JP2017093157A - Two-phase dynamo-electric machine controller and control system for two-phase dynamo-electric machine - Google Patents
Two-phase dynamo-electric machine controller and control system for two-phase dynamo-electric machine Download PDFInfo
- Publication number
- JP2017093157A JP2017093157A JP2015220594A JP2015220594A JP2017093157A JP 2017093157 A JP2017093157 A JP 2017093157A JP 2015220594 A JP2015220594 A JP 2015220594A JP 2015220594 A JP2015220594 A JP 2015220594A JP 2017093157 A JP2017093157 A JP 2017093157A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- rotating electrical
- phase coil
- electrical machine
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005284 excitation Effects 0.000 claims description 34
- 238000010586 diagram Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 230000004907 flux Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 230000005611 electricity Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000005279 excitation period Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/14—Electronic commutators
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Stepping Motors (AREA)
Abstract
Description
本発明は、2相回転電機制御装置及び2相回転電機用制御システムに関する。 The present invention relates to a two-phase rotating electrical machine control device and a control system for a two-phase rotating electrical machine.
従来、インバータ回路のスイッチング素子のオンオフ作動を制御することにより、回転電機の駆動を制御する回転電機制御装置が知られている。例えば回転電機制御装置では、スイッチング素子のオンオフ作動を指令するための指令信号を制御部で生成し、当該指令信号に基づき、スイッチング素子のゲート信号をゲートドライバ回路で生成している。ゲートドライバ回路で生成されたゲート信号がスイッチング素子のゲートに出力されると、ゲート信号に基づいてスイッチング素子がオンオフ作動し、回転電機が回転駆動する。 2. Description of the Related Art Conventionally, a rotating electrical machine control device that controls driving of a rotating electrical machine by controlling an on / off operation of a switching element of an inverter circuit is known. For example, in a rotating electrical machine control apparatus, a command signal for commanding an on / off operation of a switching element is generated by a control unit, and a gate signal of the switching element is generated by a gate driver circuit based on the command signal. When the gate signal generated by the gate driver circuit is output to the gate of the switching element, the switching element is turned on / off based on the gate signal, and the rotating electrical machine is rotated.
例えば、2相の回転電機の駆動を制御する回転電機制御装置であって、2相三線式で電力を供給する回転電機制御装置がある。図9は、従来の2相の回転電機の駆動を制御する回転電機制御装置120を備えた2相回転電機用制御システム100の概略構成図である。2相回転電機用制御システム100は、電源装置110、回転電機制御装置120、インバータ回路130及び2相(A相及びB相)の回転電機140を備える。回転電機制御装置120は、スイッチング素子Q100〜Q600のオンオフを制御し、A相又はB相に流れている電流の向きを切り替えることで、回転電機140を回転駆動させる。
For example, there is a rotating electrical machine control device that controls the driving of a two-phase rotating electrical machine and that supplies electric power in a two-phase three-wire system. FIG. 9 is a schematic configuration diagram of a
しかしながら、従来の回転電機制御装置は、A相又はB相に流れている電流の向きを切り替えると、貫通電流200が発生してしまい、スイッチング素子Q200、Q500が破損する場合がある。また、A相又はB相に流れる電流の向きを切り替える場合に、切り替えた相のコイルに逆起電力が発生する。したがって、電源装置110から供給される電流がA相コイル及びB相コイルに流れない期間が発生する。これにより、回転電機140を回転させるトルクが発生しない期間が存在し、インバータ回路130の効率が低下する問題がある。
However, in the conventional rotating electrical machine control device, when the direction of the current flowing in the A phase or the B phase is switched, the through current 200 is generated, and the switching elements Q200 and Q500 may be damaged. Further, when the direction of the current flowing in the A phase or the B phase is switched, a counter electromotive force is generated in the coil of the switched phase. Therefore, a period in which the current supplied from
本発明は、このような事情に鑑みてなされたもので、その目的は、2相三線式の回転電機を制御する2相回転電機制御装置であって、各相に流れる電流の向きを切り替える際に、貫通電流の発生を防止し、且つ回転電機のトルクが発生しなくなることを抑制する2相回転電機制御装置及び2相回転電機用制御システムを提供することである。 The present invention has been made in view of such circumstances, and an object thereof is a two-phase rotating electrical machine control device that controls a two-phase three-wire rotating electrical machine, and switches the direction of current flowing in each phase. The second object is to provide a two-phase rotating electrical machine control device and a two-phase rotating electrical machine control system that prevent the occurrence of a through current and suppress the generation of torque of the rotating electrical machine.
本発明の一態様は、2つのコイルを備える2相三線式の回転電機を制御する2相回転電機制御装置であって、前記2つのコイルのうちいずれか一方のコイルに流れている励磁電流の向きを切り替える前に、前記励磁電流の向きを切り替える対象のコイルに流れる電流を還流させた後に、所定の励磁電流の向きに切り替える切替制御を実行可能である。 One aspect of the present invention is a two-phase rotating electrical machine control device that controls a two-phase three-wire rotating electrical machine including two coils, and an excitation current flowing in one of the two coils. Before switching the direction, it is possible to execute switching control for switching to the direction of a predetermined excitation current after circulating the current flowing through the coil to be switched for the direction of the excitation current.
また、本発明の一態様は、上述の2相回転電機制御装置であって、前記励磁電流の向きを切り替える前記対象のコイルとは異なる他方のコイルに流れる励磁電流の向きを維持したまま、前記対象のコイルに流れる電流を還流させる。 One aspect of the present invention is the above-described two-phase rotating electrical machine control device, wherein the direction of the excitation current flowing in the other coil different from the target coil that switches the direction of the excitation current is maintained, The current flowing through the target coil is returned.
また、本発明の一態様は、2つのコイルを備える2相三線式の回転電機と、前記回転電機を制御する2相回転電機制御装置と、を備え、前記2相回転電機制御装置は、前記2つのコイルのうちいずれか一方のコイルに流れている励磁電流の向きを切り替える前に、前記励磁電流の向きを切り替える対象のコイルに流れる電流を還流させた後に、所定の励磁電流の向きに切り替える切替制御を実行可能である2相回転電機用制御システムである。 One embodiment of the present invention includes a two-phase three-wire rotating electric machine including two coils, and a two-phase rotating electric machine control device that controls the rotating electric machine, wherein the two-phase rotating electric machine control device includes: Before switching the direction of the excitation current flowing through one of the two coils, the current flowing through the coil that is the target of switching the direction of the excitation current is circulated and then switched to a predetermined direction of the excitation current. This is a control system for a two-phase rotating electrical machine capable of executing switching control.
以上説明したように、本発明によれば、2相三線式の回転電機を制御する2相回転電機制御装置であって、各相に流れる電流の向きを切り替える際に、貫通電流の発生を防止し、且つ回転電機のトルクが発生しなくなることを抑制する2相回転電機制御装置及び2相回転電機用制御システムを提供することができる。 As described above, according to the present invention, a two-phase rotary electric machine control device that controls a two-phase three-wire rotary electric machine, and prevents the occurrence of a through current when switching the direction of the current flowing in each phase. In addition, it is possible to provide a two-phase rotating electrical machine control device and a two-phase rotating electrical machine control system that suppress the generation of torque of the rotating electrical machine.
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。なお、図面において、同一又は類似の部分には同一の符号を付して、重複する説明を省く場合がある。また、図面における要素の形状及び大きさなどはより明確な説明のために誇張されることがある。 Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention. In the drawings, the same or similar parts may be denoted by the same reference numerals and redundant description may be omitted. In addition, the shape and size of elements in the drawings may be exaggerated for a clearer description.
