pipe includes an in-kit low-pressure gas pipe disposed in the electromagnetic valve kit, and the electromagnetic valve performs cooling operation. In this case, the gas pipe and the low-pressure gas pipe in the kit are communicated with each other, and during the heating operation, the high-pressure gas pipe and the liquid pipe are switched to communicate between the high-pressure gas pipe in the kit and the gas pipe. Tube and Serial refrigerant circuit connected via a pressure reducer is characterized in that a bypass pipe which connects the kit in liquid pipe and the kit in the high-pressure gas pipe.
Further, the present invention is characterized in that one end of a refrigerant circuit that connects the high-pressure gas pipe and the liquid pipe via the decompressor is connected to a lower portion of the high-pressure gas pipe.

また、本発明は、高圧ガス管と、低圧ガス管と、液管と、室内ユニットに接続されるガス管を、冷房運転の時は前記低圧ガス管に連通させるとともに、暖房運転の時は前記高圧ガス管に連通させるように切り替えられる電磁弁と、前記高圧ガス管の冷媒を減圧し前記液管に流す減圧器と、前記減圧器を通過した後の冷媒と前記電磁弁の電磁コイルとの熱交換を行う熱交換部と、を備えたことを特徴とする電磁弁キットを提供する。   Further, the present invention allows a high-pressure gas pipe, a low-pressure gas pipe, a liquid pipe, and a gas pipe connected to the indoor unit to communicate with the low-pressure gas pipe at the time of cooling operation and at the time of heating operation. An electromagnetic valve that is switched so as to communicate with a high-pressure gas pipe; a decompressor that decompresses the refrigerant in the high-pressure gas pipe and flows the refrigerant into the liquid pipe; and a refrigerant after passing through the decompressor and an electromagnetic coil of the solenoid valve Provided is a solenoid valve kit comprising a heat exchanging section for performing heat exchange.

本発明に係る空気調和装置、及び、電磁弁キットによれば、高圧ガス管の冷媒が減圧器で減圧され、減圧器で減圧された冷媒と電磁弁の電磁コイルとを熱交換部で熱交換して電磁コイルを冷却できるため、電磁コイルの温度上昇を効果的に抑制できる。   According to the air conditioner and the solenoid valve kit of the present invention, the refrigerant in the high-pressure gas pipe is decompressed by the decompressor, and the heat exchange unit exchanges heat between the refrigerant decompressed by the decompressor and the electromagnetic coil of the solenoid valve. And since an electromagnetic coil can be cooled, the temperature rise of an electromagnetic coil can be suppressed effectively.

本発明の第1の実施の形態に係る空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device concerning a 1st embodiment of the present invention. 電磁弁キットの構成を側方から見た模式図である。It is the schematic diagram which looked at the structure of the solenoid valve kit from the side. 暖房運転時における空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device at the time of heating operation. 冷暖混在運転時における空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device at the time of cooling and heating mixed operation. 第2の実施の形態における空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device in a 2nd embodiment.

以下、図面を参照して本発明の一実施形態について説明する。
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る空気調和装置の冷媒回路図である。
空気調和装置10は、室外ユニット100と、室外ユニット100に接続される複数台の室内ユニット300a,300b,300cと、室外ユニット100と室内ユニット300a,300b,300cとを接続するユニット間配管20と、室外ユニット100と室内ユニット300a,300b,300cとの間に接続される電磁弁キット200a,200b,200cとを備える。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a refrigerant circuit diagram of the air-conditioning apparatus according to the first embodiment of the present invention.
The air conditioner 10 includes an outdoor unit 100, a plurality of indoor units 300a, 300b, and 300c connected to the outdoor unit 100, and an inter-unit pipe 20 that connects the outdoor unit 100 and the indoor units 300a, 300b, and 300c. The electromagnetic valve kits 200a, 200b, and 200c connected between the outdoor unit 100 and the indoor units 300a, 300b, and 300c are provided.

空気調和装置10は、室内ユニット300a,300b,300cの全てを冷房運転もしくは暖房運転可能であり、且つ、室内ユニット300a,300b,300c間で冷房運転と暖房運転とを混在して運転する冷暖混在運転が可能である。
なお、ここでは、室外ユニット100に対し、ユニット間配管20を介して3台の室内ユニット300a,300b,300cが並列に接続される構成を例に挙げて説明するが、本発明はこれに限定されるものではなく、室内ユニットは、2台以上が並列に接続されていれば良い。また、本第1の実施の形態では、室外ユニット100は1台であるが、これに限らず、室外ユニットは複数台が並列に接続されていても良い。
The air conditioner 10 is capable of cooling or heating all of the indoor units 300a, 300b, and 300c, and is mixed with cooling and heating in which the cooling operation and the heating operation are mixed between the indoor units 300a, 300b, and 300c. Driving is possible.
Here, a configuration in which three indoor units 300a, 300b, and 300c are connected in parallel to the outdoor unit 100 via the inter-unit pipe 20 will be described as an example, but the present invention is limited to this. However, two or more indoor units may be connected in parallel. In the first embodiment, the number of outdoor units 100 is one. However, the present invention is not limited to this, and a plurality of outdoor units may be connected in parallel.

室外ユニット100は、圧縮機101と、圧縮機101から吐出された冷媒に含まれる冷凍機油を分離して圧縮機101へ戻すオイルセパレータ102と、冷房運転、暖房運転、及び、冷房運転と暖房運転の混在運転の運転状態により冷媒回路を切り替える四方弁103と、外気に対し放熱及び吸熱する室外熱交換器104と、室外膨張弁105とを備える。室外熱交換器104は、送風機(不図示)の送風によって熱交換が促進される。
室外熱交換器104の一端と、圧縮機101の吐出管101aと、圧縮機101の吸込管101bとは、四方弁103にそれぞれ接続されている。室外熱交換器104の一端は、四方弁103の切り替えにより、吐出管101aと吸込管101bとに択一に接続される。
室外膨張弁105は、室外熱交換器104の他端側に設けられる。
The outdoor unit 100 includes a compressor 101, an oil separator 102 that separates and returns the refrigeration oil contained in the refrigerant discharged from the compressor 101 to the compressor 101, a cooling operation, a heating operation, and a cooling operation and a heating operation. The four-way valve 103 that switches the refrigerant circuit according to the operating state of the mixed operation, the outdoor heat exchanger 104 that radiates and absorbs heat from the outside air, and the outdoor expansion valve 105 are provided. In the outdoor heat exchanger 104, heat exchange is promoted by blowing air from a blower (not shown).
One end of the outdoor heat exchanger 104, the discharge pipe 101a of the compressor 101, and the suction pipe 101b of the compressor 101 are connected to the four-way valve 103, respectively. One end of the outdoor heat exchanger 104 is alternatively connected to the discharge pipe 101 a and the suction pipe 101 b by switching the four-way valve 103.
The outdoor expansion valve 105 is provided on the other end side of the outdoor heat exchanger 104.

室内ユニット300a,300b,300cは、空調する室内と熱交換する室内熱交換器302a,302b,302cと、室内熱交換器302a,302b,302cの一端側に設けられる室内膨張弁301a,301b,301cとを備える。室内熱交換器302a,302b,302cは、送風機(不図示)の送風によって熱交換が促進される。   The indoor units 300a, 300b, and 300c include indoor heat exchangers 302a, 302b, and 302c that exchange heat with the air-conditioned room, and indoor expansion valves 301a, 301b, and 301c provided on one end side of the indoor heat exchangers 302a, 302b, and 302c. With. In the indoor heat exchangers 302a, 302b, and 302c, heat exchange is promoted by blowing air from a blower (not shown).

ユニット間配管20は、圧縮機101の吐出管101a側と電磁弁キット200a,200b,200cとを接続する高圧ガス管120と、圧縮機101の吸込管101b側と電磁弁キット200a,200b,200cとを接続する低圧ガス管130と、室外熱交換器104の他端側と電磁弁キット200a,200b,200cとを接続する液管110とを備える。
また、ユニット間配管20は、電磁弁キット200a,200b,200cと室内ユニット300a,300b,300cの室内熱交換器302a,302b,302cの一端側とを接続する室内ユニット側液管350a,350b,350cと、電磁弁キット200a,200b,200cと室内ユニット300a,300b,300cの室内熱交換器302a,302b,302cの他端側とを接続するガス管351a,351b,351cとを備える。
The inter-unit pipe 20 includes a high-pressure gas pipe 120 that connects the discharge pipe 101a side of the compressor 101 and the solenoid valve kits 200a, 200b, and 200c, and a suction pipe 101b side of the compressor 101 and the solenoid valve kits 200a, 200b, and 200c. And a liquid pipe 110 that connects the other end of the outdoor heat exchanger 104 and the solenoid valve kits 200a, 200b, and 200c.
The inter-unit piping 20 includes indoor unit side liquid pipes 350a, 350b, which connect the solenoid valve kits 200a, 200b, 200c and one end side of the indoor heat exchangers 302a, 302b, 302c of the indoor units 300a, 300b, 300c, 350c, and gas pipes 351a, 351b, 351c that connect the solenoid valve kits 200a, 200b, 200c and the other end sides of the indoor heat exchangers 302a, 302b, 302c of the indoor units 300a, 300b, 300c.

詳細には、高圧ガス管120は、室外ユニット100と各電磁弁キット200a,200b,200cとを繋ぐ室外側高圧ガス管150と、電磁弁キット200a,200b,200c内に設けられるキット内高圧ガス管151a,151b,151cとを備える。
低圧ガス管130は、室外ユニット100と各電磁弁キット200a,200b,200cとを繋ぐ室外側低圧ガス管160と、電磁弁キット200a,200b,200c内に設けられるキット内低圧ガス管161a,161b,161cとを備える。
液管110は、室外ユニット100と各電磁弁キット200a,200b,200cとを繋ぐ室外側液管170と、電磁弁キット200a,200b,200c内に設けられるキット内液管171a,171b,171cとを備える。
Specifically, the high-pressure gas pipe 120 includes an outdoor high-pressure gas pipe 150 that connects the outdoor unit 100 and each of the electromagnetic valve kits 200a, 200b, and 200c, and an in-kit high-pressure gas that is provided in the electromagnetic valve kits 200a, 200b, and 200c. Tubes 151a, 151b, and 151c are provided.
The low-pressure gas pipe 130 includes an outdoor low-pressure gas pipe 160 that connects the outdoor unit 100 and the electromagnetic valve kits 200a, 200b, and 200c, and in-kit low-pressure gas pipes 161a and 161b provided in the electromagnetic valve kits 200a, 200b, and 200c. 161c.
The liquid pipe 110 includes an outdoor liquid pipe 170 that connects the outdoor unit 100 and the electromagnetic valve kits 200a, 200b, and 200c, and kit internal liquid pipes 171a, 171b, and 171c provided in the electromagnetic valve kits 200a, 200b, and 200c. Is provided.

電磁弁キット200a,200b,200cは、キット内高圧ガス管151a,151b,151cと、キット内低圧ガス管161a,161b,161cと、キット内液管171a,171b,171cと、キット内高圧ガス管151a,151b,151cに設けられる高圧ガス管電磁弁204a,204b,204c(電磁弁)と、キット内低圧ガス管161a,161b,161cに設けられる低圧ガス管電磁弁206a,206b,206c(電磁弁)と、キット内高圧ガス管151a,151b,151cとキット内低圧ガス管161a,161b,161cとを接続するバランス管155a,155b,155cと、バランス管155a,155b,155cに設けられるバランス管電磁弁205a,205b,205c(電磁弁)とを備える。   The solenoid valve kits 200a, 200b, and 200c include a high-pressure gas pipe 151a, 151b, and 151c in the kit, a low-pressure gas pipe 161a, 161b, and 161c in the kit, a liquid pipe 171a, 171b, and 171c in the kit, and a high-pressure gas pipe in the kit. High pressure gas pipe solenoid valves 204a, 204b, 204c (solenoid valves) provided in 151a, 151b, 151c, and low pressure gas pipe solenoid valves 206a, 206b, 206c (solenoid valves) provided in the in-kit low pressure gas pipes 161a, 161b, 161c ), And balance pipes 155a, 155b, and 155c for connecting the high pressure gas pipes 151a, 151b, and 151c in the kit and the low pressure gas pipes 161a, 161b, and 161c in the kit, and balance pipe electromagnetics provided in the balance pipes 155a, 155b, and 155c. Valves 205a, 205b, 205c (electric A valve) and.

また、電磁弁キット200a,200b,200cは、高圧ガス管電磁弁204a,204b,204cをバイパスするようにキット内高圧ガス管151a,151b,151cとキット内液管171a,171b,171cとを接続するバイパス管201a,201b,201cと、バイパス管201a,201b,201cを流れる冷媒を減圧する減圧器203a,203b,203cと、減圧器203a,203b,203cを通過した後の冷媒と高圧ガス管電磁弁204a,204b,204c、低圧ガス管電磁弁206a,206b,206c及びバランス管電磁弁205a,205b,205cとの間で熱交換を行う熱交換部202a,202b,202cとを備える。   The solenoid valve kits 200a, 200b, and 200c connect the high-pressure gas pipes 151a, 151b, and 151c in the kit and the liquid pipes 171a, 171b, and 171c in the kit so as to bypass the high-pressure gas pipe solenoid valves 204a, 204b, and 204c. Bypass pipes 201a, 201b, and 201c, decompressors 203a, 203b, and 203c that decompress the refrigerant flowing through the bypass pipes 201a, 201b, and 201c, and refrigerant and high-pressure gas pipe electromagnetic after passing through the decompressors 203a, 203b, and 203c Heat exchangers 202a, 202b, and 202c that exchange heat with the valves 204a, 204b, and 204c, the low pressure gas pipe solenoid valves 206a, 206b, and 206c and the balance pipe solenoid valves 205a, 205b, and 205c are provided.

さらに、電磁弁キット200a,200b,200cは、筐体210a,210b,210cを備え、これら筐体210a,210b,210cには、キット内高圧ガス管151a,151b,151c、キット内低圧ガス管161a,161b,161c、キット内液管171a,171b,171c、高圧ガス管電磁弁204a,204b,204c、低圧ガス管電磁弁206a,206b,206c、バランス管155a,155b,155c、バランス管電磁弁205a,205b,205c、バイパス管201a,201b,201c、減圧器203a,203b,203c、及び、熱交換部202a,202b,202cが収容される。
キット内高圧ガス管151a,151b,151cとキット内低圧ガス管161a,161b,161cとは、合流して1本の合流配管175a,175b,175cとなる。ガス管351a,351b,351cは、合流配管175a,175b,175cに接続される。
Furthermore, the solenoid valve kits 200a, 200b, and 200c include casings 210a, 210b, and 210c. The casings 210a, 210b, and 210c include high-pressure gas pipes 151a, 151b, and 151c in the kit and low-pressure gas pipes 161a in the kit. 161b, 161c, liquid tubes 171a, 171b, 171c in the kit, high pressure gas pipe solenoid valves 204a, 204b, 204c, low pressure gas pipe solenoid valves 206a, 206b, 206c, balance pipes 155a, 155b, 155c, balance pipe solenoid valves 205a , 205b, 205c, bypass pipes 201a, 201b, 201c, decompressors 203a, 203b, 203c, and heat exchange units 202a, 202b, 202c are housed.
The in-kit high-pressure gas pipes 151a, 151b, 151c and the in-kit low-pressure gas pipes 161a, 161b, 161c are merged into one merged pipe 175a, 175b, 175c. The gas pipes 351a, 351b, 351c are connected to the junction pipes 175a, 175b, 175c.

減圧器203a,203b,203cは、開度を調整可能な電動弁である。
四方弁103、室外膨張弁105、室内膨張弁301a,301b,301c、高圧ガス管電磁弁204a,204b,204c、バランス管電磁弁205a,205b,205c、低圧ガス管電磁弁206a,206b,206c、及び、減圧器203a,203b,203cは、室外ユニット100の制御部(不図示)によって開度や切り替え状態を制御される。また、上記制御部は、温度センサ(不図示)により検出される圧縮機101の吐出冷媒の温度を取得する。
The decompressors 203a, 203b, and 203c are motor-operated valves whose opening degree can be adjusted.
Four-way valve 103, outdoor expansion valve 105, indoor expansion valves 301a, 301b, 301c, high pressure gas pipe solenoid valves 204a, 204b, 204c, balance pipe solenoid valves 205a, 205b, 205c, low pressure gas pipe solenoid valves 206a, 206b, 206c, The decompressors 203a, 203b, and 203c are controlled in opening degree and switching state by a control unit (not shown) of the outdoor unit 100. Moreover, the said control part acquires the temperature of the discharge refrigerant | coolant of the compressor 101 detected by a temperature sensor (not shown).

バイパス管201a,201b,201cは、筐体210a,210b,210c内でキット内高圧ガス管151a,151b,151cとキット内液管171a,171b,171cとを接続する冷媒配管である。バイパス管201a,201b,201cの一端182a,182b,182c(冷媒回路の一端)は、高圧ガス管電磁弁204a,204b,204cよりも、暖房運転の際の冷媒の流れ方向において上流側でキット内高圧ガス管151a,151b,151cに接続される。
バイパス管201a,201b,201cの他端183a,183b,183cは、筐体210a,210b,210c内でキット内液管171a,171b,171cに接続される。
減圧器203a,203b,203cは、バイパス管201a,201b,201cにおいて、一端182a,182b,182cと他端183a,183b,183cとの間に設けられる。
The bypass pipes 201a, 201b, and 201c are refrigerant pipes that connect the in-kit high-pressure gas pipes 151a, 151b, and 151c and the in-kit liquid pipes 171a, 171b, and 171c in the casings 210a, 210b, and 210c. One end 182a, 182b, 182c (one end of the refrigerant circuit) of the bypass pipes 201a, 201b, 201c is located in the kit upstream of the high-pressure gas pipe solenoid valves 204a, 204b, 204c in the refrigerant flow direction during heating operation. The high-pressure gas pipes 151a, 151b, and 151c are connected.
The other ends 183a, 183b, 183c of the bypass pipes 201a, 201b, 201c are connected to the in-kit liquid pipes 171a, 171b, 171c in the casings 210a, 210b, 210c.
The decompressors 203a, 203b, and 203c are provided between the one end 182a, 182b, and 182c and the other end 183a, 183b, and 183c in the bypass pipes 201a, 201b, and 201c.

図2は、電磁弁キット200aの構成を側方から見た模式図である。各電磁弁キット200a,200b,200cは、同一に構成されているため、ここでは、代表して電磁弁キット200aについて詳細に説明し、電磁弁キット200b,200cの説明は省略する。なお、電磁弁キット200aの上下方向は、図2の紙面の上下方向に一致する。
図2に示すように、キット内高圧ガス管151a、キット内低圧ガス管161a、キット内液管171a、及び、バイパス管201aは、筐体210a内に配策されている。
FIG. 2 is a schematic view of the configuration of the solenoid valve kit 200a viewed from the side. Since the solenoid valve kits 200a, 200b, and 200c have the same configuration, the solenoid valve kit 200a will be described in detail here as a representative, and description of the solenoid valve kits 200b and 200c will be omitted. Note that the vertical direction of the electromagnetic valve kit 200a coincides with the vertical direction of the paper surface of FIG.
As shown in FIG. 2, the in-kit high-pressure gas pipe 151a, the in-kit low-pressure gas pipe 161a, the in-kit liquid pipe 171a, and the bypass pipe 201a are arranged in the casing 210a.

バイパス管201aは、一端182aが、略水平方向に延びる断面円形のキット内高圧ガス管151aの下部に接続され、他端183aが、略水平方向に延びる断面円形のキット内液管171aの下部に接続されている。詳細には、一端182aは、キット内高圧ガス管151aの下面の中央部に接続され、他端183aは、キット内液管171aの下面の中央部に接続されている。
キット内高圧ガス管151aを流れる冷媒の一部は、キット内高圧ガス管151aとキット内液管171aとの間の冷媒の圧力差によって、バイパス管201aに流入し、キット内高圧ガス管151aからキット内液管171aに流れる。
The bypass pipe 201a has one end 182a connected to the lower part of the in-kit high-pressure gas pipe 151a having a circular cross section extending in the substantially horizontal direction, and the other end 183a connected to the lower part of the in-kit liquid pipe 171a having a circular cross section extending in the substantially horizontal direction. It is connected. Specifically, one end 182a is connected to the center of the lower surface of the in-kit high-pressure gas pipe 151a, and the other end 183a is connected to the center of the lower surface of the in-kit liquid pipe 171a.
A part of the refrigerant flowing through the high-pressure gas pipe 151a in the kit flows into the bypass pipe 201a due to the pressure difference of the refrigerant between the high-pressure gas pipe 151a in the kit and the liquid pipe 171a in the kit, and from the high-pressure gas pipe 151a in the kit. It flows into the liquid tube 171a in the kit.

低圧ガス管電磁弁206aは、キット内低圧ガス管161aの流路を開閉する電磁弁本体207と、電磁弁本体207を駆動する電磁コイル208とを備える。また、図2では不図示であるが、高圧ガス管電磁弁204a及びバランス管電磁弁205aも、同様に、電磁弁本体207と電磁コイル208とをそれぞれ備える。   The low-pressure gas pipe electromagnetic valve 206a includes an electromagnetic valve main body 207 that opens and closes the flow path of the in-kit low-pressure gas pipe 161a, and an electromagnetic coil 208 that drives the electromagnetic valve main body 207. Although not shown in FIG. 2, the high-pressure gas pipe solenoid valve 204a and the balance pipe solenoid valve 205a are similarly provided with a solenoid valve body 207 and a solenoid coil 208, respectively.

熱交換部202aは、減圧器203aを通過した後の冷媒と、低圧ガス管電磁弁206a、バランス管電磁弁205a及び高圧ガス管電磁弁204aの各電磁コイル208との間で熱交換を行う部分である。
本実施の形態では、熱交換部202aは、バイパス管201aの外周部において減圧器203aの下流側の部分と各電磁コイル208とが接触する部分であり、この接触部で熱伝導が行われる。低圧ガス管電磁弁206a、バランス管電磁弁205a及び高圧ガス管電磁弁204aの各電磁コイル208は、バイパス管201aの軸方向に並べて配置され、バイパス管201aの外周部に順に接触する。
すなわち、熱交換部202aでは、減圧器203aの下流側でバイパス管201aを流れる冷媒との間の熱交換によって、各電磁コイル208が冷却される。熱交換部202aは、各電磁コイル208にバイパス管201aを巻き付けて構成されていても良い。
The heat exchanging section 202a exchanges heat between the refrigerant after passing through the pressure reducer 203a and the electromagnetic coils 208 of the low pressure gas pipe electromagnetic valve 206a, the balance pipe electromagnetic valve 205a, and the high pressure gas pipe electromagnetic valve 204a. It is.
In the present embodiment, the heat exchanging portion 202a is a portion where the downstream portion of the decompressor 203a and each electromagnetic coil 208 are in contact with each other at the outer peripheral portion of the bypass pipe 201a, and heat conduction is performed at this contact portion. The electromagnetic coils 208 of the low-pressure gas pipe solenoid valve 206a, the balance pipe solenoid valve 205a, and the high-pressure gas pipe solenoid valve 204a are arranged side by side in the axial direction of the bypass pipe 201a and sequentially contact the outer periphery of the bypass pipe 201a.
That is, in the heat exchange unit 202a, each electromagnetic coil 208 is cooled by heat exchange with the refrigerant flowing through the bypass pipe 201a on the downstream side of the decompressor 203a. The heat exchange unit 202a may be configured by winding the bypass pipe 201a around each electromagnetic coil 208.

また、熱交換部202aでは、バイパス管201aの外周部と各電磁コイル208とが熱交換可能であれば、どのように接触していても良い。例えば、バイパス管201aの外周部と各電磁コイル208とを単に接触させても良く、また、バイパス管201aの外周部を各電磁コイル208に半田等で結合させても良く、また、バイパス管201aの外周部と各電磁コイル208との間に、熱伝導シートや熱伝導グリス等の熱伝導部材を介在させても良い。   Moreover, in the heat exchange part 202a, as long as the outer peripheral part of the bypass pipe 201a and each electromagnetic coil 208 can exchange heat, they may be in any way. For example, the outer peripheral part of the bypass pipe 201a and each electromagnetic coil 208 may be simply brought into contact, or the outer peripheral part of the bypass pipe 201a may be coupled to each electromagnetic coil 208 with solder or the like. Also, the bypass pipe 201a A heat conductive member such as a heat conductive sheet or heat conductive grease may be interposed between the outer peripheral portion of each and the electromagnetic coils 208.

次に、室外ユニット100、室内ユニット300a,300b,300c、及び、電磁弁キット200a,200b,200cの冷房運転時の動作を説明する。
図1には、冷房運転時の状態が図示されている。冷房運転時には、四方弁103は、図1の四方弁103中の実線の方向に冷媒を流すように設定される。また、冷房運転時には、高圧ガス管電磁弁204a,204b,204cは閉状態とされ、バランス管電磁弁205a,205b,205c及び低圧ガス管電磁弁206a,206b,206cは開状態とされる。冷房運転時の冷媒の流れ方向は、図1に実線及び破線の矢印で図示されている。
Next, the operation | movement at the time of air_conditionaing | cooling operation of the outdoor unit 100, indoor unit 300a, 300b, 300c, and electromagnetic valve kit 200a, 200b, 200c is demonstrated.
FIG. 1 shows a state during the cooling operation. During the cooling operation, the four-way valve 103 is set so that the refrigerant flows in the direction of the solid line in the four-way valve 103 of FIG. During the cooling operation, the high pressure gas pipe solenoid valves 204a, 204b, and 204c are closed, and the balance pipe solenoid valves 205a, 205b, and 205c and the low pressure gas pipe solenoid valves 206a, 206b, and 206c are opened. The flow direction of the refrigerant during the cooling operation is illustrated by solid and broken arrows in FIG.

圧縮機101から吐出された高温高圧のガス冷媒は、オイルセパレータ102により冷凍機油が分離された後、四方弁103を通過し、室外熱交換器104に流入する。室外熱交換器104により外気に放熱して凝縮した高圧液冷媒は、室外膨張弁105を通過した後、液管110に流れる。このとき、室外膨張弁105は、室外熱交換器104の出口の冷媒の過冷却度が所定の値となるように開度が制御される。
液管110に流れた高圧液冷媒は、室外側液管170を流れ、電磁弁キット200a,200b,200cに流入し、キット内液管171a,171b,171cを流れ、室内ユニット側液管350a,350b,350cを通って室内ユニット300a,300b,300cに流れる。この冷媒は、室内ユニット300a,300b,300cの室内膨張弁301a,301b,301cを通過して低圧低温の気液二層となり、室内熱交換器302a,302b,302cで蒸発することで、室内を冷房する。
The high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the four-way valve 103 and flows into the outdoor heat exchanger 104 after the refrigeration oil is separated by the oil separator 102. The high-pressure liquid refrigerant that radiates and condenses to the outside air by the outdoor heat exchanger 104 passes through the outdoor expansion valve 105 and then flows to the liquid pipe 110. At this time, the opening degree of the outdoor expansion valve 105 is controlled so that the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger 104 becomes a predetermined value.
The high-pressure liquid refrigerant that has flowed into the liquid pipe 110 flows through the outdoor liquid pipe 170, flows into the electromagnetic valve kits 200a, 200b, and 200c, flows through the in-kit liquid pipes 171a, 171b, and 171c, and the indoor unit side liquid pipe 350a, It flows to the indoor units 300a, 300b, 300c through 350b, 350c. This refrigerant passes through the indoor expansion valves 301a, 301b, and 301c of the indoor units 300a, 300b, and 300c to form a low-pressure and low-temperature gas-liquid two-layer, and evaporates in the indoor heat exchangers 302a, 302b, and 302c. Cool down.

室内熱交換器302a,302b,302cで低圧ガス状態となった冷媒は、ガス管351a,351b,351cを通って電磁弁キット200a,200b,200cに流入し、キット内低圧ガス管161a,161b,161cを流れる。キット内低圧ガス管161a,161b,161cを流れる冷媒は、室外側低圧ガス管160を通って室外ユニット100に流入し、圧縮機101に吸い込まれる。   The refrigerant that has become a low-pressure gas state in the indoor heat exchangers 302a, 302b, and 302c flows into the electromagnetic valve kits 200a, 200b, and 200c through the gas pipes 351a, 351b, and 351c, and the low-pressure gas pipes 161a, 161b, It flows through 161c. The refrigerant flowing through the low-pressure gas pipes 161a, 161b, 161c in the kit flows into the outdoor unit 100 through the outdoor low-pressure gas pipe 160 and is sucked into the compressor 101.

