JP2017095532A - Gas barrier agent for foamable resin particle and foamable resin particle containing the same - Google Patents

Gas barrier agent for foamable resin particle and foamable resin particle containing the same Download PDF

Info

Publication number
JP2017095532A
JP2017095532A JP2015225965A JP2015225965A JP2017095532A JP 2017095532 A JP2017095532 A JP 2017095532A JP 2015225965 A JP2015225965 A JP 2015225965A JP 2015225965 A JP2015225965 A JP 2015225965A JP 2017095532 A JP2017095532 A JP 2017095532A
Authority
JP
Japan
Prior art keywords
meth
particles
resin particles
gas barrier
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015225965A
Other languages
Japanese (ja)
Other versions
JP6634553B2 (en
Inventor
広司 寺本
Koji Teramoto
広司 寺本
学士 丸山
Takashi Maruyama
学士 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KJ Chemicals Corp
Original Assignee
KJ Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KJ Chemicals Corp filed Critical KJ Chemicals Corp
Priority to JP2015225965A priority Critical patent/JP6634553B2/en
Publication of JP2017095532A publication Critical patent/JP2017095532A/en
Application granted granted Critical
Publication of JP6634553B2 publication Critical patent/JP6634553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide foamable styrene modified thermoplastic resin particles capable of retaining high foamability even when stored at normal temperature for 20 or more days; preliminary foamed particles thereof; and a foam molding excellent in crack resistance obtained from them.SOLUTION: There are provided foamable styrene modified thermoplastic resin particles using a gas barrier agent for foamable resin particles made from an acrylic resin which contain 0.1-30 mol% of an acryloyl monomer (A) having a (meth)acrylate group and/or a (meth)acrylamide group, 20-60 mol% of a monomer (B) having a styrene skeleton, and 15-70 mol% of a vinyl monomer (C) (excluding A) having a nitrile group and/or a hydroxyl group as structural units, has a weight average molecular weight of 1,000-80,000, and a solubility to the styrene of 50 g (/100 g and 25°C) or more; preliminary foamed particles thereof; and a foam molding obtained from them.SELECTED DRAWING: None

Description

本発明は、熱可塑性アクリル樹脂を含有する発泡性樹脂粒子用ガスバリア剤及びそれを含有する発泡性樹脂粒子に関する。より詳しくは、特定の熱可塑性アクリル樹脂を含有するガスバリア剤を用い、製造及び保管時に粒子間の接着による凝集が起こらず、常温で20日間以上保管した場合でも高い発泡性を持続できる発泡性樹脂粒子、それからなる予備発泡粒子と耐割れ性に優れる発泡成形体に関する。   The present invention relates to a gas barrier agent for expandable resin particles containing a thermoplastic acrylic resin, and expandable resin particles containing the same. More specifically, using a gas barrier agent containing a specific thermoplastic acrylic resin, there is no aggregation due to adhesion between particles during production and storage, and a foamable resin that can maintain high foamability even when stored at room temperature for 20 days or more The present invention relates to particles, pre-expanded particles comprising the same, and a foam molded article having excellent crack resistance.

ポリスチレン樹脂粒子に揮発性発泡剤としてプロパン、ブタン、ペンタン等を含浸することで、発泡性能が付与された発泡性ポリスチレン樹脂粒子を得ることができる。発泡性ポリスチレン樹脂粒子は、揮発性発泡剤を比較的良好に保持できるため、通常は室温もしくは冷蔵状態で保管させ、使用に合わせて適時に加熱し、予備発泡粒子として成形型内に充填し、加熱することによって発泡成形体を得ることができる。このような発泡性ポリスチレン樹脂成形体は、0.01〜0.7g/cmの密度を有し、非常に軽量であり、断熱性、緩衝性に優れることから、家電製品などの梱包、緩衝材、魚箱などの食品容器として広く使用されている。しかし、発泡性ポリスチレンの発泡成形体は、剛性が高いが、衝撃に弱く、割れやすいので、耐衝撃性が要求される用途には使用できないという問題があった。 By impregnating polystyrene resin particles with propane, butane, pentane, or the like as a volatile foaming agent, expandable polystyrene resin particles imparted with foaming performance can be obtained. Expandable polystyrene resin particles can hold volatile foaming agents relatively well, so they are usually stored at room temperature or in a refrigerated state, heated at an appropriate time according to use, and filled into a mold as pre-expanded particles. A foamed molded article can be obtained by heating. Such a foamable polystyrene resin molded article has a density of 0.01 to 0.7 g / cm 3 , is very lightweight, and has excellent heat insulation and buffering properties. Widely used as food containers such as timber and fish boxes. However, a foamed molded product of expandable polystyrene has a high rigidity, but is weak against impact and easily broken, so that it cannot be used for applications requiring impact resistance.

一方、エチレンやプロピレン等を主骨格としたポリオレフィン系樹脂からなる発泡成形体は、発泡性ポリスチレン樹脂成形体と同様に非常に軽量であり、断熱性、緩衝性に優れていることに加えて柔軟性があって、割れにくいことが知られている。しかし、剛性が低いため圧縮強度が弱く、さらに、ポリオレフィン系樹脂粒子は揮発性発泡剤の保持性が悪く、プロパン、ブタン、ペンタンなどを含浸して得られる発泡性ポリオレフィン系樹脂微粒子は常温での保管、運搬ができないため、発泡成形までに特殊な保管設備が必要であり、輸送する場合には冷凍しなくてはならず非常にコストがかかっていた。また、発泡剤の含有率が変化しやすいので発泡成形の条件を精密に制御する必要があり、製造コスト、設備投資が高くなるという問題もあった。   On the other hand, foamed molded products made of polyolefin resin with ethylene, propylene, etc. as the main skeleton are very lightweight like foamed polystyrene resin molded products, and in addition to being excellent in heat insulation and buffering properties, they are flexible. It is known to be resistant to cracking. However, since the rigidity is low, the compressive strength is weak, and the polyolefin resin particles have poor retention of the volatile foaming agent. The expandable polyolefin resin particles obtained by impregnating propane, butane, pentane, etc. Since it cannot be stored or transported, a special storage facility is required until foam molding, and it has been very expensive to transport it in order to transport it. In addition, since the content of the foaming agent is likely to change, it is necessary to precisely control the foam molding conditions, and there is a problem that the manufacturing cost and capital investment increase.

このような欠点を改善する方法として、ポリエチレン系樹脂にスチレンを含浸し、重合することで複合化した発泡性スチレン改質ポリオレフィン樹脂粒子がいくつか提案されている(特許文献1と2)。   As a method for improving such a defect, several foamable styrene-modified polyolefin resin particles obtained by impregnating a polyethylene resin with styrene and polymerizing them have been proposed (Patent Documents 1 and 2).

特許文献1に記載の発泡性スチレン改質ポリオレフィン樹脂粒子は、表面層がポリオレフィン系樹脂からなり、芯部がポリスチレン系樹脂からなり、これにより得られる発泡成形体は割れにくく、また低温特性や剛性が改善されている。特許文献2では、発泡性スチレン改質ポリオレフィン樹脂粒子に二酸化珪素等の無機核剤を添化することで剛性、耐衝撃性、耐薬品性が優れることが記載されている。しかし、これらの発泡性スチレン改質ポリオレフィン樹脂粒子において、ポリスチレン系樹脂部位ではある程度の揮発性発泡剤を保持できたとしても、ポリエチレン系樹脂からなる表面層は揮発性発泡剤の逸散が顕著であり、実用的には常温にて長期間の保管や輸送に耐えることができない。   The foamable styrene-modified polyolefin resin particles described in Patent Document 1 have a surface layer made of a polyolefin resin and a core made of a polystyrene resin, and the resulting foamed molded body is hard to break, and has low temperature characteristics and rigidity. Has been improved. In Patent Document 2, it is described that rigidity, impact resistance, and chemical resistance are excellent by adding an inorganic nucleating agent such as silicon dioxide to expandable styrene-modified polyolefin resin particles. However, in these expandable styrene-modified polyolefin resin particles, even if a certain amount of volatile foaming agent can be retained in the polystyrene resin part, the surface layer made of polyethylene resin has a significant volatile foaming agent dissipation. In practical use, it cannot withstand long-term storage and transportation at room temperature.

特許文献3では、発泡成形時の表面気泡調整剤として含水二酸化珪素を0.01〜5質量%を含有させ、揮発性発泡剤含浸直後と数時間後に発泡した場合では発泡成形への影響は無いものの、やはり実用的には常温にて長期間の保管や輸送に耐えることができない。   In Patent Document 3, 0.01 to 5% by mass of hydrated silicon dioxide is included as a surface cell regulator at the time of foam molding, and there is no influence on foam molding when foamed immediately after impregnation with a volatile foaming agent and after several hours. However, practically, it cannot withstand long-term storage and transportation at room temperature.

特許文献4では、ポリオレフィン系樹脂粒子100質量部に対してスチレン又はスチレンとアクリル酸エステルの混合モノマー140〜600質量部を含浸重合させ、得られるポリオレフィン系とポリスチレン系の複合粒子に揮発性発泡剤を含有させることで、発泡剤保持性の良い発泡性樹脂粒子と耐割れ性に優れる発泡成形体を製造できると記載されている。しかし、複合粒子中のポリオレフィン系樹脂の含有量及び耐割れ性に優れる特性から、ポリオレフィン系樹脂が粒子中で連続相として存在している部分が多く存在していることが推定でき、即ち、発泡剤が保持性の悪いポリオレフィンの連続相を沿って粒子外に脱逸することは回避できず、発泡剤長期間保持という本願発明の目的は達成できない。   In Patent Document 4, styrene or a mixed monomer of styrene and acrylate 140 to 600 parts by mass is impregnated with 100 parts by mass of polyolefin resin particles, and a volatile foaming agent is added to the resulting polyolefin and polystyrene composite particles. It is described that the foamed resin particles having good foaming agent retention and the foamed molded article having excellent crack resistance can be produced by containing. However, from the properties of the polyolefin resin content and excellent crack resistance in the composite particles, it can be estimated that there are many portions where the polyolefin resin exists as a continuous phase in the particles, that is, foaming It is unavoidable that the agent escapes out of the particles along the polyolefin continuous phase having poor retention, and the object of the present invention of long-term retention of the blowing agent cannot be achieved.

特許文献5〜7では、揮発性発泡剤であるブタン、イソブタンの保持性を向上させるために、分散径拡大剤又は分散相拡大剤と呼ばれるアクリロニトリル−スチレン共重合体などをポリオレフィン系とポリスチレン系の発泡性複合粒子に用いることが提案された。これらの特許文献の記載によると、分散径拡大剤が0.3μm以上のサイズで連続相であるポリスチレン系樹脂中に分散され、その結果、ポリオレフィン系樹脂とポリスチレン系樹脂の両相の接着面積が減少され、ポリスチレン系樹脂相に保持されている発泡剤がポリオレフィン系樹脂相への散逸が抑制できる。しかし、これらの発泡性複合粒子中にポリオレフィン系は20〜55質量%を含有するため、完全な分離相として存在できず、連続的に存在している部分から発泡剤が速やかに逸出され、本願発明の目的である発泡剤を長期間保持することが困難である。また、連続的に存在するポリオレフィン系樹脂の部分が少なかったら、発泡性樹脂粒子及びそれから形成される発泡成形体の耐割れ性が著しく低下するという問題がある。   In Patent Documents 5 to 7, in order to improve retention of butane and isobutane which are volatile foaming agents, an acrylonitrile-styrene copolymer called a dispersion diameter expanding agent or a dispersed phase expanding agent is used for polyolefin and polystyrene. It has been proposed to be used for expandable composite particles. According to the description of these patent documents, the dispersion diameter expanding agent is dispersed in a continuous polystyrene-based resin with a size of 0.3 μm or more. As a result, the adhesion area of both phases of the polyolefin-based resin and the polystyrene-based resin is reduced. The foaming agent that is reduced and held in the polystyrene resin phase can suppress the dissipation to the polyolefin resin phase. However, since the polyolefin system contains 20 to 55% by mass in these expandable composite particles, it cannot exist as a complete separated phase, and the foaming agent is quickly escaped from the continuously existing part, It is difficult to maintain the foaming agent which is the object of the present invention for a long period of time. Moreover, if there are few polyolefin resin parts which exist continuously, there exists a problem that the crack resistance of a foamable resin particle and a foaming molding formed from it falls remarkably.

特開昭54−119563号JP 54-119563 A 特開2006−70202号JP 2006-70202 A 特開平04−130143号Japanese Patent Laid-Open No. 04-130143 特開2008−133449号JP 2008-133449 A 特開2013−112765号JP2013-112765A 特開2011−256244号JP 2011-256244 A 特許2014−62171号Patent No. 2014-62171

本発明は、製造及び保管時に粒子間の接着による凝集が起こらず、常温で20日間以上保管した場合でも高い発泡性を持続できる発泡性樹脂粒子、気泡が均一で高い発泡倍率を有する予備発泡粒子、及びそれらからなる剛性や耐割れ性に優れる発泡成形体を提供することを課題とする。   The present invention relates to expandable resin particles that can maintain high foamability even when stored at room temperature for 20 days or more without causing aggregation due to adhesion between particles during production and storage, and pre-expanded particles having uniform foam and high expansion ratio It is another object of the present invention to provide a foamed molded article having excellent rigidity and crack resistance.