実施形態における2相回転電機制御装置は、2つのコイルを備える2相三線式の回転電機を制御する2相回転電機制御装置であって、2つのコイルのうちいずれか一方のコイルに流れている励磁電流の向きを切り替える前に、励磁電流の向きを切り替える対象のコイルに流れる電流を還流させた後に、所定の励磁電流の向きに切り替える切替制御を実行可能である。
以下、実施形態の2相回転電機制御装置を、図面を用いて説明する。
The two-phase rotating electric machine control device in the embodiment is a two-phase rotating electric machine control device that controls a two-phase three-wire rotating electric machine including two coils, and flows to one of the two coils. Before switching the direction of the excitation current, it is possible to execute switching control for switching to a predetermined direction of the excitation current after circulating the current flowing through the coil to be switched the direction of the excitation current.
Hereinafter, a two-phase rotating electrical machine control device of an embodiment will be described with reference to the drawings.
(第1の実施形態)
図1は、第1の実施形態の2相回転電機制御装置40を備えた2相回転電機用制御システム1の概略構成の一例を示す図である。図1に示すように、2相回転電機用制御システム1は、電源装置10、インバータ回路20、2相回転電機30及び2相回転電機制御装置40を備える。
(First embodiment)
FIG. 1 is a diagram illustrating an example of a schematic configuration of a
図2は、第1の実施形態における2相回転電機30の概略構成の一例を示す図である。
2相回転電機30は、例えば、自動二輪車に搭載されるアウタロータ型の回転電機である。2相回転電機30は、エンジンのクランクシャフト(不図示)と同期回転する有底筒状のロータ(フライホイール)31と、不図示のエンジンブロックに固定されるステータ32とを備える。
ステータ32は、ロータ31の径方向内側に設けられている。ステータ32にはA相コイル30a又はB相コイル30bの2相のコイルが巻装されている。なお、本実施形態において、A相コイル30a及びB相コイル30bは、それぞれ複数のコイルを備えるコイル群である。ただし、A相コイル30a及びB相コイル30bは、これに限定されず、少なくとも1つ以上のコイルから構成されていればよい。
FIG. 2 is a diagram illustrating an example of a schematic configuration of the two-phase rotating
The two-phase rotating
The
ロータ31の周壁31cには、内周面側に複数個の瓦状のロータマグネット33が周方向に沿って磁極が順番となるように配置されている。例えば、ロータマグネット33は、フェライト磁石である。一方、ステータ32は、径方向外側に向かって突出する複数個のティース34を備える。
A plurality of tile-like rotor magnets 33 are arranged on the inner peripheral surface side of the
ティース34は、断面略T字状に形成されている。複数のティース34は、それぞれ周方向に等間隔に配置されている。ティース34は、巻胴部36及び先端部37を備える。
巻胴部36は、径方向に沿って延びるように形成されている。
先端部37は、巻胴部36の径方向外側の先端に一体成形され、周方向に沿って延びるように形成されている。先端部37は、周方向中央部が巻胴部36の先端に位置するように形成されている。そして、隣接するティース34間に蟻溝状のスロット38が形成されている。このスロット38に電機子コイル39を通し、絶縁性のインシュレータ(不図示)が装着された各ティース34に、電機子コイル39を巻装する。すなわち、各スロット38には、それぞれ対応するA相コイル30a、又はB相コイル30bが通され、各ティース34にA相コイル30a、又はB相コイル30bが巻装される。第1の実施形態では、図2におけるX部に存在する6つのティース34には、A相コイル30aが巻装される。図2におけるY部に存在する6つのティース34には、B相コイル30bが巻装される。なお、第1の実施形態では、図2におけるX部に存在する6つのティース34に巻装される電機子コイル39をA相コイル30aとし、図2におけるY部に存在する6つのティース34に巻装される電機子コイル39をB相コイル30bとする。
The
The winding
The
以下に、2相回転電機30に磁極の数(ロータマグネット33の数)Pとティース34の数について説明する。2相回転電機30は、電源装置10から供給される電流が電機子コイル39に供給されると、ティース34に磁束が発生し、この磁束とロータ31のロータマグネット33との間に、磁気的な吸引力や反発力が発生し、ロータ31が回転する。
しかしながら、セグメント型のロータマグネット33を用いる場合、各ロータマグネット33間に空隙が形成されるので、ロータマグネット33の周方向両端を境にして磁束の変化が大きくなる。このため、各ティース34がロータマグネット33の両端を通過する際、各ティース34に対する磁気的な吸引力や反発力が大きく変化してコギングトルクが大きくなる。したがって、以下に示す式(1)を満たすように、磁極の数P及びティース34の数Sを設定することにより、低コギングトルクである2相回転電機30となる。
Hereinafter, the number of magnetic poles (number of rotor magnets 33) P and the number of
However, when the segment-type rotor magnet 33 is used, a gap is formed between the rotor magnets 33, so that the change in magnetic flux increases at both circumferential ends of the rotor magnet 33. For this reason, when each
なお、nは自然数である。ただし、n≦2の場合には、コギングトルクの低減に対する寄与は小さい。また、磁極の数P及びティース34の数Sが整数倍でも、式(1)が成り立つ。
Note that n is a natural number. However, when n ≦ 2, the contribution to the reduction of the cogging torque is small. Further, even if the number P of magnetic poles and the number S of
以下に、磁極の数P及びティース34の数Sが式(1)を満たすことで、2相回転電機30が低コギングトルクとなることを説明する。
隣り合うロータマグネット33の間の角度である極間角度(機械角)θ1は、以下の式(2)で表される。
Hereinafter, it will be described that the two-phase rotating
An inter-pole angle (mechanical angle) θ 1 that is an angle between adjacent rotor magnets 33 is expressed by the following equation (2).
また、ステータ32における隣り合うティース34の間の角度(機械角)θ2は、以下の式(3)で表される。
Further, an angle (mechanical angle) θ 2 between
式(2)及び式(3)より、ロータマグネット33とティース34との位相差(電気角)αは、以下の式(4)で表される。
From the equations (2) and (3), the phase difference (electrical angle) α between the rotor magnet 33 and the
ここで、1個目のティース34の中心がロータマグネット33の中心と一致しているときを角度0°とし、逆起電圧の振幅を1とすると、合成逆起電力Eは、以下の式(5)で表される。
Here, when the center of the
式(5)に示すように、位相差|α|が大きくなると逆起電圧の打ち消し合う区間が長くなり、合成逆起電圧Eが低くなる。一方、位相差|α|が小さくなると逆起電圧の打ち消し合う区間が短くなり、合成逆起電圧Eが高くなる。すなわち、位相差αが0に近い方が2相回転電機30の効率がよい。ここで、位相差αは式(4)で表されるため、(磁極の数P)/(ティース34の数S)の値が1に近い値となるのが理想となる。しかしながら、磁極の数Pとティース34の数Sとが同じ値(P=S)では、2相回転電機としての構造が成り立たない。2相回転電機としての構造が成り立つには、ティース34の数Sが4の倍数であり、磁極の数Pが2の倍数であることが必須である。したがって、2相回転電機30が式(1)を満たすことで、低コギングトルクとなり、効率のよい二相の回転電機の構成となる。第1の実施形態では、磁極の数Pが14であり、ティース34の数Sが12である。
