JP2017096138A - Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine - Google Patents

Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine Download PDF

Info

Publication number
JP2017096138A
JP2017096138A JP2015227564A JP2015227564A JP2017096138A JP 2017096138 A JP2017096138 A JP 2017096138A JP 2015227564 A JP2015227564 A JP 2015227564A JP 2015227564 A JP2015227564 A JP 2015227564A JP 2017096138 A JP2017096138 A JP 2017096138A
Authority
JP
Japan
Prior art keywords
ammonia
exhaust gas
amount
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015227564A
Other languages
Japanese (ja)
Inventor
陽平 長嶋
Yohei NAGASHIMA
陽平 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015227564A priority Critical patent/JP2017096138A/en
Publication of JP2017096138A publication Critical patent/JP2017096138A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control system for an internal combustion engine, the internal combustion engine and an exhaust emission control method for the internal combustion engine, which can highly accurately estimate ammonia amount stored in each of selective reduction type catalyst devices when an exhaust emission control device includes the plurality of selective reduction type catalyst devices, thus can make supply amount of urea water from an urea water supply device appropriate and can improve an NOx elimination ratio while suppressing ammonia slip from the selective reduction type catalyst devices.SOLUTION: An exhaust emission control device includes a selective reduction type catalyst device group 14 that comprises at least two or more selective reduction type catalyst devices. On the basis of a concentration of nitrogen oxide included in exhaust gas G flowing into the selective reduction type catalyst device group 14 and an ammonia concentration included in the exhaust gas G flowing out from each of the selective reduction type catalyst devices 141, 142, 143 constituting the selective reduction type catalyst device group 14, basic supply amount Qb of urea water U from an urea water supply device 22 is corrected.SELECTED DRAWING: Figure 2

Description

本発明は、内燃機関の排気通路に、上流側より順に、尿素水供給装置、排気ガス浄化処理装置を備えて構成される内燃機関の排気ガス浄化システム、内燃機関及び内燃機関の排気ガス浄化方法に関する。   The present invention relates to an exhaust gas purification system for an internal combustion engine, an internal combustion engine, and an exhaust gas purification method for the internal combustion engine, which are provided with a urea water supply device and an exhaust gas purification treatment device in order from the upstream side in the exhaust passage of the internal combustion engine. About.

車両に搭載されるディーゼルエンジン等の内燃機関には、窒素酸化物(NOx)、微粒子状物質(PM)、炭化水素(HC)等の排気ガスに含まれる浄化対象成分を浄化するために、排気ガス浄化処理装置を排気通路に備えている。この排気ガス浄化処理装置には、酸化触媒装置(DOC)、微粒子捕集装置(CSF)、選択還元型触媒装置(SCR)等の装置がその内部に備えられている。   An internal combustion engine such as a diesel engine mounted on a vehicle has an exhaust gas for purifying components to be purified contained in exhaust gas such as nitrogen oxide (NOx), particulate matter (PM), and hydrocarbon (HC). A gas purification treatment device is provided in the exhaust passage. This exhaust gas purification processing device is provided with devices such as an oxidation catalyst device (DOC), a particulate collection device (CSF), and a selective catalytic reduction device (SCR).

この選択還元型触媒装置は、その前段の排気通路に備えた尿素水供給装置より排気ガスに向けて噴射される尿素水を排気ガスの熱により加水分解してアンモニア(NH3)を生成し、この生成したアンモニア(NH3)により排気ガスに含まれるNOxを還元浄化する装置である。この選択還元型触媒装置に担持された触媒はアンモニアを貯留することができ、この貯留したアンモニアにより排気ガスに含まれるNOxを主に還元浄化している。 This selective catalytic reduction catalyst device generates ammonia (NH 3 ) by hydrolyzing urea water, which is injected toward the exhaust gas from the urea water supply device provided in the preceding exhaust passage, by the heat of the exhaust gas, This is an apparatus for reducing and purifying NOx contained in exhaust gas by the generated ammonia (NH 3 ). The catalyst supported on the selective catalytic reduction device can store ammonia, and NOx contained in the exhaust gas is mainly reduced and purified by the stored ammonia.

しかしながら、貯留可能なアンモニアの量(ストレージ量)には上限があり、この上限を超えて貯留できなくなったアンモニアは選択還元型触媒装置の下流側の排気通路に放出される。特に、ある条件下では(例えば、内燃機関の運転状態の急激な変化に伴う排気ガスの温度の急上昇により、選択還元型触媒装置の温度が急上昇したとき等)、選択還元型触媒装置の内部に貯留できるアンモニアのストレージ量の上限が急激に変化するため、選択還元型触媒装置の下流側の排気通路に放出されるアンモニアの量(アンモニアスリップする量)は増加する。   However, there is an upper limit to the amount of ammonia that can be stored (storage amount), and ammonia that cannot be stored beyond this upper limit is released into the exhaust passage downstream of the selective catalytic reduction device. In particular, under certain conditions (for example, when the temperature of the selective catalytic reduction device suddenly rises due to a sudden rise in the temperature of exhaust gas due to a sudden change in the operating state of the internal combustion engine, etc.), Since the upper limit of the storage amount of ammonia that can be stored changes rapidly, the amount of ammonia released into the exhaust passage downstream of the selective catalytic reduction device (amount of ammonia slip) increases.

なお、選択還元型触媒装置の下流側の排気通路には、通常、アンモニアスリップ触媒装置が配設される。このアンモニアスリップ触媒装置により、選択還元型触媒装置より放出されたアンモニアの大半は酸化されてNOxとなる。   Note that an ammonia slip catalyst device is usually disposed in the exhaust passage on the downstream side of the selective catalytic reduction device. By this ammonia slip catalyst device, most of the ammonia released from the selective catalytic reduction device is oxidized to NOx.

ところで、ディーゼルエンジン等の内燃機関の排気ガスについての法規制は、年々、より厳しいものとなっており、この厳しくなっていく法規制を遵守するためには、排気ガス浄化処理装置に選択還元型触媒装置を複数備えて大型化する等の対応をする必要がある。   By the way, laws and regulations on exhaust gas from internal combustion engines such as diesel engines are becoming stricter year by year, and in order to comply with these stricter laws and regulations, exhaust gas purification treatment devices are selectively reduced. It is necessary to take measures such as increasing the size by providing a plurality of catalyst devices.

この選択還元型触媒装置を複数備えた例として、エンジンの排気通路に、上流側より順に、尿素水噴射装置、第1選択還元型触媒、NH3センサ、第2選択還元型触媒を備えた内燃機関の排気浄化装置が提案されている(例えば、特許文献1参照)。   As an example provided with a plurality of selective reduction catalyst devices, an internal combustion engine provided with an urea water injection device, a first selective reduction catalyst, an NH3 sensor, and a second selective reduction catalyst in the exhaust passage of the engine in order from the upstream side. An exhaust gas purification apparatus has been proposed (see, for example, Patent Document 1).

このように排気ガス浄化処理装置に選択還元型触媒装置を複数備える場合は、各々の選択還元型触媒装置に貯留するアンモニアの量を高精度で推定する必要がある。排気ガスに含まれるNOxの浄化処理には、各々の選択還元型触媒装置に貯留するアンモニアを主に還元剤として用いるが、このアンモニアの貯留量の推定精度が良くないと、前段の尿素水供給装置からの尿素水の供給量が過剰または不足する虞があり、選択還元型触媒装置からのアンモニアスリップが発生したり、NOx浄化率が悪化したりする虞があるからである。   As described above, when the exhaust gas purification processing apparatus includes a plurality of selective reduction catalyst devices, it is necessary to estimate the amount of ammonia stored in each selective reduction catalyst device with high accuracy. In the purification process of NOx contained in the exhaust gas, ammonia stored in each selective reduction catalyst device is mainly used as a reducing agent. However, if the accuracy of estimating the storage amount of ammonia is not good, the urea water supply in the previous stage is supplied. This is because the urea water supply amount from the apparatus may be excessive or insufficient, and ammonia slip from the selective catalytic reduction apparatus may occur or the NOx purification rate may deteriorate.

しかしながら、排気ガス浄化処理装置に選択還元型触媒装置を複数備える場合における、各々の選択還元型触媒装置に貯留するアンモニアの量を高精度で推定するための手段について、未だ確立されていなかった。   However, a means for estimating with high accuracy the amount of ammonia stored in each selective reduction catalyst device when a plurality of selective reduction catalyst devices are provided in the exhaust gas purification processing device has not yet been established.

特開2011−163195号公報JP 2011-163195 A

本発明は、上記のことを鑑みてなされたものであり、その目的は、内燃機関の排気通路に、上流側より順に、尿素水供給装置、排気ガス浄化処理装置を備えて構成される内燃機関の排気ガス浄化システム、内燃機関及び内燃機関の排気ガス浄化方法に関し、特に、排気ガス浄化処理装置に選択還元型触媒装置を複数備えた場合における、各々の選択還元型触媒装置に貯留するアンモニアの量を高精度で推定することができ、その結果、尿素水供給装置からの尿素水の供給量を適正化することができ、選択還元型触媒装置からのアンモニアスリップを抑制しつつ、NOx浄化率を向上させることができる内燃機関の排気ガス浄化システム、内燃機関及び内燃機関の排気ガス浄化方法を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to provide an internal combustion engine including a urea water supply device and an exhaust gas purification processing device in order from the upstream side in the exhaust passage of the internal combustion engine. The exhaust gas purification system, the internal combustion engine, and the exhaust gas purification method of the internal combustion engine, in particular, when the exhaust gas purification processing apparatus includes a plurality of selective reduction catalyst devices, the ammonia stored in each selective reduction catalyst device The amount can be estimated with high accuracy, and as a result, the amount of urea water supplied from the urea water supply device can be optimized, and the NOx purification rate can be reduced while suppressing ammonia slip from the selective catalytic reduction device. It is an object to provide an exhaust gas purification system for an internal combustion engine, an internal combustion engine, and an exhaust gas purification method for the internal combustion engine.

上記の目的を達成するための本発明の内燃機関の排気ガス浄化システムは、内燃機関の排気通路に、上流側より順に、尿素水供給装置、排気ガス浄化処理装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、前記排気ガス浄化処理装置に、少なくとも2つ以上の選択還元型触媒装置で構成される選択還元型触媒装置群を備えて、該選択還元型触媒装置群の入口に、前記選択還元型触媒装置群に流入する排気ガスに含まれる窒素酸化物の濃度を検出する窒素酸化物検出装置を備えるとともに、前記選択還元型触媒装置群を構成する各々の選択還元型触媒装置の後段に、各々の選択還元型触媒装置より流出する排気ガスに含まれるアンモニアの濃度を検出するアンモニア濃度検出装置を備えて構成される。   In order to achieve the above object, an exhaust gas purification system for an internal combustion engine according to the present invention includes an urea water supply device and an exhaust gas purification treatment device in order from the upstream side in an exhaust passage of the internal combustion engine. In the exhaust gas purification system of the present invention, the exhaust gas purification processing device includes a selective reduction catalyst device group composed of at least two selective reduction catalyst devices, and an inlet of the selective reduction catalyst device group, Each of the selective reduction catalyst devices constituting the selective reduction catalyst device group includes a nitrogen oxide detection device that detects the concentration of nitrogen oxide contained in the exhaust gas flowing into the selective reduction catalyst device group. The rear stage is configured to include an ammonia concentration detection device that detects the concentration of ammonia contained in the exhaust gas flowing out from each selective reduction catalyst device.

この構成によれば、排気ガス浄化処理装置に備えた各々の選択還元型触媒装置に貯留されたアンモニアの量(ストレージ量)を、選択還元型触媒装置群の入口に備えた窒素酸化物検出装置の検出値と、各々の選択還元型触媒装置の後段に備えたアンモニア濃度検出装置の検出値に基づいて推定算出するので、各々の選択還元型触媒装置に貯留するアンモニアの量を高精度で推定することができ、その結果、尿素水供給装置からの尿素水の供給量を適正化することができ、選択還元型触媒装置からのアンモニアスリップを抑制しつつ、NOx浄化率を向上させることができる。   According to this configuration, the nitrogen oxide detection device provided at the inlet of the selective reduction catalyst device group with the amount (storage amount) of ammonia stored in each selective reduction catalyst device provided in the exhaust gas purification processing device. Therefore, the amount of ammonia stored in each selective catalytic reduction device can be estimated with high accuracy. As a result, the amount of urea water supplied from the urea water supply device can be optimized, and the NOx purification rate can be improved while suppressing ammonia slip from the selective catalytic reduction device. .

また、上記の内燃機関の排気ガス浄化システムにおいて、前記排気ガス浄化システムを制御する制御装置が、前記選択還元型触媒装置群の内、前記排気通路の上流側に配設された選択還元型触媒装置より順に、各々の選択還元型触媒装置に貯留されるアンモニアの量を算出して、このアンモニアの量の算出値が、前記内燃機関の運転状態に基づいて各々の選択還元型触媒装置毎に予め設定される設定閾値を超えるか否かを判定し、前記アンモニアの量の算出値が前記設定閾値を超えると判定する度に、前記内燃機関の運転状態に基づいて予め設定される前記尿素水供給装置からの尿素水の基本供給量に補正を加える制御を行うように構成される。   In the exhaust gas purification system for an internal combustion engine, the control device for controlling the exhaust gas purification system is a selective reduction catalyst disposed on the upstream side of the exhaust passage in the selective reduction catalyst device group. The amount of ammonia stored in each selective reduction catalyst device is calculated in order from the device, and the calculated amount of ammonia is calculated for each selective reduction catalyst device based on the operating state of the internal combustion engine. The urea water that is preset based on the operating state of the internal combustion engine every time it is determined whether or not a preset threshold value is exceeded and the calculated value of the ammonia amount exceeds the preset threshold value It is configured to perform control for correcting the basic supply amount of urea water from the supply device.