本発明者らはこれらの課題を解決するために鋭意検討を行った結果、(メタ)アクリレート基及び/また(メタ)アクリルアミド基を有するアクリロイルモノマー(A)1〜30モル%、スチレン構造を有するモノマー(B)20〜60モル%、ニトリル基及び/または水酸基を有するビニルモノマー(C)(Aを除く)15〜70モル%を構成単位として含み、重量平均分子量が1,000〜80,000、かつ、スチレンに対する溶解度が50g(/100g、25℃)以上であるアクリル樹脂からなるガスバリア剤を合成した後、スチレンに溶解させ、熱可塑性粒子中の含浸重合により、長期保管可能の発泡性スチレン改質可塑性樹脂粒子を容易に取得することを見出した。また、ガスバリア剤が最外層成分として発泡性樹脂粒子の表面をカバーしているため、発泡剤の粒子外への脱逸を本質的に抑制されると共に、粒子内に閉じ困れて均一に分散し、加熱発泡により均一で高発泡倍率を有する予備発泡粒子を取得すること、さらにそれらの発泡性樹脂粒子、予備発泡粒子を用いて、剛性や耐割れ性に優れる発泡成形体を取得することを見出し、本発明に到達した。   As a result of intensive studies to solve these problems, the inventors of the present invention have 1-30 mol% of acryloyl monomer (A) having a (meth) acrylate group and / or (meth) acrylamide group, and a styrene structure. Monomer (B) 20 to 60 mol%, vinyl monomer (C) having nitrile group and / or hydroxyl group (C) (excluding A) 15 to 70 mol% as a constitutional unit, weight average molecular weight 1,000 to 80,000 In addition, after synthesizing a gas barrier agent composed of an acrylic resin having a solubility in styrene of 50 g (/ 100 g, 25 ° C.) or more, it is dissolved in styrene and foamed styrene that can be stored for a long time by impregnation polymerization in thermoplastic particles. It has been found that modified plastic resin particles can be easily obtained. In addition, since the gas barrier agent covers the surface of the expandable resin particles as the outermost layer component, the escape of the foaming agent to the outside of the particles is essentially suppressed, and it is difficult to close and uniformly disperse within the particles. , To obtain pre-expanded particles having a uniform and high expansion ratio by heat foaming, and to obtain a foamed molded article having excellent rigidity and crack resistance by using these expandable resin particles and pre-expanded particles. The present invention has been reached.

すなわち、本発明は
(1)(メタ)アクリレート基及び/また(メタ)アクリルアミド基を有するアクリロイルモノマー(A)0.1〜30モル%、スチレン構造を有するモノマー(B)20〜60モル%、ニトリル基及び/または水酸基を有するビニルモノマー(C)(Aを除く)15〜70モル%を構成単位として含有する、重量平均分子量が1,000〜80,000、かつ、スチレンに対する溶解度が50g(/100g、25℃)以上であるアクリル樹脂からなる発泡性樹脂粒子用ガスバリア剤、
(2)アクリロイルモノマー(A)は、炭素数1〜30の直鎖状、分岐鎖状又は環状のアルキル基及び/またはアルキルエーテル基、炭素数5〜30の脂肪族環及び/または環状エーテル基、又は炭素数6〜35の芳香環を有する(メタ)アクリレート及びN−置換(メタ)アクリルアミドからなる群より選ばれる少なくとも1種以上のモノマーであることを特徴とする前記(1)に記載の発泡性樹脂粒子用ガスバリア剤、
(3)アクリロイルモノマー(A)は炭素数4〜30であるアルキル基を有する(メタ)アクリレート及び/またN−置換(メタ)アクリルアミドであることを特徴とする前記(1)又は(2)に記載の発泡性樹脂粒子用ガスバリア剤
(4)イオン性ビニルモノマー(D)をアクリル樹脂の構成単位としてさらに含有することを特徴とする前記(1)〜(3)のいずれか一項に記載の発泡性樹脂粒子用ガスバリア剤、
(5)アクリル樹脂はガラス転移温度(Tg)40〜95℃の範囲を有すること特徴とする前記(1)〜(4)のいずれか一項に記載の発泡性樹脂粒子用ガスバリア剤、
(6)前記(1)〜(5)のいずれか一項に記載のガスバリア剤が5〜30質量%、ポリスチレン樹脂が10〜70質量%、熱可塑性粒子が20〜85質量%を構成成分として含有することを特徴とする発泡性樹脂粒子、
(7)熱可塑性粒子は、ポリオレフィン系樹脂粒子、ポリカーボネート系樹脂粒子とABS系樹脂粒子から選ばれる少なくとも1種以上の粒子であることを特徴とする前記(6)に記載の発泡性樹脂粒子
を提供するものである。
That is, the present invention is (1) 0.1-30 mol% of acryloyl monomer (A) having (meth) acrylate group and / or (meth) acrylamide group, 20-60 mol% of monomer (B) having styrene structure, A vinyl monomer (C) having a nitrile group and / or a hydroxyl group (C) (excluding A) containing 15 to 70 mol% as a constituent unit, having a weight average molecular weight of 1,000 to 80,000 and a solubility in styrene of 50 g ( / 100 g, 25 ° C.) gas barrier agent for expandable resin particles made of an acrylic resin,
(2) The acryloyl monomer (A) is a linear, branched or cyclic alkyl group and / or alkyl ether group having 1 to 30 carbon atoms, an aliphatic ring and / or cyclic ether group having 5 to 30 carbon atoms. Or at least one monomer selected from the group consisting of (meth) acrylates having an aromatic ring having 6 to 35 carbon atoms and N-substituted (meth) acrylamide, as described in (1) above Gas barrier agent for foamable resin particles,
(3) In the above (1) or (2), the acryloyl monomer (A) is a (meth) acrylate having an alkyl group having 4 to 30 carbon atoms and / or an N-substituted (meth) acrylamide. The gas barrier agent for expandable resin particles according to (4), further comprising an ionic vinyl monomer (D) as a structural unit of an acrylic resin, according to any one of (1) to (3), Gas barrier agent for foamable resin particles,
(5) The gas barrier agent for expandable resin particles according to any one of (1) to (4), wherein the acrylic resin has a glass transition temperature (Tg) in the range of 40 to 95 ° C.
(6) The gas barrier agent according to any one of (1) to (5) is 5 to 30% by mass, the polystyrene resin is 10 to 70% by mass, and the thermoplastic particles are 20 to 85% by mass. Expandable resin particles characterized by containing,
(7) The foamable resin particles according to (6), wherein the thermoplastic particles are at least one kind of particles selected from polyolefin resin particles, polycarbonate resin particles, and ABS resin particles. It is to provide.

本発明のガスバリア剤は、(メタ)アクリレート基及び/また(メタ)アクリルアミド基を有するアクリロイルモノマー(A)、スチレン構造を有するモノマー(B)とニトリル基及び/または水酸基を有するビニルモノマー(C)の共重合で得られるアクリル樹脂からなるものであって、スチレンに対する溶解性が良く、特有の分子量範囲を有するため、スチレン中に溶解させ、スチレンを熱可塑性粒子に含浸、重合させる工程において、スチレンが粒子内部に含浸するとともに、アクリル樹脂からなるガスバリア剤は粒子表面で厚み5〜200μmの層を形成され、スチレンの重合と伴って粒子の最外層として粒子をカバーした状態で固定され、その結果、得られる発泡性樹脂粒子の揮発性発泡剤に対する保持性が非常に良好である。   The gas barrier agent of the present invention includes an acryloyl monomer (A) having a (meth) acrylate group and / or a (meth) acrylamide group, a monomer (B) having a styrene structure, and a vinyl monomer (C) having a nitrile group and / or a hydroxyl group. In the process of dissolving in styrene, impregnating the styrene with thermoplastic particles, and polymerizing it, it is made of an acrylic resin obtained by copolymerization of styrene and has good solubility in styrene and a specific molecular weight range. Is impregnated inside the particle, and the gas barrier agent made of acrylic resin forms a layer having a thickness of 5 to 200 μm on the particle surface, and is fixed in a state of covering the particle as the outermost layer of the particle along with the polymerization of styrene. The retention property of the resulting foamable resin particles with respect to the volatile foaming agent is very good.

また、前記アクリル樹脂のガラス転移温度が40〜95℃の範囲である場合、温度や圧力の調整によって、揮発性発泡剤を粒子内部への圧入は容易であり、かつ、保存時に表面層の粘着性で生じたブロッキングによる粒子間の接着、凝集が低減できる。さらに、イオン性ビニルモノマー(D)をアクリル樹脂に配合させることによって、発泡性樹脂粒子間の静電気発生が抑制され、作業性がよく除電設備投資や輸送コストを大幅に削減できる。   In addition, when the glass transition temperature of the acrylic resin is in the range of 40 to 95 ° C., it is easy to press the volatile foaming agent into the particles by adjusting the temperature and pressure, and the surface layer is not sticky during storage. The adhesion and aggregation between particles due to blocking caused by the property can be reduced. Further, by adding the ionic vinyl monomer (D) to the acrylic resin, the generation of static electricity between the foamable resin particles is suppressed, the workability is good, and the investment in static elimination equipment and the transportation cost can be greatly reduced.

本発明の発泡性樹脂粒子中に圧入された発泡剤は、最外層のガスバリア層を通せず、粒子内の分散性が経時的に高まって、それから得られる予備発泡粒子が均一かつ高い発泡率を有することを特徴である。また、これらの発泡性樹脂粒子や予備発泡粒子から剛性や耐割れ性(耐衝撃性)に優れる発泡成形体は取得できる。   The foaming agent press-fitted into the expandable resin particles of the present invention does not pass through the outermost gas barrier layer, dispersibility within the particles increases with time, and the pre-expanded particles obtained therefrom have a uniform and high expansion rate. It is characterized by having. In addition, a foamed molded article having excellent rigidity and crack resistance (impact resistance) can be obtained from these expandable resin particles and pre-expanded particles.

以下に、本発明を詳細に説明する。
本発明のガスバリア剤は、(メタ)アクリレート基及び/また(メタ)アクリルアミド基を有するアクリロイルモノマー(A)1〜30モル%、スチレン構造を有するモノマー(B)20〜60モル%、とニトリル基及び/または水酸基を有するビニルモノマー(C)15〜70モル%の共重合で得られるアクリル樹脂からなるものである。
The present invention is described in detail below.
The gas barrier agent of the present invention comprises 1-30 mol% of acryloyl monomer (A) having a (meth) acrylate group and / or (meth) acrylamide group, 20-60 mol% of a monomer (B) having a styrene structure, and a nitrile group. And / or an acrylic resin obtained by copolymerization of 15 to 70 mol% of a vinyl monomer (C) having a hydroxyl group.

前記のアクリロイルモノマー(A)は、(メタ)アクリレート基及び/また(メタ)アクリルアミド基を有するモノマーであり、具体的には、アクリル酸、メタクリル酸、及びそれらの誘導体であるアクリル酸エステル、メタクリル酸エステル、アクリルアミド、メタクリルアミド、N−置換アクリルアミドとN−置換メタクリルアミドなどが挙げられる。   The acryloyl monomer (A) is a monomer having a (meth) acrylate group and / or a (meth) acrylamide group, and specifically, acrylic acid, methacrylic acid, and acrylic acid esters, methacrylic acid derivatives thereof. Examples include acid esters, acrylamides, methacrylamides, N-substituted acrylamides and N-substituted methacrylamides.