As shown in Expression (5), when the phase difference | α | increases, the counter electromotive voltage canceling interval becomes longer, and the combined counter electromotive voltage E becomes lower. On the other hand, when the phase difference | α | becomes smaller, the counter electromotive voltage canceling interval becomes shorter and the combined counter electromotive voltage E becomes higher. That is, the efficiency of the two-phase rotating
図1に戻り、インバータ回路20は、電源装置10から供給される直流電力を交流電力に変換して2相回転電機30に印加する。インバータ回路20は、6つのスイッチング素子211〜216を備える。インバータ回路20は、2相回転電機制御装置40から供給される駆動信号に基づいて、スイッチング素子211〜216のオンとオフとを切り替えて直流電力を交流電力に変換する。
Returning to FIG. 1, the
直列に接続されたスイッチング素子211、214と、直列に接続されたスイッチング素子212、215と、直列に接続されたスイッチング素子213、216とは、電源装置10の高電位側と接地電位との間に並列に接続されている。また、スイッチング素子211とスイッチング素子214との接続点には、A相コイル30aの一端が接続されている。スイッチング素子213とスイッチング素子216との接続点には、B相コイル30bの一端が接続されている。スイッチング素子212とスイッチング素子215との接続点には、A相コイル30aの他端とB相コイル30bの他端とが接続されている。例えば、スイッチング素子211〜216は、FET(FieldEffectiveTransistor;電界効果トランジスタ)、又はIGBT(InsulatedGateBipolarTransistor;絶縁ゲートバイポーラトランジスタ)である。各スイッチング素子211〜216は、還流ダイオードと並列に接続された構成を備えていてもよい。
The switching
2相回転電機制御装置40は、スイッチング素子211〜216のオンとオフとを制御することで、A相コイル30a及びB相コイル30bに通電する通電パターンを切り替える。すなわち、2相回転電機制御装置40は、スイッチング素子211〜216のオンとオフとを制御することで、A相コイル30a及びB相コイル30bのそれぞれに対して流れる電流の向きを制御する。言い換えれば、2相回転電機制御装置40は、予め設定された複数の通電パターンを順次用いて、A相コイル30a又はB相コイル30bに流れる電流の向きを切り替えるようにスイッチング素子211〜216のオンとオフとを制御する。これにより、2相回転電機制御装置40は、A相コイル30a又はB相コイル30bの磁束の向きを切り替えることで、ロータマグネット33とティース34との間に吸引力又は反発力を発生させ、ロータ31を回転させる。ただし、2相回転電機制御装置40は、A相コイル30a又はB相コイル30bに流れる電流の向きを切り替えるタイミングの際に、電流の向きが切り換わる電機子コイル39に流れている電流を当該電機子コイル39に還流させる。すなわち、2相回転電機制御装置40は、A相コイル30a又はB相コイル30bに流れる電流の向きを切り替えるタイミングの際に、電流の向きが切り換わる電機子コイル39に流れている電流を当該電機子コイル39に還流させる閉ループを形成するように、スイッチング素子211〜216のオンとオフとを制御する。これにより、電流の向きが切り換わることにより発生する電機子コイル39の自己誘導の影響を受けにくくすることができる。すなわち、自己誘導の影響とは、電機子コイル39の自己誘導による逆起電力が発生し、その逆起電力が電機子コイル39に励磁電流が流れることを妨げることである。これの自己誘導の影響より、電機子コイル39が磁化することができず、ロータマグネット33とティース34との間に吸引力又は反発力を発生させることができない。そのため、ロータ31を回転させるトルクを発生させることができない。2相回転電機制御装置40は、電機子コイル39に流れる電流の向きを切り替えるタイミングの際に、電流の向きが切り換わる電機子コイル39に還流させる閉ループを形成することで自己誘導の影響を低減し、励磁電流が流れる経路を確保することができる。したがって、2相回転電機制御装置40は、電機子コイル39に流れる電流の向きを切り替えるタイミングの際に、電機子コイル39が磁化されないことを防ぎ、ロータ31を回転させることができる。
The two-phase rotating electrical
第1の実施形態における2相回転電機制御装置40の通電パターンは、A相コイル30aとB相コイル30bとを交互に逆励磁させる4つの通電パターン(通電パターン#1、#3、#5、#7)と、逆励磁する電機子コイル39に流れている電流を当該電機子コイル39に還流させる閉ループを、逆励磁する前に形成する通電パターン(通電パターン#2、#4、#6、#8)を備える。例えば、A相コイル30aに流れている電流の向きを切り替える場合、すなわちA相コイル30aを逆励磁する場合には、2相回転電機制御装置40は、A相コイル30aに流れている電流をA相コイル30aに還流させる閉ループを形成するようにスイッチング素子211〜216のオンとオフとを制御する。閉ループを形成してから一定時間経過後に、2相回転電機制御装置40は、上記閉ループを開放しA相コイル30aを逆励磁する。
The energization patterns of the two-phase rotating electrical
例えば、2相回転電機制御装置40は、ロータ31の回転角度に基づいて上記通電パターンの切り替える。ロータ31の回転角度を検出する方法は、特に限定されないが、例えば、ホールICを備えた磁気式のロータリエンコーダを用いてロータ31の回転角度を検出する。この場合、ロータマグネット33に対向する位置に近傍するように第1ホールIC及び第2ホールICが配置されている。第1ホールIC及び第2ホールICは、互いに所定の位相差(例えば、位相差90°)を有して配置されている。したがって、ロータ31が回転し、ロータマグネット33が第1ホールIC及び第2ホールICの前を通過することで検出した磁束密度の変化を電気信号として互いに位相が異なる2相(A相及びB相)のパルス信号を生成し、2相回転電機制御装置40に出力する。これにより、2相回転電機制御装置40は、第1ホールIC及び第2ホールICから供給されるパルス信号に基づいてロータ31の回転角度を検出する。第1の実施形態では、第1ホールICから供給されるパルス信号をH1とし、第2ホールICから供給されるパルス信号をH2とする。
For example, the two-phase rotating electrical
2相回転電機制御装置40は、ハードウェアにより実現されてもよく、ソフトウェアにより実現されてもよく、ハードウェアとソフトウェアとの組み合わせにより実現されてもよい。また、プログラムが実行されることにより、コンピュータが、2相回転電機制御装置40の一部として機能してもよい。プログラムは、コンピュータ読み取り可能な媒体に記憶されていてもよく、ネットワークに接続された記憶装置に記憶されていてもよい。
The two-phase rotating electrical
以下に、第1の実施形態における2相回転電機制御装置40の通電パターンについて説明する。
The energization pattern of the two-phase rotating electrical
図3は、第1の実施形態における2相回転電機制御装置40の通電パターン#1〜#8について説明する図である。図3A〜図3Hには、通電パターン#1〜#8のそれぞれにおけるA相コイル30aとB相コイル30bとに流れる電流の流れを示す。なお、破線で示したスイッチング素子211〜216はオフ状態であることを示し、実線で示したスイッチング素子211〜216はオン状態であることを示す。また、矢印はA相コイル30aとB相コイル30bにおける電流の流れる方向を示す。通電パターン#1〜#8は、2相回転電機30を駆動可能なパターンになっている。なお、2相回転電機制御装置40は、通電パターン#1、#2、#3、#4、#5、#6、#7、#8の順に通電パターンを切り替えることを繰り返すことで、2相回転電機30を回転駆動する。なお、2相回転電機30の始動時において、2相回転電機制御装置40は、通電パターン#1〜#8の通電パターンの中で、任意の通電パターンを用いてスイッチング素子211〜216のオンとオフとを制御してもよい。すなわち、第1の実施形態の2相回転電機制御装置40は、切り替える通電パターンの順番に特徴があるのであって、2相回転電機30の始動時における通電パターンには特に限定されない。
FIG. 3 is a diagram for explaining
(通電パターン#1)
図3Aは、第1の実施形態における2相回転電機制御装置40の通電パターン#1を示す図である。
通電パターン#1は、スイッチング素子211、213、215がオフ状態であり、スイッチング素子212、214、216がオン状態である。したがって、スイッチング素子212を経由してA相コイル30aに電流Iaが流れると共に、B相コイル30bに電流Ibが流れる。すなわち、電源装置10から供給された電流は、スイッチング素子212、A相コイル30a、スイッチング素子214及びグランドを経由する経路と、スイッチング素子212、B相コイル30b、スイッチング素子216及びグランドを経由する経路とを通る(図3A参照)。これにより、A相コイル30a及びB相コイル30bが励磁される。