この構成によれば、排気通路の上流側に配設された選択還元型触媒装置より順に、各々の選択還元型触媒装置のアンモニアのストレージ量を算出して、この算出したアンモニアのストレージ量が設定閾値を超えるか否かを判定し、この判定結果に応じて、尿素水供給装置からの尿素水の基本供給量に補正を加えていくので、各々の選択還元型触媒装置のアンモニアのストレージ量を確実かつ高精度で適正量に維持することができるとともに、尿素水供給装置からの尿素水の供給量を適正化することができる。   According to this configuration, the storage amount of ammonia in each selective reduction catalyst device is calculated in order from the selective reduction catalyst device disposed upstream of the exhaust passage, and the calculated storage amount of ammonia is set. It is determined whether or not the threshold value is exceeded, and in accordance with the determination result, the basic supply amount of urea water from the urea water supply device is corrected, so the storage amount of ammonia in each selective reduction catalyst device is determined. It can be reliably and accurately maintained at an appropriate amount, and the amount of urea water supplied from the urea water supply device can be optimized.

あるいは、上記の内燃機関の排気ガス浄化システムにおいて、前記排気ガス浄化システムを制御する制御装置が、前記選択還元型触媒装置群を構成する各々の選択還元型触媒装置に貯留されるアンモニアの量を同時に算出して、これらの各々のアンモニアの量の算出値が、前記内燃機関の運転状態に基づいて各々の選択還元型触媒装置毎に予め設定される設定閾値を超えるか否かを判定し、前記アンモニアの量の算出値が前記設定閾値を超えると判定する選択還元型触媒装置があるときは、前記内燃機関の運転状態に基づいて予め設定される前記尿素水供給装置からの尿素水の基本供給量に補正を加えるとともに、前記アンモニアの量の算出値が前記設定閾値を超えると判定する選択還元型触媒装置の個数に基づいて、前記尿素水の基本供給量に加える補正量を増加させる制御を行うように構成される。   Alternatively, in the exhaust gas purification system for an internal combustion engine, the control device that controls the exhaust gas purification system may reduce the amount of ammonia stored in each selective reduction catalyst device that constitutes the selective reduction catalyst device group. Calculating at the same time, determining whether the calculated value of each of these ammonia amounts exceeds a preset threshold value set in advance for each selective catalytic reduction device based on the operating state of the internal combustion engine, When there is a selective catalytic reduction device that determines that the calculated value of the amount of ammonia exceeds the set threshold value, the basic urea water from the urea water supply device that is preset based on the operating state of the internal combustion engine Based on the number of selective catalytic reduction catalytic devices that correct the supply amount and determine that the calculated value of the ammonia amount exceeds the set threshold value, the basic supply of the urea water Configured to perform control for increasing the correction amount to be added to.

この構成によれば、排気ガス浄化処理装置に備えた各々の選択還元型触媒装置のアンモニアのストレージ量を同時に算出して、この算出したアンモニアのストレージ量が設定閾値を超えるか否かを判定し、この判定結果に応じて、尿素水供給装置からの尿素水の基本供給量に加える補正量を変化させるので、各々の選択還元型触媒装置のアンモニアのストレージ量を迅速に適正量にすることができるとともに、尿素水供給装置からの尿素水の供給量を適正化することができる。   According to this configuration, the storage amount of ammonia in each selective reduction catalyst device provided in the exhaust gas purification processing device is calculated at the same time, and it is determined whether or not the calculated storage amount of ammonia exceeds a set threshold value. Since the correction amount added to the basic supply amount of urea water from the urea water supply device is changed according to the determination result, the storage amount of ammonia in each selective reduction catalyst device can be quickly adjusted to an appropriate amount. In addition, the amount of urea water supplied from the urea water supply device can be optimized.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記制御装置が、前記選択還元型触媒装置群の内、前記排気通路の最上流に配設された選択還元型触媒装置に貯留されるアンモニアの量を、前記窒素酸化物検出装置の検出値と、この最上流の選択還元型触媒装置の後段に配設された前記アンモニア濃度検出装置の検出値に基づいて算出し、前記最上流の選択還元型触媒装置以外の選択還元型触媒装置に貯留されるアンモニアの量を、この選択還元型触媒装置より上流側の隣接する選択還元型触媒装置の後段に配設された前記アンモニア濃度検出装置の検出値と、この選択還元型触媒装置の後段に配設された前記アンモニア濃度検出装置の検出値に基づいて算出する制御を行うように構成される。   In the exhaust gas purification system for an internal combustion engine, the control device may be configured to control ammonia stored in a selective reduction catalyst device disposed in the uppermost stream of the exhaust passage in the selective reduction catalyst device group. The amount is calculated based on the detection value of the nitrogen oxide detection device and the detection value of the ammonia concentration detection device disposed downstream of the upstream selective reduction catalyst device, and the upstream selective reduction The amount of ammonia stored in the selective catalytic reduction device other than the catalytic catalytic device is detected by the ammonia concentration detection device disposed downstream of the selective catalytic reduction device adjacent to the upstream side of the selective catalytic reduction device. It is configured to perform control based on the value and the detection value of the ammonia concentration detection device disposed in the subsequent stage of the selective catalytic reduction device.

この構成によれば、各々の選択還元型触媒装置のアンモニアのストレージ量の算出精度を高精度化することができる。   According to this configuration, the calculation accuracy of the storage amount of ammonia of each selective reduction catalyst device can be increased.

あるいは、上記の内燃機関の排気ガス浄化システムにおいて、前記排気ガス浄化システムを制御する制御装置が、前記選択還元型触媒装置群を構成する各々の選択還元型触媒装置に貯留されるアンモニアの量を総和した量であるアンモニア総和量を、前記窒素酸化物検出装置の検出値と、各々の選択還元型触媒装置の後段に配設された前記アンモニア濃度検出装置の検出値に基づいて算出するとともに、このアンモニア総和量の算出値が、前記内燃機関の運転状態に基づいて予め設定されるアンモニア総和量設定閾値を超えるときは、前記内燃機関の運転状態に基づいて予め設定される前記尿素水供給装置からの尿素水の基本供給量に補正を加える制御を行うように構成される。   Alternatively, in the exhaust gas purification system for an internal combustion engine, the control device that controls the exhaust gas purification system may reduce the amount of ammonia stored in each selective reduction catalyst device that constitutes the selective reduction catalyst device group. The total amount of ammonia, which is the total amount, is calculated based on the detection value of the nitrogen oxide detection device and the detection value of the ammonia concentration detection device disposed at the subsequent stage of each selective reduction catalyst device, and When the calculated value of the total ammonia amount exceeds an ammonia total amount setting threshold that is preset based on the operating state of the internal combustion engine, the urea water supply device that is preset based on the operating state of the internal combustion engine It is comprised so that control which adds correction | amendment to the basic supply amount of the urea water from may be performed.

この構成によれば、排気ガス浄化処理装置に備えた各々の選択還元型触媒装置を一つの大型の選択還元型触媒装置と捉えて、この大型の選択還元型触媒装置のアンモニアのストレージ量を算出して、この算出したアンモニアのストレージ量が設定閾値を超えるか否かを判定し、この判定結果に応じて、尿素水供給装置からの尿素水の基本供給量に補正を行うので、非常に簡素化した制御で制御装置への負担を軽減しつつ、各々の選択還元型触媒装置のアンモニアのストレージ量を適正量に維持することができ、尿素水供給装置からの尿素水の供給量を適正化することができる。   According to this configuration, each selective reduction catalyst device provided in the exhaust gas purification processing device is regarded as one large selective reduction catalyst device, and the storage amount of ammonia of this large selective reduction catalyst device is calculated. Then, it is determined whether or not the calculated storage amount of ammonia exceeds the set threshold value, and the basic supply amount of urea water from the urea water supply device is corrected according to the determination result. It is possible to maintain an appropriate amount of ammonia storage in each selective catalytic reduction catalyst device while reducing the burden on the control device with optimized control, and optimize the amount of urea water supplied from the urea water supply device can do.

また、上記の内燃機関の排気ガス浄化システムを搭載した内燃機関は、上記の内燃機関の排気ガス浄化システムと同様の作用効果を奏することができる。   An internal combustion engine equipped with the exhaust gas purification system for an internal combustion engine can achieve the same effects as the exhaust gas purification system for the internal combustion engine.

また、上記の目的を達成するための本発明の内燃機関の排気ガス浄化方法は、内燃機関の排気通路に、上流側より順に、尿素水供給装置、排気ガス浄化処理装置を備えるとともに、該排気ガス浄化処理装置に少なくとも2つ以上の選択還元型触媒装置で構成される選択還元型触媒装置群を備えた内燃機関の排気ガス浄化方法において、前記選択還元型触媒装置群に流入する排気ガスに含まれる窒素酸化物の濃度と、前記選択還元型触媒装置群を構成する各々の選択還元型触媒装置より流出する排気ガスに含まれるアンモニア濃度に基づいて、前記内燃機関の運転状態に基づいて予め設定される前記尿素水供給装置からの尿素水の基本供給量に補正を加えることを特徴とする方法である。   In addition, an exhaust gas purification method for an internal combustion engine of the present invention for achieving the above object includes a urea water supply device and an exhaust gas purification treatment device in order from the upstream side in the exhaust passage of the internal combustion engine, In an exhaust gas purification method for an internal combustion engine comprising a selective reduction catalyst device group composed of at least two selective reduction catalyst devices in a gas purification treatment device, the exhaust gas flowing into the selective reduction catalyst device group Based on the concentration of the nitrogen oxide contained and the ammonia concentration contained in the exhaust gas flowing out from each selective reduction catalyst device constituting the selective reduction catalyst device group, based on the operating state of the internal combustion engine in advance. In this method, correction is made to the basic supply amount of urea water from the urea water supply device to be set.

また、上記の内燃機関の排気ガス浄化方法において、前記選択還元型触媒装置群の内、前記排気通路の上流側に配設された選択還元型触媒装置より順に、各々の選択還元型触媒装置に貯留されるアンモニアの量を算出して、このアンモニアの量の算出値が、前記内燃機関の運転状態に基づいて各々の選択還元型触媒装置毎に予め設定される設定閾値を超えるか否かを判定し、前記アンモニアの量の算出値が前記設定閾値を超えると判定する度に、前記尿素水の基本供給量に補正を加えることを特徴とする方法である。   Further, in the above exhaust gas purification method for an internal combustion engine, each selective reduction catalyst device is arranged in order from the selective reduction catalyst device disposed upstream of the exhaust passage in the selective reduction catalyst device group. The amount of ammonia stored is calculated, and whether or not the calculated value of the amount of ammonia exceeds a preset threshold value set in advance for each selective catalytic reduction device based on the operating state of the internal combustion engine. Each time the determination is made and it is determined that the calculated value of the ammonia amount exceeds the set threshold value, the basic supply amount of the urea water is corrected.

あるいは、上記の内燃機関の排気ガス浄化方法において、前記選択還元型触媒装置群を構成する各々の選択還元型触媒装置に貯留されるアンモニアの量を同時に算出して、これらの各々のアンモニアの量の算出値が、前記内燃機関の運転状態に基づいて各々の選択還元型触媒装置毎に予め設定される設定閾値を超えるか否かを判定し、前記アンモニアの量の算出値が前記設定閾値を超えると判定する選択還元型触媒装置があるときは、前記尿素水の基本供給量に補正を加えるとともに、前記アンモニアの量の算出値が前記設定閾値を超えると判定する選択還元型触媒装置の個数に基づいて、前記尿素水の基本供給量に加える補正量を増加させることを特徴とする方法である。   Alternatively, in the above exhaust gas purification method for an internal combustion engine, the amount of ammonia stored in each of the selective catalytic reduction devices constituting the selective catalytic reduction device group is calculated simultaneously, and the amount of each of these ammonia It is determined whether or not the calculated value exceeds a preset threshold value set in advance for each selective catalytic reduction device based on the operating state of the internal combustion engine, and the calculated value of the ammonia amount exceeds the set threshold value. When there is a selective catalytic reduction catalyst device that is determined to exceed, the number of selective catalytic reduction catalyst devices that corrects the basic supply amount of urea water and determines that the calculated value of the ammonia amount exceeds the set threshold value The correction amount to be added to the basic supply amount of the urea water is increased based on the above.

また、上記の内燃機関の排気ガス浄化方法において、前記選択還元型触媒装置群の内、前記排気通路の最上流に配設された選択還元型触媒装置に貯留されるアンモニアの量を、前記選択還元型触媒装置群に流入する排気ガスに含まれる窒素酸化物の濃度と、この最上流の選択還元型触媒装置より流出する排気ガスに含まれるアンモニア濃度に基づいて算出し、前記最上流の選択還元型触媒装置以外の選択還元型触媒装置に貯留されるアンモニアの量を、この選択還元型触媒装置より上流側の隣接する選択還元型触媒装置より流出する排気ガスに含まれるアンモニア濃度と、この選択還元型触媒装置より流出する排気ガスに含まれるアンモニア濃度に基づいて算出することを特徴とする方法である。   Further, in the above exhaust gas purification method for an internal combustion engine, the amount of ammonia stored in the selective reduction catalyst device disposed in the uppermost stream of the exhaust passage in the selective reduction catalyst device group is selected. Calculation based on the concentration of nitrogen oxides contained in the exhaust gas flowing into the reduction-type catalyst device group and the ammonia concentration contained in the exhaust gas flowing out from this most selective reduction-type catalyst device, the selection of the most upstream The amount of ammonia stored in the selective catalytic reduction apparatus other than the catalytic reduction catalytic converter is determined based on the ammonia concentration contained in the exhaust gas flowing out from the adjacent selective catalytic reduction apparatus upstream of the selective catalytic reduction apparatus, The calculation is based on the ammonia concentration contained in the exhaust gas flowing out of the selective catalytic reduction device.