炭素数1〜30の直鎖状又は分岐鎖状のアルキル基、アルキルエーテル基、脂肪族環又は炭素数6〜35の芳香環を有する(メタ)アクリレート系モノマー及びN−置換(メタ)アクリルアミド系モノマーであり、具体的に(メタ)アクリレート系モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、sec−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソミスチリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、プロピルヘプチル(メタ)アクリレート、イソウンデシル(メタ)アクリレート、イソドデシル(メタ)アクリレート、イソトリデシル(メタ)アクリレート、イソペンタデシル(メタ)アクリレート、イソヘキサデシル(メタ)アクリレート、イソヘプタデシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テルペン系(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、フェノキシエチルアクリレートやフェノールEO変性(n=2,4,9,13)アクリレートなどが挙げられ、同様にアルコキシ(メタ)アクリレート系モノマーとしては、メトキシメチル(メタ)アクリレート、エトキシブチル(メタ)アクリレート、ブトキシヘキシル(メタ)アクリレートなどの前記各種炭素数1〜30の直鎖状又は分岐鎖状のアルキルエーテル基有する(メタ)アクリレート系モノマーが挙げられる。また、N−置換(メタ)アクリルアミド系モノマーとしては、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−n−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチル(メタ)アクリルアミド、N−イソブチル(メタ)アクリルアミド、N−t−ブチル(メタ)アクリルアミド、N−n−ヘキシル(メタ)アクリルアミド、シクロヘキシル(メタ)アクリルアミド、N−n−オクチル(メタ)アクリルアミド、N−イソオクチル(メタ)アクリルアミド、N−2−エチルヘキシル(メタ)アクリルアミド、N−イソノニル(メタ)アクリルアミド、N−ウンデシル(メタ)アクリルアミド、N−ラウリル(メタ)アクリルアミド、N−トリデシル(メタ)アクリルアミド、N−テトラデシル(メタ)アクリルアミド、N−ペンタデシル(メタ)アクリルアミド、N−ヘキサデシル(メタ)アクリルアミド、N−ヘプタデシル(メタ)アクリルアミド、N−ステアリル(メタ)アクリルアミド、N−ベヘニル(メタ)アクリルアミド、N−イソデシル(メタ)アクリルアミド、N−イソミスチリル(メタ)アクリルアミド、N−イソステアリル(メタ)アクリルアミド、N−プロピルヘプチル(メタ)アクリルアミド、N−イソウンデシル(メタ)アクリルアミド、N−イソドデシル(メタ)アクリルアミド、N−イソトリデシル(メタ)アクリルアミド、N−イソペンタデシル(メタ)アクリルアミド、N−イソヘキサデシル(メタ)アクリルアミド、N−イソヘプタデシル(メタアクリルアミド、N−イソボルニル(メタ)アクリルアミド、テルペン系(メタ)アクリルアミド、N−ジシクロペンタニル(メタ)アクリルアミド、ジアセトンアクリルアミドなどが挙げられ、同様にアルコキシ(メタ)アクリレート系モノマーとしては、メトキシメチル(メタ)アクリレート、エトキシブチル(メタ)アクリレート、ブトキシヘキシル(メタ)アクリレートなどの前記各種炭素数1〜30の直鎖状又は分岐鎖状のアルキルエーテル基有する(メタ)アクリレート系モノマーが挙げられ、さらに、N,N−二置換(メタ)アクリルアミド系モノマーとしては、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N,N−ジn−プロピル(メタ)アクリルアミド、N,N−ジイソプロピル(メタ)アクリルアミド、N,N−メチルエチル(メタ)アクリルアミド、N,N−エチルヘキシル(メタ)アクリルアミドなどの、前記各種炭素数1〜30の直鎖状又は分岐鎖状のアルキル基、アルキルエーテル基、脂肪族環又は芳香環を置換基として任意に組み合わせて得られる合理的構造を有する二置換を(メタ)アクリルアミド、アクリルロイルモルホリン、N−ビニルピロリドン、ジアセトンアクリルアミド、N−ビニルカプロラクトン、N,N−ジメチルアミノエチルアクリルアミド、N,N−ジエチルアミノエチルアクリルアミド、N,N−ジイソプロピルアミノエチルアクリルアミド、N,N−ジアリルアミノエチルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミド、N,N−ジエチルアミノプロピルアクリルアミド、N,N−ジイソプロピルアミノプロピルアクリルアミド、N,N−ジアリルアミノプロピルアクリルアミド等が挙げられる。これらのモノマーは1種類に限らず、複数の種類を組み合わせて使用してもよい。   C1-C30 linear or branched alkyl group, alkyl ether group, aliphatic ring or (meth) acrylate monomer having an aromatic ring having 6-35 carbon atoms and N-substituted (meth) acrylamide system Specifically, (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) Acrylate, isononyl (meth) acrylate , Undecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, stearyl (meth) acrylate, behenyl (Meth) acrylate, isodecyl (meth) acrylate, isomistyryl (meth) acrylate, isostearyl (meth) acrylate, propylheptyl (meth) acrylate, isoundecyl (meth) acrylate, isododecyl (meth) acrylate, isotridecyl (meth) acrylate, iso Pentadecyl (meth) acrylate, isohexadecyl (meth) acrylate, isoheptadecyl (meth) acrylate, isoborni (Meth) acrylate, terpene-based (meth) acrylate, dicyclopentanyl (meth) acrylate, phenoxyethyl acrylate, phenol EO-modified (n = 2, 4, 9, 13) acrylate, and the like. ) As the acrylate-based monomer, it has a linear or branched alkyl ether group having 1 to 30 carbon atoms such as methoxymethyl (meth) acrylate, ethoxybutyl (meth) acrylate, butoxyhexyl (meth) acrylate ( And (meth) acrylate monomers. Examples of N-substituted (meth) acrylamide monomers include N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N- n-butyl (meth) acrylamide, N-isobutyl (meth) acrylamide, Nt-butyl (meth) acrylamide, Nn-hexyl (meth) acrylamide, cyclohexyl (meth) acrylamide, Nn-octyl (meth) Acrylamide, N-isooctyl (meth) acrylamide, N-2-ethylhexyl (meth) acrylamide, N-isononyl (meth) acrylamide, N-undecyl (meth) acrylamide, N-lauryl (meth) acrylamide, N-tridecyl (meth) Acrylic N-tetradecyl (meth) acrylamide, N-pentadecyl (meth) acrylamide, N-hexadecyl (meth) acrylamide, N-heptadecyl (meth) acrylamide, N-stearyl (meth) acrylamide, N-behenyl (meth) acrylamide, N-isodecyl (meth) acrylamide, N-isomistyryl (meth) acrylamide, N-isostearyl (meth) acrylamide, N-propylheptyl (meth) acrylamide, N-isoundecyl (meth) acrylamide, N-isododecyl (meth) acrylamide, N-isotridecyl (meth) acrylamide, N-isopentadecyl (meth) acrylamide, N-isohexadecyl (meth) acrylamide, N-isoheptadecyl (methacrylamide, N-i Examples include bornyl (meth) acrylamide, terpene (meth) acrylamide, N-dicyclopentanyl (meth) acrylamide, diacetone acrylamide, and the like. Similarly, alkoxy (meth) acrylate monomers include methoxymethyl (meth) acrylate. , (Meth) acrylate monomers having a linear or branched alkyl ether group having 1 to 30 carbon atoms such as ethoxybutyl (meth) acrylate and butoxyhexyl (meth) acrylate, and N, Examples of N-disubstituted (meth) acrylamide monomers include N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-di-n-propyl (meth) acrylamide, N, N- Diisopropyl (meth) acrylamide, N, N-me Substituents such as linear or branched alkyl groups, alkyl ether groups, aliphatic rings or aromatic rings having 1 to 30 carbon atoms such as ruethyl (meth) acrylamide and N, N-ethylhexyl (meth) acrylamide As a di-substitution having a rational structure obtained by arbitrarily combining as (meth) acrylamide, acryloylmorpholine, N-vinylpyrrolidone, diacetone acrylamide, N-vinylcaprolactone, N, N-dimethylaminoethylacrylamide, N, N -Diethylaminoethylacrylamide, N, N-diisopropylaminoethylacrylamide, N, N-diallylaminoethylacrylamide, N, N-dimethylaminopropylacrylamide, N, N-diethylaminopropylacrylamide, N, N-diisopropylamino B pills acrylamide, N, N-diallyl-amino propyl acrylamide. These monomers are not limited to one type, and a plurality of types may be used in combination.

また、アクリロイルモノマー(A)は炭素数4〜30の直鎖状、分岐鎖状又は環状のアルキル基及び/またはアルキルエーテル基、炭素数5〜30の脂肪族環及び/または環状エーテル基、又は炭素数6〜35の芳香環を有する(メタ)アクリレート及びN−置換(メタ)アクリルアミドである場合、得られるガスバリア剤が発泡性樹脂粒子の表面に緻密に配列することができ、かつ、発泡性樹脂粒子間の滑り性を付与し、粒子表面の粘着性を抑える効果があるため、特に好ましい。さらに、炭素数8〜30の直鎖状、分岐鎖状のアルキル基を有する(メタ)アクリレート及びN−置換(メタ)アクリルアミドはTgが制御しやすく、スチレンに対する溶解性により優れるため、最も好ましい。   The acryloyl monomer (A) is a linear, branched or cyclic alkyl group and / or alkyl ether group having 4 to 30 carbon atoms, an aliphatic ring and / or cyclic ether group having 5 to 30 carbon atoms, or In the case of (meth) acrylate and N-substituted (meth) acrylamide having an aromatic ring having 6 to 35 carbon atoms, the obtained gas barrier agent can be densely arranged on the surface of the expandable resin particles, and the expandability This is particularly preferred because it has the effect of imparting slipperiness between resin particles and suppressing the adhesion of the particle surface. Further, (meth) acrylates and N-substituted (meth) acrylamides having a linear or branched alkyl group having 8 to 30 carbon atoms are most preferred because Tg is easy to control and the solubility in styrene is excellent.

前記のスチレン構造を有するモノマー(B)は、具体的には、スチレン、α−メチルスチレン、p−メチルスチレン、ビニルトルエン、t−ブチルスチレン、o−エチルスチレン、o−クロロスチレン、o,p−ジクロロスチレン等が挙げられる。これらのスチレン系誘導体は、1種類あるいは2種以上を用いることができ、特にスチレン、α−メチルスチレン、が安価な工業品を入手しやすいため、好ましい。   Specific examples of the monomer (B) having the styrene structure include styrene, α-methylstyrene, p-methylstyrene, vinyltoluene, t-butylstyrene, o-ethylstyrene, o-chlorostyrene, o, p. -Dichlorostyrene etc. are mentioned. These styrene derivatives can be used singly or in combination of two or more, and styrene and α-methylstyrene are particularly preferable because inexpensive industrial products are easily available.

前記のニトリル基及び/または水酸基を有するビニルモノマーとして、具体的には、は、(メタ)アクリロニトリル、ヒドロキシメチル(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリルアミド、ヒドロキシプロピル(メタ)アクリルアミド、ヒドロキシイソプロピル(メタ)アクリルアミド、ヒドロキシイソブチル(メタ)アクリルアミド、N−メチル−ヒドロキシエチル(メタ)アクリルアミド、ジヒドロキシエチル(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシイソプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシイソブチル(メタ)アクリレート、1,4−シクロヘキサンジメタノールモノ(メタ)アクリレート、2−ヒドロキシ−3−ファノキシプロピル(メタ)アクリレートなどが挙げられる。また、ガスバリア性が高く、熱特性が調整し易いことから、アクリロニトリル、メタクリロニトリル、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、1,4−シクロヘキサンジメタノールモノアクリレート、2−ヒドロキシ−3−ファノキシプロピルアクリレート、1,4−シクロヘキサンジメタノールモノメタクリレート、2−ヒドロキシ−3−ファノキシプロピルメタクリレートが特に好ましい。   Specific examples of the vinyl monomer having a nitrile group and / or a hydroxyl group include (meth) acrylonitrile, hydroxymethyl (meth) acrylamide, hydroxyethyl (meth) acrylamide, hydroxypropyl (meth) acrylamide, hydroxyisopropyl ( (Meth) acrylamide, hydroxyisobutyl (meth) acrylamide, N-methyl-hydroxyethyl (meth) acrylamide, dihydroxyethyl (meth) acrylamide, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxyisopropyl (meth) acrylate, Hydroxybutyl (meth) acrylate, hydroxyisobutyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, 2-hydroxy-3 Such as Fano hydroxypropyl (meth) acrylate. In addition, since the gas barrier property is high and the thermal characteristics are easy to adjust, acrylonitrile, methacrylonitrile, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 1,4-cyclohexanedimethanol mono Particularly preferred are acrylate, 2-hydroxy-3-phanoxypropyl acrylate, 1,4-cyclohexanedimethanol monomethacrylate, and 2-hydroxy-3-phanoxypropyl methacrylate.

本発明のガスバリア剤に用いられるアクリル樹脂において、アクリロイルモノマー(A)は1〜30モル%の比例で配合することが好ましい。成分Aは30モル%より多い場合、相対的に成分Cの含有量が少なくなり、揮発性発泡剤の保持性が極端に低下し、一方、Aは1モルより少ないとガスバリア剤の粒子表面への濡れ性が悪くなり、均一なガスバリア層を形成しにくい場合がある。揮発性発泡剤の保持性と粒子表面への濡れのバランスからより好ましく1モルから20モル、最も好ましくは3モルから15モルである。   In the acrylic resin used for the gas barrier agent of the present invention, the acryloyl monomer (A) is preferably blended in a proportion of 1 to 30 mol%. When the component A is more than 30 mol%, the content of the component C is relatively decreased, and the retention of the volatile foaming agent is extremely lowered. On the other hand, when the component A is less than 1 mol, the particle surface of the gas barrier agent is reduced. In some cases, the wettability of the gas becomes poor and it is difficult to form a uniform gas barrier layer. From the balance between the retention of the volatile foaming agent and the wetness to the particle surface, it is more preferably 1 to 20 mol, and most preferably 3 to 15 mol.

前記のアクリル樹脂において、スチレン構造を有するモノマー(B)は20〜60モル%の比例で配合することが好ましい。60モル%より多いと相対的に成分Aの含有量が少なくなり、ガスバリア剤の粒子表面への濡れ性が悪化し、均一なガスバリア層を形成しにくい場合がある。一方、20モル%より少ないとスチレンに対する溶解性が悪化する。また、より好ましくは20〜60モル%、最も好ましくは30から60モル%である。   In the acrylic resin, the monomer (B) having a styrene structure is preferably blended in a proportion of 20 to 60 mol%. If it exceeds 60 mol%, the content of component A is relatively reduced, the wettability of the gas barrier agent to the particle surface is deteriorated, and it may be difficult to form a uniform gas barrier layer. On the other hand, when the amount is less than 20 mol%, the solubility in styrene deteriorates. Further, it is more preferably 20 to 60 mol%, most preferably 30 to 60 mol%.

前記のアクリル樹脂において、ニトリル基及び/または水酸基を有するビニルモノマー(C)は15〜70モル%の比例で配合することが好ましい。70モル%より多いとスチレンへの溶解性が悪化し、一方、15モル%より少ないと揮発性発泡剤の保持性が極端に低下する。スチレンへの溶解性及び揮発性発泡剤の保持性をともに満足させるために、より好ましい配合比は20〜60モル%、最も好ましくは40〜60モル%である。また、ビニルモノマー(C)を構成する、ニトリル基を有するビニルモノマー及び水酸基を有するビニルモノマーの混合比は、ニトリル基を有するビニルモノマー/水酸基を有するビニルモノマー=100/0〜0/100(モル/モル)である。重合物のガラス転移温度のコントロールの容易さから100/0〜50/50、より好ましくは100/0〜70/30である。   In the acrylic resin, the vinyl monomer (C) having a nitrile group and / or a hydroxyl group is preferably blended in a proportion of 15 to 70 mol%. When it is more than 70 mol%, the solubility in styrene deteriorates, while when it is less than 15 mol%, the retention of the volatile foaming agent is extremely lowered. In order to satisfy both the solubility in styrene and the retention of the volatile foaming agent, the more preferable blending ratio is 20 to 60 mol%, most preferably 40 to 60 mol%. The mixing ratio of the vinyl monomer having a nitrile group and the vinyl monomer having a hydroxyl group constituting the vinyl monomer (C) is as follows: vinyl monomer having a nitrile group / vinyl monomer having a hydroxyl group = 100/0 to 0/100 (mol) / Mol). From the ease of control of the glass transition temperature of a polymer, it is 100 / 0-50 / 50, More preferably, it is 100 / 0-70 / 30.

前記のアクリル樹脂において、さらにイオン性ビニルモノマー(D)を構成単位として配合することが好ましい。イオン性ビニルモノマーとは、カチオンとアニオンを組み合わせたオニウム塩であり、具体的には、カチオンとして(メタ)アクリレート系あるいは(メタ)アクリルアミド系のアンモニウムイオンやイミダゾリウムイオン、アニオンとしてはCl、Br、I等のハロゲンイオン又はOH、CHCOO、NO 、ClO 、PF 、BF 、HSO 、CHSO 、CFSO 、CHSO 、CSO 、(CFSO,SCN等の無機酸アニオン又は有機酸アニオンが挙げられる。 In the acrylic resin, it is preferable to further blend an ionic vinyl monomer (D) as a structural unit. The ionic vinyl monomer is an onium salt obtained by combining a cation and an anion. Specifically, the cation is a (meth) acrylate-based or (meth) acrylamide-based ammonium ion or imidazolium ion, and the anion is Cl , Hal ion such as Br and I or OH , CH 3 COO , NO 3 , ClO 4 , PF 6 , BF 4 , HSO 4 , CH 3 SO 3 , CF 3 SO 3 , Examples thereof include inorganic acid anions or organic acid anions such as CH 3 C 6 H 6 SO 3 , C 4 F 9 SO 3 , (CF 3 SO 2 ) 2 N and SCN .