(Energization pattern # 1)
FIG. 3A is a diagram illustrating an
In the
(通電パターン#2)
図3Bは、第1の実施形態における2相回転電機制御装置40の通電パターン#2を示す図である。
通電パターン#2は、スイッチング素子213、214、215がオフ状態であり、スイッチング素子211、212、216がオン状態である。したがって、A相コイル30aに流れる電流Iaは、スイッチング素子211、スイッチング素子212を通り、A相コイル30aに還流する。すなわち、通電パターン#2では、2相回転電機制御装置40が通電パターン#1からスイッチング素子211をオン状態とし、スイッチング素子214をオフ状態とすることで、A相コイル30a、スイッチング素子211及びスイッチング素子212で閉ループが形成される。このとき、電源装置10から供給された電流は、スイッチング素子212、B相コイル30b、スイッチング素子216及びグランドを経由する経路のみを通る(図3B参照)。これにより、A相コイル30aは励磁されていないが、B相コイル30bが励磁されている。すなわち、2相回転電機制御装置40は、A相コイル30aに流れる電流を切り換え対象として切り換え対象の電流を還流させる閉回路を形成することで、B相コイル30bに励磁電流を流す経路を確保することができる。
(Energization pattern # 2)
FIG. 3B is a diagram illustrating an
In the
(通電パターン#3)
図3Cは、第1の実施形態における2相回転電機制御装置40の通電パターン#3を示す図である。
通電パターン#3は、スイッチング素子212、213、214、215がオフ状態であり、スイッチング素子211、216がオン状態である。したがって、スイッチング素子211を経由してA相コイル30a、B相コイル30bに電流Icが流れる。すなわち、電源装置10から供給された電流は、スイッチング素子211、A相コイル30a、B相コイル30b、スイッチング素子216及びグランドを経由する経路を通る(図3C参照)。したがって、通電パターン#1と比較してB相コイル30bに流れる電流の向きは変化しないが、A相コイル30aに流れる電流が逆転する。そのため、A相コイル30aが逆励磁される。
(Energization pattern # 3)
FIG. 3C is a diagram illustrating an
In the
このように、通電パターン#1から通電パターン#3に通電パターンを切り替えることでA相コイル30aに流れる電流の向きを逆転させA相コイル30aを逆励磁するのではなく、通電パターン#1から通電パターン#2に切り替えることでA相コイル30aに流れる電流を還流させ、その後に通電パターン#3に切り替える。これにより、A相コイル30aを逆励磁する際に、A相コイル30aの自己誘導による影響を低減することができるため、B相コイル30bに十分な励磁電流を流すことができる。したがって、A相コイル30aを逆励磁する際に、2相回転電機30を回転駆動させるトルクを発生させることができるため、効率よく2相回転電機30を駆動することができる。
Thus, by switching the energization pattern from the
(通電パターン#4)
図3Dは、第1の実施形態における2相回転電機制御装置40の通電パターン#4を示す図である。
通電パターン#4は、スイッチング素子212、213、214がオフ状態であり、スイッチング素子211、215、216がオン状態である。したがって、B相コイル30bに流れる電流Ibは、スイッチング素子216、スイッチング素子215を通り、B相コイル30bに還流する。すなわち、通電パターン#4では、2相回転電機制御装置40が通電パターン#3からスイッチング素子215をオン状態とすることで、B相コイル30b、スイッチング素子216及びスイッチング素子215で閉ループが形成される。このとき、電源装置10から供給された電流は、スイッチング素子211、A相コイル30a、スイッチング素子215及びグランドを経由する経路のみを通る(図3D参照)。これにより、B相コイル30bは励磁されていないが、A相コイル30aが励磁されている。すなわち、2相回転電機制御装置40は、B相コイル30bに流れる電流を切り換え対象として切り換え対象の電流を還流させる閉回路を形成することで、B相コイル30bの自己誘導による影響を低減することができる。
(Energization pattern # 4)
FIG. 3D is a diagram illustrating an
In the
(通電パターン#5)
図3Eは、第1の実施形態における2相回転電機制御装置40の通電パターン#5を示す図である。
通電パターン#5は、スイッチング素子212、214、216がオフ状態であり、スイッチング素子211、213、215がオン状態である。したがって、スイッチング素子211を経由してA相コイル30aに電流Iaが流れるとともに、スイッチング素子213を経由してB相コイル30bに電流Ibが流れる。すなわち、電源装置10から供給された電流は、スイッチング素子211、A相コイル30a、スイッチング素子215及びグランドを経由する経路と、スイッチング素子213、B相コイル30b、スイッチング素子215及びグランドを経由する経路とを通る(図3E参照)。したがって、通電パターン#3と比較して、A相コイル30aに流れる電流の向きは変化しないが、B相コイル30bに流れる電流が逆転する。そのため、B相コイル30bが逆励磁される。
(Energization pattern # 5)
FIG. 3E is a diagram illustrating an
In the
このように、通電パターン#3から通電パターン#5に通電パターンを切り替えることでB相コイル30bに流れる電流の向きを逆転させB相コイル30bを逆励磁するのではなく、通電パターン#3から通電パターン#4に切り替えることでB相コイル30bに流れる電流を還流させ、その後に通電パターン#5に切り替える。これにより、B相コイル30bを逆励磁する際に、B相コイル30bの自己誘導による影響を低減することができるため、A相コイル30aに十分な励磁電流を流すことができる。したがって、B相コイル30bを逆励磁する際に、2相回転電機30を回転駆動させるトルクを発生させることができるため、効率よく2相回転電機30を駆動することができる。
In this way, by switching the energization pattern from the
(通電パターン#6)
図3Fは、第1の実施形態における2相回転電機制御装置40の通電パターン#6を示す図である。
通電パターン#6は、スイッチング素子211、212、216がオフ状態であり、スイッチング素子213、214、215がオン状態である。したがって、A相コイル30aに流れる電流Iaは、スイッチング素子215、スイッチング素子214を通り、A相コイル30aに還流する。すなわち、通電パターン#6では、2相回転電機制御装置40が通電パターン#5からスイッチング素子211をオフ状態とし、スイッチング素子214をオン状態とすることで、A相コイル30a、スイッチング素子214及びスイッチング素子215で閉ループが形成される。このとき、電源装置10から供給された電流は、スイッチング素子213、B相コイル30b、スイッチング素子215及びグランドを経由する経路のみを通る(図3F参照)。これにより、A相コイル30aは励磁されていないが、B相コイル30bが励磁されている。2相回転電機制御装置40は、A相コイル30aに流れる電流を切り換え対象として切り換え対象の電流を還流させる閉回路を形成することで、B相コイル30bに励磁電流を流す経路を確保することができる。
(Energization pattern # 6)
FIG. 3F is a diagram illustrating an
In the
(通電パターン#7)
図3Gは、第1の実施形態における2相回転電機制御装置40の通電パターン#7を示す図である。
通電パターン#7は、スイッチング素子211、212、215、216がオフ状態であり、スイッチング素子213、214がオン状態である。したがって、スイッチング素子213を経由してB相コイル30b、A相コイル30aに電流Icが流れる。すなわち、電源装置10から供給された電流は、スイッチング素子213、B相コイル30b、A相コイル30a、スイッチング素子214及びグランドを経由する経路を通る(図3G参照)。したがって、通電パターン#5と比較してB相コイル30bに流れる電流の向きは変化しないが、A相コイル30aに流れる電流が逆転する。そのため、A相コイル30aが逆励磁される。
(Energization pattern # 7)
FIG. 3G is a diagram illustrating an
In the
このように、通電パターン#5から通電パターン#7に通電パターンを切り替えることでA相コイル30aに流れる電流の向きを逆転させA相コイル30aを逆励磁するのではなく、通電パターン#5から通電パターン#6に切り替えることでA相コイル30aに流れる電流を還流させ、その後に通電パターン#7に切り替える。これにより、A相コイル30aを逆励磁する際に、A相コイル30aの自己誘導による影響を低減することができるため、B相コイル30bに十分な励磁電流を流すことができる。したがって、A相コイル30aを逆励磁する際に、2相回転電機30を回転駆動させるトルクを発生させることができるため、効率よく2相回転電機30を駆動することができる。
Thus, by switching the energization pattern from the