あるいは、上記の内燃機関の排気ガス浄化方法において、前記選択還元型触媒装置群を構成する各々の選択還元型触媒装置に貯留されるアンモニアの量を総和した量であるアンモニア総和量を、前記選択還元型触媒装置群に流入する排気ガスに含まれる窒素酸化物の濃度と、各々の選択還元型触媒装置より流出する排気ガスに含まれるアンモニア濃度に基づいて算出するとともに、このアンモニア総和量の算出値が、前記内燃機関の運転状態に基づいて予め設定されるアンモニア総和量設定閾値を超えるときは、前記尿素水の基本供給量に補正を加えることを特徴とする方法である。   Alternatively, in the exhaust gas purification method for an internal combustion engine, the total ammonia amount, which is the sum of the amounts of ammonia stored in the selective reduction catalyst devices constituting the selective reduction catalyst device group, is selected. Calculation based on the concentration of nitrogen oxides contained in the exhaust gas flowing into the reduction catalyst device group and the ammonia concentration contained in the exhaust gas flowing out from each selective reduction catalyst device, and calculation of the total amount of ammonia When the value exceeds the ammonia total amount setting threshold set in advance based on the operating state of the internal combustion engine, the basic supply amount of urea water is corrected.

これらの方法によれば、上記の内燃機関の排気ガス浄化システムと同様の作用効果を奏することができる。   According to these methods, the same operational effects as the exhaust gas purification system of the internal combustion engine can be obtained.

本発明の内燃機関の排気ガス浄化システム、内燃機関、及び内燃機関の排気ガス浄化方法によれば、排気ガス浄化処理装置に備えた各々の選択還元型触媒装置に貯留されたアンモニアの量(ストレージ量)を、選択還元型触媒装置群の入口に備えた窒素酸化物検出装置の検出値と、各々の選択還元型触媒装置の後段に備えたアンモニア濃度検出装置の検出値に基づいて推定算出するので、各々の選択還元型触媒装置に貯留するアンモニアの量を高精度で推定することができ、その結果、尿素水供給装置からの尿素水の供給量を適正化することができ、選択還元型触媒装置からのアンモニアスリップを抑制しつつ、NOx浄化率を向上させることができる。   According to the exhaust gas purification system for an internal combustion engine, the internal combustion engine, and the exhaust gas purification method for an internal combustion engine of the present invention, the amount of ammonia (storage) stored in each selective reduction catalyst device provided in the exhaust gas purification processing device. Amount) is estimated and calculated based on the detection value of the nitrogen oxide detection device provided at the inlet of the selective reduction catalyst device group and the detection value of the ammonia concentration detection device provided in the subsequent stage of each selective reduction catalyst device. Therefore, the amount of ammonia stored in each selective reduction catalyst device can be estimated with high accuracy, and as a result, the supply amount of urea water from the urea water supply device can be optimized, and the selective reduction type The NOx purification rate can be improved while suppressing ammonia slip from the catalyst device.

本発明に係る実施の形態の内燃機関の排気ガス浄化システムの構成を模式的に示す図である。It is a figure showing typically composition of an exhaust-gas purification system of an internal-combustion engine of an embodiment concerning the present invention. 本発明に係る実施の形態の内燃機関の排気ガス浄化方法の制御フローの第1の例を示す図である。It is a figure which shows the 1st example of the control flow of the exhaust gas purification method of the internal combustion engine of embodiment which concerns on this invention. 本発明に係る実施の形態の内燃機関の排気ガス浄化方法の制御フローの第2の例を示す図である。It is a figure which shows the 2nd example of the control flow of the exhaust gas purification method of the internal combustion engine of embodiment which concerns on this invention. 本発明に係る実施の形態の内燃機関の排気ガス浄化方法の制御フローの第3の例を示す図である。It is a figure which shows the 3rd example of the control flow of the exhaust gas purification method of the internal combustion engine of embodiment which concerns on this invention. 発明者の先行技術の内燃機関の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust-gas purification system of the internal combustion engine of an inventor's prior art. 発明者の先行技術の内燃機関の排気ガス浄化方法の制御フローを示す図である。It is a figure which shows the control flow of the exhaust gas purification method of the internal combustion engine of an inventor's prior art.

以下、本発明に係る実施の形態の内燃機関の排気ガス浄化システム、内燃機関、及び内燃機関の排気ガス浄化方法について、図面を参照しながら説明する。なお、本発明に係る実施の形態の内燃機関は、本発明に係る実施の形態の内燃機関の排気ガス浄化システム1を備えて構成され、後述する内燃機関の排気ガス浄化システム1が奏する作用効果と同様の作用効果を奏することができる。   Hereinafter, an exhaust gas purification system for an internal combustion engine, an internal combustion engine, and an exhaust gas purification method for the internal combustion engine according to embodiments of the present invention will be described with reference to the drawings. The internal combustion engine of the embodiment according to the present invention is configured to include the exhaust gas purification system 1 of the internal combustion engine of the embodiment according to the present invention, and the effects obtained by the exhaust gas purification system 1 of the internal combustion engine described later are provided. The same operational effects can be achieved.

図1に示すように、本発明に係る実施の形態の内燃機関の排気ガス浄化システム1は、エンジン(内燃機関)10の排気通路11に、上流側(エンジン側)より順に、酸化触媒装置(DOC)12、微粒子捕集装置(CSF)13、尿素水供給装置22、選択還元型触媒装置14、アンモニアスリップ触媒装置(DOC)15を備えて構成されるシステムである。この排気ガス浄化システム1を構成する装置12〜15にエンジン10の排気ガスGを通過させることで、排気ガスGに含まれる窒素酸化物(NOx)等の浄化対象成分は浄化され、浄化された排気ガスGcはマフラー(図示しない)等を介して大気へ放出される。なお、図1では、酸化触媒装置12及び微粒子捕集装置13により第1の排気ガス浄化処理装置を構成し、選択還元型触媒装置14及びアンモニアスリップ触媒装置15により第2の排気ガス浄化処理装置を構成している。   As shown in FIG. 1, an exhaust gas purification system 1 for an internal combustion engine according to an embodiment of the present invention enters an oxidation catalyst device (in order from an upstream side (engine side)) into an exhaust passage 11 of an engine (internal combustion engine) 10. DOC) 12, particulate collection device (CSF) 13, urea water supply device 22, selective reduction catalyst device 14, and ammonia slip catalyst device (DOC) 15. By passing the exhaust gas G of the engine 10 through the devices 12 to 15 constituting the exhaust gas purification system 1, components to be purified such as nitrogen oxides (NOx) contained in the exhaust gas G are purified and purified. The exhaust gas Gc is released to the atmosphere through a muffler (not shown). In FIG. 1, the oxidation catalyst device 12 and the particulate collection device 13 constitute a first exhaust gas purification treatment device, and the selective reduction catalyst device 14 and the ammonia slip catalyst device 15 constitute a second exhaust gas purification treatment device. Is configured.

酸化触媒装置12は、排気ガスGに含まれる炭化水素(HC)や一酸化窒素(NO)を酸化する装置である。特に、排気ガスGが低温のときには、排気ガスGに含まれる一酸化窒素(NO)と二酸化窒素(NO2)の比率が1:1に近づくほど、下流側の選択還元型触媒装置14でのNOx浄化率が高くなるため、この酸化触媒装置12で一酸化窒素(NO)を酸化して二酸化窒素(NO2)の割合を増加させる。 The oxidation catalyst device 12 is a device that oxidizes hydrocarbons (HC) and nitrogen monoxide (NO) contained in the exhaust gas G. In particular, when the exhaust gas G is at a low temperature, the closer the ratio of nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) contained in the exhaust gas G becomes to 1: 1, the closer the downstream of the selective catalytic reduction device 14 is. Since the NOx purification rate increases, the oxidation catalyst device 12 oxidizes nitric oxide (NO) to increase the proportion of nitrogen dioxide (NO 2 ).

微粒子捕集装置13は、排気ガスGに含まれる微粒子状物質(PM)を捕集する装置である。微粒子捕集装置13に捕集できるPMの量(捕集量)には上限があり、PMの捕集量が上限に近づくにつれて、微粒子捕集装置13の前後差圧が上昇して、微粒子捕集装置13の浄化性能に支障をきたすため、定期的に微粒子捕集装置13の強制PM再生制御を行って、微粒子捕集装置13に捕集されたPMを燃焼除去している。   The particulate collection device 13 is a device that collects particulate matter (PM) contained in the exhaust gas G. There is an upper limit to the amount of PM (collected amount) that can be collected by the particulate collection device 13, and as the collected amount of PM approaches the upper limit, the differential pressure across the particulate collection device 13 increases and the particulate collection rate increases. In order to hinder the purification performance of the collecting device 13, the forced PM regeneration control of the particulate collecting device 13 is periodically performed to burn and remove the PM collected by the particulate collecting device 13.

選択還元型触媒装置14は、その前段の排気通路11に備えた尿素水供給装置22より排気ガスGに向けて噴射される尿素水Uを排気ガスGの熱により加水分解してアンモニア(NH3)を生成し、この生成したアンモニア(NH3)により排気ガスGに含まれるNOxを還元浄化する装置である。この選択還元型触媒装置14は、担持した触媒にアンモニアを貯留することができ、この貯留したアンモニアにより排気ガスGに含まれるNOxを主に還元浄化しているが、貯留可能なアンモニアの量(ストレージ量)には上限があり、この上限を超えて貯留できなくなったアンモニアは選択還元型触媒装置14の下流側の排気通路11に放出される。 The selective catalytic reduction device 14 hydrolyzes the urea water U injected toward the exhaust gas G from the urea water supply device 22 provided in the preceding exhaust passage 11 by the heat of the exhaust gas G, thereby producing ammonia (NH 3 ) And NOx contained in the exhaust gas G is reduced and purified by the generated ammonia (NH 3 ). This selective catalytic reduction device 14 can store ammonia in the supported catalyst, and mainly reduces and purifies NOx contained in the exhaust gas G by the stored ammonia, but the amount of ammonia that can be stored ( The storage amount) has an upper limit, and ammonia that cannot be stored beyond the upper limit is discharged into the exhaust passage 11 on the downstream side of the selective catalytic reduction device 14.

なお、選択還元型触媒装置14における尿素水Uからアンモニアへの加水分解反応は、「(NH22CO+H2O→NH3+HNCO」(排気ガスGの温度が135℃以上)や、「HNCO+H2O→NH3+CO2」(排気ガスGの温度が160℃以上)のような化学式に基づいて行われる。また、選択還元型触媒装置14におけるアンモニアとNOxの酸化還元反応は、「NO+NO2+2NH3→2N2+3H2O」、「4NO+4NH3+O2→4N2+6H2O」、「4NO2+4NH3→4N2+6H2O+O2」のような化学式に基づいて行われる。 Note that the hydrolysis reaction from urea water U to ammonia in the selective catalytic reduction device 14 is “(NH 2 ) 2 CO + H 2 O → NH 3 + HNCO” (the temperature of the exhaust gas G is 135 ° C. or higher), “HNCO + H 2 O → NH 3 + CO 2 "(temperature of the exhaust gas G is 160 ° C. or higher) is performed on the basis of the chemical formulas, such as. The oxidation-reduction reaction between ammonia and NOx in the selective catalytic reduction device 14 is “NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O”, “4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O”, “4NO 2 + 4NH 3 → 4N”. It is performed based on a chemical formula such as “ 2 + 6H 2 O + O 2 ”.

アンモニアスリップ触媒装置15は、前段の選択還元型触媒装置14より放出されたアンモニアを窒素またはNOxに酸化する装置である。この酸化反応は、「4NH3+5O2→4NO+6H2O、2NH3+2O2→N2O+3H2O」、「4NH3+3O2→2N2+6H2O」等の化学式に基づいて行われる。尿素水供給装置22からの尿素水Uの噴射量が過剰であると、選択還元型触媒装置14より放出されるアンモニアの量も多くなり、このアンモニアスリップ触媒装置15でアンモニアを酸化することで発生するNOxの量も多くなるので、排気ガス浄化システム全体としてのNOx浄化率が低下してしまう。 The ammonia slip catalyst device 15 is a device that oxidizes ammonia released from the selective catalytic reduction device 14 in the previous stage to nitrogen or NOx. This oxidation reaction is performed based on chemical formulas such as “4NH 3 + 5O 2 → 4NO + 6H 2 O, 2NH 3 + 2O 2 → N 2 O + 3H 2 O”, “4NH 3 + 3O 2 → 2N 2 + 6H 2 O”, and the like. If the injection amount of the urea water U from the urea water supply device 22 is excessive, the amount of ammonia released from the selective reduction catalyst device 14 also increases, and is generated by oxidizing ammonia in the ammonia slip catalyst device 15. Since the amount of NOx to be increased also increases, the NOx purification rate of the exhaust gas purification system as a whole decreases.

また、尿素水供給装置22は、尿素水供給ポンプ21を介して、尿素水Uを貯留する尿素水貯留タンク20と接続している。そして、後述する尿素水供給制御装置(DCU)41からの制御信号により尿素水供給ポンプ21を動作させることで、尿素水貯留タンク20に貯留している尿素水Uの一部を尿素水供給ポンプ21を介して尿素水供給装置22に供給する。尿素水供給装置22に供給された尿素水Uは、尿素水供給制御装置41からの制御信号により尿素水供給装置22の噴射弁(図示しない)が開弁されることで、排気通路11を通過する排気ガスGに向けて噴射される。なお、エンジン10の停止時等で、尿素水Uを排気通路11に噴射する必要が無くなったときには、尿素水供給制御装置41からの制御信号による尿素水供給ポンプ21の動作により、尿素水供給ポンプ21及び尿素水供給装置22に残留した尿素水Uは尿素水貯留タンク20に還流される。   The urea water supply device 22 is connected to a urea water storage tank 20 that stores the urea water U via a urea water supply pump 21. And the urea water supply pump 21 is operated by a control signal from a urea water supply control unit (DCU) 41, which will be described later, so that a part of the urea water U stored in the urea water storage tank 20 is removed from the urea water supply pump. The urea water supply device 22 is supplied via 21. The urea water U supplied to the urea water supply device 22 passes through the exhaust passage 11 when the injection valve (not shown) of the urea water supply device 22 is opened by a control signal from the urea water supply control device 41. It is injected toward the exhaust gas G. When it is not necessary to inject the urea water U into the exhaust passage 11 when the engine 10 is stopped, the urea water supply pump 21 is operated by the operation of the urea water supply pump 21 according to a control signal from the urea water supply control device 41. 21 and the urea water U remaining in the urea water supply device 22 are returned to the urea water storage tank 20.