本発明に用いられるイオン性ビニルモノマー(D)の合成方法としては、一般的には、重合性基を有する第3級アミンをハロゲン化アルキル、ジアルキル硫酸類、p-トルエンスルホン酸メチルなどの4級化剤で4級化する方法、4級化により得られた4級アンモニウム塩をさらに、目的のアニオンを有する塩を用いてアニオン交換を行う方法や、陰イオン交換樹脂を用いて4級アンモニウム塩を水酸化物に変換した後に目的のアニオンを有する酸で中和する方法などがある。詳細は本発明者らが先に報告した特開2011−012240号公報、特開2011−074216号公報、特開2011−140448号公報、特開2011−140455号公報、特開2011−153109号公報を参考する。   As a method for synthesizing the ionic vinyl monomer (D) used in the present invention, a tertiary amine having a polymerizable group is generally selected from 4 groups such as alkyl halides, dialkyl sulfates, and methyl p-toluenesulfonate. A method of quaternizing with a quaternizing agent, a method of further performing anion exchange with a quaternary ammonium salt obtained by quaternization using a salt having a target anion, or a quaternary ammonium using an anion exchange resin There is a method in which a salt is converted into a hydroxide and then neutralized with an acid having a target anion. Details are disclosed in Japanese Patent Application Laid-Open No. 2011-012240, Japanese Patent Application Laid-Open No. 2011-074216, Japanese Patent Application Laid-Open No. 2011-140448, Japanese Patent Application Laid-Open No. 2011-140455, and Japanese Patent Application Laid-Open No. 2011-153109. Refer to.

イオン性ビニルモノマー(D)はカチオンとアニオンの組み合わせによって、水から非極性有機溶剤まで溶解可能であるため、カチオンとアニオンの品種は特に限定されるものではなく、アクリル樹脂(E)の主要構成モノマーA、BとCの構造及び配合比に合わせて、モノマーの重合溶液に溶解できる程度のものを適宜に選定して組み合わせればよい。Dはアクリル樹脂(E)の側鎖として存在するため、発泡性樹脂粒子の表面に分布させ、ブリードアウトせず、永久的に帯電防止性を付与する効果を提供できる。また、Dの配合量は、アクリル樹脂(E)100モル%中に0.1〜30モル%であることが好ましい。0.1モル%配合すれば、帯電防止効果が確認でき、また30モル%超えると、発泡性樹脂粒子同士の凝集を招きやすくなり、好ましくない。   Since the ionic vinyl monomer (D) can be dissolved from water to a nonpolar organic solvent by a combination of a cation and an anion, the type of the cation and anion is not particularly limited, and the main constitution of the acrylic resin (E) According to the structure and blending ratio of the monomers A, B and C, those that can be dissolved in the monomer polymerization solution may be appropriately selected and combined. Since D exists as a side chain of the acrylic resin (E), it can be distributed on the surface of the expandable resin particles, and can provide the effect of permanently imparting antistatic properties without bleeding out. Moreover, it is preferable that the compounding quantity of D is 0.1-30 mol% in 100 mol% of acrylic resins (E). If it is added in an amount of 0.1 mol%, the antistatic effect can be confirmed, and if it exceeds 30 mol%, the foamable resin particles tend to aggregate and are not preferred.

前記のアクリル樹脂の分子量は重量平均で1,000〜80,000の範囲にある。重量平均分子量が80,000より大きくなるとスチレンへ溶解性が悪化し、溶液の粘度が極端な上昇を招きハンドリングが困難となる。一方、1,000より分子量が小さいと含浸重合際に、熱可塑性粒子の中心部までに浸透してしまい、表面層の欠陥を生じやすくなり、揮発性発泡剤の保持性が悪化してしまう。好ましくは、重量平均分子量が2,000〜5,0000の範囲であり、より好ましくは5,000〜45,000である。   The molecular weight of the acrylic resin is in the range of 1,000 to 80,000 on a weight average basis. When the weight average molecular weight is larger than 80,000, the solubility in styrene is deteriorated, the viscosity of the solution is extremely increased, and handling becomes difficult. On the other hand, if the molecular weight is less than 1,000, it will penetrate into the center of the thermoplastic particles during the impregnation polymerization, so that surface layer defects are likely to occur, and the retention of the volatile foaming agent will deteriorate. Preferably, the weight average molecular weight is in the range of 2,000 to 50,000, more preferably 5,000 to 45,000.

前記のアクリル樹脂のガラス転移温度(Tg)は40〜95℃の範囲を有することが好ましい。Tgが95℃より高温であると、発泡性樹脂粒子に揮発性発泡剤を圧入する際の操作温度と圧力は高くしなければならず、安全性も作業性も低下する。また、発泡時に軟化し難いので粒子の融着が阻害され、また、発泡倍率も低く、機械的特性も低下してしまう。一方、Tgが40℃より低くなると発泡性樹脂粒子同士が製造及び保管時の凝集が発生しやすく、発泡剤の保持性が極端に低下してしまう。さらに、発泡成形体の耐割れ性と保管時の粒子同士の凝集を防止するために、好ましくは50〜90℃の範囲であり、特に好ましくは55〜85℃。   The glass transition temperature (Tg) of the acrylic resin is preferably in the range of 40 to 95 ° C. When Tg is higher than 95 ° C., the operating temperature and pressure when the volatile foaming agent is press-fitted into the expandable resin particles must be increased, and safety and workability are lowered. Further, since it is difficult to soften at the time of foaming, the fusion of the particles is hindered, the foaming ratio is low, and the mechanical properties are also lowered. On the other hand, if the Tg is lower than 40 ° C., the foamable resin particles tend to aggregate during production and storage, and the retention of the foaming agent is extremely lowered. Further, in order to prevent cracking of the foamed molded product and aggregation of particles during storage, the temperature is preferably in the range of 50 to 90 ° C, particularly preferably 55 to 85 ° C.

前記のアクリル樹脂は25℃におけるスチレンに対する溶解度は50(g/100g)以上、即ち、スチレン100gに対してEが50g以上可溶である。溶解度は50(g/100g)以上である場合、高濃度のアクリル樹脂のスチレン溶液を調製でき、含浸重合による発泡性樹脂粒子を作製する際にアクリル樹脂が粒子表面を完全にカバーすることができる。また、溶解度は60(g/100g)以上であることがより好ましい。   The acrylic resin has a solubility in styrene at 25 ° C. of 50 (g / 100 g) or more, that is, E is soluble in 50 g or more with respect to 100 g of styrene. When the solubility is 50 (g / 100 g) or more, a high-concentration acrylic resin styrene solution can be prepared, and the acrylic resin can completely cover the particle surface when producing expandable resin particles by impregnation polymerization. . The solubility is more preferably 60 (g / 100 g) or more.

本発明の発泡性樹脂粒子は、熱可塑性粒子、ポリスチレン系樹脂及びガスバリア剤から構成され、汎用の含浸重合技術を利用して簡便に製造することができる。例えば、水性媒体中に熱可塑性粒子を懸濁させた後、攪拌しながらスチレン、ガスバリア剤及び油溶性ラジカル重合開始剤からなる混合液を加え、加熱により懸濁重合を行い、重合反応と同時にあるいは重合反応終了後に揮発性発泡剤を含浸させることによって、本発明の発泡性スチレン改質熱可塑性樹脂粒子(本発明において、略して「発泡性樹脂粒子」とも呼ぶ)を取得できる。   The expandable resin particles of the present invention are composed of thermoplastic particles, a polystyrene resin and a gas barrier agent, and can be easily produced using a general impregnation polymerization technique. For example, after suspending thermoplastic particles in an aqueous medium, a mixed liquid composed of styrene, a gas barrier agent and an oil-soluble radical polymerization initiator is added with stirring, and suspension polymerization is performed by heating, simultaneously with the polymerization reaction or By impregnating with a volatile foaming agent after completion of the polymerization reaction, the expandable styrene-modified thermoplastic resin particles of the present invention (hereinafter also referred to as “expandable resin particles” in the present invention) can be obtained.

前記の熱可塑性粒子は、公知の熱可塑性樹脂を用いて、溶融押出しなど汎用の造粒方法で製造することができる。本発明に用いる熱可塑性粒子の原料樹脂として、ポリオレフィン系樹脂、ポリカーボネート系樹脂、ABS系樹脂を単独もしくは混合して用いることができる。また、ポリオレフィン系樹脂としては、超低密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン(L−LDPE)、中密度ポリエチレン、高密度ポリエチレン、分岐型低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体、ポリプロピレン、エチレン−プロピレンランダム共重合体、プロピレン−1−ブテン共重合体、エチレン−プロピレン−ブテンランダム共重合体等のポリプロピレン系樹脂、ポリプロピレン−ポリブチレンテレフタレート−ナイロン−ポリフェニレンエーテルのアロイ等が挙げられ、また、好ましくは、超低密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン(L−LDPE)、中密度ポリエチレンであり、より好ましくは低密度ポリエチレン、線状低密度ポリエチレンが挙げられる。   The thermoplastic particles can be produced by a general granulation method such as melt extrusion using a known thermoplastic resin. As a raw material resin for the thermoplastic particles used in the present invention, polyolefin resins, polycarbonate resins, and ABS resins can be used alone or in combination. Examples of polyolefin resins include ultra-low density polyethylene, low density polyethylene, linear low density polyethylene (L-LDPE), medium density polyethylene, high density polyethylene, branched low density polyethylene, ethylene-vinyl acetate copolymer, Polyethylene resins such as ethylene-methyl methacrylate copolymer, polypropylene, ethylene-propylene random copolymer, propylene-1-butene copolymer, ethylene-propylene-butene random copolymer, polypropylene-polybutylene terephthalate-nylon- Examples include alloys of polyphenylene ether, and preferably ultra-low density polyethylene, low density polyethylene, linear low density polyethylene (L-LDPE), and medium density polyethylene, more preferably low density polyethylene. It includes linear low density polyethylene.

ポリカーボネート系樹脂としては、2,2−ビス(4−オキシフェニル)ブタン、1,1−ビス(4−オキシフェニル)イソブタン、1,1−ビス(4−オキシフェニル)シクロヘキサン等のビスフェノール誘導体からなるポリカーボネート系樹脂又はポリ(エステルカーボネート)からなるポリカーボネート成分を含むポリカーボネート系樹脂が挙げられる。   The polycarbonate resin is composed of bisphenol derivatives such as 2,2-bis (4-oxyphenyl) butane, 1,1-bis (4-oxyphenyl) isobutane, and 1,1-bis (4-oxyphenyl) cyclohexane. A polycarbonate resin containing a polycarbonate component made of polycarbonate resin or poly (ester carbonate) can be mentioned.

ABS系樹脂としては、ポリブタジエン、ブタジエンと共重合可能なビニルモノマーとのランダム若しくはブロック共重合体、ビニルモノマーの共重合体等のゴム状重合体の存在下で、スチレン、α−メチルスチレン、t−ブチルスチレン、クロロスチレン等の1種類以上の芳香族ビニルモノマーと、例えばアクリロニトリル、メタアクリロニトリル、クロロアクリロニトリル等の1種類以上のシアン基を有するビニルモノマーを重合して得られたものが挙げられる。   ABS resins include styrene, α-methylstyrene, t in the presence of a rubbery polymer such as polybutadiene, a random or block copolymer of vinyl monomer copolymerizable with butadiene, and a copolymer of vinyl monomer. -What was obtained by superposing | polymerizing 1 or more types of aromatic vinyl monomers, such as butyl styrene and chlorostyrene, and vinyl monomers which have 1 or more types of cyan groups, such as acrylonitrile, methacrylonitrile, chloroacrylonitrile, is mentioned.

また、発泡成形体の耐割れ性向上の面から、熱可塑性粒子の原料樹脂として、好ましくはポリオレフィン系樹脂単独もしくは、ポリオレフィンとその他の樹脂との混合物、さらに好ましくは超低密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレンと中密度ポリエチレンが挙げられる。   From the viewpoint of improving the crack resistance of the foamed molded article, the raw material resin for the thermoplastic particles is preferably a polyolefin resin alone or a mixture of polyolefin and other resins, more preferably ultra-low density polyethylene, low density polyethylene. , Linear low density polyethylene and medium density polyethylene.

本発明の発泡性樹脂粒子100質量%中に、熱可塑性粒子の配合量は20〜85質量%、好ましくは30〜80質量%、より好ましくは40〜70質量%である。熱可塑性粒子の配合量が85質量%より多くなると、発泡性樹脂粒子の発泡剤保持性が著しく低下してしまい、また、20質量%より少ないと、それから得られる発泡成形体の耐割れ性が低下する問題があった。   In 100% by mass of the expandable resin particles of the present invention, the blending amount of the thermoplastic particles is 20 to 85% by mass, preferably 30 to 80% by mass, and more preferably 40 to 70% by mass. When the blending amount of the thermoplastic particles is more than 85% by mass, the foaming agent retention of the expandable resin particles is remarkably reduced. When the blending amount is less than 20% by mass, the foaming resistance of the foamed molded product obtained therefrom is low. There was a problem of lowering.

本発明の発泡性樹脂粒子100質量%中に、ポリスチレン樹脂の配合量は10〜70質量%、好ましくは30〜60質量%である。ポリスチレン樹脂の配合量が70質量%より多くなると、発泡性樹脂粒子やそれから得られる予備発泡粒子や発泡性成形体の耐割れ性が低下し、また、10質量%より少ないと、発泡性樹脂粒子の発泡剤保持性、発泡性成形体の機械的特性が極端に低下してしまう恐れがあり、好ましくない。   In 100% by mass of the expandable resin particles of the present invention, the blending amount of the polystyrene resin is 10 to 70% by mass, preferably 30 to 60% by mass. When the blending amount of the polystyrene resin is more than 70% by mass, the cracking resistance of the expandable resin particles, the pre-expanded particles and the foamed molded product obtained therefrom is lowered, and when the blending amount is less than 10% by mass, the expandable resin particles are obtained. This is not preferable because the foaming agent retention property and the mechanical properties of the foamable molded article may be extremely deteriorated.