(通電パターン#8)
図3Hは、第1の実施形態における2相回転電機制御装置40の通電パターン#8を示す図である。
通電パターン#8は、スイッチング素子211、215、216がオフ状態であり、スイッチング素子212、213、214がオン状態である。したがって、B相コイル30bに流れる電流Ibは、スイッチング素子212、スイッチング素子213を通り、B相コイル30bに還流する。すなわち、通電パターン#8では、2相回転電機制御装置40が通電パターン#7からスイッチング素子212をオン状態とすることで、B相コイル30b、スイッチング素子212及びスイッチング素子213で閉ループが形成される。このとき、電源装置10から供給された電流は、スイッチング素子212、A相コイル30a、スイッチング素子214及びグランドを経由する経路のみを通る(図3H参照)。これにより、B相コイル30bは励磁されていないが、A相コイル30aのみが励磁されている。したがって、通電パターン#8から通電パターン#1に通電パターンを切り替えると、A相コイル30aに流れる電流の向きは変化しないが、B相コイル30bに流れる電流が逆転する。そのため、B相コイル30bが逆励磁される。2相回転電機制御装置40は、B相コイル30bに流れる電流を切り換え対象として切り換え対象の電流を還流させる閉回路を形成することで、B相コイル30bの自己誘導による影響を低減することができる。
(Energization pattern # 8)
FIG. 3H is a diagram illustrating an
In the
このように、通電パターン#7から通電パターン#1に通電パターンを切り替えることでB相コイル30bに流れる電流の向きを逆転させB相コイル30bを逆励磁するのではなく、通電パターン#7から通電パターン#8に切り替えることでB相コイル30bに流れる電流を還流させ、その後に通電パターン#1に切り替える。これにより、B相コイル30bを逆励磁する際に、B相コイル30bの自己誘導による影響を低減することができるため、A相コイル30aに十分な励磁電流を流すことができる。したがって、B相コイル30bを逆励磁する際に、2相回転電機30を回転駆動させるトルクを発生させることができるため、効率よく2相回転電機30を駆動することができる。
In this way, by switching the energization pattern from the
図4は、第1の実施形態における2相回転電機制御装置40が各通電パターン#1〜#8の切り換えタイミングの一例を示す図である。図4において、各スイッチング素子211〜216に対応する信号がHレベルである場合にはスイッチング素子がオン状態であることを示し、Lレベルである場合にはスイッチング素子がオフ状態であることを示す。なお、図4は、進角が0°のときの各通電パターン#1〜#8の切り換えタイミングの一例である。
FIG. 4 is a diagram illustrating an example of switching timings of the
図4に示すように、2相回転電機制御装置40は、パルス信号H1とパルス信号H2とに基づいてロータ31の回転角を検出する。そして、2相回転電機制御装置40は、ロータ31の回転角45°毎に通電パターン#1〜#8を順に切り替える。
なお、本実施形態における2相回転電機制御装置40は、A相コイル30aとB相コイル30bとの2つのコイルのうちいずれか一方のコイルに流れている電流の向きを切り替える際に、電流の向きを切り替えるコイルに流れる電流を還流させたが、これに限定されない。例えば、2相回転電機制御装置40は、A相コイル30aとB相コイル30bとの2つのコイルのうちいずれか一方のコイルに流れている電流の向きを切り替える複数のタイミングのうち、少なくとも一つのタイミングにおいて、電流の向きを切り替えるコイルに流れる電流を還流させる。例えば、複数のタイミングとは、図3に示す通電パターン#1から#3へ直接切り替えるタイミング、#3から#5へ直接切り替えるタイミング、#5から#7へ直接切り替えるタイミング、#7から#1へ直接切り替えるタイミングの4つの通電パターンの切り換えタイミングを示す。すなわち、2相回転電機制御装置40は、上記閉回路を形成する通電パターンである通電パターン#2、#4、#6、#8の中で、少なくとも1つの通電パターンを含んでいればよい。
As shown in FIG. 4, the two-phase rotating electrical
The two-phase rotating electrical
上述したように、第1の実施形態における2相回転電機制御装置40は、A相コイル30aとB相コイル30bとの2つのコイルのうちいずれか一方のコイルに流れている励磁電流の向きを切り替える前に、励磁電流の向きを切り替える対象のコイルに流れる電流を還流させた後に、所定の励磁電流の向きに切り替える切替制御を実行可能である。これにより、A相又はB相(のコイル)に流れる電流の向きを切り替える際に、貫通電流の発生を防止し、且つ回転電機のトルクが発生しなくなることを抑制することができる。
As described above, the two-phase rotating electrical
以下に、第1の実施形態における2相回転電機制御装置40の変形例について説明する。図5は、第1の実施形態における変形例の2相回転電機制御装置40が行う通電パターンの切り換えタイミングの一例を示す図である。
Below, the modification of the two-phase rotary electric
本変形例の2相回転電機制御装置40は、第1の実施形態における通電パターン#1〜#8の中で、通電パターン#4及び通電パターン#8を省略した通電パターンを備える。すなわち、本変形例の2相回転電機制御装置40は、通電パターン#1、#2、#3、#5、#6、#7の順に通電パターンを切り替えることを繰り返すことで、2相回転電機30を回転駆動する。これにより、本変形例の2相回転電機制御装置40は、第1の実施形態と比べて通電パターンが少ないため、スイッチング素子211〜216に対する制御の簡略化が可能となる。例えば、2相回転電機制御装置40は、上記第1ホールIC及び第2ホールICのそれぞれから供給されたパルス信号H1及びパルス信号H2の立上がり又は立下りタイミングに基づいて、スイッチング素子211〜216のオン状態とオフ状態とを制御する。その際、図5に示すように、2相回転電機制御装置40は、通電パターン#1、#3、#5、#7では、パルス信号H1及びパルス信号H2の立上がり又は立下りのタイミングでスイッチング素子211〜216をオン状態又はオフ状態を制御できるが、通電パターン#2、#4、#6、#8ではパルス信号H1及びパルス信号H2の立上がり又は立下りのタイミングでスイッチング素子211〜216をオン状態又はオフ状態を制御することができない。したがって、2相回転電機制御装置40は、通電パターン#1から通電パターン#2に切り替える場合には、パルス信号H1の立ち上がりのタイミングから一定時間カウントした後に通電パターン#2に切り替える。すなわち、2相回転電機制御装置40は、通電パターン#2、#4、#6、#8を実施する場合には、時間をカウントする処理(以下、「計時処理」という。)が必要となる。したがって、通電パターン#4、#8を省略することで、第1の実施形態と比較して2相回転電機制御装置40の計時処理を削減することができる。
以下に、通電パターン#4及び通電パターン#8を省略できる理由を説明する。
The two-phase rotating electrical
The reason why the
通電パターン#4を経由せずに通電パターン#3から通電パターン#5に通電パターンを切り替える場合には、B相コイル30bに流れる電流を還流させる閉ループが形成されないため、B相コイル30bの自己誘導による影響を低減することができない。同様に、通電パターン#7から通電パターン#1に通電パターンを切り替える際に、B相コイル30bに流れる電流を還流させる閉ループが形成されないため、B相コイル30bの自己誘導による影響を低減することができない。すなわち、2相回転電機30を回転駆動させるトルクが発生しない期間が存在する。
When the energization pattern is switched from the
しかしながら、通電パターン#3の場合、スイッチング素子212〜215がオフ状態であるため、電源装置10から供給される電流は、A相コイル30aとB相コイル30bとが直列に接続された経路を通る。通電パターン#7の場合、スイッチング素子211、212、215、216がオフ状態であるため、電源装置10から供給される電流(励磁電流)は、通電パターン#3と同様にA相コイル30aとB相コイル30bとが直列に接続された経路を通る。A相コイル30aとB相コイル30bとが直列に接続された経路の電気抵抗は、A相コイル30aの抵抗値RaとB相コイル30bの抵抗値Rbとを加算した抵抗値(Ra+Rb)となる。なお、以下に示す実施形態では、便宜上、抵抗値Raと抵抗値Rbとが同じ抵抗値Rcである場合を説明する。すなわち、A相コイル30aとB相コイル30bとのインダクタンスが同じであると仮定する。したがって、A相コイル30aとB相コイル30bとが直列に接続された経路の電気抵抗は2Rcとなる。一方、通電パターン#1や通電パターン#5では、電源装置10から供給される電流が通る経路は、A相コイル30aとB相コイル30bとのうちいずれかの電機子コイル39を通る経路である。すなわち、電源装置10から供給される電流が通る経路は、A相コイル30aとB相コイル30bとが直列に接続された経路ではなく、A相コイル30a又はB相コイル30bのみを経由する経路である。すなわち、A相コイル30a又はB相コイル30bのみを経由する経路の電気抵抗はRcとなる。したがって、電源装置10の電圧が12Vであると仮定した場合、A相コイル30aとB相コイル30bとが直列に接続された経路では、A相コイル30aとB相コイル30bとの各々に6Vの電圧が印加されていることになる。一方、A相コイル30a又はB相コイル30bのみを経由する経路では、A相コイル30a又はB相コイル30bに12Vの電圧が印加されていることになる。すなわち、A相コイル30aとB相コイル30bとが直列に接続された経路を構成する通電パターン#3、#7は、A相コイル30a又はB相コイル30bのみを経由する経路を備える#1、#5と比較して、A相コイル30a又はB相コイル30bに流れる電流が小さいことになる。