また、酸化触媒装置12の入口側(前段)及び出口側(後段)に、それぞれ、第1の酸化触媒装置用温度センサー30、第2の酸化触媒装置用温度センサー31を備えるとともに、選択還元型触媒装置14の入口側(前段)に、選択還元型触媒装置14に流入する排気ガスGの温度を検出する選択還元型触媒装置用温度センサー32を備える。   The oxidation catalyst device 12 includes a first oxidation catalyst device temperature sensor 30 and a second oxidation catalyst device temperature sensor 31 on the inlet side (front stage) and the outlet side (rear stage), respectively, and a selective reduction type. A selective reduction catalyst device temperature sensor 32 that detects the temperature of the exhaust gas G flowing into the selective reduction catalyst device 14 is provided on the inlet side (front stage) of the catalyst device 14.

また、エンジン制御装置(ECU)40と尿素水供給制御装置(DCU)41を備える。エンジン制御装置40は、第1の酸化触媒装置用温度センサー30及び第2の酸化触媒装置用温度センサー31の検出値、エンジン冷却水の温度、大気圧力、エンジン10に流入する吸気の温度及び流量、エンジン10の気筒(図示しない)内に噴射される燃料の流量等のデータを基に、エンジン10の運転状態を制御する装置である。尿素水供給制御装置41は、エンジン制御装置40に入力される上記のデータをエンジン制御装置40より取得して、この取得したデータや尿素水供給制御装置41に直接入力されるデータ(例えば、選択還元型触媒装置用温度センサー32の検出値等)を基に、尿素水供給ポンプ21及び尿素水供給装置22の動作状態を制御する装置である。   Further, an engine control unit (ECU) 40 and a urea water supply control unit (DCU) 41 are provided. The engine control device 40 detects the detected values of the first temperature sensor 30 for the oxidation catalyst device 30 and the second temperature sensor 31 for the oxidation catalyst device, the temperature of the engine cooling water, the atmospheric pressure, the temperature and flow rate of the intake air flowing into the engine 10. This is a device that controls the operating state of the engine 10 based on data such as the flow rate of fuel injected into a cylinder (not shown) of the engine 10. The urea water supply control device 41 acquires the above-described data input to the engine control device 40 from the engine control device 40, and the acquired data or data directly input to the urea water supply control device 41 (for example, selection This is a device that controls the operating state of the urea water supply pump 21 and the urea water supply device 22 based on the detection value of the temperature sensor 32 for the reduction catalyst device).

そして、本発明の内燃機関の排気ガス浄化システム1では、排気ガス浄化処理装置に、少なくとも2つ以上の選択還元型触媒装置で構成される選択還元型触媒装置群14を備える。図1では、この選択還元型触媒装置群14を、上流側より順に、第1の選択還元型触媒装置141、第2の選択還元型触媒装置142、第3の選択還元型触媒装置143の3つの選択還元型触媒装置で構成する。   In the exhaust gas purification system 1 for an internal combustion engine of the present invention, the exhaust gas purification processing device includes the selective reduction catalyst device group 14 including at least two selective reduction catalyst devices. In FIG. 1, the selective catalytic reduction catalyst device group 14 is arranged in order of the first selective catalytic reduction device 141, the second selective catalytic reduction device 142, and the third selective catalytic reduction device 143 in order from the upstream side. It consists of two selective reduction type catalyst devices.

また、この選択還元型触媒装置群14の入口に、選択還元型触媒装置群14に流入する排気ガスGに含まれる窒素酸化物(NOx)の濃度を検出する窒素酸化物検出センサー(窒素酸化物検出装置)33を備えるとともに、選択還元型触媒装置群14を構成する各々の選択還元型触媒装置141、142、143の後段に、各々の選択還元型触媒装置141、142、143より流出する排気ガスGに含まれるアンモニアの濃度を検出するアンモニア濃度検出センサー(アンモニア濃度検出装置)34、36、39を備えて構成する。これらのアンモニア濃度検出センサー34、36、39は通常同等の性能を有するセンサーが用いられるとともに、これらの検出値は、尿素水供給制御装置41に入力される。   Further, a nitrogen oxide detection sensor (nitrogen oxide) that detects the concentration of nitrogen oxide (NOx) contained in the exhaust gas G flowing into the selective reduction catalyst device group 14 at the inlet of the selective reduction catalyst device group 14. Detection device) 33 and exhaust gas flowing out from each selective reduction catalyst device 141, 142, 143 downstream of each selective reduction catalyst device 141, 142, 143 constituting the selective reduction catalyst device group 14. An ammonia concentration detection sensor (ammonia concentration detection device) 34, 36, 39 for detecting the concentration of ammonia contained in the gas G is provided. These ammonia concentration detection sensors 34, 36, and 39 are usually sensors having equivalent performance, and these detection values are input to the urea water supply control device 41.

なお、図1では、アンモニアスリップ触媒装置15の後段にアンモニア濃度検出センサー39を備えているが、第3の選択還元型触媒装置143とアンモニアスリップ触媒装置15の間に備えてもよい。ただし、アンモニアスリップ触媒装置15の後段にアンモニア濃度検出センサーを備えると、大気へ放出される排気ガスGcに含まれるアンモニアの濃度を基に、尿素水供給制御装置41が尿素水供給装置22からの尿素水Uの噴射量を調整制御することができ、大気へのアンモニア放出をより一層抑制できるので好ましい。   In FIG. 1, the ammonia concentration detection sensor 39 is provided downstream of the ammonia slip catalyst device 15, but may be provided between the third selective reduction catalyst device 143 and the ammonia slip catalyst device 15. However, if an ammonia concentration detection sensor is provided at the subsequent stage of the ammonia slip catalyst device 15, the urea water supply control device 41 is supplied from the urea water supply device 22 based on the concentration of ammonia contained in the exhaust gas Gc released to the atmosphere. This is preferable because the injection amount of the urea water U can be adjusted and controlled, and ammonia release to the atmosphere can be further suppressed.

また、図1では、各々の選択還元型触媒装置141、142、143の後段に、NOx濃度検出センサー35、37、38を備えているが、これらのNOx濃度検出センサー35、37、38を備えなくとも、本発明を実施することができる。ただし、NOx濃度検出センサー35、37、38を備えて、これらの検出値を基に、尿素水供給制御装置41が尿素水供給装置22からの尿素水Uの噴射量を調整制御すると、尿素水Uの噴射量の制御精度が良化するので好ましい。   In FIG. 1, the NOx concentration detection sensors 35, 37, and 38 are provided at the subsequent stage of each selective reduction catalyst device 141, 142, and 143, but these NOx concentration detection sensors 35, 37, and 38 are provided. The present invention can be practiced without it. However, when the NOx concentration detection sensors 35, 37, and 38 are provided, and the urea water supply control device 41 adjusts and controls the injection amount of the urea water U from the urea water supply device 22 based on these detection values, the urea water This is preferable because the control accuracy of the U injection amount is improved.

そして、制御では、上記の排気ガス浄化システム1の構成を基にして、尿素水供給制御装置41が、選択還元型触媒装置群14の内、排気通路11の上流側に配設された選択還元型触媒装置より順に各々の選択還元型触媒装置141、142、143に貯留されるアンモニアの量を算出して、このアンモニアの量の算出値(ストレージ量)N1、N2、N3が、エンジン10の運転状態に基づいて各々の選択還元型触媒装置141、142、143毎に予め設定される設定閾値N1c、N2c、N3cを超えるか否かを判定する。そして、アンモニアの量の算出値N1、N2、N3が設定閾値N1c、N2c、N3cを超えると判定する度に、エンジン10の運転状態に基づいて予め設定される尿素水供給装置22からの尿素水Uの基本供給量Qbに補正を加える制御を行うように構成する。   In the control, based on the configuration of the exhaust gas purification system 1 described above, the urea water supply control device 41 is selectively reduced in the upstream of the exhaust passage 11 in the selective reduction catalyst device group 14. The amount of ammonia stored in each of the selective catalytic reduction devices 141, 142, 143 is calculated in order from the type catalyst device, and calculated values (storage amounts) N 1, N 2, N 3 of the ammonia amount are stored in the engine 10. It is determined whether or not a preset threshold value N1c, N2c, or N3c preset for each of the selective catalytic reduction devices 141, 142, and 143 is exceeded based on the operating state. Then, every time it is determined that the calculated values N1, N2, and N3 of the amount of ammonia exceed the set threshold values N1c, N2c, and N3c, the urea water from the urea water supply device 22 set in advance based on the operating state of the engine 10 The control is performed to correct the basic supply amount Qb of U.

言い換えれば、まず、第1の選択還元型触媒装置141に貯留されるアンモニアの量N1を算出して、この算出値N1が設定閾値N1cを超えるか否かを判定する。アンモニアの量の算出値N1が設定閾値N1cを超えると判定する場合には、尿素水供給装置22からの尿素水Uの基本供給量Qbに補正を加え、設定閾値N1c以下であると判定する場合には、尿素水Uの基本供給量Qbに補正を加えない。   In other words, first, the ammonia amount N1 stored in the first selective catalytic reduction device 141 is calculated, and it is determined whether or not the calculated value N1 exceeds the set threshold value N1c. When it is determined that the calculated value N1 of the ammonia amount exceeds the set threshold value N1c, a correction is made to the basic supply amount Qb of the urea water U from the urea water supply device 22, and it is determined that it is equal to or less than the set threshold value N1c. No correction is made to the basic supply amount Qb of the urea water U.

次に、第2の選択還元型触媒装置142に貯留されるアンモニアの量N2を算出して、この算出値N2が設定閾値N2cを超えるか否かを判定する。アンモニアの量の算出値N2が設定閾値N2cを超えると判定する場合には、尿素水Uの基本供給量Qbに補正を加え、設定閾値N2c以下であると判定する場合には、尿素水Uの基本供給量Qbに補正を加えない。第1の選択還元型触媒装置141における判定に伴い、基本供給量Qbを補正している場合には、この補正量も加味される。   Next, the amount N2 of ammonia stored in the second selective catalytic reduction device 142 is calculated, and it is determined whether or not the calculated value N2 exceeds the set threshold value N2c. When it is determined that the calculated value N2 of the amount of ammonia exceeds the set threshold value N2c, the basic supply amount Qb of the urea water U is corrected, and when it is determined that it is equal to or less than the set threshold value N2c, No correction is made to the basic supply amount Qb. When the basic supply amount Qb is corrected in accordance with the determination in the first selective catalytic reduction device 141, this correction amount is also taken into account.

最後に、第3の選択還元型触媒装置143に貯留されるアンモニアの量N3を算出して、この算出値N3が設定閾値N3cを超えるか否かを判定する。アンモニアの量の算出値N3が設定閾値N3cを超えると判定する場合には、尿素水Uの基本供給量Qbに補正を加え、設定閾値N3c以下であると判定する場合には、尿素水Uの基本供給量Qbに補正を加えない。第1の選択還元型触媒装置141における判定、または、第2の選択還元型触媒装置142における判定に伴い、基本供給量Qbを補正している場合には、これらの補正量も加味される。   Finally, the amount N3 of ammonia stored in the third selective catalytic reduction device 143 is calculated, and it is determined whether or not the calculated value N3 exceeds the set threshold value N3c. When it is determined that the calculated value N3 of the amount of ammonia exceeds the set threshold value N3c, the basic supply amount Qb of the urea water U is corrected, and when it is determined that it is equal to or less than the set threshold value N3c, No correction is made to the basic supply amount Qb. When the basic supply amount Qb is corrected in accordance with the determination in the first selective reduction catalyst device 141 or the determination in the second selective reduction catalyst device 142, these correction amounts are also taken into account.

この制御によれば、排気通路11の上流側に配設された選択還元型触媒装置14より順に、各々の選択還元型触媒装置141、142、143のアンモニアのストレージ量N1、N2、N3を算出して、この算出したアンモニアのストレージ量N1、N2、N3が設定閾値N1c、N2c、N3cを超えるか否かを判定し、この判定結果に応じて、尿素水供給装置22からの尿素水Uの基本供給量Qbに補正を加えていくので、各々の選択還元型触媒装置14のアンモニアのストレージ量を確実かつ高精度で適正量に維持することができるとともに、尿素水供給装置22からの尿素水Uの供給量を適正化することができる。   According to this control, the storage amounts N1, N2, and N3 of ammonia in the selective reduction catalyst devices 141, 142, and 143 are calculated in order from the selective reduction catalyst device 14 disposed on the upstream side of the exhaust passage 11. Then, it is determined whether or not the calculated storage amounts N1, N2, and N3 of ammonia exceed the set threshold values N1c, N2c, and N3c, and the urea water U from the urea water supply device 22 is determined according to the determination result. Since the basic supply amount Qb is corrected, the ammonia storage amount of each selective catalytic reduction device 14 can be reliably maintained with an appropriate amount with high accuracy, and the urea water from the urea water supply device 22 can be maintained. The supply amount of U can be optimized.

あるいは、制御で、上記の排気ガス浄化システム1の構成を基にして、尿素水供給制御装置41が、選択還元型触媒装置群14を構成する各々の選択還元型触媒装置141、142、143に貯留されるアンモニアの量N1、N2、N3を同時に算出して、これらの各々のアンモニアの量の算出値N1、N2、N3が、エンジン10の運転状態に基づいて各々の選択還元型触媒装置141、142、143毎に予め設定される設定閾値N1c、N2c、N3cを超えるか否かを判定し、アンモニアの量の算出値N1、N2、N3が設定閾値N1c、N2c、N3cを超えると判定する選択還元型触媒装置があるときは、エンジン10の運転状態に基づいて予め設定される尿素水供給装置22からの尿素水Uの基本供給量Qbに補正を加えるとともに、アンモニアの量の算出値N1、N2、N3が設定閾値N1c、N2c、N3cを超えると判定する選択還元型触媒装置の個数に基づいて、尿素水Uの基本供給量Qbに加える補正量Qcを増加させる制御を行うように構成する。   Alternatively, in the control, the urea water supply control device 41 is added to each of the selective reduction catalyst devices 141, 142, and 143 constituting the selective reduction catalyst device group 14 based on the configuration of the exhaust gas purification system 1. The amounts of stored ammonia N1, N2, and N3 are calculated at the same time, and the calculated values N1, N2, and N3 of each of these ammonia are calculated based on the operating state of the engine 10, and each of the selective catalytic reduction devices 141. , 142, and 143, it is determined whether or not the preset threshold values N1c, N2c, and N3c are exceeded, and the calculated ammonia amounts N1, N2, and N3 are determined to exceed the set threshold values N1c, N2c, and N3c. When there is a selective catalytic reduction catalyst device, a correction is made to the basic supply amount Qb of urea water U from the urea water supply device 22 set in advance based on the operating state of the engine 10. In addition, the correction amount to be added to the basic supply amount Qb of the urea water U based on the number of selective catalytic reduction devices that determine that the calculated values N1, N2, and N3 of the ammonia amount exceed the set threshold values N1c, N2c, and N3c. Control is performed to increase Qc.

すなわち、アンモニアの量の算出値N1、N2、N3の内、設定閾値N1c、N2c、N3cを超える算出値があれば、尿素水Uの基本供給量Qbに補正量Qcを加える。そして、設定閾値を超える算出値の個数が増加するにつれて、この補正量Qcの値を増加させる。   That is, if there are calculated values exceeding the set threshold values N1c, N2c, and N3c among the calculated values N1, N2, and N3 of the ammonia amount, the correction amount Qc is added to the basic supply amount Qb of the urea water U. Then, as the number of calculated values exceeding the set threshold increases, the value of the correction amount Qc is increased.

この制御によれば、排気ガス浄化処理装置に備えた各々の選択還元型触媒装置141、142、143のアンモニアのストレージ量N1、N2、N3を同時に算出して、この算出したアンモニアのストレージ量N1、N2、N3が設定閾値N1c、N2c、N3cを超えるか否かを判定し、この判定結果に応じて、尿素水供給装置22からの尿素水Uの基本供給量Qbに加える補正量Qcを変化させるので、各々の選択還元型触媒装置141、142、143のアンモニアのストレージ量を迅速に適正量にすることができるとともに、尿素水供給装置22からの尿素水Uの供給量を適正化することができる。   According to this control, the ammonia storage amounts N1, N2, and N3 of the selective catalytic reduction devices 141, 142, and 143 provided in the exhaust gas purification processing device are simultaneously calculated, and the calculated ammonia storage amount N1 is calculated. , N2 and N3 determine whether or not the set threshold values N1c, N2c and N3c exceed, and the correction amount Qc added to the basic supply amount Qb of the urea water U from the urea water supply device 22 is changed according to the determination result. Therefore, the storage amount of ammonia in each of the selective catalytic reduction devices 141, 142, and 143 can be quickly adjusted to an appropriate amount, and the supply amount of urea water U from the urea water supply device 22 can be optimized. Can do.

また、制御で、上記の排気ガス浄化システム1において、尿素水供給制御装置41が、選択還元型触媒装置群14の内、排気通路11の最上流に配設された選択還元型触媒装置141に貯留されるアンモニアの量N1を、窒素酸化物検出センサー33の検出値と、この最上流の選択還元型触媒装置141の後段に配設されたアンモニア濃度検出センサー34の検出値と、第1の酸化触媒装置用温度センサー30の検出値と、第2の酸化触媒装置用温度センサー31の検出値と、選択還元型触媒装置用温度センサー32の検出値と、第1の選択還元型触媒装置に流入する排気ガスGの流量に基づいて算出するように構成する。   Further, in the exhaust gas purification system 1, the urea water supply control device 41 is controlled by the selective reduction catalyst device 141 disposed in the uppermost stream of the exhaust passage 11 in the selective reduction catalyst device group 14. The amount N1 of the stored ammonia is determined based on the detection value of the nitrogen oxide detection sensor 33, the detection value of the ammonia concentration detection sensor 34 disposed at the subsequent stage of the most upstream selective reduction catalyst device 141, and the first value. The detection value of the oxidation catalyst device temperature sensor 30, the detection value of the second oxidation catalyst device temperature sensor 31, the detection value of the selective reduction catalyst device temperature sensor 32, and the first selective reduction catalyst device. The calculation is made based on the flow rate of the inflowing exhaust gas G.

また、最上流の選択還元型触媒装置141以外の選択還元型触媒装置142に貯留されるアンモニアの量N2については、尿素水供給制御装置41が、この選択還元型触媒装置142より上流側の隣接する選択還元型触媒装置141の後段に配設されたアンモニア濃度検出センサー34の検出値と、この選択還元型触媒装置142の後段に配設されたアンモニア濃度検出センサー36の検出値に基づいて算出する制御を行うように構成する。これらのセンサー34、36の検出値とアンモニアの量N2の関係については、予め実験等により制御マップを作成して、尿素水供給制御装置41に記憶させておく。   For the ammonia amount N2 stored in the selective catalytic reduction device 142 other than the upstream selective catalytic reduction device 141, the urea water supply control device 41 is adjacent to the upstream side of the selective catalytic reduction device 142. This is calculated based on the detection value of the ammonia concentration detection sensor 34 disposed downstream of the selective reduction catalyst device 141 to be detected and the detection value of the ammonia concentration detection sensor 36 disposed downstream of the selective reduction catalyst device 142. It is configured to perform control. Regarding the relationship between the detected values of these sensors 34 and 36 and the ammonia amount N2, a control map is created in advance by experiments or the like and stored in the urea water supply control device 41.

そして、最上流の選択還元型触媒装置141以外の選択還元型触媒装置143に貯留されるアンモニアの量N3については、尿素水供給制御装置41が、この選択還元型触媒装置143より上流側の隣接する選択還元型触媒装置142の後段に配設されたアンモニア濃度検出センサー36の検出値と、この選択還元型触媒装置143の後段に配設されたアンモニア濃度検出センサー39の検出値に基づいて算出する制御を行うように構成する。これらのセンサー36、39の検出値とアンモニアの量N3の関係については、予め実験等により制御マップを作成して、尿素水供給制御装置41に記憶させておく。   For the ammonia amount N3 stored in the selective catalytic reduction device 143 other than the upstream selective catalytic reduction device 141, the urea water supply control device 41 is adjacent to the upstream side of the selective catalytic reduction device 143. Calculation based on the detection value of the ammonia concentration detection sensor 36 disposed downstream of the selective catalytic reduction catalyst device 142 and the detection value of the ammonia concentration detection sensor 39 disposed downstream of the selective reduction catalytic device 143. It is configured to perform control. Regarding the relationship between the detected values of the sensors 36 and 39 and the ammonia amount N3, a control map is created in advance by experiments or the like and stored in the urea water supply control device 41.

この制御によれば、各々の選択還元型触媒装置141、142、143のアンモニアのストレージ量の算出精度を高精度化することができる。   According to this control, the calculation accuracy of the storage amount of ammonia in each of the selective catalytic reduction devices 141, 142, 143 can be increased.

あるいは、制御で、上記の排気ガス浄化システム1の構成を基にして、尿素水供給制御装置41が、選択還元型触媒装置群14を構成する各々の選択還元型触媒装置141、142、143に貯留されるアンモニアの量を総和した量であるアンモニア総和量Nsを、窒素酸化物検出センサー33の検出値と、各々の選択還元型触媒装置141、142、143の後段に配設されたアンモニア濃度検出センサー34、36、39の検出値に基づいて算出するとともに、このアンモニア総和量の算出値Nsが、エンジン10の運転状態に基づいて予め設定されるアンモニア総和量設定閾値Nscを超えるときは、エンジン10の運転状態に基づいて予め設定される尿素水供給装置22からの尿素水Uの基本供給量Qbに補正を加える制御を行うように構成する。   Alternatively, in the control, the urea water supply control device 41 is added to each of the selective reduction catalyst devices 141, 142, and 143 constituting the selective reduction catalyst device group 14 based on the configuration of the exhaust gas purification system 1. The total ammonia amount Ns, which is the total amount of the stored ammonia, is used as the detected value of the nitrogen oxide detection sensor 33 and the ammonia concentration disposed in the subsequent stage of each selective reduction catalyst device 141, 142, 143. When the calculated value Ns of the total ammonia amount exceeds the ammonia total amount setting threshold value Nsc set in advance based on the operating state of the engine 10, while calculating based on the detection values of the detection sensors 34, 36, and 39, Control is performed to correct the basic supply amount Qb of urea water U from the urea water supply device 22 set in advance based on the operating state of the engine 10. It is configured.

この制御によれば、排気ガス浄化処理装置に備えた各々の選択還元型触媒装置141、142、143を一つの大型の選択還元型触媒装置と捉えて、この大型の選択還元型触媒装置のアンモニアのストレージ量Nsを算出して、この算出したアンモニアのストレージ量Nsが設定閾値Nscを超えるか否かを判定し、この判定結果に応じて、尿素水供給装置22からの尿素水Uの基本供給量Qbに補正を行うので、非常に簡素化した制御で尿素水供給制御装置41への負担を軽減しつつ、各々の選択還元型触媒装置141、142、143のアンモニアのストレージ量を適正量に維持することができ、尿素水供給装置22からの尿素水Uの供給量を適正化することができる。   According to this control, each selective reduction catalyst device 141, 142, 143 provided in the exhaust gas purification processing device is regarded as one large selective reduction catalyst device, and ammonia of this large selective reduction catalyst device is obtained. Storage amount Ns is calculated, and it is determined whether or not the calculated ammonia storage amount Ns exceeds a set threshold value Nsc. Based on the determination result, the basic supply of urea water U from the urea water supply device 22 is determined. Since the amount Qb is corrected, the amount of ammonia stored in each of the selective catalytic reduction devices 141, 142, and 143 is set to an appropriate amount while reducing the burden on the urea water supply control device 41 with very simplified control. This can be maintained, and the supply amount of the urea water U from the urea water supply device 22 can be optimized.

上記の内燃機関の排気ガス浄化システム1を基にした、本発明の内燃機関の排気ガス浄化方法の制御フローを図2、図3、図4に示す。図2、図3、図4の制御フローは、それぞれ、尿素水供給装置22からの尿素水Uの供給量を制御するための独立の制御フローであるが、予め設定した制御時間毎に上級の制御フローから呼ばれて実施され、実施後に、上級の制御フローに戻る制御フローとして示している。   The control flow of the exhaust gas purification method for an internal combustion engine of the present invention based on the exhaust gas purification system 1 for the internal combustion engine is shown in FIG. 2, FIG. 3, and FIG. 2, 3, and 4 are independent control flows for controlling the supply amount of urea water U from the urea water supply device 22, respectively. This is shown as a control flow that is called and executed from the control flow and returns to the advanced control flow after execution.

なお、この図2、図3、図4の制御フローに基づく制御の途中で、エンジン10が運転停止するとき等では、割り込みが生じて、リターンに行って上級の制御フローに戻り、この上級の制御フローの終了と共に終了する。また、図2、図3、図4の制御フローの途中において、選択還元型触媒装置14に貯留するアンモニアの量の単位を変換する必要がある場合は、例えば、単位をppmからgに変換する等、適宜変換する。また、図2、図3、図4の制御フローの途中において、各々の選択還元型触媒装置141、142、143に貯留するアンモニアの量N1、N2、N3や、各々の選択還元型触媒装置141、142、143に貯留されるアンモニアの量を総和した量であるアンモニア総和量Nsを算出するが、これらの量N1、N2、N3、Nsの算出方法については上記した方法と同様の方法であるので、省略する。   In the middle of the control based on the control flow shown in FIGS. 2, 3, and 4, when the engine 10 is shut down, an interrupt is generated and the return is made to return to the advanced control flow. End with the end of the control flow. 2, 3, and 4, when it is necessary to convert the unit of the amount of ammonia stored in the selective catalytic reduction device 14, for example, the unit is converted from ppm to g. Etc., as appropriate. In addition, in the middle of the control flow of FIGS. 2, 3, and 4, the amounts of ammonia N 1, N 2, and N 3 stored in the selective reduction catalyst devices 141, 142, and 143, and the selective reduction catalyst devices 141 are stored. , 142, and 143, the total ammonia amount Ns, which is the sum of the amounts of ammonia stored, is calculated. The calculation method of these amounts N1, N2, N3, and Ns is the same as the method described above. So it is omitted.

図2の制御フローについて説明する。図2の制御フローがスタートすると、ステップS10にて、第1の選択還元型触媒装置141に貯留するアンモニアの量N1を算出する。ステップS10の制御を実施後、ステップS20に進む。   The control flow of FIG. 2 will be described. When the control flow of FIG. 2 starts, the amount N1 of ammonia stored in the first selective catalytic reduction device 141 is calculated in step S10. After performing the control of step S10, the process proceeds to step S20.