本発明の発泡性樹脂粒子100質量%中に、ガスバリア剤の配合量は5〜30質量%である。この範囲内であれば、発泡性樹脂粒子のサイズによって多少変化するが、発泡性樹脂粒子の最外層としてガスバリア剤を50質量%以上含有し、厚さは5〜200μmである表面層が形成される。   The compounding amount of the gas barrier agent is 5 to 30% by mass in 100% by mass of the expandable resin particles of the present invention. Within this range, the surface layer having a gas barrier agent content of 50% by mass or more and having a thickness of 5 to 200 μm is formed as the outermost layer of the expandable resin particles, although it varies somewhat depending on the size of the expandable resin particles. The

本発明の発泡樹脂粒子に用いられる揮発性発泡剤としては、例えば、プロパン、ブタン、イソブタン、ペンタン、ジメチルエーテル等があげられる。これらの揮発性発泡剤は単独で用いられても併用されてもよい。これらの揮発性発泡剤の含有量としては、発泡性樹脂粒子に対して5.5〜13.0質量%である。揮発性発泡剤が5.5質量%より少ないと発泡性が低下し、嵩密度の低い高発泡倍率の予備発泡粒子が得られなくなるとともに、この予備発泡粒子を型内成形して得られる発泡成形体は融着性が低下するので、耐割れ性が低下してしまう。一方、13.0質量%を超えると、高発泡倍率の予備発泡粒子を得ることができるが、気泡径が大きくなり過ぎて発泡成形体の圧縮、曲げ等の機械特性が低下する。好ましい揮発性発泡剤の含有量は6.0から12.0質量%の範囲である。   Examples of the volatile foaming agent used in the foamed resin particles of the present invention include propane, butane, isobutane, pentane, dimethyl ether and the like. These volatile blowing agents may be used alone or in combination. The content of these volatile foaming agents is 5.5 to 13.0 mass% with respect to the foamable resin particles. When the volatile foaming agent is less than 5.5% by mass, the foaming property is lowered, and pre-foamed particles having a low bulk density and a high foaming ratio cannot be obtained, and foam molding obtained by molding the pre-foamed particles in the mold. Since the body has low fusing properties, crack resistance is reduced. On the other hand, if it exceeds 13.0% by mass, pre-expanded particles having a high expansion ratio can be obtained, but the cell diameter becomes too large, and mechanical properties such as compression and bending of the foamed molded product deteriorate. The preferred volatile blowing agent content is in the range of 6.0 to 12.0% by weight.

本発明の製造方法により製造される発泡性樹脂粒子の平均粒子径は1〜3mmであり、平均粒子径が3mmより大きくなると成形型への充填性が悪くなる傾向を示す。1mmより小さくなるとポリオレフィン系樹脂を溶融押出し後の造粒時の収率低下によりコストが増加してしまい、また、発泡剤の保持性が低下し、揮発性発泡剤の保持時間が短くなってしまう。好ましい平均粒子径は1〜2mmである。   The average particle diameter of the expandable resin particles produced by the production method of the present invention is 1 to 3 mm. When the average particle diameter is larger than 3 mm, the filling property to the mold tends to be deteriorated. If it is smaller than 1 mm, the cost increases due to a decrease in the yield during granulation after melt extrusion of the polyolefin-based resin, and the retention of the foaming agent is lowered, and the retention time of the volatile foaming agent is shortened. . A preferable average particle diameter is 1-2 mm.

また、本発明の発泡性樹脂粒子は、最外層にはガスバリア剤を主成分とした表面層が形成されていることが特徴である。発泡性樹脂粒子を粒子表面から中心を通って切断した断面において、顕微ラマン分光光度計により分析を行い、粒子表面付近の領域から、ガスバリア剤のみに関るラマンスペクトル、例えば、ガスバリア剤を構成するアクリル樹脂のアクリロイル官能基(1730cm−1付近にエステル結合、1645cm−1付近にアミド結合)及び/又はニトリル官能基(2230cm−1付近にニトリル結合)由来の特有ピークが強く観察され、発泡性樹脂粒子の表面にガスバリア剤を主成分とするガスバリア層の存在が確認された。当該ガスバリア層の厚みは、主にガスバリア剤と熱可塑性粒子の配合比で調整できるが、5〜200μmの範囲であれば、十分満足できるレベルのガスバリア性を提供でき、かつ、発泡性樹脂粒子や予備発泡粒子の発泡特性及び成形体の耐割れ性、耐溶剤性等の特性に影響を与えないので、好ましい。 Further, the expandable resin particles of the present invention are characterized in that a surface layer mainly composed of a gas barrier agent is formed on the outermost layer. In the cross-section of the expandable resin particle cut from the particle surface through the center, analysis is performed with a microscopic Raman spectrophotometer, and the Raman spectrum relating only to the gas barrier agent, for example, the gas barrier agent is constituted from the region near the particle surface. acryloyl-functional group (1730 cm -1 around the ester bond, an amide bond in the vicinity of 1645 cm -1) of the acrylic resin and / or (nitrile bonds in the vicinity of 2230 cm -1) nitrile functionality specific peak derived is observed strongly expandable resin The presence of a gas barrier layer mainly composed of a gas barrier agent was confirmed on the surface of the particles. The thickness of the gas barrier layer can be adjusted mainly by the blending ratio of the gas barrier agent and the thermoplastic particles, but if it is in the range of 5 to 200 μm, it can provide a sufficiently satisfactory level of gas barrier properties, and expandable resin particles and This is preferable because it does not affect the foaming properties of the pre-foamed particles and the properties of the molded product such as crack resistance and solvent resistance.

本発明の発泡性樹脂粒子を用いて、水蒸気等の加熱媒体により加熱することで所定の嵩密度に予備発泡させ、予備発泡粒子を得ることができる。本発明の予備発泡粒子は、熱可塑性樹脂とポリスチレン系樹脂からなる主体部分及び、ガスバリア剤を主成分とした表面層から構成され、かつ、嵩密度が0.015〜0.40g/cmの範囲であることが好ましい。このような予備発泡粒子は、成形機の型内に充填し、熱成形時における二次発泡後の厚みが安定し、通常の二次発泡厚みが安定するまでの熟成期間が不要である。また、予備発泡粒子の表面に有するガスバリア層のアクリル樹脂のガラス転移温度(Tg)は、構成成分の配合比によって、40〜95℃の範囲内で調整可能であるため、予備発泡後の二次粒子は形状が崩すことなく、粒子同士が容易に融着させ、寸法安定性に優れる成形品を製造することができる。 By using the foamable resin particles of the present invention, the foamed resin particles can be prefoamed to a predetermined bulk density by heating with a heating medium such as water vapor to obtain prefoamed particles. The pre-expanded particles of the present invention are composed of a main part composed of a thermoplastic resin and a polystyrene resin, and a surface layer mainly composed of a gas barrier agent, and a bulk density of 0.015 to 0.40 g / cm 3 . A range is preferable. Such pre-expanded particles are filled in a mold of a molding machine, the thickness after secondary foaming at the time of thermoforming is stabilized, and no aging period is required until the normal secondary foam thickness is stabilized. In addition, since the glass transition temperature (Tg) of the acrylic resin of the gas barrier layer on the surface of the pre-expanded particles can be adjusted within a range of 40 to 95 ° C. depending on the blending ratio of the constituent components, The particles can be easily fused with each other without breaking the shape, and a molded product having excellent dimensional stability can be produced.

また、本発明の発泡性樹脂粒子を用いて、予備発泡せず、発泡剤含浸後直接成形型内に充填、発泡させることによって発泡成形体も製造することができる。このような一段発泡の成形方法では、成形サイクルは短く、操作は容易であり、生産性が高いという特徴を有している。    Further, using the expandable resin particles of the present invention, a foamed molded article can be produced by filling and foaming directly into a mold after impregnation with a foaming agent without prefoaming. Such a single-stage foaming method is characterized by a short molding cycle, easy operation, and high productivity.

本発明に用いられる発泡成形体は、前記の一段発泡法又は予備発泡法のいずれかの方法で製造することができる。また、得られた発泡成形体は、本発明の発泡性樹脂粒子、予備発泡性粒子と同様にガスバリア剤主成分のガスバリア層を表面に形成し、粒子同士の間隙が極めて小さく、成形の精度が高く、表面光沢性も良好である。さらに、発泡成形体を構成する粒子は熱可塑性樹脂とポリスチレン系樹脂をともに含有するため、発泡成形体の強度も剛性も高く、耐割れ性が良好であった。   The foamed molded product used in the present invention can be produced by any one of the above-described one-stage foaming method or pre-foaming method. Further, the obtained foamed molded article has a gas barrier layer mainly composed of a gas barrier agent formed on the surface in the same manner as the expandable resin particles and pre-expandable particles of the present invention, and the gap between the particles is extremely small, and the molding accuracy is high. High and good surface gloss. Furthermore, since the particles constituting the foamed molded product contain both a thermoplastic resin and a polystyrene resin, the foamed molded product has high strength and rigidity and good crack resistance.

本願発明に関る発泡成形体の用途としては、特に限定されないが、緩衝材(クッション剤)、建材用の断熱材、食品や電気製品、精密機器用の容器、電機製品の部材、および自動車のバンパーの芯材、嵩上げ材、ドア内装緩衝材等の衝撃エネルギー吸収材や消失模型材などの各種用途が挙げられる。   Although it does not specifically limit as a use of the foaming molding concerning this invention, It is a buffer material (cushioning agent), the heat insulating material for building materials, the container for foodstuffs and an electrical product, a precision instrument, the member of an electrical appliance, and the member of an automobile Various applications such as impact energy absorbing materials such as bumper core materials, raising materials, cushioning materials for door interiors, and disappearance model materials can be mentioned.

以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下において、「部」及び「%」は特記しない限りすべて質量基準である。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples. In the following, “part” and “%” are all based on mass unless otherwise specified.