However, in the case of the
一般的に、励磁コイルに蓄えられるエネルギーは、当該励磁コイルに流れる電流の二乗とインダクタンスとの積に比例する。したがって、励磁コイルに流れる電流が大きくなるにしたがって逆起電力が高くなる。これにより、通電パターン#3、#7よりも通電パターン#1、#5の方がA相コイル30a及びB相コイル30bに蓄えられるエネルギーが大きいことになる。すなわち、通電パターン#3、#7からB相コイル30bを逆励磁する(通電パターン#3→#5、#7→#1)ことで発生する逆起電力は、通電パターン#1、#5からA相コイル30aを逆励磁する(通電パターン#1→#3、#5→#7)ことで発生する逆起電力より小さい。したがって、逆励磁により2相回転電機30のトルクが発生しない期間(以下、「トルク未発生期間」という。)は、通電パターン#3→#5、#7→#1よりも通電パターン#1→#3、#5→#7の方が短い。これにより、通電パターン#3→#5、#7→#1のトルク未発生期間が許容できるのではあれば、トルク未発生期間が長い逆励磁の期間(通電パターン#1→#3、#5→#7)においては、それぞれ閉ループを形成する通電パターン#2と通電パターン#6とを用いてから逆励磁を行い、通電パターン#4及び通電パターン#8を省略することができる。
In general, the energy stored in the exciting coil is proportional to the product of the square of the current flowing in the exciting coil and the inductance. Therefore, the counter electromotive force increases as the current flowing through the exciting coil increases. As a result, the
したがって、上述の変形例によれば、第1の実施形態と同様の効果を奏するとともに、スイッチング素子211〜216に対する制御の簡略化が可能となる。
Therefore, according to the above-described modification, the same effects as those of the first embodiment can be obtained, and the control for the switching
(第2の実施形態)
以下に、第2の実施形態における2相回転電機制御装置40Aについて説明する。
図6は、第2の実施形態における2相回転電機制御装置40Aを備えた2相回転電機用制御システム1Aの概略構成の一例を示す図である。図6に示すように、2相回転電機用制御システム1Aは、電源装置10、インバータ回路20、2相回転電機30及び2相回転電機制御装置40Aを備える。第2の実施形態における2相回転電機制御装置40Aは、第1の実施形態と比較して、電流の向きが切り換わる電機子コイル39に流れている電流を当該電機子コイル39に還流させる閉ループを異なる経路で形成する。
(Second Embodiment)
The two-phase rotating electrical
FIG. 6 is a diagram illustrating an example of a schematic configuration of a
2相回転電機制御装置40Aは、スイッチング素子211〜216のオンとオフとを制御することで、A相コイル30a及びB相コイル30bに通電する通電パターンを切り替える。すなわち、2相回転電機制御装置40Aは、スイッチング素子211〜216のオンとオフとを制御することで、A相コイル30a及びB相コイル30bのそれぞれに対して流れる電流の向きを制御する。言い換えれば、2相回転電機制御装置40Aは、予め設定された複数の通電パターンを順次用いて、A相コイル30a又はB相コイル30bに流れる電流の向きを切り替えるようにスイッチング素子211〜216のオンとオフとを制御する。これにより、2相回転電機制御装置40Aは、A相コイル30a又はB相コイル30bの磁束の向きを切り替えることで、ロータマグネット33とティース34との間に吸引力又は反発力を発生させ、ロータ31を回転させる。
The two-phase rotating electrical
第2の実施形態における2相回転電機制御装置40Aの通電パターンは、A相コイル30aとB相コイル30bとを交互に逆励磁させる4つの通電パターン(通電パターン#1、#3、#5、#7)と、逆励磁する電機子コイル39に流れている電流を当該電機子コイル39に還流させる閉ループを、逆励磁する前に形成する通電パターン(通電パターン#2´、#4´、#6´、#8´)を備える。例えば、A相コイル30aに流れている電流の向きを切り替える場合、すなわちA相コイル30aを逆励磁する場合には、2相回転電機制御装置40Aは、A相コイル30aに流れている電流をA相コイル30aに還流させる閉ループを形成するようにスイッチング素子211〜216のオンとオフとを制御する。閉ループを形成してから一定時間経過後に、2相回転電機制御装置40Aは、上記閉ループを開放しA相コイル30aを逆励磁する。なお、2相回転電機制御装置40Aは、第1ホールIC及び第2ホールICから供給されるパルス信号H1、H2の立ち上がりタイミングと立ち下がりタイミングとに基づいて、上記通電パターンの切り換えてもよい。
The energization pattern of the two-phase rotating electrical
2相回転電機制御装置40Aは、ハードウェアにより実現されてもよく、ソフトウェアにより実現されてもよく、ハードウェアとソフトウェアとの組み合わせにより実現されてもよい。また、プログラムが実行されることにより、コンピュータが、2相回転電機制御装置40の一部として機能してもよい。プログラムは、コンピュータ読み取り可能な媒体に記憶されていてもよく、ネットワークに接続された記憶装置に記憶されていてもよい。
The two-phase rotating electrical
以下に、第2の実施形態における2相回転電機制御装置40Aの通電パターンについて説明する。
The energization pattern of the two-phase rotating electrical
図7は、第2の実施形態における2相回転電機制御装置40Aの通電パターン#1、#2´、#3、#4´、#5、#6´、#7、#8´(以下、「#1〜#8´」とする。)について説明する図である。図7A〜図7Hには、通電パターン#1〜#8´のそれぞれにおけるA相コイル30aとB相コイル30bとに流れる電流の流れを示す。なお、破線で示したスイッチング素子211〜216はオフ状態であることを示し、実線で示したスイッチング素子211〜216はオン状態であることを示す。また、矢印はA相コイル30aとB相コイル30bにおける電流の流れる方向を示す。通電パターン#1〜#8´は、2相回転電機30を駆動可能なパターンになっている。なお、2相回転電機制御装置40Aは、通電パターン#1、#2´、#3、#4´、#5、#6´、#7、#8´の順に通電パターンを切り替えることを繰り返すことで、2相回転電機30を回転駆動する。なお、2相回転電機30の始動時において、2相回転電機制御装置40Aは、通電パターン#1〜#8´の通電パターンの中で、任意の通電パターンを用いてスイッチング素子211〜216のオンとオフとを制御してもよい。すなわち、第2の実施形態の2相回転電機制御装置40Aは、切り替える通電パターンの順番に特徴があるのであって、2相回転電機30の始動時における通電パターンには特に限定されない。なお、図7Aは、図3Aと同様であるため、説明を省略する。図7Cは、図3Cと同様であるため、説明を省略する。図7Eは、図3Eと同様であるため、説明を省略する。図7Gは、図3Gと同様であるため、説明を省略する。
FIG. 7 shows the
(通電パターン#2´)
図7Bは、第2の実施形態における2相回転電機制御装置40Aの通電パターン#2´を示す図である。
通電パターン#2´は、スイッチング素子211、212、213がオフ状態であり、スイッチング素子214、215、216がオン状態である。したがって、A相コイル30aに流れる電流Iaは、スイッチング素子214、スイッチング素子215を通り、A相コイル30aに還流する。また、B相コイル30bに流れる電流Ibは、スイッチング素子216、スイッチング素子215を通り、B相コイル30bに還流する。すなわち、通電パターン#2´では、2相回転電機制御装置40Aが通電パターン#1からスイッチング素子215をオン状態とし、スイッチング素子212をオフ状態とすることで、A相コイル30a、スイッチング素子214及びスイッチング素子215の閉ループと、B相コイル30b、スイッチング素子216及びスイッチング素子215の閉ループとが形成される(図7B参照)。
(Energization pattern # 2 ')
FIG. 7B is a diagram illustrating an
In the
このように、通電パターン#1から通電パターン#3に通電パターンを切り替えることでA相コイル30aに流れる電流の向きを逆転させA相コイル30aを逆励磁するのではなく、通電パターン#1から通電パターン#2´に切り替えることでA相コイル30aに流れる電流を還流させ、その後に通電パターン#3に切り替える。これにより、A相コイル30aを逆励磁する際に、A相コイル30aの自己誘導による影響を低減することができる。