ステップS20にて、ステップS10で算出したアンモニアの量N1が、エンジン10の運転状態に基づいて予め設定される設定閾値N1cを超えるか否かを判定する。アンモニアの量N1が設定閾値N1cを超えると判定する場合(YES)には、ステップS30に進み、ステップS30にて、エンジン10の運転状態に基づいて予め設定される尿素水供給装置22からの尿素水Uの基本供給量Qbに補正量を加えて、基本供給量Qbを補正する。ステップS30の制御を実施後、ステップS40に進む。一方、アンモニアの量N1が設定閾値N1c以下であると判定する場合(NO)には、ステップS30を通過することなく、ステップS40に進む。   In step S20, it is determined whether the ammonia amount N1 calculated in step S10 exceeds a preset threshold value N1c based on the operating state of the engine 10. When it is determined that the ammonia amount N1 exceeds the set threshold value N1c (YES), the process proceeds to step S30, and urea from the urea water supply device 22 set in advance based on the operating state of the engine 10 in step S30. The basic supply amount Qb is corrected by adding a correction amount to the basic supply amount Qb of the water U. After performing the control of step S30, the process proceeds to step S40. On the other hand, when it is determined that the ammonia amount N1 is equal to or less than the set threshold value N1c (NO), the process proceeds to step S40 without passing through step S30.

ステップS40にて、第2の選択還元型触媒装置142に貯留するアンモニアの量N2を算出する。ステップS40の制御を実施後、ステップS50に進む。   In step S40, the amount of ammonia N2 stored in the second selective catalytic reduction device 142 is calculated. After performing the control of step S40, the process proceeds to step S50.

ステップS50にて、ステップS40で算出したアンモニアの量N2が、エンジン10の運転状態に基づいて予め設定される設定閾値N2cを超えるか否かを判定する。アンモニアの量N2が設定閾値N2cを超えると判定する場合(YES)には、ステップS60に進み、ステップS60にて、エンジン10の運転状態に基づいて予め設定される尿素水供給装置22からの尿素水Uの基本供給量Qbに補正量を加えて、基本供給量Qbを補正する。ステップS30で基本供給量Qbに補正を加えていた場合には、この加えた補正量も加味される。ステップS60の制御を実施後、ステップS70に進む。一方、アンモニアの量N2が設定閾値N2c以下であると判定する場合(NO)には、ステップS60を通過することなく、ステップS70に進む。   In step S50, it is determined whether or not the ammonia amount N2 calculated in step S40 exceeds a preset threshold value N2c based on the operating state of the engine 10. When it is determined that the ammonia amount N2 exceeds the set threshold value N2c (YES), the process proceeds to step S60, and urea from the urea water supply device 22 that is preset based on the operating state of the engine 10 in step S60. The basic supply amount Qb is corrected by adding a correction amount to the basic supply amount Qb of the water U. If correction is added to the basic supply amount Qb in step S30, the added correction amount is also taken into account. After performing the control in step S60, the process proceeds to step S70. On the other hand, when it is determined that the ammonia amount N2 is equal to or less than the set threshold value N2c (NO), the process proceeds to step S70 without passing through step S60.

ステップS70にて、第3の選択還元型触媒装置143に貯留するアンモニアの量N3を算出する。ステップS70の制御を実施後、ステップS80に進む。   In step S70, an ammonia amount N3 stored in the third selective catalytic reduction device 143 is calculated. After performing the control in step S70, the process proceeds to step S80.

ステップS80にて、ステップS70で算出したアンモニアの量N3が、エンジン10の運転状態に基づいて予め設定される設定閾値N3cを超えるか否かを判定する。アンモニアの量N3が設定閾値N3cを超えると判定する場合(YES)には、ステップS90に進み、ステップS90にて、エンジン10の運転状態に基づいて予め設定される尿素水供給装置22からの尿素水Uの基本供給量Qbに補正量を加えて、基本供給量Qbを補正する。ステップS30、ステップS60で基本供給量Qbに補正を加えていた場合には、この加えた補正量も加味される。ステップS90の制御を実施後、リターンに進んで、本制御フローを終了して、上級の制御フローに戻る。一方、アンモニアの量N3が設定閾値N3c以下であると判定する場合(NO)には、ステップS90を通過することなく、リターンに進んで、本制御フローを終了して、上級の制御フローに戻る。   In step S80, it is determined whether or not the ammonia amount N3 calculated in step S70 exceeds a preset threshold value N3c based on the operating state of the engine 10. When it is determined that the ammonia amount N3 exceeds the set threshold value N3c (YES), the process proceeds to step S90, and urea from the urea water supply device 22 set in advance based on the operating state of the engine 10 in step S90. The basic supply amount Qb is corrected by adding a correction amount to the basic supply amount Qb of the water U. When correction is added to the basic supply amount Qb in step S30 and step S60, the added correction amount is also taken into account. After executing the control of step S90, the process proceeds to return, ends the present control flow, and returns to the advanced control flow. On the other hand, when it is determined that the ammonia amount N3 is equal to or less than the set threshold value N3c (NO), the process proceeds to return without passing through step S90, ends the present control flow, and returns to the advanced control flow. .

次に、図3の制御フローについて説明する。図3の制御フローがスタートすると、ステップS10にて、各々の選択還元型触媒装置141、142、143に貯留するアンモニアの量N1、N2、N3を同時に算出する。ステップS10の制御を実施後、ステップS20に進む。   Next, the control flow of FIG. 3 will be described. When the control flow of FIG. 3 starts, the amounts of ammonia N1, N2, and N3 stored in the selective catalytic reduction devices 141, 142, and 143 are calculated simultaneously in step S10. After performing the control of step S10, the process proceeds to step S20.

ステップS20にて、ステップS10で算出したアンモニアの量Ni(i=1、2、3)が、エンジン10の運転状態に基づいて各々の選択還元型触媒装置14i(i=1、2、3)毎に予め設定される設定閾値Nic(i=1、2、3)を超えるか否かを判定する。アンモニアの量Niが設定閾値Nicを超えると判定する選択還元型触媒装置14iがある場合(YES)は、ステップS30に進み、ステップS30にて、エンジン10の運転状態に基づいて予め設定される尿素水供給装置22からの尿素水Uの基本供給量Qbに補正量Qcを加えて、基本供給量Qbを補正する。この補正量Qcは、アンモニアの量Niが設定閾値Nicを超えると判定する選択還元型触媒装置の個数が多くなるにつれて、増加させる。ステップS30の制御を実施後、リターンに進んで、本制御フローを終了して、上級の制御フローに戻る。一方、アンモニアの量Niが設定閾値Nicを超えると判定する選択還元型触媒装置14iがない場合(NO)には、ステップS30を通過することなく、リターンに進んで、本制御フローを終了して、上級の制御フローに戻る。   In step S20, the amount of ammonia Ni (i = 1, 2, 3) calculated in step S10 is changed to the respective selective catalytic reduction devices 14i (i = 1, 2, 3) based on the operating state of the engine 10. It is determined whether or not a preset threshold value Nic (i = 1, 2, 3) is exceeded every time. If there is a selective catalytic reduction device 14i that determines that the amount Ni of ammonia exceeds the set threshold value Nic (YES), the process proceeds to step S30, and urea that is preset based on the operating state of the engine 10 in step S30. The basic supply amount Qb is corrected by adding the correction amount Qc to the basic supply amount Qb of the urea water U from the water supply device 22. The correction amount Qc is increased as the number of selective catalytic reduction devices that determine that the ammonia amount Ni exceeds the set threshold value Nic increases. After executing the control of step S30, the process proceeds to return, ends the present control flow, and returns to the advanced control flow. On the other hand, when there is no selective catalytic reduction catalyst device 14i that determines that the ammonia amount Ni exceeds the set threshold value Nic (NO), the process proceeds to return without passing through step S30, and this control flow is terminated. Return to advanced control flow.

次に、図4の制御フローについて説明する。図4の制御フローがスタートすると、ステップS10にて、選択還元型触媒装置群14を構成する各々の選択還元型触媒装置141、142、143に貯留されるアンモニアの量を総和した量であるアンモニア総和量Nsを算出する。ステップS10の制御を実施後、ステップS20に進む。   Next, the control flow of FIG. 4 will be described. When the control flow of FIG. 4 is started, in step S10, ammonia that is the sum of the amounts of ammonia stored in the selective catalytic reduction devices 141, 142, 143 constituting the selective catalytic reduction device group 14 is obtained. The total amount Ns is calculated. After performing the control of step S10, the process proceeds to step S20.

ステップS20にて、ステップS10で算出したアンモニア総和量Nsが、エンジン10の運転状態に基づいて予め設定される設定閾値Nscを超えるか否かを判定する。アンモニア総和量Nsが設定閾値Nscを超えると判定する場合(YES)には、ステップS30に進み、ステップS30にて、エンジン10の運転状態に基づいて予め設定される尿素水供給装置22からの尿素水Uの基本供給量Qbに補正量を加えて、基本供給量Qbを補正する。ステップS30の制御を実施後、リターンに進んで、本制御フローを終了して、上級の制御フローに戻る。一方、アンモニア総和量Nsが設定閾値Nsc以下であると判定する場合(NO)には、ステップS30を通過することなく、リターンに進んで、本制御フローを終了して、上級の制御フローに戻る。   In step S20, it is determined whether or not the total ammonia amount Ns calculated in step S10 exceeds a preset threshold value Nsc based on the operating state of the engine 10. When it is determined that the total ammonia amount Ns exceeds the set threshold value Nsc (YES), the process proceeds to step S30, and urea from the urea water supply device 22 set in advance based on the operating state of the engine 10 in step S30. The basic supply amount Qb is corrected by adding a correction amount to the basic supply amount Qb of the water U. After executing the control of step S30, the process proceeds to return, ends the present control flow, and returns to the advanced control flow. On the other hand, when it is determined that the total ammonia amount Ns is equal to or less than the set threshold value Nsc (NO), the process proceeds to return without passing through step S30, ends this control flow, and returns to the advanced control flow. .

以上より、上記の内燃機関の排気ガス浄化システム1を基にした、本発明の内燃機関の排気ガス浄化方法は、内燃機関10の排気通路11に、上流側より順に、尿素水供給装置22、排気ガス浄化処理装置を備えるとともに、この排気ガス浄化処理装置に少なくとも2つ以上の選択還元型触媒装置で構成される選択還元型触媒装置群14を備えた内燃機関の排気ガス浄化方法において、選択還元型触媒装置群14に流入する排気ガスGに含まれる窒素酸化物の濃度と、選択還元型触媒装置群14を構成する各々の選択還元型触媒装置141、142、143より流出する排気ガスGに含まれるアンモニア濃度に基づいて、内燃機関10の運転状態に基づいて予め設定される尿素水供給装置22からの尿素水Uの基本供給量Qbに補正を加える制御を行うことを特徴とする方法となる。   From the above, the exhaust gas purification method for an internal combustion engine according to the present invention based on the exhaust gas purification system 1 for the internal combustion engine described above, in order from the upstream side to the exhaust passage 11 of the internal combustion engine 10, the urea water supply device 22, In the exhaust gas purification method for an internal combustion engine, which is provided with an exhaust gas purification processing device, and the exhaust gas purification processing device is provided with a selective reduction catalyst device group 14 composed of at least two selective reduction catalyst devices. The concentration of nitrogen oxides contained in the exhaust gas G flowing into the reduction catalyst device group 14 and the exhaust gas G flowing out from each of the selective reduction catalyst devices 141, 142, 143 constituting the selective reduction catalyst device group 14 The basic supply amount Qb of the urea water U from the urea water supply device 22 set in advance based on the operating state of the internal combustion engine 10 is corrected based on the ammonia concentration contained in The method characterized by performing the control.

また、上記の内燃機関の排気ガス浄化方法において、選択還元型触媒装置群14の内、排気通路11の上流側に配設された選択還元型触媒装置より順に、各々の選択還元型触媒装置141、142、143に貯留されるアンモニアの量N1、N2、N3を算出して、このアンモニアの量の算出値N1、N2、N3が、内燃機関10の運転状態に基づいて各々の選択還元型触媒装置141、142、143毎に予め設定される設定閾値N1c、N2c、N3cを超えるか否かを判定し、アンモニアの量の算出値N1、N2、N3が設定閾値N1c、N2c、N3cを超えると判定する度に、尿素水Uの基本供給量Qbに補正を加える制御を行うことを特徴とする方法となる。   In the exhaust gas purification method for an internal combustion engine, the selective reduction catalyst devices 141 are sequentially arranged from the selective reduction catalyst device group 14 arranged upstream of the exhaust passage 11 in the selective reduction catalyst device group 14. , 142, and 143, the ammonia amounts N 1, N 2, and N 3 are calculated, and the calculated ammonia amounts N 1, N 2, and N 3 are calculated based on the operating state of the internal combustion engine 10. It is determined whether or not a preset threshold value N1c, N2c, or N3c preset for each of the devices 141, 142, and 143 is exceeded, and when the calculated ammonia amounts N1, N2, and N3 exceed the set threshold values N1c, N2c, and N3c This is a method characterized by performing control to correct the basic supply amount Qb of the urea water U every time it is determined.

あるいは、上記の内燃機関の排気ガス浄化方法において、選択還元型触媒装置群14を構成する各々の選択還元型触媒装置141、142、143に貯留されるアンモニアの量N1、N2、N3を同時に算出して、これらの各々のアンモニアの量の算出値N1、N2、N3が、内燃機関10の運転状態に基づいて各々の選択還元型触媒装置毎に予め設定される設定閾値を超えるか否かを判定し、アンモニアの量の算出値N1、N2、N3が設定閾値N1c、N2c、N3cを超えると判定する選択還元型触媒装置があるときは、尿素水Uの基本供給量Qbに補正を加えるとともに、アンモニアの量の算出値N1、N2、N3が設定閾値N1c、N2c、N3cを超えると判定する選択還元型触媒装置の個数に基づいて、尿素水Uの基本供給量Qbに加える補正量Qcを増加させる制御を行うことを特徴とする方法となる。   Alternatively, in the exhaust gas purification method for an internal combustion engine described above, the amounts of ammonia N1, N2, and N3 stored in the selective catalytic reduction devices 141, 142, and 143 that constitute the selective catalytic reduction device group 14 are simultaneously calculated. Then, whether or not the calculated values N1, N2, and N3 of the respective ammonia amounts exceed a preset threshold value set in advance for each selective catalytic reduction device based on the operating state of the internal combustion engine 10. When there is a selective catalytic reduction device that determines and determines that the calculated values N1, N2, and N3 of the ammonia amount exceed the set threshold values N1c, N2c, and N3c, the basic supply amount Qb of the urea water U is corrected The basic supply amount of urea water U based on the number of selective catalytic reduction devices that determine that the calculated amounts N1, N2, and N3 of the ammonia amount exceed the set threshold values N1c, N2c, and N3c It becomes method comprising performing control for increasing the correction amount Qc to be added to b.

また、上記の内燃機関の排気ガス浄化方法において、選択還元型触媒装置群14の内、排気通路11の最上流に配設された選択還元型触媒装置141に貯留されるアンモニアの量N1を、選択還元型触媒装置群14に流入する排気ガスGに含まれる窒素酸化物の濃度と、この最上流の選択還元型触媒装置141より流出する排気ガスGに含まれるアンモニア濃度に基づいて算出する。また、最上流の選択還元型触媒装置141以外の選択還元型触媒装置142に貯留されるアンモニアの量を、この選択還元型触媒装置142より上流側の隣接する選択還元型触媒装置141より流出する排気ガスGに含まれるアンモニア濃度と、この選択還元型触媒装置142より流出する排気ガスGに含まれるアンモニア濃度に基づいて算出する。そして、最上流の選択還元型触媒装置141以外の選択還元型触媒装置143に貯留されるアンモニアの量を、この選択還元型触媒装置143より上流側の隣接する選択還元型触媒装置142より流出する排気ガスGに含まれるアンモニア濃度と、この選択還元型触媒装置143より流出する排気ガスGに含まれるアンモニア濃度に基づいて算出する制御を行うことを特徴とする方法となる。   Further, in the exhaust gas purification method for an internal combustion engine, the amount N1 of ammonia stored in the selective reduction catalyst device 141 disposed in the uppermost stream of the exhaust passage 11 in the selective reduction catalyst device group 14 is expressed as follows: The calculation is based on the concentration of nitrogen oxides contained in the exhaust gas G flowing into the selective catalytic reduction device group 14 and the concentration of ammonia contained in the exhaust gas G flowing out from the upstream selective catalytic reduction device 141. Further, the amount of ammonia stored in the selective catalytic reduction device 142 other than the upstream selective catalytic reduction device 141 flows out from the adjacent selective catalytic reduction device 141 upstream of the selective catalytic reduction device 142. Calculation is based on the ammonia concentration contained in the exhaust gas G and the ammonia concentration contained in the exhaust gas G flowing out from the selective catalytic reduction device 142. Then, the amount of ammonia stored in the selective catalytic reduction device 143 other than the upstream selective catalytic reduction device 141 flows out from the adjacent selective catalytic reduction device 142 upstream of the selective catalytic reduction device 143. In this method, control is performed based on the ammonia concentration contained in the exhaust gas G and the ammonia concentration contained in the exhaust gas G flowing out from the selective catalytic reduction device 143.

あるいは、上記の内燃機関の排気ガス浄化方法において、選択還元型触媒装置群14を構成する各々の選択還元型触媒装置141、142、143に貯留されるアンモニアの量を総和した量であるアンモニア総和量Nsを、選択還元型触媒装置群14に流入する排気ガスGに含まれる窒素酸化物の濃度と、各々の選択還元型触媒装置141、142、143より流出する排気ガスGに含まれるアンモニア濃度に基づいて算出するとともに、このアンモニア総和量の算出値Nsが、内燃機関10の運転状態に基づいて予め設定されるアンモニア総和量設定閾値Nscを超えるときは、尿素水Uの基本供給量Qbに補正を加える制御を行うことを特徴とする方法となる。   Alternatively, in the exhaust gas purification method for an internal combustion engine, the total ammonia amount that is the sum of the amounts of ammonia stored in the selective reduction catalyst devices 141, 142, and 143 constituting the selective reduction catalyst device group 14. The amount Ns is determined based on the concentration of nitrogen oxides contained in the exhaust gas G flowing into the selective catalytic reduction device group 14 and the concentration of ammonia contained in the exhaust gas G flowing out from the selective catalytic reduction devices 141, 142, 143. When the calculated value Ns of the total ammonia amount exceeds the ammonia total amount setting threshold value Nsc set in advance based on the operating state of the internal combustion engine 10, the basic supply amount Qb of the urea water U is set. This is a method characterized by performing control for adding correction.

上記の構成の内燃機関の排気ガス浄化システム1、内燃機関、及び内燃機関の排気ガス浄化方法によれば、排気ガス浄化処理装置に備えた各々の選択還元型触媒装置141、142、143に貯留されたアンモニアの量(ストレージ量)を、選択還元型触媒装置群14の入口に備えた窒素酸化物検出装置33の検出値と、各々の選択還元型触媒装置141、142、143の後段に備えたアンモニア濃度検出装置34、36、39の検出値に基づいて推定算出するので、各々の選択還元型触媒装置141、142、143に貯留するアンモニアの量を高精度で推定することができ、その結果、尿素水供給装置22からの尿素水Uの供給量を適正化することができ、選択還元型触媒装置14からのアンモニアスリップを抑制しつつ、NOx浄化率を向上させることができる。   According to the exhaust gas purification system 1 for an internal combustion engine, the internal combustion engine, and the exhaust gas purification method for an internal combustion engine having the above-described configuration, the gas is stored in each of the selective catalytic reduction devices 141, 142, and 143 provided in the exhaust gas purification processing device. The amount (storage amount) of ammonia thus prepared is provided at the detection value of the nitrogen oxide detection device 33 provided at the inlet of the selective reduction catalyst device group 14 and the subsequent stage of each selective reduction catalyst device 141, 142, 143. Therefore, the amount of ammonia stored in each of the selective catalytic reduction devices 141, 142, 143 can be estimated with high accuracy, based on the detected values of the ammonia concentration detectors 34, 36, 39. As a result, the supply amount of urea water U from the urea water supply device 22 can be optimized, and NOx purification can be performed while suppressing ammonia slip from the selective catalytic reduction catalyst device 14. It is possible to improve the.

なお、上記したように、本発明では、排気ガス浄化処理装置に、少なくとも2つ以上の選択還元型触媒装置で構成される選択還元型触媒装置群14を備えた構成を前提としているが、図5に示すように、排気ガス浄化処理装置に、一つの選択還元型触媒装置14を備えた構成でも、図6の制御フローに示すように、この選択還元型触媒装置14に貯留するアンモニアの量を高精度で推定できる制御方法を、本発明者は先行技術として創出している。なお、図5では、選択還元型触媒装置14の周辺の構成のみを図示しており、エンジン10等の他の装置や、尿素水供給制御装置41からの制御信号線については省略している。   As described above, the present invention is premised on a configuration in which the exhaust gas purification processing apparatus includes the selective reduction catalyst device group 14 including at least two selective reduction catalyst devices. As shown in FIG. 5, even in a configuration in which the exhaust gas purification processing apparatus includes one selective reduction catalyst device 14, the amount of ammonia stored in this selective reduction catalyst device 14 as shown in the control flow of FIG. The present inventor has created a control method that can estimate the above with high accuracy as the prior art. In FIG. 5, only the configuration around the selective catalytic reduction catalyst device 14 is illustrated, and other devices such as the engine 10 and control signal lines from the urea water supply control device 41 are omitted.

図6の制御フローについて説明する。図6の制御フローがスタートすると、ステップS10にて、選択還元型触媒装置群14に貯留されるアンモニアの量N1を算出する。ステップS10の制御を実施後、ステップS20に進む。   The control flow in FIG. 6 will be described. When the control flow in FIG. 6 starts, the amount N1 of ammonia stored in the selective catalytic reduction catalyst group 14 is calculated in step S10. After performing the control of step S10, the process proceeds to step S20.

ステップS20にて、ステップS10で算出したアンモニアの量N1が、エンジン10の運転状態に基づいて予め設定される設定閾値N1cを超えるか否かを判定する。アンモニアの量N1が設定閾値N1cを超えると判定する場合(YES)には、ステップS30に進み、ステップS30にて、エンジン10の運転状態に基づいて予め設定される尿素水供給装置22からの尿素水Uの基本供給量Qbに補正量を加えて、基本供給量Qbを補正する。ステップS30の制御を実施後、リターンに進んで、本制御フローを終了して、上級の制御フローに戻る。一方、アンモニアの量N1が設定閾値N1c以下であると判定する場合(NO)には、ステップS30を通過することなく、リターンに進んで、本制御フローを終了して、上級の制御フローに戻る。   In step S20, it is determined whether the ammonia amount N1 calculated in step S10 exceeds a preset threshold value N1c based on the operating state of the engine 10. When it is determined that the ammonia amount N1 exceeds the set threshold value N1c (YES), the process proceeds to step S30, and urea from the urea water supply device 22 set in advance based on the operating state of the engine 10 in step S30. The basic supply amount Qb is corrected by adding a correction amount to the basic supply amount Qb of the water U. After executing the control of step S30, the process proceeds to return, ends the present control flow, and returns to the advanced control flow. On the other hand, when it is determined that the ammonia amount N1 is equal to or less than the set threshold value N1c (NO), the process proceeds to return without passing through step S30, ends the present control flow, and returns to the advanced control flow. .

1 内燃機関の排気ガス浄化システム
10 エンジン(内燃機関)
11 排気通路
14 選択還元型触媒装置、選択還元型触媒装置群
141 第1の選択還元型触媒装置
142 第2の選択還元型触媒装置
143 第3の選択還元型触媒装置
22 尿素水供給装置
32 選択還元型触媒装置用温度センサー
33、35、37、38 NOx濃度検出センサー(NOx濃度検出装置)
32、34、36、39 アンモニア濃度検出センサー(アンモニア濃度検出装置)
41 尿素水供給制御装置
U 尿素水
Qb 尿素水の基本供給量
Qc 尿素水の補正供給量
G エンジンの排気ガス
Gc 浄化処理された排気ガス
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification system of internal combustion engine 10 Engine (internal combustion engine)
11 exhaust passage 14 selective reduction catalyst device, selective reduction catalyst device group 141 first selective reduction catalyst device 142 second selective reduction catalyst device 143 third selective reduction catalyst device 22 urea water supply device 32 selection Reduction type catalyst device temperature sensors 33, 35, 37, 38 NOx concentration detection sensor (NOx concentration detection device)
32, 34, 36, 39 Ammonia concentration detection sensor (ammonia concentration detection device)
41 Urea water supply control device U Urea water Qb Basic supply amount of urea water Qc Corrected supply amount of urea water G Engine exhaust gas Gc Purified exhaust gas

Claims (11)

内燃機関の排気通路に、上流側より順に、尿素水供給装置、排気ガス浄化処理装置を備えて構成される内燃機関の排気ガス浄化システムにおいて、
前記排気ガス浄化処理装置に、少なくとも2つ以上の選択還元型触媒装置で構成される選択還元型触媒装置群を備えて、
該選択還元型触媒装置群の入口に、前記選択還元型触媒装置群に流入する排気ガスに含まれる窒素酸化物の濃度を検出する窒素酸化物検出装置を備えるとともに、
前記選択還元型触媒装置群を構成する各々の選択還元型触媒装置の後段に、各々の選択還元型触媒装置より流出する排気ガスに含まれるアンモニアの濃度を検出するアンモニア濃度検出装置を備えて構成される内燃機関の排気ガス浄化システム。
In the exhaust gas purification system of the internal combustion engine configured to include the urea water supply device and the exhaust gas purification processing device in order from the upstream side in the exhaust passage of the internal combustion engine,
The exhaust gas purification processing apparatus includes a selective reduction catalyst device group including at least two selective reduction catalyst devices,
A nitrogen oxide detection device that detects the concentration of nitrogen oxide contained in the exhaust gas flowing into the selective reduction catalyst device group at the inlet of the selective reduction catalyst device group,
An ammonia concentration detection device for detecting the concentration of ammonia contained in the exhaust gas flowing out from each selective reduction catalyst device is provided at the subsequent stage of each selective reduction catalyst device constituting the selective reduction catalyst device group. An exhaust gas purification system for an internal combustion engine.
前記排気ガス浄化システムを制御する制御装置が、
前記選択還元型触媒装置群の内、前記排気通路の上流側に配設された選択還元型触媒装置より順に、各々の選択還元型触媒装置に貯留されるアンモニアの量を算出して、このアンモニアの量の算出値が、前記内燃機関の運転状態に基づいて各々の選択還元型触媒装置毎に予め設定される設定閾値を超えるか否かを判定し、
前記アンモニアの量の算出値が前記設定閾値を超えると判定する度に、前記内燃機関の運転状態に基づいて予め設定される前記尿素水供給装置からの尿素水の基本供給量に補正を加える制御を行うように構成される請求項1に記載の内燃機関の排気ガス浄化システム。
A control device for controlling the exhaust gas purification system,
The amount of ammonia stored in each selective reduction catalyst device is calculated in order from the selective reduction catalyst device disposed upstream of the exhaust passage in the selective reduction catalyst device group. Determining whether or not the calculated value of the amount exceeds a set threshold set in advance for each selective catalytic reduction device based on the operating state of the internal combustion engine,
Control for correcting the basic supply amount of urea water from the urea water supply device that is set in advance based on the operating state of the internal combustion engine every time it is determined that the calculated value of the ammonia amount exceeds the set threshold value The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the exhaust gas purification system is configured to perform.
前記排気ガス浄化システムを制御する制御装置が、
前記選択還元型触媒装置群を構成する各々の選択還元型触媒装置に貯留されるアンモニアの量を同時に算出して、これらの各々のアンモニアの量の算出値が、前記内燃機関の運転状態に基づいて各々の選択還元型触媒装置毎に予め設定される設定閾値を超えるか否かを判定し、
前記アンモニアの量の算出値が前記設定閾値を超えると判定する選択還元型触媒装置があるときは、前記内燃機関の運転状態に基づいて予め設定される前記尿素水供給装置からの尿素水の基本供給量に補正を加えるとともに、
前記アンモニアの量の算出値が前記設定閾値を超えると判定する選択還元型触媒装置の個数に基づいて、前記尿素水の基本供給量に加える補正量を増加させる制御を行うように構成される請求項1に記載の内燃機関の排気ガス浄化システム。
A control device for controlling the exhaust gas purification system,
The amount of ammonia stored in each selective reduction catalyst device constituting the selective reduction catalyst device group is calculated simultaneously, and the calculated value of each of these ammonia amounts is based on the operating state of the internal combustion engine. To determine whether or not a preset threshold value is preset for each selective catalytic reduction device,
When there is a selective catalytic reduction device that determines that the calculated value of the amount of ammonia exceeds the set threshold value, the basic urea water from the urea water supply device that is preset based on the operating state of the internal combustion engine While correcting the supply amount,
The control unit is configured to perform control to increase a correction amount to be added to the basic supply amount of the urea water based on the number of selective catalytic reduction apparatuses that determine that the calculated value of the ammonia amount exceeds the set threshold value. Item 6. An exhaust gas purification system for an internal combustion engine according to Item 1.
前記制御装置が、
前記選択還元型触媒装置群の内、前記排気通路の最上流に配設された選択還元型触媒装置に貯留されるアンモニアの量を、前記窒素酸化物検出装置の検出値と、この最上流の選択還元型触媒装置の後段に配設された前記アンモニア濃度検出装置の検出値に基づいて算出し、
前記最上流の選択還元型触媒装置以外の選択還元型触媒装置に貯留されるアンモニアの量を、この選択還元型触媒装置より上流側の隣接する選択還元型触媒装置の後段に配設された前記アンモニア濃度検出装置の検出値と、この選択還元型触媒装置の後段に配設された前記アンモニア濃度検出装置の検出値に基づいて算出する制御を行うように構成される請求項2または3に記載の内燃機関の排気ガス浄化システム。
The control device is
Of the selective catalytic reduction catalyst group, the amount of ammonia stored in the selective catalytic reduction device disposed in the uppermost stream of the exhaust passage is determined by the detected value of the nitrogen oxide detection device and Calculated based on the detection value of the ammonia concentration detection device disposed downstream of the selective catalytic reduction catalyst device,
The amount of ammonia stored in the selective catalytic reduction device other than the upstream selective catalytic reduction device is arranged at the subsequent stage of the adjacent selective catalytic reduction device upstream of the selective catalytic reduction device. 4. The control device according to claim 2, wherein the control is performed based on a detection value of the ammonia concentration detection device and a detection value of the ammonia concentration detection device disposed in a subsequent stage of the selective reduction catalyst device. 5. Exhaust gas purification system for internal combustion engines.
前記排気ガス浄化システムを制御する制御装置が、
前記選択還元型触媒装置群を構成する各々の選択還元型触媒装置に貯留されるアンモニアの量を総和した量であるアンモニア総和量を、前記窒素酸化物検出装置の検出値と、各々の選択還元型触媒装置の後段に配設された前記アンモニア濃度検出装置の検出値に基づいて算出するとともに、
このアンモニア総和量の算出値が、前記内燃機関の運転状態に基づいて予め設定されるアンモニア総和量設定閾値を超えるときは、前記内燃機関の運転状態に基づいて予め設定される前記尿素水供給装置からの尿素水の基本供給量に補正を加える制御を行うように構成される請求項1に記載の内燃機関の排気ガス浄化システム。
A control device for controlling the exhaust gas purification system,
The total ammonia amount, which is the sum of the amounts of ammonia stored in the selective reduction catalyst devices constituting the selective reduction catalyst device group, is detected by the detected value of the nitrogen oxide detection device and each selective reduction. While calculating based on the detected value of the ammonia concentration detector disposed in the latter stage of the type catalyst device,
When the calculated value of the total ammonia amount exceeds an ammonia total amount setting threshold that is preset based on the operating state of the internal combustion engine, the urea water supply device that is preset based on the operating state of the internal combustion engine The exhaust gas purification system for an internal combustion engine according to claim 1, configured to perform a control for correcting a basic supply amount of urea water from the engine.
請求項1〜5のいずれか一項に記載の内燃機関の排気ガス浄化システムを備えて構成される内燃機関。   An internal combustion engine comprising the exhaust gas purification system for an internal combustion engine according to any one of claims 1 to 5. 内燃機関の排気通路に、上流側より順に、尿素水供給装置、排気ガス浄化処理装置を備えるとともに、該排気ガス浄化処理装置に少なくとも2つ以上の選択還元型触媒装置で構成される選択還元型触媒装置群を備えた内燃機関の排気ガス浄化方法において、
前記選択還元型触媒装置群に流入する排気ガスに含まれる窒素酸化物の濃度と、前記選択還元型触媒装置群を構成する各々の選択還元型触媒装置より流出する排気ガスに含まれるアンモニア濃度に基づいて、前記内燃機関の運転状態に基づいて予め設定される前記尿素水供給装置からの尿素水の基本供給量に補正を加える制御を行うことを特徴とする内燃機関の排気ガス浄化方法。
A selective reduction type comprising an urea water supply device and an exhaust gas purification treatment device in order from the upstream side in the exhaust passage of the internal combustion engine, and comprising at least two selective reduction catalyst devices in the exhaust gas purification treatment device In an exhaust gas purification method for an internal combustion engine provided with a catalyst device group,
The concentration of nitrogen oxides contained in the exhaust gas flowing into the selective reduction catalyst device group and the ammonia concentration contained in the exhaust gas flowing out from each selective reduction catalyst device constituting the selective reduction catalyst device group An exhaust gas purification method for an internal combustion engine, wherein control is performed to correct a basic supply amount of urea water from the urea water supply device preset based on an operating state of the internal combustion engine.
前記選択還元型触媒装置群の内、前記排気通路の上流側に配設された選択還元型触媒装置より順に、各々の選択還元型触媒装置に貯留されるアンモニアの量を算出して、このアンモニアの量の算出値が、前記内燃機関の運転状態に基づいて各々の選択還元型触媒装置毎に予め設定される設定閾値を超えるか否かを判定し、
前記アンモニアの量の算出値が前記設定閾値を超えると判定する度に、前記尿素水の基本供給量に補正を加える制御を行うことを特徴とする請求項7に記載の内燃機関の排気ガス浄化方法。
The amount of ammonia stored in each selective reduction catalyst device is calculated in order from the selective reduction catalyst device disposed upstream of the exhaust passage in the selective reduction catalyst device group. Determining whether or not the calculated value of the amount exceeds a set threshold set in advance for each selective catalytic reduction device based on the operating state of the internal combustion engine,
The exhaust gas purification of an internal combustion engine according to claim 7, wherein control is performed to correct the basic supply amount of the urea water every time it is determined that the calculated value of the ammonia amount exceeds the set threshold value. Method.
前記選択還元型触媒装置群を構成する各々の選択還元型触媒装置に貯留されるアンモニアの量を同時に算出して、これらの各々のアンモニアの量の算出値が、前記内燃機関の運転状態に基づいて各々の選択還元型触媒装置毎に予め設定される設定閾値を超えるか否かを判定し、
前記アンモニアの量の算出値が前記設定閾値を超えると判定する選択還元型触媒装置があるときは、前記尿素水の基本供給量に補正を加えるとともに、
前記アンモニアの量の算出値が前記設定閾値を超えると判定する選択還元型触媒装置の個数に基づいて、前記尿素水の基本供給量に加える補正量を増加させる制御を行うことを特徴とする請求項7に記載の内燃機関の排気ガス浄化方法。
The amount of ammonia stored in each selective reduction catalyst device constituting the selective reduction catalyst device group is calculated simultaneously, and the calculated value of each of these ammonia amounts is based on the operating state of the internal combustion engine. To determine whether or not a preset threshold value is preset for each selective catalytic reduction device,
When there is a selective catalytic reduction device that determines that the calculated value of the ammonia amount exceeds the set threshold value, the basic supply amount of the urea water is corrected, and
The control for increasing the correction amount to be added to the basic supply amount of the urea water is performed based on the number of selective catalytic reduction devices that are determined that the calculated value of the ammonia amount exceeds the set threshold value. Item 8. An exhaust gas purification method for an internal combustion engine according to Item 7.
前記選択還元型触媒装置群の内、前記排気通路の最上流に配設された選択還元型触媒装置に貯留されるアンモニアの量を、前記選択還元型触媒装置群に流入する排気ガスに含まれる窒素酸化物の濃度と、この最上流の選択還元型触媒装置より流出する排気ガスに含まれるアンモニア濃度に基づいて算出し、
前記最上流の選択還元型触媒装置以外の選択還元型触媒装置に貯留されるアンモニアの量を、この選択還元型触媒装置より上流側の隣接する選択還元型触媒装置より流出する排気ガスに含まれるアンモニア濃度と、この選択還元型触媒装置より流出する排気ガスに含まれるアンモニア濃度に基づいて算出する制御を行うことを特徴とする請求項8または9に記載の内燃機関の排気ガス浄化方法。
The amount of ammonia stored in the selective catalytic reduction device disposed in the uppermost stream of the exhaust passage in the selective catalytic reduction device group is included in the exhaust gas flowing into the selective catalytic reduction device group. Calculated based on the concentration of nitrogen oxides and the ammonia concentration contained in the exhaust gas flowing out from this upstream selective reduction catalyst device,
The amount of ammonia stored in the selective catalytic reduction device other than the upstream selective catalytic reduction device is included in the exhaust gas flowing out from the adjacent selective catalytic reduction device upstream of the selective catalytic reduction device. 10. The exhaust gas purification method for an internal combustion engine according to claim 8, wherein control is performed based on the ammonia concentration and the ammonia concentration contained in the exhaust gas flowing out from the selective catalytic reduction device.
前記選択還元型触媒装置群を構成する各々の選択還元型触媒装置に貯留されるアンモニアの量を総和した量であるアンモニア総和量を、前記選択還元型触媒装置群に流入する排気ガスに含まれる窒素酸化物の濃度と、各々の選択還元型触媒装置より流出する排気ガスに含まれるアンモニア濃度に基づいて算出するとともに、
このアンモニア総和量の算出値が、前記内燃機関の運転状態に基づいて予め設定されるアンモニア総和量設定閾値を超えるときは、前記尿素水の基本供給量に補正を加える制御を行うことを特徴とする請求項7に記載の内燃機関の排気ガス浄化方法。
The total ammonia amount, which is the sum of the amounts of ammonia stored in the selective reduction catalyst devices constituting the selective reduction catalyst device group, is included in the exhaust gas flowing into the selective reduction catalyst device group. While calculating based on the concentration of nitrogen oxides and the ammonia concentration contained in the exhaust gas flowing out from each selective catalytic reduction device,
When the calculated value of the total ammonia amount exceeds an ammonia total amount setting threshold set in advance based on the operating state of the internal combustion engine, control is performed to correct the basic supply amount of the urea water. An exhaust gas purification method for an internal combustion engine according to claim 7.
JP2015227564A 2015-11-20 2015-11-20 Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine Pending JP2017096138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015227564A JP2017096138A (en) 2015-11-20 2015-11-20 Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015227564A JP2017096138A (en) 2015-11-20 2015-11-20 Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2017096138A true JP2017096138A (en) 2017-06-01

Family

ID=58803453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015227564A Pending JP2017096138A (en) 2015-11-20 2015-11-20 Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2017096138A (en)

Similar Documents

Publication Publication Date Title
JP4274270B2 (en) NOx purification system and control method of NOx purification system
JP4665923B2 (en) Catalyst deterioration judgment device
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
JP2008303821A (en) Exhaust emission control device for internal combustion engine
JP2008157136A (en) Exhaust emission control device for internal combustion engine
JP5398372B2 (en) Engine exhaust purification system
JPWO2010079621A1 (en) Catalyst passage component determination device and exhaust purification device for internal combustion engine
US20130025262A1 (en) Exhaust purification apparatus for engine
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
US9228468B2 (en) Targeted regeneration of a catalyst in an aftertreatment system
JP6638549B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2010209783A (en) Exhaust emission control device
JPWO2010134189A1 (en) Exhaust gas purification device for internal combustion engine
JP5761255B2 (en) Exhaust gas purification device for internal combustion engine
JP2012082703A (en) DEVICE AND METHOD FOR DETECTING DEGRADATION OF SELECTIVE REDUCTION TYPE NOx CATALYST
US10947885B2 (en) Passive nitric oxide storage catalyst management
US11187123B1 (en) Method for controlling exhaust after-treatment system based on NO2 medium adjustment
JP2009167940A (en) Exhaust emission control device of internal combustion engine
JP4396760B2 (en) Exhaust gas purification device for internal combustion engine
JP2017096138A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
JP2011196310A (en) Exhaust emission control method and exhaust emission control device
WO2017191805A1 (en) Exhaust gas purification system for internal combustion engine, and exhaust gas purification method for internal combustion engine
JP2020041428A (en) Post-exhaust treatment device
CN114704356A (en) Reduction of N in tail gas2O method, O device, electronic equipment and storage medium
JP2016020636A (en) Exhaust emission control system