合成例、実施例における各種物性の測定又は評価は以下の方法で行った。
(1)分子量分析:下記に示した条件でゲルパーミエーションクロマトグラフィー(GPC)を用いて分子量の測定を行った。分析装置としてLC−20AD、DGU−20A、CTO−20AとRID−10Aの(島津製作所)セット、溶離液としてクロロホルム、カラムとしてKF−806L(shodex)を用いて、流量0.5mL/min、カラム温度40℃、注入量20μL、サンプル濃度0.5wt%の条件で測定を行い、標準ポリスチレン分子量をスタンダートとして換算し、合成したアクリル樹脂の重量平均分子量を算出した。
(2)ガラス相転移温度(Tg)測定:示差走査熱量計装置(エスアイアイナノテクノロジー社製のDSC6220)を用い、測定容器に試料10mgを充填して、窒素ガス流量40ml/minのもと10℃/minの昇温速度で200℃まで昇温し、10分間保持後、10℃/minの降温速度で−20℃まで降温し、10分間保持した。その後、再度10℃/minの昇温速度で200℃まで昇温し、熱量の変化を測定し、吸熱ピークの中間点をガラス相転移温度とした。
(3)スチレンに対する溶解性:合成したアクリル樹脂5gをスチレン10g中に添加し、25℃で5時間を攪拌し、溶解性を評価した。
○:均一で透明な溶液、溶解度は50g(/100g、25℃)以上である。
△:均一であるが、やや白色で完全透明ではないよう液、溶解度は50g(/100g25℃)未満である。
×:不均一で白い不溶物が多く残存していた(溶解しない)
(4)ラマンスペクトル測定:合成した発泡性樹脂粒子を用いて、粒子表面から中心を通って切断し、その断面の表面分析はレーザーラマン分光計(日本分光社製、型式NRS−5100)により行った。
(5)初期発泡剤含有量の測定:製造直後の発泡性樹脂粒子を1g秤量し、ベント付き乾燥機にて190℃で加熱し、加熱前後の重量変化量から発泡剤の含有量を下記の式に基づいて算出した。
初期発泡剤の含有量=(製造直後の重量−加熱後の重量)/製造直後の重量×100%
(6)発泡剤保持性の評価:発泡性樹脂)粒子を製造後20日間にわたり25℃に温調した恒温槽内で静置した後、前記同様に保管後の発泡剤含有量を測定した。
保管後発泡剤の含有量=(保管後の重量−加熱後の重量)/保管後の重量×100%
◎:初期発泡剤の含有量と保管後発泡剤の含有量の差は1.0%未満である。
○:初期発泡剤の含有量と保管後発泡剤の含有量の差は1.0〜2.0%未満である。
△:初期発泡剤の含有量と保管後発泡剤の含有量の差は2.0〜3.0%未満である。
×:初期発泡剤の含有量と保管後発泡剤の含有量の差は3.0以上である。
(7)発泡性樹脂粒子間の接着性評価:製造した発泡性樹脂粒子を25℃に温調した恒温槽内で1日間静置し、粒子間の接着の有無を次の評価基準に照らし、発泡性改質樹脂粒子間の接着性を評価した。
○:(良好)粒子間での接着無し
×:(不良)粒子間での接着有り
(8)発泡性樹脂粒子の発泡性評価:発泡性樹脂粒子を円筒型バッチ式予備発泡機に供給して、吹き込み圧0.02MPaの水蒸気により加熱し、予備発泡粒子を得た。得られた予備発泡粒子を容量500cmのメスシリンダに500cmの 目盛りまで充填し、充填した予備発泡粒子の重量W(g)を精密に測って、予備発泡粒子の嵩密度を下記式1により算出した。また、発泡倍率と嵩密度は逆数関係であることを利用し、予備発泡粒子の発泡率は下記式2により算出した。
式1 嵩密度(g/cm)=W(g)/500cm
式2 発泡倍率=1/嵩密度(g/cm
発泡性樹脂粒子の発泡性は次の基準に照らして評価を行った。
◎:(良好)発泡倍率50倍以上
○:(やや良好)発泡倍率40倍以上〜50倍未満
△:(普通)発泡倍率30倍以上〜40倍未満
×:(不良)発泡倍率30倍未満
(9)耐割れ性評価:発泡成形体の耐割れ性の強さを示す落球衝撃試験について、JIS K 7211に準じて測定した。発泡成形体から幅、長さ、厚さが200mm、40mm、20mmの試験片を切り出し、合計20個用意する。321gの鋼球を落とし、下記の計算式により50%破壊高さを算出した。数値が高いほど耐衝撃性が高いことを示す。
H50:50%破壊高さ(cm)
Hi:高さ水準(i)が0のときの試験高さ(cm)で、試験片が破壊することが予測される高さを指す。
d:試験高さを上下させるときの高さ間隔(cm)
i:Hiのときを0とし、一つずつ増減する高さ水準(i=・・・−3,−2,−1,0,1,2,3,・・・)
ni:各水準において破壊した(又は破壊しなかった)試験片の数
N:破壊した(又は破壊しなかった)試験片の総数
いずれか多い方のデータを使用する。なお、同数の場合はどちらを使用してもよい。
±0.5:破壊したデータを使用したときは負号を、破壊しなかったデータを使用したときは正号をとる。
◎:(良好)40cm以上
○:(やや良好)30cm以上〜40cm未満
△:(やや不良)20以上〜30cm未満
×:(不良)20cm未満
(10)帯電防止性評価:得られた発泡成形体から幅、長さ、厚さが110mm、110mm、25mmの試験片を切り出し、温度23℃、相対湿度50%に調整した恒温恒室機に入れ、3時間静置し、表面固有抵抗率測定用試料を得た。JISK 6911に基づき、デジタルエレクトロメーター(R8252型:エーディーシー社製)を用いて測定を行った。表面固有抵抗率が低いほど、発泡成形体の帯電防止性が高い。
○:(帯電防止性能を有する)1×1012Ω/□未満
△:(帯電防止性能をやや有する)1×1012Ω/□以上、かつ、1×1013Ω/□未満
×:(帯電防止性能を有しない)1×1013Ω/□以上
Measurement or evaluation of various physical properties in Synthesis Examples and Examples was performed by the following methods.
(1) Molecular weight analysis: The molecular weight was measured using gel permeation chromatography (GPC) under the conditions shown below. LC-20AD, DGU-20A, CTO-20A and RID-10A (Shimadzu Corporation) set as analyzer, chloroform as eluent, KF-806L (shodex) as column, flow rate 0.5 mL / min, column Measurement was performed under the conditions of a temperature of 40 ° C., an injection amount of 20 μL, and a sample concentration of 0.5 wt%, the standard polystyrene molecular weight was converted as a standard, and the weight average molecular weight of the synthesized acrylic resin was calculated.
(2) Glass phase transition temperature (Tg) measurement: Using a differential scanning calorimeter (DSC 6220 manufactured by SII Nano Technology), 10 mg of a sample was filled into a measuring container, and the nitrogen gas flow rate was 40 ml / min. The temperature was raised to 200 ° C. at a temperature rising rate of ° C./min, held for 10 minutes, then cooled to −20 ° C. at a temperature lowering rate of 10 ° C./min, and held for 10 minutes. Thereafter, the temperature was raised again to 200 ° C. at a rate of 10 ° C./min, the change in calorie was measured, and the midpoint of the endothermic peak was taken as the glass phase transition temperature.
(3) Solubility in styrene: 5 g of the synthesized acrylic resin was added to 10 g of styrene and stirred at 25 ° C. for 5 hours to evaluate the solubility.
○: Uniform and transparent solution, solubility is 50 g (/ 100 g, 25 ° C.) or more.
(Triangle | delta): Although it is uniform, but it is a little white and it is not completely transparent, a liquid and solubility are less than 50g (/ 100g25 degreeC).
×: Many non-uniform white insolubles remained (does not dissolve)
(4) Raman spectrum measurement: Using synthesized foamed resin particles, cut from the particle surface through the center, and the surface analysis of the cross section is performed with a laser Raman spectrometer (manufactured by JASCO Corporation, model NRS-5100). It was.
(5) Measurement of initial foaming agent content: 1 g of expandable resin particles immediately after production was weighed and heated at 190 ° C. with a vented dryer, and the content of the foaming agent was determined from the amount of change in weight before and after heating. Calculated based on the formula.
Content of initial foaming agent = (weight immediately after production−weight after heating) / weight immediately after production × 100%
(6) Evaluation of foaming agent retention: foaming resin) After the particles were allowed to stand in a thermostatic chamber adjusted to 25 ° C. for 20 days after production, the foaming agent content after storage was measured in the same manner as described above.
Content of foaming agent after storage = (weight after storage−weight after heating) / weight after storage × 100%
A: The difference between the content of the initial foaming agent and the content of the foaming agent after storage is less than 1.0%.
○: The difference between the content of the initial foaming agent and the content of the foaming agent after storage is 1.0 to less than 2.0%.
Δ: The difference between the content of the initial foaming agent and the content of the foaming agent after storage is 2.0 to less than 3.0%.
X: The difference between the content of the initial foaming agent and the content of the foaming agent after storage is 3.0 or more.
(7) Adhesive evaluation between expandable resin particles: The produced expandable resin particles are allowed to stand in a thermostatic chamber adjusted to 25 ° C. for 1 day, and the presence or absence of adhesion between the particles is evaluated according to the following evaluation criteria. The adhesion between the expandable modified resin particles was evaluated.
○: (Good) No adhesion between particles ×: (Bad) Adhesion between particles (8) Foamability evaluation of expandable resin particles: Supply expandable resin particles to a cylindrical batch type pre-foaming machine The pre-expanded particles were obtained by heating with steam having a blowing pressure of 0.02 MPa. The resulting pre-expanded particles were filled into graduated cylinder capacity 500 cm 3 to the scale of 500 cm 3, as measured to a precision weight W (g) of the filled pre-expanded particles, the following equation 1 the bulk density of pre-expanded particles Calculated. Further, the expansion ratio of the pre-expanded particles was calculated by the following formula 2 by utilizing the fact that the expansion ratio and the bulk density are inversely related.
Formula 1 Bulk density (g / cm 3 ) = W (g) / 500 cm 3
Formula 2 Foaming ratio = 1 / bulk density (g / cm 3 )
The foamability of the foamable resin particles was evaluated in light of the following criteria.
◎: (Good) Foaming ratio 50 times or more ○: (Slightly good) Foaming ratio 40 times or more to less than 50 times △: (Normal) Foaming ratio 30 times or more to less than 40 times X: (Poor) Foaming ratio less than 30 times ( 9) Evaluation of crack resistance: A falling ball impact test indicating the strength of crack resistance of the foamed molded article was measured according to JIS K 7211. Test pieces having a width, length, and thickness of 200 mm, 40 mm, and 20 mm are cut out from the foamed molded body to prepare a total of 20 pieces. A 321 g steel ball was dropped, and the 50% fracture height was calculated by the following formula. Higher values indicate higher impact resistance.
H50: 50% fracture height (cm)
Hi: Test height (cm) when the height level (i) is 0, and indicates the height at which the test piece is expected to break.
d: Height interval when moving the test height up and down (cm)
i: Height level when Hi is 0, and the height level is increased or decreased by 1 (i =... -3, -2, -1, 0, 1, 2, 3,...)
ni: number of test pieces destroyed (or not destroyed) at each level N: total number of test pieces destroyed (or not destroyed)
Use whichever data is greater. In the case of the same number, either may be used.
± 0.5: A negative sign is used when destroyed data is used, and a positive sign is used when data that is not destroyed is used.
A: (Good) 40 cm or more B: (Slightly good) 30 cm or more to less than 40 cm Δ: (Slightly bad) 20 or more to less than 30 cm X: (Bad) Less than 20 cm (10) Antistatic evaluation: Obtained foam molded article Cut out test pieces with widths, lengths and thicknesses of 110 mm, 110 mm and 25 mm, put them in a thermostatic chamber adjusted to a temperature of 23 ° C. and a relative humidity of 50%, and left for 3 hours to measure the surface resistivity. A sample was obtained. Based on JISK 6911, measurement was performed using a digital electrometer (R8252 type: manufactured by ADC Corporation). The lower the surface resistivity, the higher the antistatic property of the foamed molded product.
○: (with antistatic performance) less than 1 × 10 12 Ω / □
Δ: 1 × 10 12 Ω / □ or more (having a little antistatic performance) and less than 1 × 10 13 Ω / □ ×: (not having antistatic performance) 1 × 10 13 Ω / □ or more

合成例1 アクリル樹脂1の合成
撹拌装置、温度計、冷却器および乾燥窒素導入管を備えた容量500mLの反応容器に成分(A)としてドデシルメタクリレート12.7g(50mmol)、成分(B)としてスチレン26.0g(250mmol)、成分(C)としてアクリロニトリル26.5g(500mmol)と1,4−シクロヘキサンジメタノールモノアクリレート39.6g(200mmol)、及び重合開始剤としてアゾビスイソブチロニトリル(AIBN)3.3g(20mmol)、溶媒としてジメチルホルムアミド(DMF)200gを仕込んだ。乾燥窒素気流下、反応液を30℃で1時間撹拌しながら窒素置換した後、100℃で10時間加熱し、ガスクロマトグラフィーにて反応系内の各種残存モノマーが1%未満であり、即ち、各種原料モノマーが所定配合比で重合し、所定組成のコポリマーを取得できたことを確認した。その後、減圧下で残存モノマーと約半分のDMFを留去し、さらにメタノールを加え、ポリマーを沈殿、乾燥させ、白色粉末状固形物94gを得た。また、アクリル樹脂1の重量平均分子量は1.0万、Tgは58℃であり、スチレンに50%以上溶解することを確認した。
Synthesis Example 1 Synthesis of Acrylic Resin 1 12.7 g (50 mmol) of dodecyl methacrylate as component (A) and styrene as component (B) in a 500 mL reaction vessel equipped with a stirrer, thermometer, cooler and dry nitrogen introduction tube 26.0 g (250 mmol), 26.5 g (500 mmol) of acrylonitrile as component (C) and 39.6 g (200 mmol) of 1,4-cyclohexanedimethanol monoacrylate, and azobisisobutyronitrile (AIBN) as a polymerization initiator 3.3 g (20 mmol) and dimethylformamide (DMF) 200 g were charged as a solvent. The reaction solution was purged with nitrogen while stirring at 30 ° C. for 1 hour under a dry nitrogen stream, then heated at 100 ° C. for 10 hours, and various residual monomers in the reaction system were less than 1% by gas chromatography. It was confirmed that various raw material monomers were polymerized at a predetermined mixing ratio to obtain a copolymer having a predetermined composition. Thereafter, the residual monomer and about half of the DMF were distilled off under reduced pressure, and methanol was further added to precipitate and dry the polymer to obtain 94 g of a white powdery solid. Moreover, the weight average molecular weight of the acrylic resin 1 was 1 million, Tg was 58 degreeC, and it confirmed that 50% or more melt | dissolved in styrene.

合成例2〜4、比較合成例9〜11 アクリル樹脂2〜4と9〜11の合成
合成例2〜4においては、表1に示す各成分を、同表に示す配合量にて、合成例1と同様に重合、精製を行い、白色粉末状固形物としてアクリル樹脂2〜4を得た。また、比較合成例9〜11においては、表2に示す各成分を、同表に示す配合量にて、合成例1と同様に重合、精製を行い、白色粉末状固形物としてアクリル樹脂9〜11を得た。得られたアクリル樹脂2〜4、9〜11の分子量とTgを測定し、スチレンに対する溶解性を調べ、それらの結果を表1と表2に纏めた。
Synthesis Examples 2 to 4 and Comparative Synthesis Examples 9 to 11 Synthesis of Acrylic Resins 2 to 4 and 9 to 11 In Synthesis Examples 2 to 4, the components shown in Table 1 were synthesized in the compounding amounts shown in the same table. Polymerization and purification were performed in the same manner as in Example 1 to obtain acrylic resins 2 to 4 as white powdery solids. In Comparative Synthesis Examples 9 to 11, each component shown in Table 2 was polymerized and purified in the same manner as in Synthesis Example 1 at the blending amounts shown in the same table, and acrylic resin 9 to 11 was obtained. The molecular weight and Tg of the obtained acrylic resins 2 to 4 and 9 to 11 were measured, the solubility in styrene was examined, and the results are summarized in Tables 1 and 2.

合成例5、比較合成15 アクリル樹脂5と15の合成
合成例5においては、表1に示す各成分を、同表に示す配合量にて、合成例1と同様に重合、精製を行い、白色ワックス状固形物としてアクリル樹脂5を得た。また、比較合成15としては、合成例5のポリマー精製工程で得られた上澄みを用い、減圧下で加熱しながら溶媒と残存モノマーなどを完全に除去し、淡黄色高粘度の液体としてアクリル樹脂15を取得した。得られたアクリル樹脂5、15の分子量とTgを測定し、スチレンに対する溶解性を調べ、それらの結果を表1と表2に纏めた。
Synthesis Example 5, Comparative Synthesis 15 Synthesis of Acrylic Resins 5 and 15 In Synthesis Example 5, each component shown in Table 1 was polymerized and purified in the same manner as in Synthesis Example 1 with the blending amounts shown in the same table. Acrylic resin 5 was obtained as a waxy solid. Moreover, as the comparative synthesis 15, the supernatant obtained in the polymer purification step of Synthesis Example 5 was used, and the solvent and residual monomers were completely removed while heating under reduced pressure, and the acrylic resin 15 was obtained as a pale yellow high-viscosity liquid. Acquired. The molecular weight and Tg of the resulting acrylic resins 5 and 15 were measured, the solubility in styrene was examined, and the results are summarized in Tables 1 and 2.

合成例6〜8、比較合成例12〜14 アクリル樹脂6〜8と12〜14の合成
合成例6〜8においては、表1に示す各成分を、同表に示す配合量にて、合成例1と同様に70℃で20時間加熱し重合、精製を行い、白色粉末状固形物としてアクリル樹脂6〜8を得た。また、比較合成例12〜14においては、表2に示す各成分を、同表に示す配合量にて、合成例1と同様に70℃で20時間加熱し重合、精製を行い、白色粉末状固形物としてアクリル樹脂12〜14を得た。得られたアクリル樹脂6〜8、12〜14の分子量とTgを測定し、スチレンに対する溶解性を調べ、それらの結果を表1と表2に纏めた。
Synthetic Examples 6-8, Comparative Synthetic Examples 12-14 Synthesis of Acrylic Resins 6-8 and 12-14 In Synthetic Examples 6-8, each component shown in Table 1 was synthesized in the compounding amounts shown in the same table. In the same manner as in Example 1, the mixture was heated at 70 ° C. for 20 hours for polymerization and purification to obtain acrylic resins 6 to 8 as white powder solids. Further, in Comparative Synthesis Examples 12 to 14, the components shown in Table 2 were heated at 70 ° C. for 20 hours in the blending amounts shown in the same table at 70 ° C. for polymerization and purification to obtain a white powder. Acrylic resins 12 to 14 were obtained as solids. The molecular weight and Tg of the obtained acrylic resins 6 to 8 and 12 to 14 were measured, the solubility in styrene was examined, and the results are summarized in Tables 1 and 2.

表1
Table 1

表2
Table 2

発泡性樹脂粒子(発泡性スチレン改質熱可塑性粒子)の製造
実施例1
低密度ポリエチレン(東ソー社製、ニポロンZ 9P51A)100質量部、造核剤としてタルク0.5質量部をドライブレンドし、二軸押出機のホッパーより供給し、220℃で溶融混練して押出機からストランド状に押出し、ペレタイザーにより切断して熱可塑性(樹脂)粒子のペレットを作製した。
次に、撹拌機付き耐圧重合容器に、水100質量部、熱可塑性粒子のペレット25質量部、懸濁剤としてピロリン酸マグネシウム0.0175質量部、界面活性剤ドデシルベンゼンスルホン酸カルシウム0.0175質量部を入れ、撹拌しながら90℃に昇温した。その後、重合開始剤としてベンゾイルパーオキサイド0.1質量部及びt−ブチルパーオキシベンゾエート0.05質量部、ガスバリア剤としてアクリル樹脂1 5質量部とスチレン70質量部からなる溶液を、4時間かけて添加して重合した。さらに、130℃で3時間重合を行った後、90℃に冷却してスチレン改質熱可塑性粒子を得た。続いて、耐圧重合容器内に発泡剤としてイソブタン7.5質量部を圧入し、90℃で3時間保持した。その後、冷却して脱水、乾燥させて発泡性スチレン改質熱可塑性粒子(略して発泡性樹脂粒子)を得た。得られた発泡性樹脂粒子の初期発泡剤含有量、発泡性樹脂粒子の発泡剤保持性、発泡性樹脂粒子間の接着性を評価し、結果を表3に示した。
Production Example 1 of Expandable Resin Particles (Expandable Styrene Modified Thermoplastic Particles)
100 parts by mass of low density polyethylene (Tosoh Corp., Nipolon Z 9P51A) and 0.5 parts by mass of talc as a nucleating agent are dry blended, supplied from the hopper of a twin screw extruder, melt kneaded at 220 ° C., and an extruder. Were extruded into strands and cut with a pelletizer to produce thermoplastic (resin) particle pellets.
Next, in a pressure-resistant polymerization vessel equipped with a stirrer, 100 parts by mass of water, 25 parts by mass of pellets of thermoplastic particles, 0.0175 parts by mass of magnesium pyrophosphate as a suspending agent, 0.0175 parts by mass of calcium dodecylbenzenesulfonate surfactant The temperature was raised to 90 ° C. with stirring. Thereafter, a solution comprising 0.1 part by mass of benzoyl peroxide and 0.05 part by mass of t-butylperoxybenzoate as a polymerization initiator, and 15 parts by mass of acrylic resin and 70 parts by mass of styrene as a gas barrier agent was taken over 4 hours. Added and polymerized. Furthermore, after performing polymerization at 130 ° C. for 3 hours, the mixture was cooled to 90 ° C. to obtain styrene-modified thermoplastic particles. Subsequently, 7.5 parts by mass of isobutane as a foaming agent was injected into the pressure-resistant polymerization vessel and held at 90 ° C. for 3 hours. Thereafter, it was cooled, dehydrated and dried to obtain expandable styrene-modified thermoplastic particles (abbreviated expandable resin particles). The initial foaming agent content of the obtained foamable resin particles, the foaming agent retention of the foamable resin particles, and the adhesion between the foamable resin particles were evaluated. The results are shown in Table 3.

実施例2〜10
熱可塑性粒子、ガスバリア剤とスチレンを表3に示す品種と質量とした以外は実施例1と同様に、実施例2〜10を実施し、得られた発泡性樹脂粒子の初期発泡剤含有量、発泡性樹脂粒子発泡剤保持性、発泡性樹脂粒子間の接着性を評価し、結果を表3に示した。
Examples 2-10
Except that the thermoplastic particles, gas barrier agent and styrene were the varieties and masses shown in Table 3, Examples 2 to 10 were carried out in the same manner as in Example 1, and the initial foaming agent content of the obtained foamable resin particles, The foaming resin particle foaming agent retention and the adhesiveness between the foaming resin particles were evaluated, and the results are shown in Table 3.

表3
Table 3

比較例1〜4
熱可塑性粒子、アクリル樹脂とスチレンを表4に示す品種と質量とした以外は実施例1と同様に、比較例1〜4を実施し、得られた発泡性樹脂粒子の初期発泡剤含有量、発泡性樹脂粒子発泡剤保持性、発泡性樹脂粒子間の接着性を評価し、結果を表4に示した。
Comparative Examples 1-4
Except that the thermoplastic particles, acrylic resin and styrene are the varieties and masses shown in Table 4, as in Example 1, Comparative Examples 1 to 4 were carried out, and the initial foaming agent content of the obtained foamable resin particles, The foaming resin particle foaming agent retention property and the adhesiveness between the foaming resin particles were evaluated, and the results are shown in Table 4.

表4
Table 4

比較例5
エチレン酢酸ビニル共重合体(日本ユニカー社製、NUC−3221(酢酸ビニル5.0重量%))100質量部、造核剤としてタルク0.5質量部をドライブレンドし、二軸押出機のホッパーより供給し、220℃で溶融混練して押出機からストランド状に押出し、ペレタイザーにより切断して熱可塑性粒子のペレットを作製した。
次に、撹拌機付き耐圧重合容器に、水100質量部、熱可塑性粒子のペレット35質量部、懸濁剤としてピロリン酸マグネシウム0.0175質量部、界面活性剤としてドデシルベンゼンスルホン酸カルシウム0.0175質量部を入れ、撹拌しながら90℃に昇温した。その後、重合開始剤としてベンゾイルパーオキサイド0.1質量部とt−ブチルパーオキシベンゾエート0.05質量部、アクリロニトリル15質量部とスチレン50重量部の混合溶液を4時間かけて添加して重合した。さらに、130℃で3時間重合を行い、90℃に冷却した後、耐圧重合容器内に発泡剤としてイソブタン7.5質量部を圧入し、90℃で3時間保持した。その後、冷却して脱水、乾燥させて発泡性樹脂粒子を得た。得られた発泡性樹脂粒子の初期発泡剤含有量、発泡性樹脂粒子の発泡剤保持性、発泡性樹脂粒子間の接着性を評価し、結果を表4に示した。
Comparative Example 5
100 parts by mass of ethylene vinyl acetate copolymer (NUC-3221 (made by Nippon Unicar Co., Ltd., 5.0% by weight of vinyl acetate)) and 0.5 parts by mass of talc as a nucleating agent are dry blended, and a hopper of a twin screw extruder Then, the mixture was melt-kneaded at 220 ° C., extruded into a strand from an extruder, and cut by a pelletizer to produce thermoplastic particle pellets.
Next, in a pressure-resistant polymerization vessel equipped with a stirrer, 100 parts by mass of water, 35 parts by mass of pellets of thermoplastic particles, 0.0175 parts by mass of magnesium pyrophosphate as a suspending agent, 0.0175 parts of calcium dodecylbenzenesulfonate as a surfactant. A mass part was added and the temperature was raised to 90 ° C. while stirring. Thereafter, 0.1 parts by mass of benzoyl peroxide, 0.05 parts by mass of t-butylperoxybenzoate, 15 parts by mass of acrylonitrile and 50 parts by mass of styrene were added as polymerization initiators over 4 hours for polymerization. Furthermore, after superposing | polymerizing at 130 degreeC for 3 hours and cooling to 90 degreeC, 7.5 mass parts of isobutane was injected as a foaming agent in a pressure-resistant polymerization container, and it hold | maintained at 90 degreeC for 3 hours. Thereafter, it was cooled, dehydrated and dried to obtain expandable resin particles. The initial foaming agent content of the obtained foamable resin particles, the foaming agent retention of the foamable resin particles, and the adhesion between the foamable resin particles were evaluated. The results are shown in Table 4.

比較例6
低密度ポリエチレン(東ソー社製、ニポロンZ 9P51A)50質量部、アクリロニトリル−スチレン樹脂(電気化学工業社製、AS−XGS、アクリロニトリル28%、重量平均分子量10.9万)50質量部、造核剤としてタルク0.5質量部をドライブレンドし、二軸押出機のホッパーより供給し、220℃で溶融混練して押出機からストランド状に押出し、ペレタイザーにより切断して熱可塑性粒子のペレットを作製した。
次に、撹拌機付き耐圧重合容器に、水100質量部、熱可塑性粒子のペレッ60質量部、懸濁剤としてピロリン酸マグネシウム0.0175質量部、界面活性剤としてドデシルベンゼンスルホン酸カルシウム0.0175質量部を入れ、撹拌しながら90℃に昇温した。その後、重合開始剤としてベンゾイルパーオキサイド0.1質量部、t−ブチルパーオキシベンゾエート0.05質量部、スチレン40質量部を4時間かけて添加して重合した。さらに、130℃で3時間重合を行った後、90℃に冷却して発泡性樹脂粒子を得た。続いて、耐圧重合容器内に発泡剤としてイソブタン7.5質量部を圧入し、90℃に昇温して3時間保持した。その後、冷却して脱水、乾燥させて発泡性樹脂粒子を得た。得られた発泡性樹脂粒子の初期発泡剤含有量、発泡性樹脂粒子発泡剤保持性、発泡性樹脂粒子間の接着性を評価し、結果を表4に示した。
Comparative Example 6
50 parts by mass of low density polyethylene (Tosoh Corporation, Nipolon Z 9P51A), 50 parts by mass of acrylonitrile-styrene resin (manufactured by Denki Kagaku Kogyo Co., Ltd., AS-XGS, acrylonitrile 28%, weight average molecular weight 109000), nucleating agent As a dry blend of 0.5 parts by mass of talc, supplied from a hopper of a twin screw extruder, melt-kneaded at 220 ° C., extruded into a strand from the extruder, and cut by a pelletizer to produce thermoplastic particle pellets .
Next, in a pressure-resistant polymerization vessel equipped with a stirrer, 100 parts by mass of water, 60 parts by mass of pellets of thermoplastic particles, 0.0175 parts by mass of magnesium pyrophosphate as a suspending agent, 0.0175 parts of calcium dodecylbenzenesulfonate as a surfactant. A mass part was added and the temperature was raised to 90 ° C. while stirring. Thereafter, 0.1 parts by mass of benzoyl peroxide, 0.05 parts by mass of t-butylperoxybenzoate, and 40 parts by mass of styrene were added as polymerization initiators over 4 hours for polymerization. Furthermore, after performing polymerization at 130 ° C. for 3 hours, the mixture was cooled to 90 ° C. to obtain expandable resin particles. Subsequently, 7.5 parts by mass of isobutane as a foaming agent was injected into the pressure-resistant polymerization vessel, heated to 90 ° C. and held for 3 hours. Thereafter, it was cooled, dehydrated and dried to obtain expandable resin particles. The initial foaming agent content, foaming resin particle foaming agent retention, and adhesiveness between the foaming resin particles of the obtained foaming resin particles were evaluated, and the results are shown in Table 4.

比較例7〜14
熱可塑性粒子、アクリル樹脂とスチレンを表5に示す品種と質量とした以外は実施例1と同様に、比較例7〜14を実施し、得られた発泡性樹脂粒子の初期発泡剤含有量、発泡性樹脂粒子発泡剤保持性、発泡性樹脂粒子間の接着性を評価し、結果を表5に示した
Comparative Examples 7-14
Except that the thermoplastic particles, acrylic resin and styrene were the varieties and masses shown in Table 5, as in Example 1, Comparative Examples 7 to 14 were carried out, and the initial foaming agent content of the obtained foamable resin particles, The foamable resin particles were evaluated for foaming agent retention and adhesiveness between the foamable resin particles, and the results are shown in Table 5.

実施例1〜10、比較例1〜14で製造した発泡性樹脂粒子を成形機の型内に充填し、100℃の水蒸気で円筒バッチ式発泡機に供給して、吹き込み蒸気圧0.02MPaの水蒸気により10分間加熱し、予備発泡粒子を得た。予備発泡粒子を室温で24時間熟成した後、発泡倍率を測定し、結果を表5に示した。また、室温で24時間熟成した予備発泡粒子を、成形機の密閉金型に充填し、水蒸気で加熱し、発泡成形体を製造した。得られた発泡成形体の耐割れ性と帯電防止性を評価し、結果を表3〜5に纏めた。   The foamable resin particles produced in Examples 1 to 10 and Comparative Examples 1 to 14 were filled in a mold of a molding machine, and supplied to a cylindrical batch type foaming machine with water vapor at 100 ° C., and the blowing vapor pressure was 0.02 MPa. Heated with water vapor for 10 minutes to obtain pre-expanded particles. After pre-expanded particles were aged at room temperature for 24 hours, the expansion ratio was measured, and the results are shown in Table 5. Moreover, the pre-expanded particles aged at room temperature for 24 hours were filled in a closed mold of a molding machine and heated with water vapor to produce a foam molded article. The resulting foamed molded article was evaluated for crack resistance and antistatic properties, and the results are summarized in Tables 3-5.

表5
Table 5

実施例と比較例の結果から、本発明のガスバリア剤は、アクリロイルモノマー(A)、スチレン構造を有するモノマー(B)及びニトリル基や水酸基を有するビニルモノマー(C)を特定な配合比で重合させてなるアクリル樹脂を用いたため、スチレンに対する溶解性が良く、特有な分子量範囲とTg範囲を有し、スチレンの含浸重合とともに樹脂粒子の表面にガスバリア層を形成することができた。ガスバリア層の形成により本発明の発泡性樹脂粒子は、製造及び保管時に粒子間の接着による凝集が発生せず、常温で20日間以上保管した場合でも高い発泡性を持続できた。一方、比較例5において、アクリル樹脂の構成モノマーの一部であるアクリロニトリルを用いて、スチレンと同時に含浸、共重合をさせても、可塑性粒子内部への浸透と水中への溶解により樹脂粒子の表面にガスバリア層を形成することができず、発泡剤の保持性が悪かった。また、比較例6において、熱可塑性粒子に予めアクリロニトリル−スチレン共重合体を混合することで、いくらか発泡剤の保持が認められるが、粒子表面にガスバリア層を形成されなかった為ために樹脂粒子の表面からの発泡剤の逸散を抑制することができず、実用的に長期間保管できず本発明の目的を達成することができなかった。
From the results of Examples and Comparative Examples, the gas barrier agent of the present invention polymerizes the acryloyl monomer (A), the monomer (B) having a styrene structure, and the vinyl monomer (C) having a nitrile group or a hydroxyl group at a specific mixing ratio. As a result, it was possible to form a gas barrier layer on the surface of the resin particles together with styrene impregnation polymerization. Due to the formation of the gas barrier layer, the foamable resin particles of the present invention did not aggregate due to adhesion between the particles during production and storage, and could maintain high foamability even when stored for 20 days or more at room temperature. On the other hand, in Comparative Example 5, even when acrylonitrile, which is a part of the constituent monomer of the acrylic resin, is impregnated and copolymerized simultaneously with styrene, the surface of the resin particle is infiltrated into the plastic particle and dissolved in water. In addition, the gas barrier layer could not be formed, and the retention of the foaming agent was poor. Further, in Comparative Example 6, it was recognized that the foaming agent was retained somewhat by mixing the acrylonitrile-styrene copolymer in advance with the thermoplastic particles, but because the gas barrier layer was not formed on the particle surface, Dissipation of the foaming agent from the surface could not be suppressed, and it could not be stored practically for a long time, and the object of the present invention could not be achieved.

以上説明してきたように、本発明の発泡性樹脂粒子が最外層に本発明のガスバリア剤からガスバリア層を形成され、常温で20日間以上保管した場合でも高い発泡性を持続できる発泡性樹脂粒子を提供できる。また、当該発泡性樹脂を加熱発泡により気泡が均一で高い発泡倍率を有する予備発泡粒子を得ることができる。さらに、それらの発泡性樹脂粒子、予備発泡粒子から剛性や耐割れ性の優れた発泡成形体を製造できる。本発明の発泡性樹脂粒子、予備発泡粒子及び発泡成形体は、食品、電子部品、各種工業資材用の容器や包装材、自動車用の緩衝材、建築物用保温材などに好適に用いることができる。   As described above, the expandable resin particles of the present invention have the gas barrier layer formed from the gas barrier agent of the present invention in the outermost layer, and the expandable resin particles that can maintain high foamability even when stored for 20 days or more at room temperature. Can be provided. In addition, pre-expanded particles having uniform foam and high expansion ratio can be obtained by heating and foaming the expandable resin. Furthermore, a foamed molded article having excellent rigidity and crack resistance can be produced from these expandable resin particles and pre-expanded particles. The expandable resin particles, pre-expanded particles and foamed molded product of the present invention can be suitably used for foods, electronic parts, containers and packaging materials for various industrial materials, automotive cushioning materials, heat insulating materials for buildings, and the like. it can.

Claims (7)

(メタ)アクリレート基及び/また(メタ)アクリルアミド基を有するアクリロイルモノマー(A)0.1〜30モル%、スチレン骨格を有するモノマー(B)20〜60モル%、ニトリル基及び/または水酸基を有するビニルモノマー(C)(Aを除く)15〜70モル%を構成単位として含有する、重量平均分子量が1,000〜80,000、かつ、スチレンに対する溶解度が50g(/100g、25℃)以上であるアクリル樹脂からなる発泡性樹脂粒子用ガスバリア剤。 Acrylyl monomer having (meth) acrylate group and / or (meth) acrylamide group (A) 0.1-30 mol%, monomer having styrene skeleton (B) 20-60 mol%, having nitrile group and / or hydroxyl group A vinyl monomer (C) (excluding A) containing 15 to 70 mol% as a constituent unit, having a weight average molecular weight of 1,000 to 80,000 and a solubility in styrene of 50 g (/ 100 g, 25 ° C.) or more. A gas barrier agent for foamable resin particles comprising an acrylic resin. アクリロイルモノマー(A)は、炭素数1〜30の直鎖状、分岐鎖状又は環状のアルキル基及び/またはアルキルエーテル基、炭素数5〜30の脂肪族環及び/または環状エーテル基、又は炭素数6〜35の芳香環を有する(メタ)アクリレート及びN−置換(メタ)アクリルアミドからなる群より選ばれる少なくとも1種以上のモノマーであることを特徴とする請求項1に記載の発泡性樹脂粒子用ガスバリア剤。 The acryloyl monomer (A) is a linear, branched or cyclic alkyl group and / or alkyl ether group having 1 to 30 carbon atoms, an aliphatic ring and / or cyclic ether group having 5 to 30 carbon atoms, or carbon 2. The expandable resin particle according to claim 1, which is at least one monomer selected from the group consisting of (meth) acrylate having an aromatic ring of several 6 to 35 and N-substituted (meth) acrylamide. Gas barrier agent. アクリロイルモノマー(A)は炭素数4〜30であるアルキル基を有する(メタ)アクリレート及び/またN−置換(メタ)アクリルアミドであることを特徴とする請求項1又は請求項2に記載の発泡性樹脂粒子用ガスバリア剤。 The foaming property according to claim 1 or 2, wherein the acryloyl monomer (A) is (meth) acrylate and / or N-substituted (meth) acrylamide having an alkyl group having 4 to 30 carbon atoms. Gas barrier agent for resin particles. イオン性ビニルモノマー(D)をアクリル樹脂の構成単位としてさらに含有することを特徴とする請求項1〜3のいずれか一項に記載の発泡性樹脂粒子用ガスバリア剤。 The gas barrier agent for expandable resin particles according to any one of claims 1 to 3, further comprising an ionic vinyl monomer (D) as a structural unit of an acrylic resin. アクリル樹脂はガラス転移温度(Tg)40〜95℃の範囲を有すること特徴とする請求項1〜4のいずれか一項に記載の発泡性樹脂粒子用ガスバリア剤。 The gas barrier agent for expandable resin particles according to any one of claims 1 to 4, wherein the acrylic resin has a glass transition temperature (Tg) in the range of 40 to 95 ° C. 請求項1〜5のいずれか一項に記載のガスバリア剤が5〜30質量%、ポリスチレン樹脂が10〜70質量%、熱可塑性粒子が20〜85質量%を構成成分として含有することを特徴とする発泡性樹脂粒子。 The gas barrier agent according to any one of claims 1 to 5 contains 5 to 30% by mass, polystyrene resin 10 to 70% by mass, and thermoplastic particles 20 to 85% by mass as constituent components. Expandable resin particles. 熱可塑性粒子は、ポリオレフィン系樹脂粒子、ポリカーボネート系樹脂粒子とABS系樹脂粒子から選ばれる少なくとも1種以上の粒子であることを特徴とする請求項6に記載の発泡性樹脂粒子。 The foamable resin particles according to claim 6, wherein the thermoplastic particles are at least one kind of particles selected from polyolefin resin particles, polycarbonate resin particles, and ABS resin particles.
JP2015225965A 2015-11-18 2015-11-18 Gas barrier agent for expandable resin particles and expandable resin particles containing the same Active JP6634553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015225965A JP6634553B2 (en) 2015-11-18 2015-11-18 Gas barrier agent for expandable resin particles and expandable resin particles containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015225965A JP6634553B2 (en) 2015-11-18 2015-11-18 Gas barrier agent for expandable resin particles and expandable resin particles containing the same

Publications (2)

Publication Number Publication Date
JP2017095532A true JP2017095532A (en) 2017-06-01
JP6634553B2 JP6634553B2 (en) 2020-01-22

Family

ID=58816675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015225965A Active JP6634553B2 (en) 2015-11-18 2015-11-18 Gas barrier agent for expandable resin particles and expandable resin particles containing the same

Country Status (1)

Country Link
JP (1) JP6634553B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790157A (en) * 1993-09-24 1995-04-04 Japan Synthetic Rubber Co Ltd Flame-retardant resin composition
JPH1171433A (en) * 1997-08-28 1999-03-16 Techno Polymer Kk Thermoplastic resin
JP2005288984A (en) * 2004-04-05 2005-10-20 Asahi Kasei Chemicals Corp Manufacturing method for recording medium
JP2007308580A (en) * 2006-05-18 2007-11-29 Hitachi Chem Co Ltd Expandable polyethylene resin particle and method for producing the same
WO2008038504A1 (en) * 2006-09-26 2008-04-03 Kaneka Corporation Expandable resin particle, expanded particle, foamed object, and process for producing the same
WO2009122984A1 (en) * 2008-03-31 2009-10-08 日立化成ポリマー株式会社 Releasing agent composition and releasing material
JP2012131932A (en) * 2010-12-22 2012-07-12 Kohjin Co Ltd Aromatic vinyl-based polymer containing hydroxyl, production method thereof, and polystyrene resin foaming particle, preliminarily foamed particle and foam molding each including the same
US20120208911A1 (en) * 2011-02-10 2012-08-16 Fina Technology, Inc. Polar Polystyrene Copolymers for Enhanced Foaming
JP2013112765A (en) * 2011-11-30 2013-06-10 Jsp Corp Foamable composite resin particles and molded article of composite resin foam particles
JP2015151523A (en) * 2014-02-19 2015-08-24 Kjケミカルズ株式会社 Hydroxyl group-containing aromatic vinyl polymers and resin expandable particles including the same, pre-expanded particles, and foam molded body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790157A (en) * 1993-09-24 1995-04-04 Japan Synthetic Rubber Co Ltd Flame-retardant resin composition
JPH1171433A (en) * 1997-08-28 1999-03-16 Techno Polymer Kk Thermoplastic resin
JP2005288984A (en) * 2004-04-05 2005-10-20 Asahi Kasei Chemicals Corp Manufacturing method for recording medium
JP2007308580A (en) * 2006-05-18 2007-11-29 Hitachi Chem Co Ltd Expandable polyethylene resin particle and method for producing the same
WO2008038504A1 (en) * 2006-09-26 2008-04-03 Kaneka Corporation Expandable resin particle, expanded particle, foamed object, and process for producing the same
WO2009122984A1 (en) * 2008-03-31 2009-10-08 日立化成ポリマー株式会社 Releasing agent composition and releasing material
JP2012131932A (en) * 2010-12-22 2012-07-12 Kohjin Co Ltd Aromatic vinyl-based polymer containing hydroxyl, production method thereof, and polystyrene resin foaming particle, preliminarily foamed particle and foam molding each including the same
US20120208911A1 (en) * 2011-02-10 2012-08-16 Fina Technology, Inc. Polar Polystyrene Copolymers for Enhanced Foaming
JP2013112765A (en) * 2011-11-30 2013-06-10 Jsp Corp Foamable composite resin particles and molded article of composite resin foam particles
JP2015151523A (en) * 2014-02-19 2015-08-24 Kjケミカルズ株式会社 Hydroxyl group-containing aromatic vinyl polymers and resin expandable particles including the same, pre-expanded particles, and foam molded body

Also Published As

Publication number Publication date
JP6634553B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
US9914814B2 (en) Polar polystyrene copolymers for enhanced foaming
WO2007138916A1 (en) Expandable polyethylene resin particle and method for production thereof
JP2003026876A (en) Aromatic vinyl resin composition and molding thereof
JP5528002B2 (en) Polypropylene resin pre-expanded particles
EP3056534B1 (en) Expandable vinyl aromatic polymeric compositions
US7868053B2 (en) Expandable polystyrene granulates with a bi- or multi-modal molecular-weight distribution
JP6759895B2 (en) Composite resin particles, composite resin foam particles, composite resin foam particle molded products
CN106009359B (en) Panel packaging container
WO2018069186A1 (en) Improved expandable vinyl aromatic polymers
JP4681103B2 (en) Styrenic resin and molded products thereof
JP6634553B2 (en) Gas barrier agent for expandable resin particles and expandable resin particles containing the same
TWI633144B (en) Use of polar additives for enhancing blowing agent solubility in polystyrene
JP5731428B2 (en) Styrene-modified polyethylene resin particles, expandable composite resin particles, pre-expanded particles, foam-molded article and method for producing pre-expanded particles
JP2020050784A (en) Composite resin particle, expandable particle, expanded particle, and expanded molded body
JP4653321B2 (en) Expandable rubber-modified acrylonitrile / styrene-based resin particles, process for producing the same, and foam molded article
WO2013147040A1 (en) Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper
TWI507455B (en) Expandable polystyrene and methods of forming the same
JP5460227B2 (en) Polypropylene resin in-mold foam molding
JP2004315692A (en) Styrene-based resin composition for expansion molding, foamed sheet and container
JP6262114B2 (en) Method for producing composite resin particles
EP2742091B1 (en) The use of aluminium dibromosalicylate, a process for preparing non-flammable organic plastics, and a flame retardant composition for its preparation
JP2002080668A (en) Styrene resin composition
JP2018141087A (en) Method for producing foamed particle and method for producing foam molded body
JP7028585B2 (en) Styrene-based resin composition for extrusion foaming, foaming sheet, container, and plate-shaped foam
JP2004217875A (en) Self-extinguishable styrenic resin foamed particle and self-extinguishable foamed molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191101

R150 Certificate of patent or registration of utility model

Ref document number: 6634553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250