Thus, by switching the energization pattern from the
(通電パターン#4´)
図7Dは、第2の実施形態における2相回転電機制御装置40Aの通電パターン#4´を示す図である。
通電パターン#4´は、スイッチング素子212、214、216がオフ状態であり、スイッチング素子211、213、215がオン状態である。したがって、B相コイル30bに流れる電流Ibは、スイッチング素子213、スイッチング素子211及びA相コイル30aを通り、B相コイル30bに還流する。すなわち、通電パターン#4´では、2相回転電機制御装置40Aが通電パターン#3からスイッチング素子216をオフ状態とし、スイッチング素子213、215をオン状態とすることで、B相コイル30b、スイッチング素子213、スイッチング素子211及びA相コイル30aで閉ループが形成される。このとき、電源装置10から供給された電流は、スイッチング素子211、A相コイル30a、スイッチング素子215及びグランドを経由する経路のみを通る(図7D参照)。これにより、B相コイル30bは励磁されていないが、A相コイル30aが励磁されている。2相回転電機制御装置40Aは、B相コイル30bに流れる電流を切り換え対象として切り換え対象の電流を還流させる閉回路を形成することで、B相コイル30bの自己誘導による影響を低減することができる。
(Energization pattern # 4 ')
FIG. 7D is a diagram illustrating an
In the
このように、通電パターン#3から通電パターン#5に通電パターンを切り替えることでB相コイル30bに流れる電流の向きを逆転させB相コイル30bを逆励磁するのではなく、通電パターン#3から通電パターン#4´に切り替えることでB相コイル30bに流れる電流を還流させ、その後に通電パターン#5に切り替える。これにより、B相コイル30bを逆励磁する際に、B相コイル30bの自己誘導による影響を低減することができるため、効率よく2相回転電機30を駆動することができる。
In this way, by switching the energization pattern from the
(通電パターン#6´)
図7Fは、第2の実施形態における2相回転電機制御装置40Aの通電パターン#6´を示す図である。
通電パターン#6´は、スイッチング素子214、215、216がオフ状態であり、スイッチング素子211、212、213がオン状態である。したがって、A相コイル30aに流れる電流Iaは、スイッチング素子212、スイッチング素子211を通り、A相コイル30aに還流する。また、B相コイル30bに流れる電流Ibは、スイッチング素子212、スイッチング素子213を通り、B相コイル30bに還流する。すなわち、通電パターン#6´では、2相回転電機制御装置40Aが通電パターン#5からスイッチング素子215をオフ状態とし、スイッチング素子212をオン状態とすることで、A相コイル30a、スイッチング素子212及びスイッチング素子211の閉ループと、B相コイル30b、スイッチング素子212及びスイッチング素子213の閉ループとが形成される(図7F参照)。
(Energization pattern # 6 ')
FIG. 7F is a diagram illustrating an
In the
このように、通電パターン#5から通電パターン#7に通電パターンを切り替えることでA相コイル30aに流れる電流の向きを逆転させA相コイル30aを逆励磁するのではなく、通電パターン#5から通電パターン#6´に切り替えることでA相コイル30aに流れる電流を還流させ、その後に通電パターン#7に切り替える。これにより、A相コイル30aを逆励磁する際に、A相コイル30aの自己誘導による影響を低減することができる。
Thus, by switching the energization pattern from the
(通電パターン#8´)
図7Hは、第2の実施形態における2相回転電機制御装置40Aの通電パターン#8´を示す図である。
通電パターン#8´は、スイッチング素子211、213、215がオフ状態であり、スイッチング素子212、214、216がオン状態である。したがって、B相コイル30bに流れる電流Ibは、A相コイル30a、スイッチング素子214、スイッチング素子216を通り、B相コイル30bに還流する。すなわち、通電パターン#8´では、2相回転電機制御装置40Aが通電パターン#7からスイッチング素子213をオフ状態とし、スイッチング素子212、216をオン状態とすることで、B相コイル30b、A相コイル30a、スイッチング素子214及びスイッチング素子216で閉ループが形成される。このとき、電源装置10から供給された電流は、スイッチング素子212、A相コイル30a、スイッチング素子214及びグランドを経由する経路のみを通る(図7H参照)。これにより、B相コイル30bは励磁されていないが、A相コイル30aのみが励磁されている。したがって、通電パターン#8´から通電パターン#1に通電パターンを切り替えると、A相コイル30aに流れる電流の向きは変化しないが、B相コイル30bに流れる電流が逆転する。そのため、B相コイル30bが逆励磁される。2相回転電機制御装置40Aは、B相コイル30bに流れる電流を切り換え対象として切り換え対象の電流を還流させる閉回路を形成することで、B相コイル30bの自己誘導による影響を低減することができる。
(Energization pattern # 8 ')
FIG. 7H is a diagram illustrating an
In the
このように、通電パターン#7から通電パターン#1に通電パターンを切り替えることでB相コイル30bに流れる電流の向きを逆転させB相コイル30bを逆励磁するのではなく、通電パターン#7から通電パターン#8´に切り替えることでB相コイル30bに流れる電流を還流させ、その後に通電パターン#1に切り替える。これにより、B相コイル30bを逆励磁する際に、B相コイル30bの自己誘導による影響を低減することができるため、効率よく2相回転電機30を駆動することができる。
In this way, by switching the energization pattern from the
なお、本実施形態における2相回転電機制御装置40Aは、A相コイル30aとB相コイル30bとの2つのコイルのうちいずれか一方のコイルに流れている電流の向きを切り替える際に、電流の向きを切り替えるコイルに流れる電流を還流させたが、これに限定されない。例えば、2相回転電機制御装置40Aは、A相コイル30aとB相コイル30bとの2つのコイルのうちいずれか一方のコイルに流れている電流の向きを切り替える複数のタイミングのうち、少なくとも一つのタイミングにおいて、電流の向きを切り替えるコイルに流れる電流を還流させる。例えば、複数のタイミングとは、図7に示す通電パターン#1から#3へ直接切り替えるタイミング、#3から#5へ直接切り替えるタイミング、#5から#7へ直接切り替えるタイミング、#7から#1へ直接切り替えるタイミングの4つの通電パターンの切り換えタイミングを示す。すなわち、2相回転電機制御装置40Aは、上記閉回路を形成する通電パターンである通電パターン#2´、#4´、#6´、#8´の中で、少なくとも1つの通電パターンを含んでいればよい。
Note that the two-phase rotating electrical
上述したように、第2の実施形態における2相回転電機制御装置40Aは、A相コイル30aとB相コイル30bとの2つのコイルのうちいずれか一方のコイルに流れている励磁電流の向きを切り替える前に、励磁電流の向きを切り替える対象のコイルに流れる電流を還流させた後に、所定の励磁電流の向きに切り替える切替制御を実行可能である。これにより、A相又はB相(のコイル)に流れる電流の向きを切り替える際に、貫通電流の発生を防止し、且つ自己誘導の影響を低減することができる。
As described above, the two-phase rotating electrical
また、上述した実施形態において、2相回転電機制御装置40、40Aは2相三線式で2相回転電機30を制御する。ただし、2相四線式でも2相回転電機30を制御することは可能である。しかしながら、2相四線式を用いる場合、インバータ回路において使用するスイッチング素子の数を増加させる必要があり高コストとなる。
In the above-described embodiment, the two-phase rotating electric
また、2相回転電機30は、3相回転電機(例えば、3相ブレシレスDCモータ)と比較して回転角度を検出するためのセンサを削減することができる。すなわち、回転電機として2相回転電機30を用いることで、3相回転電機を用いる場合と比べて安価な回転電機用制御システムを提供することができる。
In addition, the two-phase rotating
また、上述した実施形態において、A相コイル30a及びB相コイル30bは、図8に示す通り、複数のコイルが並列及び直列に接続されたコイル群としてそれぞれ構成されていてもよい。
In the above-described embodiment, the
上述した実施形態における2相回転電機制御装置40、40Aをコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
You may make it implement | achieve the two-phase rotary electric
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes designs and the like that do not depart from the gist of the present invention.