また、冷房運転時には、圧縮機101から吐出された高温高圧のガス冷媒の一部は、四方弁103側ではなく、破線の矢印で示すように、室外側高圧ガス管150に流れ、電磁弁キット200a,200b,200cのキット内高圧ガス管151a,151b,151cに流入する。
冷房運転時には、高圧ガス管電磁弁204a,204b,204cは閉状態であるため、キット内高圧ガス管151a,151b,151cに流入した冷媒は、バイパス管201a,201b,201cに流れる。
Further, during the cooling operation, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows not to the four-way valve 103 side but to the outdoor high-pressure gas pipe 150 as shown by the broken arrow, and the solenoid valve kit It flows into the high-pressure gas pipes 151a, 151b, 151c in the kits 200a, 200b, 200c.
During the cooling operation, the high-pressure gas pipe solenoid valves 204a, 204b, and 204c are in a closed state, so that the refrigerant flowing into the high-pressure gas pipes 151a, 151b, and 151c in the kit flows into the bypass pipes 201a, 201b, and 201c.

バイパス管201a,201b,201cに流れた冷媒は、減圧器203a,203b,203cで減圧されて低温になる。この低温になった冷媒は、熱交換部202a,202b,202cを通る際に電磁弁キット200a,200b,200cの各電磁コイル208と熱交換し、各電磁コイル208を冷却する。詳細には、室内ユニット300a,300b,300cの高圧ガス管電磁弁204a,204b,204c、バランス管電磁弁205a,205b,205c、及び、低圧ガス管電磁弁206a,206b,206cの各電磁コイル208が、熱交換部202a,202b,202cで冷却される。
熱交換部202a,202b,202cで熱交換した冷媒は、キット内液管171a,171b,171cを流れる冷媒に合流し、室内ユニット300a,300b,300c側に流れる。ここで、減圧器203a,203b,203cは、キット内液管171a,171b,171cに合流後の冷媒の過冷却度が所定の値となるように開度を制御される。
The refrigerant that has flowed into the bypass pipes 201a, 201b, and 201c is decompressed by the decompressors 203a, 203b, and 203c and becomes low temperature. The low-temperature refrigerant exchanges heat with the electromagnetic coils 208 of the electromagnetic valve kits 200a, 200b, and 200c when passing through the heat exchanging portions 202a, 202b, and 202c, thereby cooling the electromagnetic coils 208. Specifically, the electromagnetic coils 208 of the high-pressure gas pipe solenoid valves 204a, 204b, 204c, the balance pipe solenoid valves 205a, 205b, 205c, and the low-pressure gas pipe solenoid valves 206a, 206b, 206c of the indoor units 300a, 300b, 300c. Is cooled by the heat exchanging units 202a, 202b, and 202c.
The refrigerant that exchanges heat in the heat exchange units 202a, 202b, and 202c merges with the refrigerant flowing through the in-kit liquid tubes 171a, 171b, and 171c, and flows toward the indoor units 300a, 300b, and 300c. Here, the opening degree of the decompressors 203a, 203b, 203c is controlled so that the degree of supercooling of the refrigerant after joining the in-kit liquid tubes 171a, 171b, 171c becomes a predetermined value.

本第1の実施の形態では、高圧ガス管120からバイパス管201a,201b,201cに流れ、減圧器203a,203b,203cにより低温となった冷媒で各電磁コイル208を冷却できるため、各電磁コイル208の温度上昇を抑制できる。さらに、冷房運転時に高圧ガス管120に流れる冷媒を、バイパス管201a,201b,201cから液管110に戻すことができるため、冷房運転時に高圧ガス管120に冷媒が溜まることによる冷媒不足を回避することができる。   In the first embodiment, each electromagnetic coil 208 can be cooled by the refrigerant that flows from the high-pressure gas pipe 120 to the bypass pipes 201a, 201b, and 201c and is cooled by the decompressors 203a, 203b, and 203c. The temperature rise of 208 can be suppressed. Furthermore, since the refrigerant flowing through the high-pressure gas pipe 120 during the cooling operation can be returned to the liquid pipe 110 from the bypass pipes 201a, 201b, and 201c, a shortage of refrigerant due to the accumulation of refrigerant in the high-pressure gas pipe 120 during the cooling operation is avoided. be able to.

また、空気調和装置10の起動直後やオイル回収運転を実施した直後、または、直前まで暖房運転や冷暖混在運転をしていた場合など、高圧ガス管120の冷媒の溜まり量が少ない時は、空気調和装置10は、室外ユニット100からの信号を受けて減圧器203a,203b,203cを所定時間だけ全閉にする。すなわち、冷房運転時において冷媒の溜まり量が少ない時は、減圧器203a,203b,203cはバイパス管201a,201b,201cに冷媒が流れないように制御される。そして、減圧器203a,203b,203cは、所定時間経過して高圧ガス管120に冷媒が溜まり始めてから開方向に制御される。
これにより、高圧ガス管120に冷媒が溜まっていない時に、バイパス管201a,201b,201cを通って液管110に冷媒が過剰にバイパスしなくなる。このため、室外熱交換器104の出口の冷媒の過冷却度が小さくなることによる冷房能力の低下を抑制することができる。
In addition, when the amount of refrigerant accumulated in the high-pressure gas pipe 120 is small, such as when the air conditioner 10 is started, immediately after the oil recovery operation is performed, or when the heating operation or the cooling / heating mixed operation is performed immediately before, the air The harmony device 10 receives the signal from the outdoor unit 100 and fully closes the decompressors 203a, 203b, 203c for a predetermined time. That is, when the amount of accumulated refrigerant is small during the cooling operation, the decompressors 203a, 203b, and 203c are controlled so that the refrigerant does not flow into the bypass pipes 201a, 201b, and 201c. The decompressors 203a, 203b, and 203c are controlled in the opening direction after a predetermined time has elapsed and the refrigerant begins to accumulate in the high-pressure gas pipe 120.
Thereby, when the refrigerant is not accumulated in the high pressure gas pipe 120, the refrigerant does not excessively bypass the liquid pipe 110 through the bypass pipes 201a, 201b, and 201c. For this reason, the fall of the cooling capability by the supercooling degree of the refrigerant | coolant of the exit of the outdoor heat exchanger 104 becoming small can be suppressed.

また、バイパス管201a,201b,201cの一端182a,182b,182cは、高圧ガス管120のキット内高圧ガス管151a,151b,151cの下部(図2参照)に接続されている。これにより、高圧ガス管120に溜まる冷媒の内、下部に溜る液冷媒を優先してバイパス管201a,201b,201cに導くことができる。このため、各電磁コイル208を迅速に冷却できる。
さらに、バイパス管201a,201b,201cの他端183a,183b,183cは、液管110のキット内液管171a,171b,171c下部(図2参照)に接続されている。これにより、液管110の過冷却度が十分に取れずに気液二相状態で冷媒が流れているような状況で、高圧ガス管120の下部に溜る液冷媒と一緒に冷凍機油が戻った場合でも、冷凍機油は液管110の下部に流れる液冷媒と合流するため、冷凍機油を圧縮機101側に円滑に戻すことができる。
Further, one ends 182a, 182b, and 182c of the bypass pipes 201a, 201b, and 201c are connected to lower portions of the high-pressure gas pipes 151a, 151b, and 151c in the kit of the high-pressure gas pipe 120 (see FIG. 2). As a result, among the refrigerant accumulated in the high-pressure gas pipe 120, the liquid refrigerant accumulated in the lower part can be preferentially guided to the bypass pipes 201a, 201b, 201c. For this reason, each electromagnetic coil 208 can be rapidly cooled.
Furthermore, the other ends 183a, 183b, and 183c of the bypass pipes 201a, 201b, and 201c are connected to the lower part of the liquid pipes 171a, 171b, and 171c in the liquid pipe 110 (see FIG. 2). As a result, the refrigerating machine oil has returned together with the liquid refrigerant accumulated in the lower portion of the high-pressure gas pipe 120 in a situation where the refrigerant is flowing in a gas-liquid two-phase state without sufficient supercooling of the liquid pipe 110. Even in this case, since the refrigeration oil merges with the liquid refrigerant flowing in the lower part of the liquid pipe 110, the refrigeration oil can be smoothly returned to the compressor 101 side.

図3は、暖房運転時における空気調和装置10の冷媒回路図である。
暖房運転時には、四方弁103は、図3の四方弁103中の実線の方向に冷媒を流すように設定される。また、冷房運転時には、高圧ガス管電磁弁204a,204b,204cは開状態とされ、バランス管電磁弁205a,205b,205c及び低圧ガス管電磁弁206a,206b,206cは閉状態とされる。暖房運転時の冷媒の流れ方向は、図3に実線及び破線の矢印で図示されている。
FIG. 3 is a refrigerant circuit diagram of the air-conditioning apparatus 10 during heating operation.
During the heating operation, the four-way valve 103 is set so that the refrigerant flows in the direction of the solid line in the four-way valve 103 of FIG. During the cooling operation, the high pressure gas pipe solenoid valves 204a, 204b, and 204c are opened, and the balance pipe solenoid valves 205a, 205b, and 205c and the low pressure gas pipe solenoid valves 206a, 206b, and 206c are closed. The flow direction of the refrigerant during the heating operation is illustrated by solid and broken arrows in FIG.

圧縮機101から吐出された高温高圧のガス冷媒は、オイルセパレータ102により冷凍機油が分離された後、高圧ガス管120に流れ、室外側高圧ガス管150を通って電磁弁キット200a,200b,200cに流入し、キット内高圧ガス管151a,151b,151cを流れる。キット内高圧ガス管151a,151b,151cを流れる冷媒は、ガス管351a,351b,351cを通って室内ユニット300a,300b,300cに流入し、室内熱交換器302a,302b,302cで凝縮することで室内を暖房する。室内熱交換器302a,302b,302cを通過した冷媒は、室内膨張弁301a,301b,301c及び室内ユニット側液管350a,350b,350cを通って電磁弁キット200a,200b,200cに流入する。このとき、室内膨張弁301a,301b,301cは、室内熱交換器302a,302b,302cの出口における冷媒の過冷却度が設定値となるように開度を制御される。
電磁弁キット200a,200b,200cに流入した冷媒は、キット内液管171a,171b,171cを通って室外側液管170に流れ、室外ユニット100に流入する。室外ユニット100に流入した冷媒は、室外膨張弁105を通過して低圧低温の気液二層状態となり、室外熱交換器104で吸熱して蒸発し、低圧ガス状態となり、四方弁103を通って圧縮機101に吸い込まれる。
The high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows into the high-pressure gas pipe 120 after the refrigerating machine oil is separated by the oil separator 102, passes through the outdoor high-pressure gas pipe 150, and the solenoid valve kits 200a, 200b, and 200c. And flows through the high-pressure gas pipes 151a, 151b, 151c in the kit. The refrigerant flowing through the high-pressure gas pipes 151a, 151b, 151c in the kit flows into the indoor units 300a, 300b, 300c through the gas pipes 351a, 351b, 351c, and condenses in the indoor heat exchangers 302a, 302b, 302c. Heat the room. The refrigerant that has passed through the indoor heat exchangers 302a, 302b, 302c flows into the electromagnetic valve kits 200a, 200b, 200c through the indoor expansion valves 301a, 301b, 301c and the indoor unit side liquid pipes 350a, 350b, 350c. At this time, the opening degree of the indoor expansion valves 301a, 301b, and 301c is controlled so that the degree of supercooling of the refrigerant at the outlets of the indoor heat exchangers 302a, 302b, and 302c becomes a set value.
The refrigerant that has flowed into the electromagnetic valve kits 200a, 200b, and 200c flows into the outdoor liquid tube 170 through the liquid tubes 171a, 171b, and 171c in the kit, and flows into the outdoor unit 100. The refrigerant flowing into the outdoor unit 100 passes through the outdoor expansion valve 105 to be in a low-pressure and low-temperature gas-liquid two-layer state, absorbs heat in the outdoor heat exchanger 104 and evaporates, enters a low-pressure gas state, passes through the four-way valve 103. Sucked into the compressor 101.

また、暖房運転時には、圧縮機101から吐出されてキット内高圧ガス管151a,151b,151cを通る冷媒の一部は、図3に破線の矢印で示すように、分岐してバイパス管201a,201b,201cに流れる。
バイパス管201a,201b,201cに流れた冷媒は、減圧器203a,203b,203cで減圧されて低温になる。この低温になった冷媒は、熱交換部202a,202b,202cを通る際に室内ユニット300a,300b,300cの各電磁コイル208と熱交換し、各電磁コイル208を冷却する。詳細には、室内ユニット300a,300b,300cの高圧ガス管電磁弁204a,204b,204c、バランス管電磁弁205a,205b,205c、及び、低圧ガス管電磁弁206a,206b,206cの各電磁コイル208が、熱交換部202a,202b,202cで冷却される。
Further, during the heating operation, a part of the refrigerant discharged from the compressor 101 and passing through the high-pressure gas pipes 151a, 151b, 151c in the kit branches as shown by broken arrows in FIG. 3 and bypass pipes 201a, 201b. , 201c.
The refrigerant that has flowed into the bypass pipes 201a, 201b, and 201c is decompressed by the decompressors 203a, 203b, and 203c and becomes low temperature. The low-temperature refrigerant exchanges heat with the electromagnetic coils 208 of the indoor units 300a, 300b, and 300c when passing through the heat exchanging units 202a, 202b, and 202c, and cools the electromagnetic coils 208. Specifically, the electromagnetic coils 208 of the high-pressure gas pipe solenoid valves 204a, 204b, 204c, the balance pipe solenoid valves 205a, 205b, 205c, and the low-pressure gas pipe solenoid valves 206a, 206b, 206c of the indoor units 300a, 300b, 300c. Is cooled by the heat exchanging units 202a, 202b, and 202c.

熱交換部202a,202b,202cで熱交換した冷媒は、キット内液管171a,171b,171cを流れる冷媒に合流し、室外ユニット100側に流れる。このとき、減圧器203a,203b,203cは、圧縮機101の吐出冷媒の温度が所定の値以上となる場合は、吐出冷媒の温度に応じて所定の開度となるように制御され、熱交換部202a,202b,202cによる冷却能力が増加させられる。
暖房運転が行われる場合は、外気の温度が低く、電磁弁キット200a,200b,200cが設置場所の周囲温度も低いため、圧縮機101の出力は大きくなる。このため、キット内高圧ガス管151a,151b,151cに接続される高圧ガス管電磁弁204a,204b,204cの各電磁コイル208の温度上昇も大きくなるが、圧縮機101の吐出冷媒の温度に応じて減圧器203a,203b,203cの開度を調整することで、各電磁コイル208を効果的に冷却できる。
The refrigerant that has exchanged heat in the heat exchange units 202a, 202b, and 202c merges with the refrigerant that flows through the in-kit liquid tubes 171a, 171b, and 171c, and flows to the outdoor unit 100 side. At this time, when the temperature of the refrigerant discharged from the compressor 101 is equal to or higher than a predetermined value, the decompressors 203a, 203b, and 203c are controlled so as to have a predetermined opening degree according to the temperature of the discharged refrigerant. The cooling capacity by the parts 202a, 202b, 202c is increased.
When the heating operation is performed, the output of the compressor 101 increases because the temperature of the outside air is low and the ambient temperature of the installation location of the solenoid valve kits 200a, 200b, and 200c is low. For this reason, although the temperature rise of each electromagnetic coil 208 of the high-pressure gas pipe solenoid valves 204a, 204b, 204c connected to the high-pressure gas pipes 151a, 151b, 151c in the kit also increases, it depends on the temperature of the refrigerant discharged from the compressor 101. Thus, the electromagnetic coils 208 can be effectively cooled by adjusting the opening degree of the decompressors 203a, 203b, and 203c.

また、暖房運転に、圧縮機101の吐出冷媒の温度が所定の値未満となっている場合、減圧器203a,203b,203cは全閉、或は、開度を小さくするように制御され、キット内高圧ガス管151a,151b,151cからバイパス管201a,201b,201cに流れる冷媒が少なくなる。これにより、各電磁コイル208は、主として周囲の外気に対する自然放熱によって冷却され、過剰に冷却されることが防止される。さらに、バイパス管201a,201b,201cを通って室内ユニット300a,300b,300cをバイパスする冷媒の量が小さくなるため、室内熱交換器302a,302b,302cを冷媒がバイパスすることによる暖房性能の低下を回避することができる。   In the heating operation, when the temperature of the refrigerant discharged from the compressor 101 is lower than a predetermined value, the decompressors 203a, 203b, and 203c are controlled to be fully closed or the opening degree is reduced, and the kit The refrigerant flowing from the internal high pressure gas pipes 151a, 151b, 151c to the bypass pipes 201a, 201b, 201c decreases. Thereby, each electromagnetic coil 208 is cooled mainly by natural heat radiation to the surrounding outside air, and is prevented from being excessively cooled. Furthermore, since the amount of refrigerant that bypasses the indoor units 300a, 300b, and 300c through the bypass pipes 201a, 201b, and 201c is reduced, the heating performance is deteriorated due to the refrigerant bypassing the indoor heat exchangers 302a, 302b, and 302c. Can be avoided.

図4は、冷暖混在運転時における空気調和装置10の冷媒回路図である。図4では、室外熱交換器104を凝縮器として使用する場合の冷暖混在運転の状態が示されている。
図4の冷暖混在運転時には、四方弁103は、四方弁103中の実線の方向に冷媒を流すように設定される。また、冷暖混在運転時には、高圧ガス管電磁弁204a,204cは閉状態とされ、高圧ガス管電磁弁204bは閉状態とされ、バランス管電磁弁205a,205cは開状態とされ、バランス管電磁弁205bは閉状態とされ、低圧ガス管電磁弁206a,206cは開状態とされ、低圧ガス管電磁弁206bは閉状態とされる。
冷暖混在運転時の冷媒の流れ方向は、図4に実線及び破線の矢印で図示されている。
FIG. 4 is a refrigerant circuit diagram of the air-conditioning apparatus 10 during the cooling / heating mixed operation. FIG. 4 shows a cooling / heating mixed operation state when the outdoor heat exchanger 104 is used as a condenser.
During the cooling / heating mixed operation of FIG. 4, the four-way valve 103 is set so that the refrigerant flows in the direction of the solid line in the four-way valve 103. Further, during the cooling and heating mixed operation, the high pressure gas pipe solenoid valves 204a and 204c are closed, the high pressure gas pipe solenoid valve 204b is closed, the balance pipe solenoid valves 205a and 205c are opened, and the balance pipe solenoid valve. 205b is closed, the low pressure gas pipe solenoid valves 206a and 206c are opened, and the low pressure gas pipe solenoid valve 206b is closed.
The flow direction of the refrigerant during the cooling and heating mixed operation is shown by solid and broken arrows in FIG.

図4では、冷暖混在運転の一例として、室内ユニット300a,300cが冷房運転され、室内ユニット300bが暖房運転される状態が図示されている。
図4では室外熱交換器104を凝縮器として使用するため、四方弁103は、図4の四方弁103中の実線の方向に冷媒を流すように設定される。
圧縮機101から吐出された高温高圧のガス冷媒は、オイルセパレータ102により冷凍機油が分離された後、2方向に分岐し、一方は冷房用として四方弁103に流れて室外熱交換器104に流入し、他方は暖房用として高圧ガス管120に流れる。
室外熱交換器104に流入した冷媒は、室外熱交換器104で外気に放熱して凝縮し、高温液冷媒となってから室外膨張弁105を通過し、その後、液管110に流れる。このとき、室外膨張弁105は、室外熱交換器104の出口の冷媒の過冷却度が所定の値となるように制御される。
FIG. 4 shows a state where the indoor units 300a and 300c are in the cooling operation and the indoor unit 300b is in the heating operation as an example of the cooling and heating mixed operation.
In FIG. 4, since the outdoor heat exchanger 104 is used as a condenser, the four-way valve 103 is set so that the refrigerant flows in the direction of the solid line in the four-way valve 103 of FIG.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 101 branches in two directions after the refrigerating machine oil is separated by the oil separator 102, and one of the refrigerant flows into the four-way valve 103 for cooling and flows into the outdoor heat exchanger 104. On the other hand, the other flows to the high-pressure gas pipe 120 for heating.
The refrigerant that has flowed into the outdoor heat exchanger 104 radiates and condenses to the outside air in the outdoor heat exchanger 104, becomes high-temperature liquid refrigerant, passes through the outdoor expansion valve 105, and then flows into the liquid pipe 110. At this time, the outdoor expansion valve 105 is controlled such that the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger 104 becomes a predetermined value.

液管110に流れた高圧液冷媒は、室外側液管170を通って電磁弁キット200a,200cに流入し、キット内液管171a,171c及び室内ユニット側液管350a,350cを経て室内ユニット300a,300cに流入する。
室内ユニット300a,300cに流入した冷媒は、室内膨張弁301a,301cで低圧低温の気液二層となり、室内熱交換器302a,302cで蒸発することで室内を冷房する。室内熱交換器302a,302cで低圧ガス状態となった冷媒は、室内ユニット300a,300cに流入し、キット内低圧ガス管161a,161c及び室外側低圧ガス管160を通って室外ユニット100に流入し、圧縮機101に吸い込まれる。
The high-pressure liquid refrigerant that has flowed into the liquid pipe 110 flows into the electromagnetic valve kits 200a and 200c through the outdoor liquid pipe 170, passes through the in-kit liquid pipes 171a and 171c, and the indoor unit side liquid pipes 350a and 350c, thereby the indoor unit 300a. , 300c.
The refrigerant flowing into the indoor units 300a and 300c becomes a low-pressure and low-temperature gas-liquid two-layer by the indoor expansion valves 301a and 301c, and cools the room by being evaporated by the indoor heat exchangers 302a and 302c. The refrigerant that has become a low-pressure gas state in the indoor heat exchangers 302a and 302c flows into the indoor units 300a and 300c, and flows into the outdoor unit 100 through the low-pressure gas pipes 161a and 161c in the kit and the outdoor low-pressure gas pipe 160. And sucked into the compressor 101.

圧縮機101から吐出されて、上記他方側に分岐して高圧ガス管120に流れた冷媒の一部は、図4に破線の矢印で示されるように、キット内高圧ガス管151a,151cを通ってバイパス管201a,201cに流れる。
バイパス管201a,201cに流れた冷媒は、減圧器203a,203cで減圧されて低温になる。この低温になった冷媒は、熱交換部202a,202cを通る際に室内ユニット300a,300cの各電磁コイル208と熱交換し、各電磁コイル208を冷却する。詳細には、室内ユニット300a,300cの高圧ガス管電磁弁204a,204c、バランス管電磁弁205a,205c、及び、低圧ガス管電磁弁206a,206cの各電磁コイル208が、熱交換部202a,202cで冷却される。
熱交換部202a,202cで熱交換した冷媒は、キット内液管171a,171cを流れる冷媒に合流し、室内ユニット300a,300c側に流れる。ここで、減圧器203a,203cは、キット内液管171a,171cに合流後の冷媒の過冷却度が所定の値となるように開度を制御される。
A part of the refrigerant discharged from the compressor 101 and branching to the other side and flowing into the high-pressure gas pipe 120 passes through the high-pressure gas pipes 151a and 151c in the kit as shown by broken arrows in FIG. Flow into the bypass pipes 201a and 201c.
The refrigerant that has flowed into the bypass pipes 201a and 201c is decompressed by the decompressors 203a and 203c and becomes low temperature. This low-temperature refrigerant exchanges heat with the electromagnetic coils 208 of the indoor units 300a and 300c when passing through the heat exchanging portions 202a and 202c, thereby cooling the electromagnetic coils 208. Specifically, the high-pressure gas pipe solenoid valves 204a and 204c, the balance pipe solenoid valves 205a and 205c, and the low-pressure gas pipe solenoid valves 206a and 206c of the indoor units 300a and 300c are heat exchange units 202a and 202c. Cooled by.
The refrigerant that has exchanged heat in the heat exchange units 202a and 202c merges with the refrigerant flowing through the in-kit liquid tubes 171a and 171c, and flows toward the indoor units 300a and 300c. Here, the opening degree of the decompressors 203a and 203c is controlled so that the degree of supercooling of the refrigerant after joining the in-kitt liquid pipes 171a and 171c becomes a predetermined value.

また、冷暖混在運転時には、冷媒配管が全て使用され、冷媒配管への冷媒の溜まりが発生しないため、この溜まりを防止する目的では、バイパス管201a,201cに冷媒を流す必要がない。このため、室外ユニット100は、外気温度センサ(不図示)から取得した外気温度が所定の値未満の場合には、減圧器203a,203cを全閉とし、バイパス管201a,201cに冷媒を流さないように制御を行う。冷房運転を実施している室内ユニット300a,300cに接続されている電磁弁キット200a,200cでは、内部を流れる冷媒が低温になるため、電磁弁キット200a,200cの各電磁コイル208の温度上昇は、各電磁コイル208の周囲の温度に依存する。この周囲の温度は、外気温度に影響されるため、外気温度が所定の値未満の場合には、バイパス管201a,201cに冷媒を流さずに、各電磁コイル208を自然放熱させることで、バイパス管201a,201cに不必要に冷媒が流れることを防止できる。
このため、室外熱交換器104を通過していない冷媒がバイパス管201a,201cから液管110に過剰に流入することを防止でき、室外熱交換器104の出口の過冷却度が小さくなることによる冷房能力の低下を抑制できる。
Further, during the cooling and heating mixed operation, all the refrigerant pipes are used, and no refrigerant is accumulated in the refrigerant pipes. Therefore, it is not necessary to flow the refrigerant through the bypass pipes 201a and 201c for the purpose of preventing this accumulation. For this reason, when the outdoor temperature acquired from an outdoor temperature sensor (not shown) is less than a predetermined value, the outdoor unit 100 fully closes the decompressors 203a and 203c and does not flow the refrigerant through the bypass pipes 201a and 201c. Control as follows. In the electromagnetic valve kits 200a and 200c connected to the indoor units 300a and 300c that are performing the cooling operation, the temperature of the electromagnetic coils 208 of the electromagnetic valve kits 200a and 200c is increased because the refrigerant flowing through the interior becomes a low temperature. , Depending on the ambient temperature of each electromagnetic coil 208. Since the ambient temperature is influenced by the outside air temperature, when the outside air temperature is lower than a predetermined value, the refrigerant is not allowed to flow through the bypass pipes 201a and 201c, and the electromagnetic coils 208 are naturally radiated to bypass. It is possible to prevent the refrigerant from flowing unnecessarily through the tubes 201a and 201c.
For this reason, the refrigerant that has not passed through the outdoor heat exchanger 104 can be prevented from excessively flowing into the liquid pipe 110 from the bypass pipes 201a and 201c, and the degree of supercooling at the outlet of the outdoor heat exchanger 104 is reduced. A decrease in cooling capacity can be suppressed.

また、室外ユニット100は、外気温度センサ(不図示)から取得した外気温度が所定の値以上の場合には、減圧器203a,203cの開度を外気温度に応じて所定の開度となるように開く。これにより、減圧器203a,203cを通過して低温になった冷媒で各電磁コイル208を冷却できるため、各電磁コイル208の温度上昇を効果的に抑制できる。
また、バイパス管201a,201cの一端182a,182cは、キット内高圧ガス管151a,151cの下部に接続され、他端183a,183cは、キット内液管171a,171cの下部に接続されている。これにより、キット内高圧ガス管151a,151cの下部に溜まる冷凍機油をキット内液管171a,171cの下部に戻すことができるため、冷凍機油を円滑に圧縮機101に戻すことができる。
Further, when the outdoor temperature acquired from an outdoor temperature sensor (not shown) is equal to or higher than a predetermined value, the outdoor unit 100 sets the opening of the decompressors 203a and 203c to a predetermined opening according to the outdoor temperature. Open to. Thereby, since each electromagnetic coil 208 can be cooled with the refrigerant | coolant which passed through pressure | voltage reduction device 203a, 203c and became low temperature, the temperature rise of each electromagnetic coil 208 can be suppressed effectively.
Further, one ends 182a and 182c of the bypass pipes 201a and 201c are connected to the lower part of the high-pressure gas pipes 151a and 151c in the kit, and the other ends 183a and 183c are connected to the lower parts of the liquid pipes 171a and 171c in the kit. Thereby, since the refrigerating machine oil which accumulates in the lower part of the high pressure gas pipes 151a and 151c in the kit can be returned to the lower part of the liquid pipes 171a and 171c in the kit, the refrigerating machine oil can be smoothly returned to the compressor 101.

圧縮機101から吐出されて、上記他方側に分岐して高圧ガス管120に流れた冷媒の残りは、室外側高圧ガス管150を流れ、電磁弁キット200bに流入する。電磁弁キット200bに流入した高温高圧の冷媒は、キット内高圧ガス管151b及びガス管351bを通って室内ユニット300bに流入する。
室内ユニット300bに流入した冷媒は、室内熱交換器302bで凝縮することで室内を暖房する。このとき、室内膨張弁301bは、室内熱交換器302bの出口における冷媒の過冷却度が設定値になるように開度を制御される。室内熱交換器302bを通過した高圧液冷媒は、室内ユニット側液管350bを通って電磁弁キット200bに流入し、キット内液管171bを通って室外側液管170に合流する。
The remaining refrigerant discharged from the compressor 101 and branching to the other side and flowing into the high-pressure gas pipe 120 flows through the outdoor high-pressure gas pipe 150 and flows into the electromagnetic valve kit 200b. The high-temperature and high-pressure refrigerant that has flowed into the electromagnetic valve kit 200b flows into the indoor unit 300b through the high-pressure gas pipe 151b and the gas pipe 351b in the kit.
The refrigerant that has flowed into the indoor unit 300b condenses in the indoor heat exchanger 302b to heat the room. At this time, the opening degree of the indoor expansion valve 301b is controlled so that the degree of supercooling of the refrigerant at the outlet of the indoor heat exchanger 302b becomes a set value. The high-pressure liquid refrigerant that has passed through the indoor heat exchanger 302b flows into the electromagnetic valve kit 200b through the indoor unit side liquid pipe 350b, and joins the outdoor liquid pipe 170 through the in-kit liquid pipe 171b.

上記他方側に分岐して高圧ガス管120に流れた冷媒の残りの一部は、図4に破線の矢印で示すように、バイパス管201bに流れる。バイパス管201bに流れた冷媒は、減圧器203bで減圧されて低温になる。この低温になった冷媒は、熱交換部202bを通る際に室内ユニット300bの各電磁コイル208と熱交換し、各電磁コイル208を冷却する。詳細には、室内ユニット300bの高圧ガス管電磁弁204b、バランス管電磁弁205b、及び、低圧ガス管電磁弁206bの各電磁コイル208が、熱交換部202bで冷却される。熱交換部202bを通過した冷媒は、キット内液管171bに合流し、室外ユニット100側に流れる。   The remaining part of the refrigerant branching to the other side and flowing into the high-pressure gas pipe 120 flows into the bypass pipe 201b as shown by the dashed arrows in FIG. The refrigerant that has flowed into the bypass pipe 201b is decompressed by the decompressor 203b and becomes low temperature. This low-temperature refrigerant exchanges heat with each electromagnetic coil 208 of the indoor unit 300b when passing through the heat exchange unit 202b, thereby cooling each electromagnetic coil 208. Specifically, the electromagnetic coils 208 of the high-pressure gas pipe solenoid valve 204b, the balance pipe solenoid valve 205b, and the low-pressure gas pipe solenoid valve 206b of the indoor unit 300b are cooled by the heat exchange unit 202b. The refrigerant that has passed through the heat exchange unit 202b joins the in-kit liquid pipe 171b and flows to the outdoor unit 100 side.

このとき、減圧器203bは、圧縮機101の吐出冷媒の温度が所定の値以上となる場合に要求される吐出冷媒の温度に応じた所定の開度と、外気温度が所定の値以上となる場合に要求される外気温度に応じた所定の開度との内、大なる開度となるように開度を制御される。
暖房運転を実施している室内ユニット300bに接続される電磁弁キット200bでは、内部を流れる冷媒は高温となるため、電磁コイル208の温度上昇は、内部を流れる冷媒温度と電磁コイル208の周囲の温度(外気温度)との両方に影響される。本実施の形態では、減圧器203bの開度を、吐出冷媒の温度に応じた所定の開度と、外気温度に応じた所定の開度との内の、大なる開度とするため、吐出冷媒の温度と外気温度との内で影響が大きな方に対応でき、各電磁コイル208の温度の上昇に対する対処が安全側となる。このため、各電磁コイル208の温度上昇を効果的に抑制できる。
At this time, the decompressor 203b has a predetermined opening degree corresponding to the temperature of the discharge refrigerant required when the temperature of the discharge refrigerant of the compressor 101 is equal to or higher than a predetermined value, and the outside air temperature is equal to or higher than a predetermined value. The opening degree is controlled so as to be a large opening degree within a predetermined opening degree corresponding to the outside air temperature required in this case.
In the solenoid valve kit 200b connected to the indoor unit 300b that is performing the heating operation, the refrigerant flowing through the interior becomes a high temperature. Therefore, the temperature rise of the electromagnetic coil 208 is caused by the temperature of the refrigerant flowing through the interior and the surrounding area of the electromagnetic coil 208. It is affected by both temperature (outside temperature). In the present embodiment, the opening of the decompressor 203b is set to a large opening between a predetermined opening according to the temperature of the discharged refrigerant and a predetermined opening according to the outside air temperature. It is possible to cope with a larger influence between the temperature of the refrigerant and the outside air temperature, and the countermeasure against the increase in the temperature of each electromagnetic coil 208 is on the safe side. For this reason, the temperature rise of each electromagnetic coil 208 can be suppressed effectively.

また、圧縮機101の吐出冷媒の温度が所定の値所定の値未満で、且つ、外気温度が所定の値未満である場合、減圧器203bは全閉、或は、開度を小さくに制御される。これにより、バイパス管201bに流れる冷媒が少なくなり、室内ユニット300bをバイパスしてキット内液管171bに流れる冷媒量が少なくなるため、冷媒が室内ユニット300bをバイパスすることによる暖房性能の低下を回避できる。この場合、各電磁コイル208は、周囲への自然放熱により冷却される。   Further, when the temperature of the refrigerant discharged from the compressor 101 is a predetermined value less than a predetermined value and the outside air temperature is less than a predetermined value, the decompressor 203b is controlled to be fully closed or the opening degree is reduced. The As a result, the amount of refrigerant flowing through the bypass pipe 201b is reduced, and the amount of refrigerant flowing through the kit internal liquid pipe 171b by bypassing the indoor unit 300b is reduced, thereby avoiding deterioration in heating performance due to the refrigerant bypassing the indoor unit 300b. it can. In this case, each electromagnetic coil 208 is cooled by natural heat dissipation to the surroundings.

以上説明したように、本発明を適用した第1の実施の形態によれば、空気調和装置10は、室外ユニット100と、複数台の室内ユニット300a,300b,300cと、室外ユニット100を複数台の室内ユニット300a,300b,300c側に接続する高圧ガス管120、液管110、及び、低圧ガス管130とを備え、冷房運転の時は室内ユニット300a,300b,300cと低圧ガス管130とを連通させるとともに、暖房運転の時は高圧ガス管120と室内ユニット300a,300b,300cとを連通させるように切り替えられる高圧ガス管電磁弁204a,204b,204c及び低圧ガス管電磁弁206a,206b,206cを備え、少なくとも1台の室内ユニット300a,300b,300cを冷房もしくは暖房のいずれか一方で運転可能であり、且つ、複数台の室内ユニット300a,300b,300cを冷房及び暖房を混在して運転可能であり、高圧ガス管120の冷媒を減圧し液管110に流す減圧器203a,203b,203cと、減圧器203a,203b,203cを通過した後の冷媒と高圧ガス管電磁弁204a,204b,204c及び低圧ガス管電磁弁206a,206b,206cの各電磁コイル208との熱交換を行う熱交換部202a,202b,202cとを備える。これにより、高圧ガス管120の冷媒が減圧器203a,203b,203cで減圧され、減圧器203a,203b,203cで減圧された冷媒と各電磁コイル208とを熱交換部202a,202b,202cで熱交換して各電磁コイル208を冷却できるため、各電磁コイル208の温度上昇を効果的に抑制できる。また、冷房運転時に不使用となる高圧ガス管120の冷媒を減圧器203a,203b,203cを通過する冷媒として液管110に戻すことができるため、高圧ガス管120に冷媒が溜まることによる冷媒不足を回避することができる。   As described above, according to the first embodiment to which the present invention is applied, the air conditioner 10 includes the outdoor unit 100, the plurality of indoor units 300a, 300b, and 300c, and the plurality of outdoor units 100. High-pressure gas pipe 120, liquid pipe 110, and low-pressure gas pipe 130 connected to the indoor units 300a, 300b, and 300c side of the indoor unit 300a, 300b, 300c and the low-pressure gas pipe 130 during the cooling operation. The high pressure gas pipe solenoid valves 204a, 204b, and 204c and the low pressure gas pipe solenoid valves 206a, 206b, and 206c that are switched so as to communicate with the high pressure gas pipe 120 and the indoor units 300a, 300b, and 300c during heating operation. And cooling at least one indoor unit 300a, 300b, 300c. Can be operated in any one of the heating modes, and the plurality of indoor units 300a, 300b, 300c can be operated in a mixture of cooling and heating, and the refrigerant in the high-pressure gas pipe 120 is decompressed to the liquid pipe 110. Reducing decompressors 203a, 203b, 203c flowing, refrigerant after passing through the decompressors 203a, 203b, 203c, and electromagnetic coils 208 of the high pressure gas pipe solenoid valves 204a, 204b, 204c and low pressure gas pipe solenoid valves 206a, 206b, 206c The heat exchange parts 202a, 202b, and 202c which perform heat exchange with are provided. As a result, the refrigerant in the high-pressure gas pipe 120 is decompressed by the decompressors 203a, 203b, and 203c, and the refrigerant decompressed by the decompressors 203a, 203b, and 203c and each electromagnetic coil 208 are heated by the heat exchange units 202a, 202b, and 202c. Since each electromagnetic coil 208 can be cooled by replacement, an increase in temperature of each electromagnetic coil 208 can be effectively suppressed. Further, since the refrigerant in the high-pressure gas pipe 120 that is not used during the cooling operation can be returned to the liquid pipe 110 as the refrigerant that passes through the decompressors 203a, 203b, and 203c, the refrigerant is insufficient due to the accumulation of refrigerant in the high-pressure gas pipe 120. Can be avoided.

また、空気調和装置10は、室外ユニット100と複数台の室内ユニット300a,300b,300cとの間に接続される電磁弁キット200a,200b,200cを備え、電磁弁キット200a,200b,200cは、高圧ガス管120、液管110、及び、低圧ガス管130で室外ユニット100に接続されるとともに、室内ユニット側液管350a,350b,350c及びガス管351a,351b,351cで室内ユニット300a,300b,300cに接続され、高圧ガス管120は、電磁弁キット200a,200b,200c内に配置されるキット内高圧ガス管151a,151b,151cを備え、液管110は、電磁弁キット200a,200b,200c内に配置されるキット内液管171a,171b,171cを備え、低圧ガス管130は、電磁弁キット200a,200b,200c内に配置されるキット内低圧ガス管161a,161b,161cを備え、高圧ガス管電磁弁204a,204b,204c及び低圧ガス管電磁弁206a,206b,206cは、冷房運転の時はガス管351a,351b,351cとキット内低圧ガス管161a,161b,161cとを連通させるとともに、暖房運転の時はキット内高圧ガス管151a,151b,151cとガス管351a,351b,351cとを連通させるように切り替えられ、高圧ガス管120と液管110とを減圧器203a,203b,203cを介して接続する冷媒回路は、キット内高圧ガス管151a,151b,151cとキット内液管171a,171b,171cとを接続するバイパス管201a,201b,201cである。これにより、電磁弁キット200a,200b,200cに配置されるキット内高圧ガス管151a,151b,151cとキット内液管171a,171b,171cとを接続するバイパス管201a,201b,201cを流れる冷媒で各電磁コイル208を冷却できるため、簡単な構成で各電磁コイル208の温度上昇を効果的に抑制できる。
また、高圧ガス管電磁弁204a,204b,204c及び低圧ガス管電磁弁206a,206b,206cを電磁弁キット200a,200b,200cの外側に露出させなくとも熱交換部202a,202b,202cで冷却できる。このため、高圧ガス管電磁弁204a,204b,204c及び低圧ガス管電磁弁206a,206b,206cの作動音が外側に漏れることを抑制でき、電磁弁キット200a,200b,200cの静音化を図ることができる。
The air conditioner 10 includes electromagnetic valve kits 200a, 200b, and 200c connected between the outdoor unit 100 and the plurality of indoor units 300a, 300b, and 300c. The electromagnetic valve kits 200a, 200b, and 200c are: The high-pressure gas pipe 120, the liquid pipe 110, and the low-pressure gas pipe 130 are connected to the outdoor unit 100, and the indoor unit-side liquid pipes 350a, 350b, and 350c and the gas pipes 351a, 351b, and 351c are connected to the indoor units 300a, 300b, 300c, the high pressure gas pipe 120 includes in-kit high pressure gas pipes 151a, 151b, 151c disposed in the electromagnetic valve kits 200a, 200b, 200c, and the liquid pipe 110 includes the electromagnetic valve kits 200a, 200b, 200c. In-kit liquid tubes 171a, 171b, 1 The low-pressure gas pipe 130 includes in-kit low-pressure gas pipes 161a, 161b, and 161c disposed in the solenoid valve kits 200a, 200b, and 200c. The high-pressure gas pipe solenoid valves 204a, 204b, and 204c and the low-pressure gas pipe The solenoid valves 206a, 206b, and 206c communicate the gas pipes 351a, 351b, and 351c with the low-pressure gas pipes 161a, 161b and 161c in the kit during the cooling operation, and the high-pressure gas pipe 151a in the kit during the heating operation. 151b, 151c and the gas pipes 351a, 351b, 351c are switched to communicate with each other, and the refrigerant circuit that connects the high pressure gas pipe 120 and the liquid pipe 110 via the decompressors 203a, 203b, 203c is a high pressure gas in the kit. Tubes 151a, 151b, 151c and kit internal solution tubes 171a, 171b, 17 Bypass pipe 201a which connects the c, 201b, is 201c. As a result, the refrigerant flowing through the bypass pipes 201a, 201b, 201c connecting the in-kit high pressure gas pipes 151a, 151b, 151c and the in-kit liquid pipes 171a, 171b, 171c arranged in the solenoid valve kits 200a, 200b, 200c. Since each electromagnetic coil 208 can be cooled, the temperature rise of each electromagnetic coil 208 can be effectively suppressed with a simple configuration.
Further, the high-pressure gas pipe solenoid valves 204a, 204b, 204c and the low-pressure gas pipe solenoid valves 206a, 206b, 206c can be cooled by the heat exchanging portions 202a, 202b, 202c without exposing them to the outside of the solenoid valve kits 200a, 200b, 200c. . For this reason, it can suppress that the operation sound of high pressure gas pipe solenoid valve 204a, 204b, 204c and low pressure gas pipe solenoid valve 206a, 206b, 206c leaks outside, and it aims at silence of solenoid valve kit 200a, 200b, 200c. Can do.

また、電磁弁キット200a,200b,200cが、コーナー部などの壁に囲まれた通気性の悪い場所に設けられる場合や、屋上近くに設置されて日射の影響を強く受ける場合や、近くに発熱体がある場合など、周囲の温度が高くなる場合でも、減圧器203a,203b,203cにより低温となった冷媒で冷却することで、各電磁コイル208の温度上昇を抑制することができる。
さらに、ファンなどによる送風で各電磁コイル208を冷却する構成に比して、騒音を発生させずに各電磁コイル208を冷却できる。
In addition, when the solenoid valve kits 200a, 200b, and 200c are provided in a poorly ventilated area surrounded by walls such as corners, installed near the rooftop and strongly affected by solar radiation, Even when the surrounding temperature is high, such as when there is a body, the temperature of each electromagnetic coil 208 can be suppressed by cooling with the refrigerant having a low temperature by the decompressors 203a, 203b, 203c.
Furthermore, each electromagnetic coil 208 can be cooled without generating noise as compared with a configuration in which each electromagnetic coil 208 is cooled by blowing air from a fan or the like.

また、高圧ガス管120と液管110とを減圧器203a,203b,203cを介して接続する冷媒回路であるバイパス管201a,201b,201cの一端182a,182b,182cは、高圧ガス管120の下部に接続されており、冷房運転時に不使用となる高圧ガス管120内に溜まった冷媒の内の液冷媒は、高圧ガス管120の下部に溜まるため、液冷媒をバイパス管201a,201b,201cから優先的に液管110に戻すことができる。   In addition, one ends 182a, 182b, and 182c of the bypass pipes 201a, 201b, and 201c, which are refrigerant circuits that connect the high pressure gas pipe 120 and the liquid pipe 110 via the decompressors 203a, 203b, and 203c, Since the liquid refrigerant in the refrigerant accumulated in the high-pressure gas pipe 120 that is not used during the cooling operation is accumulated in the lower part of the high-pressure gas pipe 120, the liquid refrigerant is discharged from the bypass pipes 201a, 201b, 201c. The liquid pipe 110 can be returned preferentially.

また、電磁弁キット200a,200b,200cは、高圧ガス管120であるキット内高圧ガス管151a,151b,151cと、低圧ガス管130であるキット内低圧ガス管161a,161b,161cと、液管110であるキット内液管171a,171b,171cと、室内ユニット300a,300b,300cに接続されるガス管351a,351b,351cを、冷房運転の時はキット内低圧ガス管161a,161b,161cに連通させるとともに、暖房運転の時はキット内高圧ガス管151a,151b,151cに連通させるように切り替えられる高圧ガス管電磁弁204a,204b,204c及び低圧ガス管電磁弁206a,206b,206cと、キット内高圧ガス管151a,151b,151cの冷媒を減圧しキット内液管171a,171b,171cに流す減圧器203a,203b,203cと、減圧器203a,203b,203cを通過した後の冷媒と高圧ガス管電磁弁204a,204b,204c及び低圧ガス管電磁弁206a,206b,206cの各電磁コイル208との熱交換を行う熱交換部202a,202b,202cとを備える。これにより、キット内高圧ガス管151a,151b,151cの冷媒が減圧器203a,203b,203cで減圧され、減圧器203a,203b,203cで減圧された冷媒と各電磁コイル208とを熱交換部202a,202b,202cで熱交換して各電磁コイル208を冷却できるため、各電磁コイル208の温度上昇を効果的に抑制できる。   The solenoid valve kits 200a, 200b, and 200c include high-pressure gas pipes 151a, 151b, and 151c in the kit that are high-pressure gas pipes 120, low-pressure gas pipes 161a, 161b, and 161c in the kit that are low-pressure gas pipes 130, and liquid pipes. In-kit liquid pipes 171a, 171b, 171c and gas pipes 351a, 351b, 351c connected to the indoor units 300a, 300b, 300c are connected to the low-pressure gas pipes 161a, 161b, 161c in the kit during cooling operation. High-pressure gas pipe solenoid valves 204a, 204b, 204c and low-pressure gas pipe solenoid valves 206a, 206b, 206c, which are switched so as to communicate with the high-pressure gas pipes 151a, 151b, 151c in the kit during heating operation; Refrigerant of inner high pressure gas pipes 151a, 151b, 151c Decompressors 203a, 203b, 203c that depressurize and flow into the liquid tubes 171a, 171b, 171c in the kit, refrigerant after passing through the decompressors 203a, 203b, 203c, high pressure gas pipe solenoid valves 204a, 204b, 204c, and low pressure gas pipes Heat exchange units 202a, 202b, and 202c that perform heat exchange with the electromagnetic coils 208 of the electromagnetic valves 206a, 206b, and 206c are provided. As a result, the refrigerant in the high-pressure gas pipes 151a, 151b, and 151c in the kit is decompressed by the decompressors 203a, 203b, and 203c, and the refrigerant decompressed by the decompressors 203a, 203b, and 203c and each electromagnetic coil 208 are exchanged with the heat exchange unit 202a. , 202b, 202c, and the electromagnetic coils 208 can be cooled by exchanging heat, so that the temperature rise of the electromagnetic coils 208 can be effectively suppressed.

なお、上記第1の実施の形態は本発明を適用した一態様を示すものであって、本発明は上記第1の実施の形態に限定されるものではない。
上記第1の実施の形態では、バイパス管201a,201b,201cは、電磁弁キット200a,200b,200cの内側に設けられるものとして説明したが、本発明はこれに限定されるものではない。例えば、バイパス管は、電磁弁キットの外側で高圧ガス管120と液管110とを接続するものであっても良い。
また、上記第1の実施の形態では、減圧器203a,203b,203cは、電動弁であるものとして説明したが、キャピラリーチューブであっても良い。
また、上記第1の実施の形態では、高圧ガス管電磁弁204a,204b,204c、バランス管電磁弁205a,205b,205c、及び、低圧ガス管電磁弁206a,206b,206cの各電磁コイル208を熱交換部202a,202b,202cで冷却する例を挙げて説明したが、本発明はこれに限定されるものではなく、一部の電磁コイル208のみを熱交換部で冷却する構成としても良い。例えば、温度上昇が大きな高圧ガス管電磁弁204a,204b,204cの電磁コイル208のみを熱交換部で冷却する構成としても良い。
さらに、上記第1の実施の形態では、熱交換部202aは、バイパス管201aの外周部が電磁コイル208に接触する部分であるものとして説明したが、本発明はこれに限定されるものではない。熱交換部は、バイパス管と電磁コイルとの間で熱交換して電磁コイルを冷却可能であれば、バイパス管と電磁コイルとが非接触であっても良い。また、熱交換部は、バイパス管の熱が熱交換されるパネル型熱交換器や2重管構造で構成されても良い。
In addition, the said 1st Embodiment shows the one aspect | mode which applied this invention, Comprising: This invention is not limited to the said 1st Embodiment.
In the first embodiment, the bypass pipes 201a, 201b, and 201c have been described as being provided inside the electromagnetic valve kits 200a, 200b, and 200c, but the present invention is not limited to this. For example, the bypass pipe may connect the high-pressure gas pipe 120 and the liquid pipe 110 outside the electromagnetic valve kit.
In the first embodiment, the decompressors 203a, 203b, and 203c have been described as motor-operated valves, but may be capillary tubes.
In the first embodiment, the electromagnetic coils 208 of the high pressure gas pipe solenoid valves 204a, 204b, 204c, the balance pipe solenoid valves 205a, 205b, 205c, and the low pressure gas pipe solenoid valves 206a, 206b, 206c are provided. Although an example of cooling by the heat exchange units 202a, 202b, and 202c has been described, the present invention is not limited to this, and only a part of the electromagnetic coils 208 may be cooled by the heat exchange unit. For example, only the electromagnetic coil 208 of the high-pressure gas pipe solenoid valves 204a, 204b, and 204c having a large temperature rise may be cooled by the heat exchange unit.
Furthermore, in the first embodiment, the heat exchanging portion 202a has been described as the portion where the outer peripheral portion of the bypass pipe 201a contacts the electromagnetic coil 208, but the present invention is not limited to this. . As long as the heat exchange unit can cool the electromagnetic coil by exchanging heat between the bypass pipe and the electromagnetic coil, the bypass pipe and the electromagnetic coil may be in non-contact. Further, the heat exchange unit may be configured by a panel heat exchanger or a double pipe structure in which heat of the bypass pipe is exchanged.

[第2の実施の形態]
以下、図5を参照して、本発明を適用した第2の実施の形態について説明する。この第2の実施の形態において、上記第1の実施の形態と同様に構成される部分については、同符号を付して説明を省略する。
上記第1の実施の形態では、電磁弁キット200a,200b,200cが室内ユニット300a,300b,300cにそれぞれ設けられる構成を説明したが、本第2の実施の形態は、複数の室内ユニット300a,300b,300cに対して、1台の集合電磁弁キット600(電磁弁キット)が設けられる点等が、上記第1の実施の形態と異なる。また、これに伴い、バイパス管601は1本に集約されている。
[Second Embodiment]
Hereinafter, a second embodiment to which the present invention is applied will be described with reference to FIG. In the second embodiment, parts that are configured in the same manner as in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
In the first embodiment, the configuration in which the electromagnetic valve kits 200a, 200b, and 200c are provided in the indoor units 300a, 300b, and 300c, respectively, has been described. However, in the second embodiment, the plurality of indoor units 300a, The point that one collective electromagnetic valve kit 600 (electromagnetic valve kit) is provided for 300b and 300c is different from the first embodiment. Accordingly, the bypass pipe 601 is integrated into one.

図5は、第2の実施の形態における空気調和装置410の冷媒回路図である。
空気調和装置410は、室外ユニット100と、室外ユニット100に接続される複数台の室内ユニット300a,300b,300cと、室外ユニット100と室内ユニット300a,300b,300cとを接続するユニット間配管420と、室外ユニット100と室内ユニット300a,300b,300cとの間に接続される集合電磁弁キット600とを備える。
FIG. 5 is a refrigerant circuit diagram of the air-conditioning apparatus 410 according to the second embodiment.
The air conditioner 410 includes an outdoor unit 100, a plurality of indoor units 300a, 300b, and 300c connected to the outdoor unit 100, and an inter-unit pipe 420 that connects the outdoor unit 100 and the indoor units 300a, 300b, and 300c. And a collective solenoid valve kit 600 connected between the outdoor unit 100 and the indoor units 300a, 300b, and 300c.

ユニット間配管420は、圧縮機101の吐出管101a側と集合電磁弁キット600とを接続する高圧ガス管520と、圧縮機101の吸込管101b側と集合電磁弁キット600とを接続する低圧ガス管530と、室外熱交換器104の他端側と集合電磁弁キット600とを接続する液管510とを備える。
また、ユニット間配管420は、集合電磁弁キット600と室内ユニット300a,300b,300cの室内熱交換器302a,302b,302cの一端側とを接続する室内ユニット側液管350a,350b,350cと、集合電磁弁キット600と室内ユニット300a,300b,300cの室内熱交換器302a,302b,302cの他端側とを接続するガス管351a,351b,351cとを備える。
The inter-unit piping 420 includes a high-pressure gas pipe 520 that connects the discharge pipe 101a side of the compressor 101 and the collective solenoid valve kit 600, and a low-pressure gas that connects the suction pipe 101b side of the compressor 101 and the collective solenoid valve kit 600. A pipe 530 and a liquid pipe 510 connecting the other end side of the outdoor heat exchanger 104 and the collective solenoid valve kit 600 are provided.
The inter-unit piping 420 includes indoor unit side liquid pipes 350a, 350b, and 350c that connect the collective solenoid valve kit 600 and one end side of the indoor heat exchangers 302a, 302b, and 302c of the indoor units 300a, 300b, and 300c. Gas pipes 351a, 351b, 351c that connect the collective solenoid valve kit 600 and the other end sides of the indoor heat exchangers 302a, 302b, 302c of the indoor units 300a, 300b, 300c are provided.

詳細には、高圧ガス管520は、室外ユニット100と集合電磁弁キット600とを繋ぐ室外側高圧ガス管550と、集合電磁弁キット600内に設けられるキット内高圧ガス管551とを備える。このキット内高圧ガス管551は、室内ユニット300a,300b,300cに跨って配置される内部高圧ガス管558と、内部高圧ガス管558から室内ユニット300a,300b,300cに分岐する分岐高圧ガス管551a,551b,551cとを備える。
低圧ガス管530は、室外ユニット100と集合電磁弁キット600とを繋ぐ室外側低圧ガス管560と、集合電磁弁キット600内に設けられるキット内低圧ガス管561とを備える。このキット内低圧ガス管561は、室内ユニット300a,300b,300cに跨って配置される内部低圧ガス管568と、内部低圧ガス管568から室内ユニット300a,300b,300cに分岐する分岐低圧ガス管561a,561b,561cとを備える。
液管510は、室外ユニット100と集合電磁弁キット600とを繋ぐ室外側液管570と、集合電磁弁キット600内に設けられるキット内液管571とを備える。このキット内液管571は、室内ユニット300a,300b,300cに跨って配置される内部液管578と、内部液管578から室内ユニット300a,300b,300cに分岐する分岐液管571a,571b,571cとを備える。
Specifically, the high-pressure gas pipe 520 includes an outdoor high-pressure gas pipe 550 that connects the outdoor unit 100 and the collective solenoid valve kit 600, and an in-kit high-pressure gas pipe 551 provided in the collective solenoid valve kit 600. The high-pressure gas pipe 551 in the kit includes an internal high-pressure gas pipe 558 arranged across the indoor units 300a, 300b, and 300c, and a branched high-pressure gas pipe 551a that branches from the internal high-pressure gas pipe 558 to the indoor units 300a, 300b, and 300c. , 551b, 551c.
The low pressure gas pipe 530 includes an outdoor low pressure gas pipe 560 that connects the outdoor unit 100 and the collective solenoid valve kit 600, and an in-kit low pressure gas pipe 561 provided in the collective solenoid valve kit 600. The low-pressure gas pipe 561 in the kit includes an internal low-pressure gas pipe 568 disposed across the indoor units 300a, 300b, and 300c, and a branched low-pressure gas pipe 561a that branches from the internal low-pressure gas pipe 568 to the indoor units 300a, 300b, and 300c. , 561b, 561c.
The liquid pipe 510 includes an outdoor liquid pipe 570 that connects the outdoor unit 100 and the collective solenoid valve kit 600, and an in-kit liquid pipe 571 provided in the collective solenoid valve kit 600. The in-kit liquid pipe 571 includes an internal liquid pipe 578 arranged across the indoor units 300a, 300b, and 300c, and branch liquid pipes 571a, 571b, and 571c branched from the internal liquid pipe 578 to the indoor units 300a, 300b, and 300c. With.

集合電磁弁キット600は、室内ユニット300aに流れる冷媒が通る冷媒回路部600aと、室内ユニット300bに流れる冷媒が通る冷媒回路部600bと、室内ユニット300cに流れる冷媒が通る冷媒回路部600cと、内部高圧ガス管558と、内部低圧ガス管568と、内部液管578と、を筐体610に収容して構成されている。
冷媒回路部600aは、分岐高圧ガス管551aと、分岐低圧ガス管561aと、分岐液管571aと、分岐高圧ガス管551aと分岐低圧ガス管561aとを接続するバランス管555aと、分岐高圧ガス管551aに設けられる高圧ガス管電磁弁204aと、分岐低圧ガス管561aに設けられる低圧ガス管電磁弁206aと、バランス管555aに設けられるバランス管電磁弁205aとを備える。
The collective solenoid valve kit 600 includes a refrigerant circuit portion 600a through which the refrigerant flowing through the indoor unit 300a passes, a refrigerant circuit portion 600b through which the refrigerant flowing through the indoor unit 300b, a refrigerant circuit portion 600c through which the refrigerant flowing through the indoor unit 300c passes, The high-pressure gas pipe 558, the internal low-pressure gas pipe 568, and the internal liquid pipe 578 are housed in a housing 610.
The refrigerant circuit unit 600a includes a branch high-pressure gas pipe 551a, a branch low-pressure gas pipe 561a, a branch liquid pipe 571a, a balance pipe 555a connecting the branch high-pressure gas pipe 551a and the branch low-pressure gas pipe 561a, and a branch high-pressure gas pipe. The high pressure gas pipe solenoid valve 204a provided in the 551a, the low pressure gas pipe solenoid valve 206a provided in the branch low pressure gas pipe 561a, and the balance pipe solenoid valve 205a provided in the balance pipe 555a are provided.

冷媒回路部600bは、分岐高圧ガス管551bと、分岐低圧ガス管561bと、分岐液管571bと、分岐高圧ガス管551bと分岐低圧ガス管561bとを接続するバランス管555bと、分岐高圧ガス管551bに設けられる高圧ガス管電磁弁204bと、分岐低圧ガス管561bに設けられる低圧ガス管電磁弁206bと、バランス管555bに設けられるバランス管電磁弁205bとを備える。
冷媒回路部600cは、分岐高圧ガス管551cと、分岐低圧ガス管561cと、分岐液管571cと、分岐高圧ガス管551cと分岐低圧ガス管561cとを接続するバランス管555cと、分岐高圧ガス管551cに設けられる高圧ガス管電磁弁204cと、分岐低圧ガス管561cに設けられる低圧ガス管電磁弁206cと、バランス管555cに設けられるバランス管電磁弁205cとを備える。
The refrigerant circuit unit 600b includes a branch high-pressure gas pipe 551b, a branch low-pressure gas pipe 561b, a branch liquid pipe 571b, a balance pipe 555b connecting the branch high-pressure gas pipe 551b and the branch low-pressure gas pipe 561b, and a branch high-pressure gas pipe. The high pressure gas pipe solenoid valve 204b provided in the 551b, the low pressure gas pipe solenoid valve 206b provided in the branch low pressure gas pipe 561b, and the balance pipe solenoid valve 205b provided in the balance pipe 555b are provided.
The refrigerant circuit unit 600c includes a branch high-pressure gas pipe 551c, a branch low-pressure gas pipe 561c, a branch liquid pipe 571c, a balance pipe 555c connecting the branch high-pressure gas pipe 551c and the branch low-pressure gas pipe 561c, and a branch high-pressure gas pipe. The high pressure gas pipe solenoid valve 204c provided in the 551c, the low pressure gas pipe solenoid valve 206c provided in the branch low pressure gas pipe 561c, and the balance pipe solenoid valve 205c provided in the balance pipe 555c are provided.

分岐高圧ガス管551a,551b,551cと分岐低圧ガス管561a,561b,561cとは、合流して1本の合流配管575a,575b,575cとなる。ガス管351a,351b,351cは、合流配管575a,575b,575cに接続される。また、室内ユニット側液管350a,350b,350cは、分岐液管571a,571b,571cに接続される。   The branch high-pressure gas pipes 551a, 551b, and 551c and the branch low-pressure gas pipes 561a, 561b, and 561c merge to form one merge pipe 575a, 575b, and 575c. The gas pipes 351a, 351b, 351c are connected to the junction pipes 575a, 575b, 575c. The indoor unit side liquid pipes 350a, 350b, and 350c are connected to the branch liquid pipes 571a, 571b, and 571c.

また、集合電磁弁キット600は、高圧ガス管電磁弁204a,204b,204cをバイパスするように内部高圧ガス管558と内部液管578とを接続するバイパス管601と、バイパス管601を流れる冷媒を減圧する減圧器603と、減圧器603を通過した後の冷媒と高圧ガス管電磁弁204a,204b,204c、低圧ガス管電磁弁206a,206b,206c及びバランス管電磁弁205a,205b,205cとの間で熱交換を行う熱交換部602とを備える。   The collective solenoid valve kit 600 also includes a bypass pipe 601 that connects the internal high pressure gas pipe 558 and the internal liquid pipe 578 so as to bypass the high pressure gas pipe solenoid valves 204a, 204b, and 204c, and a refrigerant that flows through the bypass pipe 601. A decompressor 603 for decompressing, a refrigerant after passing through the decompressor 603, and the high pressure gas pipe solenoid valves 204a, 204b, 204c, the low pressure gas pipe solenoid valves 206a, 206b, 206c, and the balance pipe solenoid valves 205a, 205b, 205c. And a heat exchanging unit 602 that performs heat exchange between them.

減圧器603は、開度を調整可能な電動弁であり、上記制御部により制御される。
バイパス管601は、筐体610内で内部高圧ガス管558と内部液管578とを接続する冷媒配管である。冷媒は、内部高圧ガス管558と内部液管578との圧力差によって、内部高圧ガス管558から内部液管578に流れる。
バイパス管601の一端582は、高圧ガス管電磁弁204a,204b,204cよりも、暖房運転の際の冷媒の流れ方向において上流側で内部高圧ガス管558に接続される。
バイパス管601の他端583は、筐体610内で内部液管578に接続される。
減圧器603及び熱交換部602は、バイパス管601において、一端582と他端583との間に設けられる。
バイパス管601の一端582は、内部高圧ガス管558の下部(下面)に接続され、バイパス管601の他端583は、内部液管578の下部(下面)に接続される。
The decompressor 603 is an electric valve whose opening degree can be adjusted, and is controlled by the control unit.
The bypass pipe 601 is a refrigerant pipe that connects the internal high-pressure gas pipe 558 and the internal liquid pipe 578 in the housing 610. The refrigerant flows from the internal high pressure gas pipe 558 to the internal liquid pipe 578 due to a pressure difference between the internal high pressure gas pipe 558 and the internal liquid pipe 578.
One end 582 of the bypass pipe 601 is connected to the internal high-pressure gas pipe 558 upstream of the high-pressure gas pipe solenoid valves 204a, 204b, 204c in the refrigerant flow direction during the heating operation.
The other end 583 of the bypass pipe 601 is connected to the internal liquid pipe 578 in the housing 610.
The decompressor 603 and the heat exchange unit 602 are provided between the one end 582 and the other end 583 in the bypass pipe 601.
One end 582 of the bypass pipe 601 is connected to the lower part (lower face) of the internal high-pressure gas pipe 558, and the other end 583 of the bypass pipe 601 is connected to the lower part (lower face) of the internal liquid pipe 578.

熱交換部602は、上記第1の実施の形態の熱交換部202aと同様に、バイパス管601の外周部において減圧器603の下流側の部分と各電磁コイル208とが接触する部分である。
本第2の実施の形態では、熱交換部602は、減圧器603とバイパス管601の他端583との間において各電磁コイル208に対応する位置に設けられており、熱交換によって各電磁コイル208を冷却する。すなわち、熱交換部602によって、高圧ガス管電磁弁204a,204b,204c、低圧ガス管電磁弁206a,206b,206c及びバランス管電磁弁205a,205b,205cの各電磁コイル208が冷却される。
The heat exchanging part 602 is a part where the part on the downstream side of the decompressor 603 and each electromagnetic coil 208 are in contact with each other at the outer peripheral part of the bypass pipe 601, similarly to the heat exchanging part 202 a of the first embodiment.
In the second embodiment, the heat exchanging unit 602 is provided at a position corresponding to each electromagnetic coil 208 between the decompressor 603 and the other end 583 of the bypass pipe 601. Cool 208. That is, the heat exchange unit 602 cools the electromagnetic coils 208 of the high pressure gas pipe solenoid valves 204a, 204b, 204c, the low pressure gas pipe solenoid valves 206a, 206b, 206c and the balance pipe solenoid valves 205a, 205b, 205c.

図5では、冷房運転の際の冷媒回路図が示されている。
冷房運転時には、四方弁103は、図5の四方弁103中の実線の方向に冷媒を流すように設定される。また、冷房運転時には、高圧ガス管電磁弁204a,204b,204cは閉状態とされ、バランス管電磁弁205a,205b,205c及び低圧ガス管電磁弁206a,206b,206cは開状態とされる。冷房運転時の冷媒の流れ方向は、図5に実線及び破線の矢印で図示されている。
なお、第2の実施の形態は、内部高圧ガス管558、内部低圧ガス管568及び内部液管578が集合電磁弁キット600に収容された点が第1の実施の形態と異なるが、バイパス管601の部分を除き、冷媒の基本的な流れは第1の実施の形態と同様であるため、全体の冷媒の流れの説明は省略する。
FIG. 5 shows a refrigerant circuit diagram in the cooling operation.
During the cooling operation, the four-way valve 103 is set so that the refrigerant flows in the direction of the solid line in the four-way valve 103 of FIG. During the cooling operation, the high pressure gas pipe solenoid valves 204a, 204b, and 204c are closed, and the balance pipe solenoid valves 205a, 205b, and 205c and the low pressure gas pipe solenoid valves 206a, 206b, and 206c are opened. The flow direction of the refrigerant during the cooling operation is illustrated by solid and broken arrows in FIG.
The second embodiment differs from the first embodiment in that the internal high-pressure gas pipe 558, the internal low-pressure gas pipe 568 and the internal liquid pipe 578 are accommodated in the collective solenoid valve kit 600, but the bypass pipe Except for the portion 601, the basic flow of the refrigerant is the same as that in the first embodiment, and thus the description of the entire refrigerant flow is omitted.

冷房運転時には、圧縮機101から吐出された高温高圧のガス冷媒の一部は、四方弁103側ではなく、図5に破線の矢印で示すように、室外側高圧ガス管550に流れ、集合電磁弁キット600の内部高圧ガス管558に流入する。
冷房運転時には、高圧ガス管電磁弁204a,204b,204cは閉状態であるため、内部高圧ガス管558に流入した冷媒は、バイパス管601に流れる。
During the cooling operation, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows not to the four-way valve 103 side but to the outdoor high-pressure gas pipe 550 as shown by a broken arrow in FIG. It flows into the internal high-pressure gas pipe 558 of the valve kit 600.
During the cooling operation, the high-pressure gas pipe solenoid valves 204a, 204b, and 204c are closed, so that the refrigerant that has flowed into the internal high-pressure gas pipe 558 flows into the bypass pipe 601.

バイパス管601に流れた冷媒は、減圧器603で減圧されて低温になる。この低温になった冷媒は、熱交換部602を通る際に各電磁コイル208と熱交換し、各電磁コイル208を冷却する。
熱交換部602で熱交換した冷媒は、内部液管578を流れる冷媒に合流し、室内ユニット300a,300b,300c側に流れる。
The refrigerant that has flowed into the bypass pipe 601 is decompressed by the decompressor 603 and becomes low temperature. The low-temperature refrigerant exchanges heat with each electromagnetic coil 208 when passing through the heat exchanging unit 602, and cools each electromagnetic coil 208.
The refrigerant that has exchanged heat with the heat exchange unit 602 joins the refrigerant flowing through the internal liquid pipe 578 and flows toward the indoor units 300a, 300b, and 300c.

本第2の実施の形態では、バイパス管601は、1本のバイパス管601が、複数の冷媒回路部600a,600b,600cの各電磁コイル208に跨って設けられる。このため、バイパス管601の本数を削減でき、簡単な構成で各電磁コイル208を冷却できる。
また、空気調和装置410の起動直後やオイル回収運転を実施した直後、または、直前まで暖房運転や冷暖混在運転をしていた場合など、高圧ガス管520の冷媒の溜まり量が少ない時は、空気調和装置410は、室外ユニット100からの信号を受けて減圧器603を所定時間だけ全閉にする。すなわち、空気調和装置410では、冷房運転時において冷媒の溜まり量が少ない時は、バイパス管601に冷媒が流れないように制御され、所定時間経過して高圧ガス管520に冷媒が溜まり始めてから減圧器603が開方向に制御される。
これにより、高圧ガス管520に冷媒が溜まっていない時に、バイパス管601を通って内部液管578に冷媒が過剰にバイパスしなくなる。このため、室外熱交換器104の出口の冷媒の過冷却度が小さくなることによる冷房能力の低下を抑制することができる。
In the second embodiment, the bypass pipe 601 is provided with one bypass pipe 601 straddling the electromagnetic coils 208 of the plurality of refrigerant circuit portions 600a, 600b, and 600c. For this reason, the number of bypass pipes 601 can be reduced, and each electromagnetic coil 208 can be cooled with a simple configuration.
In addition, when the amount of refrigerant accumulated in the high-pressure gas pipe 520 is small, such as immediately after the start of the air conditioner 410, immediately after the oil recovery operation is performed, or when the heating operation or the mixed cooling / heating operation is performed immediately before, the air The harmony device 410 receives the signal from the outdoor unit 100 and fully closes the decompressor 603 for a predetermined time. That is, in the air conditioner 410, when the refrigerant accumulation amount is small during the cooling operation, the refrigerant is controlled so that the refrigerant does not flow into the bypass pipe 601, and the pressure is reduced after the refrigerant starts to accumulate in the high-pressure gas pipe 520 after a predetermined time. The device 603 is controlled in the opening direction.
Thereby, when the refrigerant is not accumulated in the high-pressure gas pipe 520, the refrigerant does not excessively bypass the internal liquid pipe 578 through the bypass pipe 601. For this reason, the fall of the cooling capability by the supercooling degree of the refrigerant | coolant of the exit of the outdoor heat exchanger 104 becoming small can be suppressed.

また、バイパス管601の一端582は、筐体610内における冷媒の流れの下流側(室外ユニット100から遠い側)で内部高圧ガス管558に接続され、他端583は、筐体610内における冷媒の流れの上流側(室外ユニット100から近い側)で内部液管578に接続される。これにより、内部高圧ガス管558内の広い範囲に亘り、内部高圧ガス管558内に溜まる冷媒をバイパス管601を通して内部液管578に戻すことができ、内部高圧ガス管558内に冷媒が溜まることによる冷媒不足を回避でき、冷媒能力の低下を抑制できる。さらに、冷媒不足を回避できるため、室内ユニット300a,300b,300cに流入する冷媒の温度差を小さくできる。このため、室内ユニット300a,300b,300cの能力のバラツキを低減でき、室内ユニット300a,300b,300cが設置された空間の温度ムラを減少させることで、快適性を向上できる。
本第2の実施の形態では、暖房運転時及び冷暖混在運転時においても、上記第1の実施の形態と同様の効果を得ることができる。
Further, one end 582 of the bypass pipe 601 is connected to the internal high-pressure gas pipe 558 on the downstream side of the refrigerant flow in the casing 610 (the side far from the outdoor unit 100), and the other end 583 is the refrigerant in the casing 610. Is connected to the internal liquid pipe 578 on the upstream side of the flow (side closer to the outdoor unit 100). Thereby, the refrigerant accumulated in the internal high-pressure gas pipe 558 can be returned to the internal liquid pipe 578 through the bypass pipe 601 over a wide range in the internal high-pressure gas pipe 558, and the refrigerant accumulates in the internal high-pressure gas pipe 558. It is possible to avoid a shortage of refrigerant due to the above, and to suppress a decrease in refrigerant capacity. Furthermore, since the refrigerant shortage can be avoided, the temperature difference of the refrigerant flowing into the indoor units 300a, 300b, 300c can be reduced. For this reason, the variation in the capability of the indoor units 300a, 300b, and 300c can be reduced, and the comfort can be improved by reducing the temperature unevenness in the space in which the indoor units 300a, 300b, and 300c are installed.
In the second embodiment, the same effect as that of the first embodiment can be obtained even during the heating operation and the cooling / heating mixed operation.

なお、上記第2の実施の形態は本発明を適用した一態様を示すものであって、本発明は上記第2の実施の形態に限定されるものではない。
上記第2の実施の形態では、高圧ガス管電磁弁204a,204b,204c、バランス管電磁弁205a,205b,205c、及び、低圧ガス管電磁弁206a,206b,206cの各電磁コイル208を熱交換部602で冷却する例を挙げて説明したが、本発明はこれに限定されるものではなく、一部の電磁コイル208のみを熱交換部で冷却する構成としても良い。例えば、集合電磁弁キット600では、各電磁コイル208が筐体610内で多数並べて配置されるため、各電磁コイル208による全体の発熱量が大きくなることがあり、特に、周囲を他の電磁コイルで囲まれる電磁コイルは温度上昇が大きくなることがある。この場合、このような温度上昇が大きくなりやすい電磁コイルのみを熱交換部で冷却する構成としても良い。また、筐体610内の中央部に配置されて熱が籠り易い高圧ガス管電磁弁204b、バランス管電磁弁205b及び低圧ガス管電磁弁206bのみを熱交換部で冷却する構成としても良い。
The second embodiment shows one aspect to which the present invention is applied, and the present invention is not limited to the second embodiment.
In the second embodiment, the high pressure gas pipe solenoid valves 204a, 204b, and 204c, the balance pipe solenoid valves 205a, 205b, and 205c and the electromagnetic coils 208 of the low pressure gas pipe solenoid valves 206a, 206b, and 206c are heat exchanged. Although an example of cooling by the unit 602 has been described, the present invention is not limited to this, and only a part of the electromagnetic coils 208 may be cooled by the heat exchange unit. For example, in the collective solenoid valve kit 600, since a large number of each electromagnetic coil 208 is arranged in the housing 610, the total amount of heat generated by each electromagnetic coil 208 may increase. The electromagnetic coil surrounded by may increase in temperature. In this case, it is good also as a structure which cools only an electromagnetic coil in which such a temperature rise becomes large easily in a heat exchange part. Alternatively, only the high-pressure gas pipe solenoid valve 204b, the balance pipe solenoid valve 205b, and the low-pressure gas pipe solenoid valve 206b that are disposed in the center of the housing 610 and easily generate heat may be cooled by the heat exchange unit.

10,410 空気調和装置
100 室外ユニット
300a,300b,300c 室内ユニット
110,510 液管
120,520 高圧ガス管
130,530 低圧ガス管
151a,151b,151c,551 キット内高圧ガス管
161a,161b,161c,561 キット内低圧ガス管
171a,171b,171c,571 キット内液管
182a,182b,182c,582 一端(冷媒回路の一端)
200a,200b,200c 電磁弁キット
201a,201b,201c,601 バイパス管
202a,202b,202c,602 熱交換部
203a,203b,203c,603 減圧器
204a,204b,204c 高圧ガス管電磁弁(電磁弁)
206a,206b,206c 低圧ガス管電磁弁(電磁弁)
208 電磁コイル
350a,350b,350c 室内ユニット側液管
351a,351b,351c ガス管
600 集合電磁弁キット(電磁弁キット)
10,410 Air conditioner 100 Outdoor unit 300a, 300b, 300c Indoor unit 110, 510 Liquid pipe 120, 520 High pressure gas pipe 130, 530 Low pressure gas pipe 151a, 151b, 151c, 551 In-kit high pressure gas pipe 161a, 161b, 161c , 561 Low pressure gas pipe in the kit 171a, 171b, 171c, 571 Liquid pipe in the kit 182a, 182b, 182c, 582 One end (one end of the refrigerant circuit)
200a, 200b, 200c Solenoid valve kit 201a, 201b, 201c, 601 Bypass pipe 202a, 202b, 202c, 602 Heat exchanger 203a, 203b, 203c, 603 Pressure reducer 204a, 204b, 204c High pressure gas pipe solenoid valve (solenoid valve)
206a, 206b, 206c Low pressure gas pipe solenoid valve (solenoid valve)
208 Electromagnetic coil 350a, 350b, 350c Indoor unit side liquid pipe 351a, 351b, 351c Gas pipe 600 Collective solenoid valve kit (solenoid valve kit)

Claims (4)

室外ユニットと、複数台の室内ユニットと、前記室外ユニットを複数台の前記室内ユニット側に接続する高圧ガス管、液管、及び、低圧ガス管とを備え、冷房運転の時は前記室内ユニットと前記低圧ガス管とを連通させるとともに、暖房運転の時は前記高圧ガス管と前記室内ユニットとを連通させるように切り替えられる電磁弁を備え、少なくとも1台の前記室内ユニットを冷房もしくは暖房のいずれか一方で運転可能であり、且つ、複数台の前記室内ユニットを冷房及び暖房を混在して運転可能な空気調和装置において、
前記高圧ガス管の冷媒を減圧し前記液管に流す減圧器と、前記減圧器を通過した後の冷媒と前記電磁弁の電磁コイルとの熱交換を行う熱交換部とを備えたことを特徴とする空気調和装置。
An outdoor unit, a plurality of indoor units, and a high-pressure gas pipe, a liquid pipe, and a low-pressure gas pipe that connect the outdoor unit to the plurality of indoor units. An electromagnetic valve is provided that communicates with the low-pressure gas pipe and is switched to communicate the high-pressure gas pipe with the indoor unit during heating operation, and at least one of the indoor units is either cooled or heated. On the other hand, in an air conditioner that can be operated and can operate a plurality of the indoor units mixed with cooling and heating,
A pressure reducer for reducing the pressure of the refrigerant in the high-pressure gas pipe and flowing it through the liquid pipe; and a heat exchanging section for exchanging heat between the refrigerant after passing through the pressure reducer and the electromagnetic coil of the solenoid valve. Air conditioner.
前記室外ユニットと複数台の前記室内ユニットとの間に接続される電磁弁キットを備え、
前記電磁弁キットは、前記高圧ガス管、前記液管、及び、前記低圧ガス管で前記室外ユニットに接続されるとともに、室内ユニット側液管及びガス管で前記室内ユニットに接続され、
前記高圧ガス管は、前記電磁弁キット内に配置されるキット内高圧ガス管を備え、
前記液管は、前記電磁弁キット内に配置されるキット内液管を備え、
前記低圧ガス管は、前記電磁弁キット内に配置されるキット内低圧ガス管を備え、
前記電磁弁は、冷房運転の時は前記ガス管と前記キット内低圧ガス管とを連通させるとともに、暖房運転の時は前記キット内高圧ガス管と前記ガス管とを連通させるように切り替えられ、
前記高圧ガス管と前記液管とを前記減圧器を介して接続する冷媒回路は、前記キット内高圧ガス管と前記キット内液管とを接続するバイパス管であることを特徴とする請求項1記載の空気調和装置。
A solenoid valve kit connected between the outdoor unit and the plurality of indoor units;
The solenoid valve kit is connected to the outdoor unit with the high pressure gas pipe, the liquid pipe, and the low pressure gas pipe, and is connected to the indoor unit with an indoor unit side liquid pipe and a gas pipe,
The high-pressure gas pipe includes an in-kit high-pressure gas pipe disposed in the solenoid valve kit,
The liquid pipe includes a liquid pipe in the kit arranged in the solenoid valve kit,
The low-pressure gas pipe includes an in-kit low-pressure gas pipe disposed in the solenoid valve kit,
The solenoid valve is switched so that the gas pipe communicates with the low-pressure gas pipe in the kit during cooling operation, and communicates between the high-pressure gas pipe within the kit and the gas pipe during heating operation,
2. The refrigerant circuit that connects the high-pressure gas pipe and the liquid pipe via the decompressor is a bypass pipe that connects the high-pressure gas pipe in the kit and the liquid pipe in the kit. The air conditioning apparatus described.
前記高圧ガス管と前記液管とを前記減圧器を介して接続する冷媒回路の一端は、前記高圧ガス管の下部に接続されていることを特徴とする請求項1または2記載の空気調和装置。   3. The air conditioner according to claim 1, wherein one end of a refrigerant circuit that connects the high-pressure gas pipe and the liquid pipe via the decompressor is connected to a lower portion of the high-pressure gas pipe. . 高圧ガス管と、
低圧ガス管と、
液管と、
室内ユニットに接続されるガス管を、冷房運転の時は前記低圧ガス管に連通させるとともに、暖房運転の時は前記高圧ガス管に連通させるように切り替えられる電磁弁と、
前記高圧ガス管の冷媒を減圧し前記液管に流す減圧器と、
前記減圧器を通過した後の冷媒と前記電磁弁の電磁コイルとの熱交換を行う熱交換部と、
を備えたことを特徴とする電磁弁キット。
A high-pressure gas pipe;
A low pressure gas pipe;
A liquid tube,
A gas pipe connected to the indoor unit, communicated with the low-pressure gas pipe during cooling operation, and switched to communicate with the high-pressure gas pipe during heating operation;
A decompressor that decompresses the refrigerant in the high-pressure gas pipe and flows the refrigerant into the liquid pipe;
A heat exchanging unit that exchanges heat between the refrigerant after passing through the pressure reducer and the electromagnetic coil of the electromagnetic valve;
A solenoid valve kit comprising:
JP2015231631A 2015-11-27 2015-11-27 Air conditioner and electromagnetic valve kit Pending JP2017096597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015231631A JP2017096597A (en) 2015-11-27 2015-11-27 Air conditioner and electromagnetic valve kit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015231631A JP2017096597A (en) 2015-11-27 2015-11-27 Air conditioner and electromagnetic valve kit

Publications (1)

Publication Number Publication Date
JP2017096597A true JP2017096597A (en) 2017-06-01

Family

ID=58817241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015231631A Pending JP2017096597A (en) 2015-11-27 2015-11-27 Air conditioner and electromagnetic valve kit

Country Status (1)

Country Link
JP (1) JP2017096597A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110555253A (en) * 2019-08-26 2019-12-10 华南理工大学 method for calculating temperature rise of solenoid valve coil in automobile braking system
CN115614851A (en) * 2022-10-12 2023-01-17 珠海格力电器股份有限公司 Control method of multi-connected air conditioning unit, multi-connected air conditioning unit and computer readable storage medium
JP2023509017A (en) * 2019-12-30 2023-03-06 エルジー エレクトロニクス インコーポレイティド air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110555253A (en) * 2019-08-26 2019-12-10 华南理工大学 method for calculating temperature rise of solenoid valve coil in automobile braking system
JP2023509017A (en) * 2019-12-30 2023-03-06 エルジー エレクトロニクス インコーポレイティド air conditioner
JP7455211B2 (en) 2019-12-30 2024-03-25 エルジー エレクトロニクス インコーポレイティド air conditioner
CN115614851A (en) * 2022-10-12 2023-01-17 珠海格力电器股份有限公司 Control method of multi-connected air conditioning unit, multi-connected air conditioning unit and computer readable storage medium
CN115614851B (en) * 2022-10-12 2024-07-02 珠海格力电器股份有限公司 Control method of multi-connected air conditioning unit, multi-connected air conditioning unit and computer readable storage medium

Similar Documents

Publication Publication Date Title
JP5340382B2 (en) Valve block and valve block unit
JP6565272B2 (en) Refrigeration unit heat source unit
JP5258963B2 (en) Heat medium converter and air conditioner
JP2009236404A (en) Refrigeration cycle device
JP2007085591A (en) Air conditioner
JP2009109062A (en) Refrigerating cycle device using four-way switch valve
JP6051849B2 (en) Air conditioning system
JP2018124009A (en) Refrigeration unit
JP2017096597A (en) Air conditioner and electromagnetic valve kit
JP2011133133A (en) Refrigerating device
JPH06201220A (en) Cooling and heating hybrid engine driving heat pump system
JP2016142417A (en) Air conditioner
JP2005106367A (en) Air conditioner outdoor unit, air conditioner and compressor unit
JP2014126291A (en) Air conditioning system
JP6310077B2 (en) Heat source system
JP6242289B2 (en) Refrigeration cycle equipment
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
JP6507453B2 (en) Vehicle air conditioner
EP2833073A1 (en) Outdoor unit and air conditioning device with outdoor unit
JP2018100641A (en) Compressor unit and outdoor unit including the same
JP2018054255A (en) Air conditioner
KR100641117B1 (en) Multi-air conditioner with flow channel cut-off valve
JP5803526B2 (en) Automotive refrigeration system and automotive temperature control system
JP2017003127A (en) Air conditioning device
KR102136589B1 (en) An air conditioning system