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The order of execution of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior to”. It should be noted that the output can be realized in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for convenience, it means that it is essential to carry out in this order. It is not a thing.
1 2相回転電機用制御システム
10 電源装置
20 インバータ回路
30 2相回転電機
30a A相コイル
30b B相コイル
31 ロータ
32 ステータ
33 ロータマグネット
34 ティース
36 巻胴部
37 先端部
38 スロット
39 電機子コイル
40 2相回転電機制御装置
211〜216 スイッチング素子
DESCRIPTION OF
Claims (3)
前記2つのコイルのうちいずれか一方のコイルに流れている励磁電流の向きを切り替える前に、前記励磁電流の向きを切り替える対象のコイルに流れる電流を還流させた後に、所定の励磁電流の向きに切り替える切替制御を実行可能である2相回転電機制御装置。 A two-phase rotating electrical machine control device for controlling a two-phase three-wire rotating electrical machine including two coils,
Before switching the direction of the excitation current flowing in one of the two coils, after flowing the current flowing in the coil to be switched, the direction of the excitation current is changed to the predetermined direction of the excitation current. A two-phase rotating electrical machine control device capable of executing switching control for switching.
前記回転電機を制御する2相回転電機制御装置と、
を備え、
前記2相回転電機制御装置は、
前記2つのコイルのうちいずれか一方のコイルに流れている励磁電流の向きを切り替える前に、前記励磁電流の向きを切り替える対象のコイルに流れる電流を還流させた後に、所定の励磁電流の向きに切り替える切替制御を実行可能である2相回転電機用制御システム。 A two-phase three-wire rotary electric machine with two coils;
A two-phase rotating electrical machine control device for controlling the rotating electrical machine;
With
The two-phase rotating electrical machine control device
Before switching the direction of the excitation current flowing in one of the two coils, after flowing the current flowing in the coil to be switched, the direction of the excitation current is changed to the predetermined direction of the excitation current. A control system for a two-phase rotating electrical machine capable of executing switching control for switching.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015220594A JP6616162B2 (en) | 2015-11-10 | 2015-11-10 | Rotating electrical machine control system |
CN201680064208.7A CN108419451B (en) | 2015-11-10 | 2016-11-07 | Two-phase rotating electric machine control device and control system for two-phase rotating electric machine |
PCT/JP2016/082939 WO2017082194A1 (en) | 2015-11-10 | 2016-11-07 | Two-phase rotating electrical machine control device and control system for two-phase rotating electrical machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015220594A JP6616162B2 (en) | 2015-11-10 | 2015-11-10 | Rotating electrical machine control system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019201464A Division JP6776432B2 (en) | 2019-11-06 | 2019-11-06 | Rotating electric machine control system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017093157A true JP2017093157A (en) | 2017-05-25 |
JP6616162B2 JP6616162B2 (en) | 2019-12-04 |
Family
ID=58695431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015220594A Active JP6616162B2 (en) | 2015-11-10 | 2015-11-10 | Rotating electrical machine control system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6616162B2 (en) |
CN (1) | CN108419451B (en) |
WO (1) | WO2017082194A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004056843A (en) * | 2002-07-16 | 2004-02-19 | Matsushita Refrig Co Ltd | Motor drive |
JP2008193877A (en) * | 2007-02-08 | 2008-08-21 | Mitsubishi Electric Corp | Electric motor, motor driving controller and ventilation fan, pump for liquid, cooling medium compressor, blower, air-conditioning system, and refrigerator |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011120372A (en) * | 2009-12-03 | 2011-06-16 | Juki Corp | Drive device of stepping motor |
JP2013110863A (en) * | 2011-11-21 | 2013-06-06 | Asahi Kasei Electronics Co Ltd | H bridge circuit and motor drive device |
JP6461551B2 (en) * | 2014-10-17 | 2019-01-30 | ローム株式会社 | Fan motor driving device, driving method, cooling device using the same, and electronic device |
-
2015
- 2015-11-10 JP JP2015220594A patent/JP6616162B2/en active Active
-
2016
- 2016-11-07 WO PCT/JP2016/082939 patent/WO2017082194A1/en active Application Filing
- 2016-11-07 CN CN201680064208.7A patent/CN108419451B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004056843A (en) * | 2002-07-16 | 2004-02-19 | Matsushita Refrig Co Ltd | Motor drive |
JP2008193877A (en) * | 2007-02-08 | 2008-08-21 | Mitsubishi Electric Corp | Electric motor, motor driving controller and ventilation fan, pump for liquid, cooling medium compressor, blower, air-conditioning system, and refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JP6616162B2 (en) | 2019-12-04 |
CN108419451B (en) | 2021-05-28 |
WO2017082194A1 (en) | 2017-05-18 |
CN108419451A (en) | 2018-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5363913B2 (en) | Rotating electric machine drive system | |
US20160006311A1 (en) | Electric motor, generator and commutator system, device and method | |
US6710581B1 (en) | Constant-power brushless DC motor | |
KR101781382B1 (en) | Design improvements for flux switching machines | |
JP2009112091A (en) | Rotating electrical machine and drive controller therefor | |
JPWO2007105319A1 (en) | Generator, power generation method and motor | |
US20130134805A1 (en) | Switched reluctance motor | |
JP2009545941A (en) | Electric motor system and electric motor operating method | |
US20090302787A1 (en) | Induction and switched reluctance motor | |
JP2011120465A (en) | Two-phase bldc motor | |
RU2633379C2 (en) | Modular polyphase electrical machine | |
JP5543186B2 (en) | Switched reluctance motor drive system | |
JPWO2016114353A1 (en) | Pole-switching rotating electrical machine and driving method for pole-switching rotating electrical machine | |
JP4853232B2 (en) | Rotating electrical machine equipment | |
JP2016536952A (en) | Improved switched reluctance motor and switched reluctance device for hybrid vehicles | |
JP2011125125A (en) | Switched reluctance motor and switched reluctance motor drive system | |
US8581465B2 (en) | Generator | |
JP5751147B2 (en) | Motor equipment | |
JP6776432B2 (en) | Rotating electric machine control system | |
US10756661B2 (en) | Field winding type rotating electric machine | |
JP2017225203A (en) | Switched reluctance motor drive system | |
JP5885423B2 (en) | Permanent magnet rotating electric machine | |
US11735971B1 (en) | Electric motor, generator and commutator system, device and method | |
JPWO2018008057A1 (en) | Pole-switching rotating electrical machine and driving method for pole-switching rotating electrical machine | |
JP6616162B2 (en) | Rotating electrical machine control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180828 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181025 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20181026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191008 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6616162 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |