JP2017090687A - Near-infrared absorbing glass wafer and semiconductor wafer laminate - Google Patents

Near-infrared absorbing glass wafer and semiconductor wafer laminate Download PDF

Info

Publication number
JP2017090687A
JP2017090687A JP2015220777A JP2015220777A JP2017090687A JP 2017090687 A JP2017090687 A JP 2017090687A JP 2015220777 A JP2015220777 A JP 2015220777A JP 2015220777 A JP2015220777 A JP 2015220777A JP 2017090687 A JP2017090687 A JP 2017090687A
Authority
JP
Japan
Prior art keywords
glass wafer
absorption
wafer
wavelength
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015220777A
Other languages
Japanese (ja)
Other versions
JP6772450B2 (en
Inventor
大井 好晴
Yoshiharu Oi
好晴 大井
保高 弘樹
Hiroki Hodaka
弘樹 保高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2015220777A priority Critical patent/JP6772450B2/en
Publication of JP2017090687A publication Critical patent/JP2017090687A/en
Application granted granted Critical
Publication of JP6772450B2 publication Critical patent/JP6772450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical filter which enables miniaturization and height-reduction of camera modules and offers superior uniformity of optical characteristics and high manufacturing productivity.SOLUTION: A near-infrared absorbing glass wafer 10 of the present invention comprises a glass wafer 12 and an absorption layer 11 formed on at least one principal surface of the glass wafer 12, the absorption layer 11 containing a transparent resin and an absorptive pigment and being configured to satisfy -15%≤Δt/t≤15%, where trepresent a mean thickness and Δt represents a thickness difference relative to the mean thickness t.SELECTED DRAWING: Figure 1A

Description

可視光画像の撮像装置用の光学フィルタ機能を有し、光検出器アレイを含む固体撮像素子を複数有するシリコン半導体ウェハ(以下、「Siウェハ」ともいう)と一体化して用いる近赤外線吸収型ガラスウェハおよびSiウェハと近赤外線吸収型ガラスウェハとが一体化した半導体ウェハ積層体に関する。   Near-infrared absorption type glass that has an optical filter function for an imaging device for visible light images and is used integrally with a silicon semiconductor wafer (hereinafter also referred to as “Si wafer”) having a plurality of solid-state imaging devices including a photodetector array. The present invention relates to a semiconductor wafer laminate in which a wafer and a Si wafer and a near-infrared absorbing glass wafer are integrated.

固体撮像素子を用いた撮像装置(カメラモジュール)には、可視光を透過し近赤外光を遮断する感度補正用光学フィルタが用いられている。   An imaging device (camera module) using a solid-state imaging element uses a sensitivity correction optical filter that transmits visible light and blocks near-infrared light.

光学フィルタとしては、フツリン酸塩系ガラスやリン酸塩系ガラス等にCuO等を添加した近赤外線体積吸収型ガラス(以下、「体積吸収型ガラス」ともいう)が用いられ、CuO等の添加濃度や厚さを調整することで、波長700〜1150nmの光の透過率を調整できる。体積吸収型ガラスは、例えば、波長800〜1000nmに吸収極大を示すが、吸収能が増すと副次的に可視光の透過率低下も招く場合がある。一方、可視光透過率の低下を抑えると、近赤外光の透過率が増して迷光化する場合がある。そのため、体積吸収型ガラスを用いる光学フィルタは、近赤外光の透過率低減のため誘電体多層膜からなる反射層を併用する場合がある。具体的に、体積吸収型ガラス上に反射層を有し、近紫外光を反射し、近赤外光を吸収、反射する光学フィルタが開示されている(特許文献1参照)。   As the optical filter, near infrared volume absorption type glass (hereinafter also referred to as “volume absorption type glass”) in which CuO or the like is added to fluorophosphate glass or phosphate glass is used, and the addition concentration of CuO or the like is used. The transmittance of light having a wavelength of 700 to 1150 nm can be adjusted by adjusting the thickness. For example, the volume-absorbing glass exhibits an absorption maximum at a wavelength of 800 to 1000 nm. However, when the absorption capacity is increased, the transmittance of visible light may be reduced. On the other hand, if the decrease in visible light transmittance is suppressed, the near infrared light transmittance may increase and stray light may be generated. For this reason, an optical filter using volume absorption type glass sometimes uses a reflective layer made of a dielectric multilayer film in order to reduce the transmittance of near-infrared light. Specifically, an optical filter that has a reflective layer on a volume absorption glass, reflects near ultraviolet light, and absorbs and reflects near infrared light is disclosed (see Patent Document 1).

また、可視光や近赤外光を吸収しない透明ガラスの少なくとも一方の表面に近赤外線吸収色素と樹脂を含む吸収層と、近赤外光を反射する反射層と、を備えた光学フィルタ(特許文献2参照)が開示されている。さらに、体積吸収型ガラスの少なくとも一方の表面に近赤外線吸収色素を含む吸収層と、近赤外光を反射する反射層とを備えた光学フィルタ(特許文献3参照)も開示されている。なお、これらの光学フィルタは、分光透過率曲線の入射角依存性が小さく、また、吸収により迷光を低減できる。   Also, an optical filter comprising an absorption layer containing a near-infrared absorbing dye and a resin on at least one surface of a transparent glass that does not absorb visible light or near-infrared light, and a reflective layer that reflects near-infrared light (patent) Reference 2) is disclosed. Furthermore, an optical filter (see Patent Document 3) including an absorption layer containing a near-infrared absorbing pigment on at least one surface of the volume absorption glass and a reflection layer that reflects near-infrared light is also disclosed. These optical filters have a small incident angle dependency of the spectral transmittance curve, and can reduce stray light by absorption.

また、近年、撮像装置の小型化にともない、カメラモジュールの小型化、低背化が要求され、カメラモジュールにおける光学部品の薄型化や部品点数削減が求められている。そのため、固体撮像素子と、例えば、体積吸収型ガラスを含む近赤外線吸収型ガラス等の光学部品と、を一体化する検討がなされている。   In recent years, along with the downsizing of imaging devices, there has been a demand for miniaturization and low profile of camera modules, and there is a demand for thinner optical components and fewer parts in the camera modules. For this reason, studies have been made to integrate a solid-state imaging device and an optical component such as near-infrared absorbing glass including volume absorbing glass, for example.

固体撮像素子は、1〜4μm□サイズの画素で、数十万〜数百万個2次元配列されたCMOSやCCD構造の光検出器アレイを有する。さらに、固体撮像素子は、カラー画像生成のため光検出器の入射側に画素毎、RGBモザイクカラーフィルタを有し、その上に、画素毎に入射光を光検出器の受光面に集光する樹脂マイクロレンズを有する。
ここで、固体撮像素子と近赤外線吸収型ガラスを一体化する場合、近赤外線吸収型ガラスの小片を個々に一体化する工程を経ると生産性が低いため、Siウェハの状態で、RGBモザイクカラーフィルタと樹脂マイクロレンズを固体撮像素子毎に形成するウェハプロセスの一環として、ウェハ状態の近赤外線吸収型ガラスを一体化することで生産性が向上できる。
The solid-state imaging device has a photodetector array of CMOS or CCD structure in which pixels of 1 to 4 μm square size are two-dimensionally arranged in hundreds of thousands to millions. Furthermore, the solid-state imaging device has an RGB mosaic color filter for each pixel on the incident side of the photodetector for generating a color image, and further collects incident light on the light receiving surface of the photodetector on each pixel. Has resin microlenses.
Here, when integrating the solid-state imaging device and the near-infrared absorbing glass, the productivity is low when the individual pieces of the near-infrared absorbing glass are individually integrated. Productivity can be improved by integrating near-infrared absorbing glass in a wafer state as part of a wafer process for forming a filter and a resin microlens for each solid-state imaging device.

ここで、半導体ウェハにウェハ状の近赤外線吸収型ガラス(近赤外線吸収型ガラスウェハ)を接合することにより、カメラモジュールの小型化、低背化および生産性向上が期待できるが、固体撮像素子が形成されたSiウェハのサイズは直径15cm以上である場合が多く、カメラモジュールの低背化には薄型の近赤外線吸収型ガラスの使用が前提となる。即ち、例えば、直径15cm以上、厚さ0.4mm以下の近赤外線吸収型ガラスウェハで、ウェハ有効面内で光学特性の均一性に優れた光学フィルタの実現が望まれていた。   Here, by joining a wafer-like near-infrared absorbing glass (near-infrared absorbing glass wafer) to a semiconductor wafer, the camera module can be expected to be reduced in size, height and productivity. The size of the formed Si wafer is often 15 cm or more in diameter, and the use of a thin near-infrared absorbing glass is a prerequisite for reducing the height of the camera module. That is, for example, it has been desired to realize an optical filter that is a near infrared absorption type glass wafer having a diameter of 15 cm or more and a thickness of 0.4 mm or less and that is excellent in uniformity of optical characteristics within the effective surface of the wafer.

国際公開第14/034386号International Publication No. 14/034386 国際公開第12/169447号International Publication No. 12/169447 国際公開第14/030628号International Publication No. 14/030628

本発明は、表面が光学鏡面であるガラスウェハの少なくとも一方の面に、近赤外線吸収色素と透明樹脂とを含む吸収層が備えられた近赤外線吸収型ガラスウェハであって、ウェハ有効面内で、固体撮像素子の分光感度を視感度に近似補正し、近赤外光を遮断する、均一性に優れた光学特性が得られる近赤外線吸収型ガラスウェハ、また、そのような近赤外線吸収型ガラスウェハを備えた半導体ウェハ積層体の提供を目的とする。   The present invention is a near-infrared absorbing glass wafer having an absorption layer containing a near-infrared absorbing dye and a transparent resin on at least one surface of a glass wafer whose surface is an optical mirror surface. A near-infrared-absorbing glass wafer that provides near-infrared optical characteristics with excellent spectral uniformity by approximating the spectral sensitivity of a solid-state image sensor to visual sensitivity and blocking near-infrared light, and such near-infrared-absorbing glass It aims at providing the semiconductor wafer laminated body provided with the wafer.

本発明は、ガラスウェハと、前記ガラスウェハの少なくとも一方の主面に吸収層を備え、前記吸収層は、透明樹脂と吸収色素を含有し、前記吸収層は、膜厚の平均値をt、前記平均値tに対する膜厚の差分値をΔtとしたとき、−15%≦Δt/t≦15%を満たす、近赤外線吸収型ガラスウェハを提供する。 The present invention includes a glass wafer and an absorption layer on at least one main surface of the glass wafer, the absorption layer contains a transparent resin and an absorption pigment, and the absorption layer has an average thickness of t 0. Provided is a near-infrared absorbing glass wafer that satisfies −15% ≦ Δt / t 0 ≦ 15%, where Δt is the difference in film thickness with respect to the average value t 0 .

また、本発明は、Siウェハ上に備えられた固体撮像素子と、上記の近赤外線吸収型ガラスウェハと、を有する、半導体ウェハ積層体を提供する。   Moreover, this invention provides the semiconductor wafer laminated body which has a solid-state image sensor provided on Si wafer, and said near-infrared absorption type glass wafer.

本発明は、ガラスウェハ上に近赤外線吸収色素と透明樹脂を含む吸収層を有し、該ガラスウェハの有効面内において膜厚および膜厚分布が所定の範囲内であり、分光透過率曲線の分布が小さく均一性に優れた光学特性を有する近赤外線吸収型ガラスウェハおよび小型化、低背化されたカメラモジュールを提供できる。
さらに本発明は、固体撮像素子サイズの光学フィルタを固体撮像素子と分離配置して用いる従来に比べ、カメラモジュールの小型化および低背化を実現するとともに、カメラモジュール製造における生産性が向上する。
The present invention has an absorption layer containing a near-infrared absorbing dye and a transparent resin on a glass wafer, the film thickness and the film thickness distribution are within a predetermined range within the effective surface of the glass wafer, and the spectral transmittance curve It is possible to provide a near-infrared absorbing glass wafer having a small distribution and excellent optical characteristics, and a camera module that is reduced in size and height.
Furthermore, the present invention realizes a reduction in size and height of the camera module and an improvement in productivity in manufacturing the camera module, as compared with the conventional case where an optical filter having a solid-state image sensor size is separated from the solid-state image sensor.

近赤外線吸収型ガラスウェハの例を概略的に示す断面図。Sectional drawing which shows the example of a near-infrared absorption type glass wafer roughly. 近赤外線吸収型ガラスウェハの他の例を概略的に示す断面図。Sectional drawing which shows the other example of a near-infrared absorption type glass wafer roughly. 近赤外線吸収型ガラスウェハの他の例を概略的に示す断面図。Sectional drawing which shows the other example of a near-infrared absorption type glass wafer roughly. カメラモジュールの光学系を概略的に示す断面図。Sectional drawing which shows the optical system of a camera module roughly. 近赤外線吸収型ガラスウェハの、固体撮像素子の中心部画素受光面の集光光線の光路変化を概略的に示す断面図。Sectional drawing which shows roughly the optical path change of the condensing light beam of the center pixel light-receiving surface of a solid-state image sensor of a near-infrared absorption type glass wafer. Fナンバーの異なる撮像レンズについて、近赤外線吸収型ガラスウェハの厚さ分布に対する受光画素面のビーム径φの計算結果を示すグラフ。The graph which shows the calculation result of beam diameter (phi) of the light-receiving pixel surface with respect to the thickness distribution of a near-infrared absorption type glass wafer about the imaging lens from which F number differs. 近赤外線吸収型ガラスウェハにおける、近赤外線吸収材料の厚さの面内分布(体積吸収型ガラスのΔd/dまたは近赤外線吸収層のΔt/t)と、波長λ(T50%)における透過率差ΔTの関係を示すグラフ。In-plane distribution of the thickness of the near-infrared absorbing material in the near-infrared absorbing glass wafer (Δd / d 0 of the volume-absorbing glass or Δt / t 0 of the near-infrared absorbing layer) and the wavelength λ (T 50% ) The graph which shows the relationship of transmissivity difference (DELTA) T. 近赤外線吸収型ガラスウェハにおける、λ(T50%)近傍の波長変化Δλに対する透過率変化ΔTの割合に対し、近赤外線吸収材料の厚さの面内分布(体積吸収型ガラスのΔd/dまたは近赤外線吸収層のΔt/t)にともなうλ(T50%)の分布Δλの計算結果を示すグラフ。In the near-infrared absorbing glass wafer, the in-plane distribution of the thickness of the near-infrared absorbing material (Δd / d 0 of the volume-absorbing glass) with respect to the ratio of the transmittance change ΔT to the wavelength change Δλ in the vicinity of λ (T 50% ). or graph showing calculation results of distribution Δλ of accompanying Delta] t / t 0) of the near-infrared absorption layer λ (T 50%). 半導体ウェハ積層体の例を概略的に示す斜視図。The perspective view which shows the example of a semiconductor wafer laminated body roughly. 半導体ウェハ積層体の例を概略的に示す断面の拡大図。The expanded view of the cross section which shows the example of a semiconductor wafer laminated body roughly. 半導体ウェハ積層体の他の例を概略的に示す断面の拡大図。The expanded view of the cross section which shows the other example of a semiconductor wafer laminated body roughly. 誘電体多層膜からなる反射層の分光透過率を示すグラフ(入射角:0°)。The graph which shows the spectral transmittance of the reflection layer which consists of dielectric multilayers (incident angle: 0 degree). 実施例1の近赤外線吸収型ガラスウェハの分光透過率を示すグラフ。5 is a graph showing the spectral transmittance of the near-infrared absorbing glass wafer of Example 1. 実施例2の近赤外線吸収型ガラスウェハの分光透過率を示すグラフ。6 is a graph showing the spectral transmittance of the near-infrared absorbing glass wafer of Example 2. カメラモジュールの例の要部を概略的に示す断面図。Sectional drawing which shows the principal part of the example of a camera module roughly.

本発明の近赤外線吸収型ガラスウェハについて、図1A〜図1Cを用いて説明する。
図1Aは、平行平面形状のガラスウェハ12の片面に、近赤外光を吸収する吸収層11を有する近赤外線吸収型ガラスウェハ10を示す。
The near-infrared absorption type glass wafer of this invention is demonstrated using FIG. 1A-FIG. 1C.
FIG. 1A shows a near-infrared absorbing glass wafer 10 having an absorption layer 11 that absorbs near-infrared light on one side of a glass wafer 12 having a parallel plane shape.

(ガラスウェハ)
ガラスウェハ12は、少なくとも波長450〜600nmの可視光に対して透明なガラス材料からなり、例えば平面形状が、直径15cm以上の略円形のものが挙げられるが、非円形や多角形のものでもよい。厚さは制限されないが、撮像装置の小型化のため、例えば、0.1〜0.4mm厚のものが使用できる。また、ガラスウェハ12は、固体撮像素子の解像度劣化、画素欠陥の原因となる脈理などの局所的屈折率分布や気泡などが残留しないガラス材料を用いるとよい。さらに、ガラスウェハ12の表面は、固体撮像素子の解像度劣化を招く散乱光の発生や透過波面収差が抑制できるような表面平坦性を有していればよく、片面だけでなく両面が鏡面加工されてもよい。
(Glass wafer)
The glass wafer 12 is made of a glass material that is transparent to visible light having a wavelength of at least 450 to 600 nm. For example, the planar shape may be a substantially circular shape having a diameter of 15 cm or more, but may be non-circular or polygonal. . Although the thickness is not limited, for example, a thickness of 0.1 to 0.4 mm can be used to reduce the size of the imaging apparatus. Further, the glass wafer 12 may be made of a glass material in which a local refractive index distribution such as striae that causes resolution deterioration of the solid-state imaging device and pixel defects, and bubbles do not remain. Furthermore, the surface of the glass wafer 12 only needs to have a surface flatness that can suppress generation of scattered light and transmission wavefront aberration that cause resolution degradation of the solid-state imaging device, and both sides are mirror-finished. May be.

本発明の近赤外線吸収型ガラスウェハ10は、光学接着剤を用いてガラスウェハとSiウェハとを接合するため、ガラスウェハの材料はアルカリ成分の含有量が低い方が、半導体動作の劣化を招かず、高い接着性、信頼性が得られる場合が多く好ましい。この中でも、ホウケイ酸ガラスは、加工が容易で、光学面における傷や異物等の発生が抑制できる。   Since the near-infrared absorption type glass wafer 10 of the present invention joins a glass wafer and a Si wafer using an optical adhesive, the glass wafer material has a lower alkali component content, leading to deterioration of semiconductor operation. However, it is often preferable that high adhesion and reliability can be obtained. Among these, borosilicate glass is easy to process and can suppress the occurrence of scratches and foreign matters on the optical surface.

また、可視光から近赤外光で透明となるガラスウェハの材料は、例えば、ショット社製のAF33、テンパックス(商標)、D263、B270、旭硝子社製のSW−3、SW−Y、SW−YY、AN100、EN−A1、FP1、FP01eco等(以上、商品名)が好適である。
なお、アルカリ成分を含有するガラスウェハを用いる場合、少なくともSiウェハ接合面側にアルカリ元素の移動を遮断するパッシベーション膜を備えるとよい。パッシベーション膜は、例えば、SiO、SiO、Siなどの可視光吸収が少ない誘電体膜が挙げられ、緻密膜の成膜に有効なスパッタリングやCVD、イオンアシスト蒸着やゾルゲルなどの成膜法により所定の膜厚で形成できる。
The material of the glass wafer that is transparent from visible light to near-infrared light is, for example, AF33 manufactured by Schott, Tempax (trademark), D263, B270, SW-3, SW-Y, SW manufactured by Asahi Glass. -YY, AN100, EN-A1, FP1, FP01eco and the like (product names) are preferable.
In addition, when using the glass wafer containing an alkali component, it is good to provide the passivation film which interrupts | blocks the movement of an alkali element at least on the Si wafer joint surface side. Examples of the passivation film include dielectric films with little visible light absorption such as SiO 2 , SiO x N y , and Si 3 N 4. Sputtering, CVD, ion-assisted deposition, sol-gel, etc. effective for forming a dense film The film can be formed with a predetermined film thickness by the film forming method.

さらに、上記のようにガラス材料として近赤外光(波長700〜1100nm)を吸収する、例えば、CuO含有フツリン酸塩ガラスまたはCuO含有リン酸塩ガラス(これらを「CuO含有ガラス」という)等の近赤外線体積吸収型ガラスを用いてもよい。   Furthermore, near infrared light (wavelength 700-1100 nm) is absorbed as a glass material as described above, for example, CuO-containing fluorophosphate glass or CuO-containing phosphate glass (these are referred to as “CuO-containing glass”), etc. Near infrared volume absorption type glass may be used.

CuO含有ガラスは、波長400〜1100nmの吸収スペクトルにおいて、波長750〜1000nmに吸収極大を有し、CuO含有量、厚さにより透過率を調整できる。図1Bは、近赤外線体積吸収型ガラスからなるガラスウェハ13上に吸収層11を備える、近赤外線吸収型ガラスウェハ20を示す。ガラスウェハ13は、可視光で高透過率を示すとともに、吸収層11のみでは十分に遮断できない近赤外光を吸収できる。   The CuO-containing glass has an absorption maximum at a wavelength of 750 to 1000 nm in an absorption spectrum at a wavelength of 400 to 1100 nm, and the transmittance can be adjusted by the CuO content and thickness. FIG. 1B shows a near-infrared absorbing glass wafer 20 having an absorbing layer 11 on a glass wafer 13 made of near-infrared volume absorbing glass. The glass wafer 13 exhibits high transmittance with visible light and can absorb near infrared light that cannot be sufficiently blocked by the absorption layer 11 alone.

CuO含有ガラスの典型例は、以下の組成のものが挙げられる。なお、「リン酸塩ガラス」には、ガラスの骨格の一部がSiOで構成されるケイリン酸塩ガラスも含む。 Typical examples of the CuO-containing glass include the following compositions. The “phosphate glass” includes silicic acid phosphate glass in which a part of the glass skeleton is composed of SiO 2 .

(1)質量%表示で、P 46〜70%、AlF 0.2〜20%、LiF+NaF+KF0〜25%、MgF+CaF+SrF+BaF+PbF 1〜50%、ただし、F 0.5〜32%、O 26〜54%を含む基礎ガラス100質量部に対し、外割でCuO:0.5〜7質量部を含むガラス。 (1) represented by mass%, P 2 O 5 46~70%, AlF 3 0.2~20%, LiF + NaF + KF0~25%, MgF 2 + CaF 2 + SrF 2 + BaF 2 + PbF 2 1~50%, however, F 0 The glass which contains CuO: 0.5-7 mass part by the outer split with respect to 100 mass parts of basic glass containing 0.5-32% and O 26-54%.

(2)質量%表示で、P 25〜60%、AlOF 1〜13%、MgO 1〜10%、CaO 1〜16%、BaO 1〜26%、SrO 0〜16%、ZnO 0〜16%、LiO 0〜13%、NaO 0〜10%、KO 0〜11%、CuO 1〜7%、ΣRO(R=Mg、Ca、Sr、Ba) 15〜40%、ΣR’O(R’=Li、Na、K) 3〜18%(ただし、39%モル量までのO2−イオンがFイオンで置換されている)からなるガラス。 (2) represented by mass%, P 2 O 5 25~60%, Al 2 OF 3 1~13%, MgO 1~10%, CaO 1~16%, BaO 1~26%, SrO 0~16%, ZnO 0~16%, Li 2 O 0~13 %, Na 2 O 0~10%, K 2 O 0~11%, CuO 1~7%, ΣRO (R = Mg, Ca, Sr, Ba) 15~ 40%, ΣR '2 O ( R' = Li, Na, K) 3~18% ( however, O 2-ions to 39% molar amount F - ions is substituted with) glass consisting of.

(3)質量%表示で、P 5〜45%、AlF 1〜35%、RF(RはLi、Na、K) 0〜40%、R’F(R’はMg、Ca、Sr、Ba、Pb、Zn) 10〜75%、R”F(R”はLa、Y、Cd、Si、B、Zr、Ta、mはR”の原子価に相当する数) 0〜15%(ただし、フッ化物総合計量の70%までを酸化物に置換可能)、およびCuO 0.2〜15%を含むガラス。 (3) By mass%, P 2 O 5 5 to 45%, AlF 3 1 to 35%, RF (R is Li, Na, K) 0 to 40%, R′F 2 (R ′ is Mg, Ca , Sr, Ba, Pb, Zn) 10 to 75%, R ″ F m (R ″ is La, Y, Cd, Si, B, Zr, Ta, m is a number corresponding to the valence of R ″) 0 Glass containing 15% (but up to 70% of the total fluoride weight can be replaced by oxide), and 0.2-15% CuO.

(4)カチオン%表示で、P5+ 11〜43%、Al3+ 1〜29%、Rカチオン(Mg、Ca、Sr、Ba、Pb、Znイオンの合量) 14〜50%、R’カチオン(Li、Na、Kイオンの合量) 0〜43%、R”カチオン(La、Y、Gd、Si、B、Zr、Taイオンの合量) 0〜8%、およびCu2+ 0.5〜13%を含み、さらにアニオン%でF 17〜80%を含有するガラス。 (4) In terms of cation%, P 5+ 11 to 43%, Al 3+ 1 to 29%, R cation (total amount of Mg, Ca, Sr, Ba, Pb, Zn ion) 14 to 50%, R ′ cation ( Total amount of Li, Na, K ions) 0 to 43%, R ″ cation (Total amount of La, Y, Gd, Si, B, Zr, Ta ions) 0 to 8%, and Cu 2+ 0.5 to 13 %, And further contains F - 17 to 80% in terms of anion%.

(5)カチオン%表示で、P5+ 23〜41%、Al3+ 4〜16%、Li 11〜40%、Na 3〜13%、R2+(Mg2+、Ca2+、Sr2+、Ba2+、Zn2+の合量) 12〜53%、およびCu2+ 2.6〜4.7%を含み、さらにアニオン%でF 25〜48%、およびO2− 52〜75%を含むガラス。 (5) In terms of cation%, P 5+ 23 to 41%, Al 3+ 4 to 16%, Li + 11 to 40%, Na + 3 to 13%, R 2+ (Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ ) 12 to 53% and Cu 2+ 2.6 to 4.7%, and further anion% F 25 to 48% and O 2 52 to 75%.

(6)質量%表示で、P 70〜85%、Al 8〜17%、B 1〜10%、LiO 0〜3%、NaO 0〜5%、KO 0〜5%、ただし、LiO+NaO+KO 0.1〜5%、SiO 0〜3%からなる基礎ガラス100質量部に対し、外割でCuOを0.1〜5質量部含むガラス。 (6) represented by mass%, P 2 O 5 70~85%, Al 2 O 3 8~17%, B 2 O 3 1~10%, Li 2 O 0~3%, Na 2 O 0~5% , K 2 O 0-5%, provided that 0.1% of CuO is 0.1% by weight based on 100 parts by mass of the basic glass composed of Li 2 O + Na 2 O + K 2 O 0.1-5% and SiO 2 0-3%. Glass containing 5 parts by mass.

市販品を例示すると、例えば、(1)のガラスとしては、NF−50E、NF−50EX、NF−50T、NF−50TX(旭硝子社製、商品名)等、(2)のガラスとしては、BG−60、BG−61(以上、ショット社製、商品名)等、(5)のガラスとしては、CD5000(HOYA社製、商品名)等が挙げられる。   Examples of commercially available products include, for example, (1) glass, NF-50E, NF-50EX, NF-50T, NF-50TX (manufactured by Asahi Glass Co., Ltd., trade name), etc., and (2) glass, BG Examples of the glass of (5) such as -60, BG-61 (manufactured by Shot Corporation, trade name), and the like include CD5000 (made by HOYA, trade name).

上記したCuO含有ガラスは、金属酸化物をさらに含有してもよい。金属酸化物は、例えば、Fe、MoO、WO、CeO、Sb、V等の1種以上を含有すると、CuO含有ガラスは紫外線吸収特性を有する。これらの金属酸化物の含有量は、上記CuO含有ガラス100質量部に対して、Fe、MoO、WOおよびCeOからなる群から選択される少なくとも1種を、Fe 0.6〜5質量部、MoO 0.5〜5質量部、WO 1〜6質量部、CeO 2.5〜6質量部、またはFeとSbの2種をFe 0.6〜5質量部+Sb 0.1〜5質量部、もしくはVとCeOの2種をV 0.01〜0.5質量部+CeO 1〜6質量部とするとよい。 The above-described CuO-containing glass may further contain a metal oxide. When the metal oxide contains, for example, one or more of Fe 2 O 3 , MoO 3 , WO 3 , CeO 2 , Sb 2 O 3 , V 2 O 5, etc., the CuO-containing glass has ultraviolet absorption characteristics. The content of these metal oxides, relative to the CuO-containing glass 100 parts by weight, the Fe 2 O 3, MoO 3, WO 3 and at least one selected from the group consisting of CeO 2, Fe 2 O 3 0.6-5 parts by mass, MoO 3 0.5-5 parts by mass, WO 3 1-6 parts by mass, CeO 2 2.5-6 parts by mass, or Fe 2 O 3 and Sb 2 O 3 Fe 2 O 3 0.6 to 5 parts by + Sb 2 O 3 0.1 to 5 parts by weight, or V 2 O 5 two and CeO 2 V 2 O 5 0.01 to 0.5 parts by + CeO 2 It is good to set it as 1-6 mass parts.

また、本発明の近赤外線吸収型ガラスウェハは、固体撮像素子を保護するカバーガラスの機能も含むと、撮像装置の小型化、薄型化が期待できる。なお、ガラスウェハは、不純物としてα線放出性元素(放射性同位元素)が含まれると、α線を放出して固体撮像素子にソフトエラーを引き起こすおそれがあるので、α線放出性元素含有量が少ない高純度のガラス原料を使用するとよい。ガラス原料は、α線放出性元素のうち、U、Thの含有量が、20ppb以下が好ましく、5ppb以下がより好ましい。また、近赤外線吸収型ガラスウェハは、固体撮像素子に近接する片面にα線を遮蔽する膜を設けてもよい。   In addition, the near-infrared absorption type glass wafer of the present invention can be expected to reduce the size and thickness of the imaging device if it also includes a cover glass function for protecting the solid-state imaging device. If the glass wafer contains an α-ray emitting element (radioisotope) as an impurity, the α-ray emitting element may be emitted to cause a soft error in the solid-state imaging device. It is recommended to use a glass material with a small amount of high purity. In the glass raw material, the content of U and Th among the α-ray emitting elements is preferably 20 ppb or less, and more preferably 5 ppb or less. Moreover, the near-infrared absorbing glass wafer may be provided with a film that shields α rays on one side close to the solid-state imaging device.

ガラス材料の成形は、溶融後にガラス板状に延伸、冷却されて製造でき、フロート法、ダウンドロー法、オーバフロー・フュージョン法等を利用できる。製法によっては、表面が光学鏡面となる、0.1〜0.4mm厚のガラスウェハが得られるが、後述する厚さ分布のガラスウェハとするため、ガラス基板を例えば、直径15cm以上の外形加工した後、両面研磨により0.1〜0.4mm厚の光学鏡面が得られるように加工してもよい。   The glass material can be molded by being drawn into a glass plate after being melted and cooled, and a float method, a downdraw method, an overflow fusion method, or the like can be used. Depending on the production method, a glass wafer having a thickness of 0.1 to 0.4 mm with an optical mirror surface can be obtained. However, in order to obtain a glass wafer having a thickness distribution described later, the glass substrate is processed, for example, with a diameter of 15 cm or more. Then, it may be processed so as to obtain an optical mirror surface having a thickness of 0.1 to 0.4 mm by double-side polishing.

次に、本発明の近赤外線吸収型ガラスウェハを通して固体撮像素子に可視光画像が集光する光学系を考える。図2は、カメラモジュールの光学系を示す模式図であり、図3は、撮像レンズ31の光軸上で固体撮像素子の中心部画素受光面16に集光される光路を示す模式図である。ここで、図2と図3を用いて、ガラスウェハの厚さ分布に起因した結像面のボケ量と固体撮像素子の画素サイズから、解像度に与える影響について説明する。   Next, consider an optical system in which a visible light image is focused on a solid-state imaging device through the near-infrared absorbing glass wafer of the present invention. FIG. 2 is a schematic diagram showing an optical system of the camera module, and FIG. 3 is a schematic diagram showing an optical path focused on the central pixel light receiving surface 16 of the solid-state imaging device on the optical axis of the imaging lens 31. . Here, with reference to FIG. 2 and FIG. 3, the influence on the resolution from the amount of blur on the imaging plane caused by the thickness distribution of the glass wafer and the pixel size of the solid-state imaging device will be described.

図3において、被写体の画像は、撮像レンズ31により、近赤外線吸収型ガラスウェハ10(20、30)と接合された固体撮像素子の画素受光面16に結像される。図3において、厚さdのガラスウェハと厚さtの吸収層からなる近赤外線吸収型ガラスウェハ10(20、30)と厚さgの接着剤21との合計厚は、ガラスウェハ表面から固体撮像素子の画素受光面16までの距離dに相当する。そして、被写体の画像は、撮像レンズのFナンバー(=F)に応じた開口数NA=1/(2F)=sinθの収束角θでガラスウェハ表面より入射し、画素受光面16に集光される。
なお、ガラスウェハ厚dはガラスウェハ12(13)の平均の厚さであり、吸収層厚tは吸収層11の平均の厚さを示す。ガラスウェハ厚dは、吸収層厚tと接着層厚gの合計厚に比べ10倍以上と厚く、各厚さ分布も同様の比率であるため、距離dの厚さdの差分値Δdは、ガラスウェハ厚dの差分値で近似できる。
In FIG. 3, the image of the subject is formed on the pixel light receiving surface 16 of the solid-state image sensor joined to the near-infrared absorbing glass wafer 10 (20, 30) by the imaging lens 31. In FIG. 3, the total thickness of the near-infrared absorbing glass wafer 10 (20, 30) composed of the glass wafer having the thickness d 0 and the absorbing layer having the thickness t 0 and the adhesive 21 having the thickness g is the surface of the glass wafer. Corresponds to the distance d from the pixel light receiving surface 16 of the solid-state imaging device. The subject image is incident from the glass wafer surface at a convergence angle θ of numerical aperture NA = 1 / (2F) = sin θ corresponding to the F number (= F) of the imaging lens, and is condensed on the pixel light receiving surface 16. The
The glass wafer thickness d 0 is the average thickness of the glass wafer 12 (13), and the absorption layer thickness t 0 is the average thickness of the absorption layer 11. The glass wafer thickness d 0 is 10 times or more thicker than the total thickness of the absorption layer thickness t 0 and the adhesive layer thickness g, and each thickness distribution has the same ratio, so the difference value of the thickness d 0 of the distance d Δd can be approximated by a difference value of the glass wafer thickness d 0 .

ここで、ガラスウェハの厚さのdの差分値がΔd(≠0)の場合、ガラスウェハ表面と固体撮像素子の画素受光面16との間で取り得る距離がd+Δdとなり、図3に示すように、光軸方向の集光位置が距離Δだけシフトする。その結果、画素受光面における結像点は直径φに拡大する。ここで、屈折率nのガラスウェハに入射角θで入射する光は、
sinθ´=sinθ/n
の屈折角θ´で伝搬し、受光画素面に到達するため、シフト量Δは、
Δ=Δd×(tanθ−tanθ´)/tanθ´
となり、拡大した結像点のビーム径(ボケ)は、
φ=2×|Δ|×tanθ´
より算出される。
Here, when the difference value of the thickness d 0 of the glass wafer is Δd (≠ 0), the distance that can be taken between the glass wafer surface and the pixel light receiving surface 16 of the solid-state imaging device is d 0 + Δd, and FIG. As shown in FIG. 5, the condensing position in the optical axis direction is shifted by the distance Δ. As a result, the image formation point on the pixel light receiving surface is enlarged to the diameter φ. Here, light incident at an incident angle θ on a glass wafer having a refractive index n is
sin θ ′ = sin θ / n
The amount of shift Δ is as follows.
Δ = Δd × (tan θ−tan θ ′) / tan θ ′
The beam diameter (blur) of the enlarged image point is
φ = 2 × | Δ | × tan θ ′
It is calculated from.

ここで、Fナンバーが2.0と1.4の撮像レンズを使用し、ガラスウェハの厚さdの差分値Δdを±50μmの範囲で与えたときの、受光画素面のビーム径φの計算例を図4に示す。なお、ビーム径φが、固体撮像素子の画素サイズに比べて大きくなると固体撮像素子が許容できる解像度で画像が再現できなくなるため、ビーム径φの拡大を抑制するガラスウェハおよび、近赤外線吸収型ガラスウェハの厚さdの差分値Δdを得ることが重要となる。 Here, when an imaging lens having an F number of 2.0 and 1.4 is used and the difference value Δd of the thickness d 0 of the glass wafer is given in a range of ± 50 μm, the beam diameter φ of the light receiving pixel surface is A calculation example is shown in FIG. If the beam diameter φ is larger than the pixel size of the solid-state image sensor, an image cannot be reproduced with a resolution that can be accepted by the solid-state image sensor. It is important to obtain a difference value Δd of the wafer thickness d 0 .

なお、CMOS半導体固体撮像素子の最小画素サイズは約1μm□であるが、RGBカラーフィルタが4画素に形成されて1つのカラー撮像画素となるため、最小画素サイズにおけるビーム径φは2μm以下が必要となる。また、実際のカメラモジュールは、固体撮像素子の画素サイズに加え、撮像レンズの解像度(MTF)性能にも依存する。そのため、可視光に対する色収差、軸外の固体撮像素子の周辺画素における解像度劣化、結像面の歪などを抑制した撮像レンズ設計が要求される。このように、撮像レンズの製造バラツキにともなう固体撮像素子画素面の結像ビームサイズの拡大も起こり得るので、ガラスウェハ12(13)および近赤外線吸収型ガラスウェハ10(20、30)の厚さ分布に起因する解像度劣化は低いほど好ましい。   The minimum pixel size of the CMOS semiconductor solid-state imaging device is about 1 μm □, but the RGB color filter is formed with 4 pixels to form one color imaging pixel, so the beam diameter φ at the minimum pixel size must be 2 μm or less. It becomes. In addition, the actual camera module depends on the resolution (MTF) performance of the imaging lens in addition to the pixel size of the solid-state imaging device. Therefore, an imaging lens design that suppresses chromatic aberration with respect to visible light, resolution degradation in peripheral pixels of an off-axis solid-state imaging device, distortion of the imaging surface, and the like is required. As described above, since the imaging beam size on the pixel surface of the solid-state imaging device may increase due to manufacturing variations of the imaging lens, the thickness of the glass wafer 12 (13) and the near-infrared absorbing glass wafer 10 (20, 30). The lower the resolution degradation due to the distribution, the better.

図4の計算結果(ビーム径φ)より、(近赤外線吸収型)ガラスウェハの厚さdの差分値Δdは、固体撮像素子の画素サイズおよび撮像レンズの解像度にもよるものの、±30μm以内であればよく、±20μm以内が好ましく、±10μm以内がより好ましい。 From the calculation result (beam diameter φ) in FIG. 4, the difference value Δd of the (near infrared absorption type) glass wafer thickness d 0 is within ± 30 μm, although it depends on the pixel size of the solid-state imaging device and the resolution of the imaging lens. It is sufficient that it is within ± 20 μm, and more preferably within ± 10 μm.

このように、dの差分値Δdについて説明したが、固体撮像素子の外周部への結像光線は、撮像レンズ31に斜入射するため、光軸上の光線に比べ、非点収差やコマ収差が残留しやすく、高い解像度(MTF)を確保するレンズ設計が難しい。その結果、固体撮像素子の外周部の結像光線は、光軸上に比べボケやすく、厚さの差分値Δdにともなう非点収差およびコマ収差が生じやすいため、解像度の劣化を招くおそれがある。
また、光軸方向の集光位置のシフト量Δに起因した解像度劣化は、カメラモジュール組立時やオートフォーカスによる撮像レンズ13位置調整により一定レベルの対策はできるが、光軸外光で生じた非点収差やコマ収差の補正は難しく、その意味でもdの差分値Δdの低減が必要となる。
As described above, the difference value Δd of d 0 has been described. However, since the imaging light beam on the outer peripheral portion of the solid-state imaging device is obliquely incident on the imaging lens 31, astigmatism and coma are compared with the light beam on the optical axis. Aberration tends to remain, and it is difficult to design a lens that ensures high resolution (MTF). As a result, the imaging light beam on the outer peripheral portion of the solid-state imaging device is more easily blurred than on the optical axis, and astigmatism and coma due to the thickness difference value Δd are likely to occur. .
In addition, resolution degradation caused by the shift amount Δ of the condensing position in the optical axis direction can be countered at a certain level by adjusting the position of the imaging lens 13 by assembling the camera module or by autofocusing. Correction of point aberration and coma is difficult, and in that sense, it is necessary to reduce the difference value Δd of d 0 .

次に、ガラスウェハとしてCuO含有ガラス(「CuO含有ガラスウェハ」ともいう。)を用いた場合の厚さ分布について説明する。
ここで、CuO含有ガラスの近赤外線吸収特性を利用して、波長620〜690nmの光に対する透過率が50%となる波長をλ(T50%)と定義し、そのときのCuO含有ガラスウェハの厚さをDとすると、CuO含有ガラスウェハのλ(T50%)における吸収係数αを用いて、
0.5=exp(−α×D
と関係付けられる。即ち、前述のガラスウェハの平均の厚さdに対しても、
0.5=exp(−α×d
と関係付けられる波長λ(T50%)が特定される。したがって、dの差分値Δd(=d×x)を有するCuO含有ガラスウェハの各位置の透過率Tは、次式となる。
T=exp{−α×(d+Δd)}
=exp{−α×d×(1+x)}=0.5(1+x)
ここで、xは、CuO含有ガラスウェハの、λ(T50%)が設定値となる厚さdに対する差分値Δdの比率(x=Δd/d)を表す。
Next, the thickness distribution in the case where CuO-containing glass (also referred to as “CuO-containing glass wafer”) is used as the glass wafer will be described.
Here, using the near-infrared absorption characteristics of CuO-containing glass, the wavelength at which the transmittance for light with a wavelength of 620 to 690 nm is 50% is defined as λ (T 50% ), and the CuO-containing glass wafer at that time When the thickness is D 0 , the absorption coefficient α at λ (T 50% ) of the CuO-containing glass wafer is used.
0.5 = exp (−α × D 0 )
Related to. That is, even for the average thickness d 0 of the glass wafer described above,
0.5 = exp (−α × d 0 )
The wavelength λ (T 50% ) associated with is identified. Therefore, the transmittance T of each position of the CuO-containing glass wafer having a difference value Δd of d 0 (= d 0 × x ) is represented by the following equation.
T = exp {−α × (d 0 + Δd)}
= Exp {−α × d 0 × (1 + x)} = 0.5 (1 + x)
Here, x represents the ratio (x = Δd / d 0 ) of the difference value Δd with respect to the thickness d 0 where λ (T 50% ) of the CuO-containing glass wafer is a set value.

また、図5は、CuO含有ガラスウェハについて、xが±20%の範囲で変動したときの、λ(T50%)における透過率差ΔTの計算結果を示したグラフである。図5より、CuO含有ガラスウェハは、厚さ分布Δd/dが−15%〜+15%で、+5.5%〜−4.9%の透過率差の面内分布、厚さ分布Δd/dが−5%〜+5%で、+1.8%〜−1.7%の透過率差の面内分布が生じる。 FIG. 5 is a graph showing the calculation result of the transmittance difference ΔT at λ (T 50% ) when x varies in the range of ± 20% for the CuO-containing glass wafer. From FIG. 5, the CuO-containing glass wafer has an in-plane distribution of thickness difference Δd / d 0 of −5.5% to −4.9% and a thickness distribution Δd / d 0 of −15% to + 15%. When d 0 is -5% to + 5%, an in-plane distribution of transmittance difference of + 1.8% to -1.7% occurs.

また、CuO含有ガラスウェハは、近赤外線吸収特性に応じてλ(T50%)近傍の透過率の波長依存性(T(λ))が生じる。即ち、λ(T50%)近傍の波長変化Δλに対する透過率変化ΔTの割合ΔT/Δλ(=微分係数)を示す傾斜r(%/nm)が得られると、このrの値に基づいて、上記の厚さ分布Δd/dにともなうλ(T50%)の分布Δλ(=ΔT/r)に換算できる。 Moreover, the wavelength dependency (T (λ)) of the transmittance in the vicinity of λ (T 50% ) occurs in the CuO-containing glass wafer according to the near infrared absorption characteristics. That is, when a slope r (% / nm) indicating the ratio ΔT / Δλ (= differential coefficient) of the transmittance change ΔT with respect to the wavelength change Δλ in the vicinity of λ (T 50% ) is obtained, based on the value of r, It can be converted into a distribution Δλ (= ΔT / r) of λ (T 50% ) associated with the thickness distribution Δd / d 0 .

図6は、傾斜r(%/nm)が0.4、0.5、0.6、1.0および1.5のときの、厚さ分布Δd/dにともなうλ(T50%)の分布Δλの計算結果である。なお、CuO含有ガラスウェハの場合、CuO含有量、厚さによって、吸収極大波長近傍の透過率およびλ(T50%)近傍の傾斜r(%/nm)を調整できる。 FIG. 6 shows λ (T 50% ) with the thickness distribution Δd / d 0 when the slope r (% / nm) is 0.4, 0.5, 0.6, 1.0, and 1.5. This is a calculation result of the distribution Δλ. In the case of a CuO-containing glass wafer, the transmittance near the absorption maximum wavelength and the slope r (% / nm) near λ (T 50% ) can be adjusted by the CuO content and thickness.

例えば、波長450〜600nmで高透過率を維持するように調整すると、r=0.4〜0.6(%/nm)の範囲となる。そして、CuO含有ガラスウェハの透過率が80%から40%まで直線的に近似でき、ΔT=40%変化する場合の波長変化Δλは、r=0.4(%/nm)では100nm、r=0.5(%/nm)では80nm、r=0.6(%/nm)では67nmに相当する。   For example, when adjusting so as to maintain high transmittance at a wavelength of 450 to 600 nm, r = 0.4 to 0.6 (% / nm). Then, the transmittance of the CuO-containing glass wafer can be linearly approximated from 80% to 40%, and the wavelength change Δλ when ΔT = 40% changes is 100 nm at r = 0.4 (% / nm), r = 0.5 (% / nm) corresponds to 80 nm, and r = 0.6 (% / nm) corresponds to 67 nm.

また、CuO含有ガラスウェハは、面内のΔλが大きいほど、撮像画像の色再現性の低下および色ムラを発生させるおそれがある。そのため、Δλは、±5nm以内であればよく、±3nm以内が好ましく、±2nm以内がより好ましく、±1nm以内がさらに好ましい。また、CuO含有ガラスウェハは、面内のΔλが所定の範囲となるよう、CuO含有量の濃度分布を調整するとともに、厚さ分布Δd/dを±15%以内とすればよく、±8%以内が好ましく、±5%以内がより好ましく、±2%以内がさらに好ましい。 In addition, the larger the in-plane Δλ of the CuO-containing glass wafer, the lower the color reproducibility of the captured image and the possibility of causing color unevenness. Therefore, Δλ may be within ± 5 nm, preferably within ± 3 nm, more preferably within ± 2 nm, and even more preferably within ± 1 nm. Further, the CuO-containing glass wafer may be adjusted to have a concentration distribution of CuO content so that the in-plane Δλ is within a predetermined range, and the thickness distribution Δd / d 0 may be within ± 15%, and ± 8 % Is preferable, within ± 5% is more preferable, and within ± 2% is more preferable.

図6の計算結果より、CuO含有ガラスウェハのλ(T50%)近傍の波長変化Δλが±3nm以内となる厚さ分布Δd/dは、分光透過率変化が緩やかなr=0.4(%/nm)では±3%以内だが、やや急峻なr=0.6(%/nm)では±5%以内となる。即ち、CuO含有ガラスウェハの平均厚d=0.4mmでは、厚さの差分値Δdは±12μmの範囲〜±20μmの範囲が許容されるが、d=0.1mmでは、厚さの差分値Δdは±3μmの範囲〜±5μmの範囲と高精度の厚さ制御が必要である。また、同仕様は、CuOを含有しない、近赤外光において透明なガラスウェハにおいても満たされると好ましい。 From the calculation result of FIG. 6, the thickness distribution Δd / d 0 in which the wavelength change Δλ in the vicinity of λ (T 50% ) of the CuO-containing glass wafer is within ± 3 nm is r = 0.4 where the spectral transmittance change is moderate. Although it is within ± 3% at (% / nm), it is within ± 5% at a slightly steep r = 0.6 (% / nm). That is, when the average thickness d 0 of the CuO-containing glass wafer is d 0 = 0.4 mm, the thickness difference value Δd is allowed to be within a range of ± 12 μm to ± 20 μm, but when d 0 = 0.1 mm, the thickness difference The difference value Δd needs to be in the range of ± 3 μm to ± 5 μm and highly accurate thickness control. Moreover, it is preferable that the specification is satisfied even in a glass wafer that does not contain CuO and is transparent in near infrared light.

また、上記の仕様を満たすガラスウェハ12(13)の少なくとも片面に、吸収層11を備える本発明の近赤外線吸収型ガラスウェハ10(20)も、固体撮像素子の撮像品質の劣化を抑制するために光学鏡面が得られているとよい。具体的には、光学部品の表面品質を規定する目視検査を想定した、MIL軍用規格MIL-PRF-13830のスクラッチ(キズ)・ディグ(ブツ)の基準例が挙げて評価できる。これは、吸収層形成前のガラスウェハの表面品質においても同様に要求される。   In addition, the near-infrared absorption glass wafer 10 (20) of the present invention having the absorption layer 11 on at least one surface of the glass wafer 12 (13) satisfying the above specifications also suppresses deterioration in imaging quality of the solid-state imaging device. An optical mirror surface is preferably obtained. Specifically, it can be evaluated by referring to the MIL Military Standard MIL-PRF-13830 scratch (scratch) and dig (butsu) reference examples, assuming a visual inspection that defines the surface quality of optical components. This is similarly required in the surface quality of the glass wafer before the absorption layer is formed.

ガラスウェハは、画素サイズに依存するものの、固体撮像素子の光学有効面において、概ね次のレベルを満たせばよい。即ち、表面品質は、上記の規格における、精密グレードの60−40(キズ幅6μm以下、ディグ径40μm以下)であればよく、高精密グレードの20−10(キズ幅2μm以下、ディグ径10μm以下)が好ましい。また、平面度は、精密グレードの平面度λ/4であればよく、高精密グレードの平面度λ/20が好ましい。さらに、ガラスウェハの空気界面の面粗さは、精密グレードの20ÅRMSであればよく、高精密グレードの5ÅRMSであれば好ましい。なお、吸収層11がSiウェハとの接合面側で配置される場合、用いる接着剤と吸収層との屈折率差が0.1以下であれば、空気界面とガラスウェハとの屈折率差約0.5に比べ、反射や散乱の強度は1/25以下となるため、吸収層表面の面粗さの仕様は緩和できる。   Although the glass wafer depends on the pixel size, it is sufficient that the glass wafer generally satisfies the following level in the optically effective surface of the solid-state imaging device. That is, the surface quality may be a precision grade 60-40 (scratch width 6 μm or less, dig diameter 40 μm or less) in the above standard, and a high precision grade 20-10 (scratch width 2 μm or less, dig diameter 10 μm or less). ) Is preferred. The flatness may be a precision grade flatness λ / 4, and a high precision grade flatness λ / 20 is preferable. Furthermore, the surface roughness of the air interface of the glass wafer may be a precision grade of 20 mm RMS, preferably a high precision grade of 5 mm RMS. In addition, when the absorption layer 11 is arrange | positioned at the joint surface side with Si wafer, if the refractive index difference of the adhesive agent and absorption layer to be used is 0.1 or less, the refractive index difference of an air interface and a glass wafer is about. Since the intensity of reflection and scattering is 1/25 or less compared to 0.5, the specification of the surface roughness of the absorbing layer surface can be relaxed.

また、近赤外線吸収型ガラスウェハは、さらに、誘電体多層膜からなる反射層を備える構成であってもよく、近赤外線体積吸収型ガラスからなるガラスウェハや吸収層では、十分に遮断できない近紫外光および近赤外光を、反射作用により遮断できる。図1Cは、反射層を備えた近赤外線吸収型ガラスウェハ30の断面図であり、上記反射層14a、14bがガラスウェハ12(13)の片面または/および両面に備えられたり、吸収層11の表面に反射層14cが備えられたりしてもよい。なお、近赤外線吸収型ガラスウェハ30は、反射防止膜を備えてもよく、また、吸収層11の密着性や信頼性を向上するためのシランカップリング剤による表面処理を施したり、誘電体膜を備えたりしてもよい。近赤外線吸収型ガラスウェハ30の表面に位置する14a、14cの一方は、接着剤によりSiウェハと接合されるため、接着剤の屈折率を考慮して設計するとよい。   Further, the near-infrared absorbing glass wafer may further include a reflective layer made of a dielectric multilayer film. Near-ultraviolet light that cannot be sufficiently blocked by a glass wafer or absorbing layer made of near-infrared volume absorbing glass. Light and near-infrared light can be blocked by reflection. FIG. 1C is a cross-sectional view of a near-infrared absorbing glass wafer 30 provided with a reflective layer. The reflective layers 14a and 14b are provided on one side and / or both sides of the glass wafer 12 (13). A reflective layer 14c may be provided on the surface. The near-infrared absorbing glass wafer 30 may be provided with an antireflection film, and may be subjected to a surface treatment with a silane coupling agent for improving the adhesion and reliability of the absorbing layer 11, or a dielectric film. May be provided. Since one of 14a and 14c located on the surface of the near-infrared absorbing glass wafer 30 is bonded to the Si wafer by an adhesive, it may be designed in consideration of the refractive index of the adhesive.

本発明の近赤外線吸収型ガラスウェハ30は、固体撮像素子が形成されたSiウェハと接合され、画素に近接した位置に配置される。そのため、反射層14a、14b、14c中に異物や微小欠陥があると、それらが直接、画素欠陥となり得るため、その大きさや発生数の許容レベルは、非接合タイプの光学フィルタにおける反射層より厳しい場合が多い。したがって、近赤外線吸収型ガラスウェハ30は、品質レベルに応じて、反射層14a、14b、14cを備えるとよい。   The near-infrared absorbing glass wafer 30 of the present invention is bonded to a Si wafer on which a solid-state imaging device is formed, and is disposed at a position close to the pixels. For this reason, if there are foreign matters or microdefects in the reflective layers 14a, 14b, and 14c, they can directly become pixel defects. Therefore, the allowable level of the size and the number of occurrences is stricter than the reflective layer in the non-junction type optical filter. There are many cases. Therefore, the near-infrared absorbing glass wafer 30 may include the reflective layers 14a, 14b, and 14c according to the quality level.

次に、吸収層11について以下に説明する。
(吸収層)
吸収層11は、吸収色素、とくに近赤外線吸収色素(A)(以下、「色素(A)」ともいう。)と透明樹脂(B)とを含有する層であり、典型的には、透明樹脂(B)に色素(A)が均一に溶解または分散してなる層である。吸収層11は、さらに近紫外線吸収色素(U)(以下、「色素(U)」ともいう。)を含有するとよい。
Next, the absorption layer 11 will be described below.
(Absorption layer)
The absorbing layer 11 is a layer containing an absorbing dye, particularly a near-infrared absorbing dye (A) (hereinafter also referred to as “dye (A)”) and a transparent resin (B), and is typically a transparent resin. This is a layer in which the dye (A) is uniformly dissolved or dispersed in (B). The absorption layer 11 may further contain a near-ultraviolet absorbing dye (U) (hereinafter also referred to as “dye (U)”).

なお、図1A〜図1Cの近赤外線吸収型ガラスウェハおいて、吸収層11が、さらに色素(U)を含有する場合も、1層で構成されるように図示するが、この構成に限らない。例えば、吸収層11が色素(A)と透明樹脂(B)とを含有し、色素(U)を含まない場合、図1A〜図1Cに図示しない近紫外線吸収層を別途設ける構成でもよい。即ち、近紫外線吸収層は、色素(U)と透明樹脂を含有し、独立した層として設けられてもよい。   In addition, in the near-infrared absorption type | mold glass wafer of FIG. 1A-FIG. 1C, even when the absorption layer 11 contains a pigment | dye (U), although it illustrates in figure to be comprised by one layer, it is not restricted to this structure. . For example, when the absorption layer 11 contains the dye (A) and the transparent resin (B) and does not contain the dye (U), a configuration may be provided in which a near-ultraviolet absorption layer (not shown in FIGS. 1A to 1C) is separately provided. That is, the near-ultraviolet absorbing layer may contain a pigment (U) and a transparent resin and be provided as an independent layer.

この場合、近紫外線吸収層は、ガラスウェハ12(13)の両主面のうち、吸収層11側に設けてもよく、吸収層11側と対向する側に設けてもよく、その位置関係に制限はない。ただし、近紫外線吸収層を別途設ける構成であっても、本発明の近赤外線吸収型ガラスウェハは、吸収層11がさらに色素(U)を含有する構成の光学特性と同じ光学特性が得られる。また、吸収層11が、色素(A)と透明樹脂(B)、さらに色素(U)を含有する場合でも、色素(U)と透明樹脂(B)を含有する近紫外線吸収層を別途設けてもよい。以下、本発明の近赤外線吸収型ガラスウェハは、色素(U)を含有する場合、吸収層11に色素(U)が含有される構成として説明をする。   In this case, the near-ultraviolet absorption layer may be provided on the absorption layer 11 side of both the main surfaces of the glass wafer 12 (13), or may be provided on the side opposite to the absorption layer 11 side. There is no limit. However, even if it is the structure which provides a near-ultraviolet absorption layer separately, the optical characteristic same as the optical characteristic of the structure in which the near-infrared absorption type glass wafer of this invention contains the pigment | dye (U) further is obtained. Moreover, even when the absorption layer 11 contains the pigment (A), the transparent resin (B), and further the pigment (U), a near ultraviolet absorption layer containing the pigment (U) and the transparent resin (B) is separately provided. Also good. Hereinafter, the near-infrared absorption type glass wafer of this invention demonstrates as a structure by which the absorption layer 11 contains a pigment | dye (U), when a pigment | dye (U) is contained.

<近赤外線吸収色素(A)>
近赤外線吸収色素(A)は、可視域(波長450〜600nm)の光を透過し、近赤外域(波長700〜1150nm)の光を吸収する能力を有すれば特に制限されない。なお、本発明における色素は顔料、すなわち分子が凝集した状態でもよい。
<Near-infrared absorbing dye (A)>
The near-infrared absorbing dye (A) is not particularly limited as long as it has the ability to transmit light in the visible region (wavelength 450 to 600 nm) and absorb light in the near-infrared region (wavelength 700 to 1150 nm). The dye in the present invention may be a pigment, that is, a state in which molecules are aggregated.

色素(A)は、波長650〜750nmに吸収極大波長λmaxを有する材料が好ましく、波長680〜720nmにλmaxを有する材料がさらに好ましい。また、色素(A)を含む吸収層11は、近赤外域に吸収を有するCuO含有ガラスウェハに比べ、吸収波長帯幅を狭くできる材料の種類や含有量の選択における自由度が高い。そのため、CuO含有ガラスウェハ13を用いる近赤外線吸収型ガラスウェハ20において、吸収層11は、それの吸収極大波長λmaxにおける透過率T(λmax)を、CuO含有ガラスウェハの吸収極大波長λGmaxにおける透過率T(λGmax)より低く調整することで、CuO含有ガラスの可視域に残留する吸収による透過率低下を抑制しつつ、λmax近傍でλmaxよりも可視光側に、急峻な遮光性を実現できる。 The dye (A) is preferably a material having an absorption maximum wavelength λ max at a wavelength of 650 to 750 nm, and more preferably a material having λ max at a wavelength of 680 to 720 nm. Moreover, the absorption layer 11 containing a pigment | dye (A) has a high freedom degree in selection of the kind and content of a material which can narrow an absorption wavelength band width compared with the CuO containing glass wafer which has absorption in a near infrared region. Therefore, in the near infrared absorption type glass wafer 20 using the CuO-containing glass wafer 13, the absorption layer 11 has a transmittance T (λ max ) at the absorption maximum wavelength λ max of the absorption maximum wavelength λ Gmax of the CuO-containing glass wafer. By adjusting the transmittance to be lower than the transmittance T (λ Gmax ) in the glass, a sharp light shielding is performed near the λ max to the visible light side near the λ max while suppressing a decrease in the transmittance due to the absorption remaining in the visible region of the CuO-containing glass. Can be realized.

また、吸収層11の分光透過率曲線が「可視光の吸収が少なく、λmaxよりも可視光(短波長)側に急峻な傾きを有するとよい」とする理由は、該吸収層により視感度に近い分光透過率曲線を実現するためである。つまり、吸収層11は、視感度の高い波長550〜600nmの光に対して高透過率を維持し、視感度が徐々に低下する波長600〜650nmの光に対する透過率が40〜60%程度まで低下し、視感度が低いレベルから殆ど無いレベルの波長650〜700nmの光に対する透過率が5%以下まで低下するようにする。具体的には、吸収層11のλmaxにおける透過率T(λmax)が、5%以下となるよう、色素(A)およびその含有量を調整するとよい。 Further, the reason why the spectral transmittance curve of the absorption layer 11 is “the absorption of the visible light is small and it is preferable that the absorption layer 11 has a steeper slope toward the visible light (short wavelength) side than λ max ” is due to the visibility of the absorption layer 11 This is for realizing a spectral transmittance curve close to. That is, the absorption layer 11 maintains a high transmittance with respect to light with a wavelength of 550 to 600 nm having a high visibility, and a transmittance with respect to light with a wavelength of 600 to 650 nm at which the visibility is gradually lowered is approximately 40 to 60%. The transmittance with respect to light having a wavelength of 650 to 700 nm from a level where the visibility is low to a level which hardly occurs is reduced to 5% or less. Specifically, the dye (A) and the content thereof may be adjusted so that the transmittance T (λ max ) at λ max of the absorption layer 11 is 5% or less.

吸収層11は、波長550〜700nmの光に対する透過率が、上記の光学特性を示すよう色素(A)の調整を行った結果、略700nm以上の近赤外域における吸収波長帯域が広いほど好ましい。また、吸収層11は、λmax近傍で透過率が20%以下となる吸収波長帯幅が30nm以上あればよく、40nm以上あればより好ましい。なお、吸収層11がこのような吸収波長帯幅を有しても、CuO含有ガラスウェハおよび吸収層11の吸収で十分に遮断できない近赤外域の透過光については、反射層を用いて効果的に遮光できる。つまり、反射層は、入射角0°〜30°の光に対し、分光透過率曲線の入射角依存により反射帯がシフトするが、反射帯の短波長側に位置する透過率50%の波長が、入射角により短波長側にシフトしても、吸収層の吸収波長帯幅内の変化に収まるよう設定すればよい。このようにして、該設計に基づく近赤外線吸収型ガラスウェハは、とくに近赤外域における反射層の入射角依存性を抑制できる。 As a result of adjusting the dye (A) so that the transmittance with respect to light having a wavelength of 550 to 700 nm exhibits the above optical characteristics, the absorption layer 11 is preferably as wide as possible in the near infrared region of approximately 700 nm or more. Further, the absorption layer 11, the absorption wavelength band width transmittance is 20% or less at lambda max vicinity may be any 30nm or more, more preferably if more than 40 nm. In addition, even if the absorption layer 11 has such an absorption wavelength band width, it is effective to use a reflection layer for near-infrared transmitted light that cannot be sufficiently blocked by absorption of the CuO-containing glass wafer and the absorption layer 11. Can be shaded. In other words, the reflection layer shifts the reflection band due to the incident angle dependence of the spectral transmittance curve for light having an incident angle of 0 ° to 30 °, but the wavelength with a transmittance of 50% located on the short wavelength side of the reflection band. Even if it shifts to the short wavelength side depending on the incident angle, it may be set so as to be within the change in the absorption wavelength band of the absorption layer. In this way, the near-infrared absorbing glass wafer based on the design can suppress the incident angle dependency of the reflective layer particularly in the near-infrared region.

色素(A)は、該色素(A)が透明樹脂(B)中に分散して得られる樹脂層を使用して測定される波長400〜850nmの吸収スペクトルにおいて、波長650〜750nmに吸収極大波長を有するとよい。該吸収特性を有する色素(A)を色素(A1)、該吸収スペクトルにおける吸収極大波長を、色素(A1)のλmaxという。なお、色素(A1)の吸収スペクトルは、波長λmaxに吸収の頂点を有する吸収ピーク(以下、「λmaxの吸収ピーク」という)を有する。色素(A1)の吸収スペクトルも、可視光の吸収が少なく、λmaxの吸収ピークの可視光側の傾きが急峻であるとよい。さらに、λmaxの吸収ピークの長波長側では傾きは緩やかであるとよい。 The dye (A) has an absorption maximum wavelength at a wavelength of 650 to 750 nm in an absorption spectrum of a wavelength of 400 to 850 nm measured using a resin layer obtained by dispersing the dye (A) in the transparent resin (B). It is good to have. The dye (A) having the absorption characteristic is referred to as the dye (A1), and the absorption maximum wavelength in the absorption spectrum is referred to as λ max of the dye (A1). The absorption spectrum of the dye (A1) has an absorption peak having an absorption peak at the wavelength λ max (hereinafter referred to as “λ max absorption peak”). The absorption spectrum of the dye (A1) also has little absorption of visible light, and it is preferable that the absorption peak of λ max has a steep inclination on the visible light side. Further, the slope should be gentle on the long wavelength side of the absorption peak at λ max .

色素(A1)としては、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、ジチオール金属錯体系化合物、ジイモニウム系化合物、ポリメチン系化合物、フタリド化合物、ナフトキノン系化合物、アントラキノン系化合物、インドフェノール系化合物、スクアリリウム系化合物等が挙げられる。   Examples of the dye (A1) include cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, dithiol metal complex compounds, diimonium compounds, polymethine compounds, phthalide compounds, naphthoquinone compounds, anthraquinone compounds, indophenol compounds, Examples include squarylium compounds.

これらの中ではスクアリリウム系化合物、シアニン系化合物およびフタロシアニン系化合物がより好ましく、スクアリリウム系化合物が特に好ましい。スクアリリウム系化合物からなる色素(A1)は、上記吸収スペクトルにおいて、可視光の吸収が少なく、λmaxの吸収ピークが可視光側で急峻な傾きを有するとともに、保存安定性および光に対する安定性が高いため好ましい。 Among these, squarylium compounds, cyanine compounds and phthalocyanine compounds are more preferred, and squarylium compounds are particularly preferred. The dye (A1) composed of a squarylium compound has little absorption of visible light in the above absorption spectrum, the absorption peak of λ max has a steep slope on the visible light side, and has high storage stability and light stability. Therefore, it is preferable.

スクアリリウム系化合物は、例えば、WO2012/169447を参照でき、該文献には、吸収極大波長695〜747nmを示す色素が示される。また、種々の透明樹脂にスクアリリウム系化合物を含む吸収層は、例えば、WO2014/088063を参照でき、該文献には、吸収極大波長691〜722nmの実施例が示される。   For the squarylium-based compound, for example, WO2012 / 169447 can be referred to, and this document shows a dye having an absorption maximum wavelength of 695 to 747 nm. Moreover, the absorption layer which contains a squarylium type compound in various transparent resins can refer to, for example, WO2014 / 088063, and examples of the absorption maximum wavelength 691 to 722 nm are shown in this document.

シアニン系化合物からなる色素(A1)は、上記吸収スペクトルにおいて、可視光の吸収が少なく、λmax近傍の波長領域において長波長側で光の吸収率が高いため好ましい。また、シアニン系化合物は低コストであって、塩形成することにより長期の安定性も確保できる。フタロシアニン系化合物からなる色素(A1)は、耐熱性や耐候性に優れるため好ましい。WO2014/030628も参照でき、該文献には、透明樹脂に、吸収極大波長が694、740、747nmを示すシアニン系化合物と、吸収極大波長が681nmを示すフタロシアニン系化合物と、を含む吸収層の具体例が示される。 The dye (A1) composed of a cyanine compound is preferable because the absorption spectrum has little visible light absorption and high light absorption on the long wavelength side in the wavelength region near λmax . In addition, the cyanine compound is low in cost, and long-term stability can be secured by forming a salt. A dye (A1) made of a phthalocyanine compound is preferable because of excellent heat resistance and weather resistance. WO 2014/030628 can also be referred to, and this document describes a specific example of an absorption layer containing, in a transparent resin, a cyanine compound having absorption maximum wavelengths of 694, 740, and 747 nm and a phthalocyanine compound having absorption maximum wavelength of 681 nm. An example is shown.

<近紫外線吸収色素(U)>
近紫外線吸収色素(U)は、波長430nm以下の光を吸収する。色素(U)としては、下記(iv−1)および(iv−2)の要件を満たす化合物(以下、色素(U1)という。)が好ましい。
<Near UV absorbing dye (U)>
The near-ultraviolet absorbing dye (U) absorbs light having a wavelength of 430 nm or less. As the dye (U), a compound satisfying the following requirements (iv-1) and (iv-2) (hereinafter referred to as dye (U1)) is preferable.

(iv−1)ジクロロメタンに溶解して測定される波長350〜800nmの光吸収スペクトルにおいて、波長415nm以下の領域に、少なくとも一つの吸収極大波長を有し、波長415nm以下の領域における吸収極大のうち、最も長波長側の吸収極大波長λmax(UV)は、波長360〜415nmにある。
(iv−2)ジクロロメタンに溶解して測定される分光透過率曲線において、吸収極大波長λmax(UV)における透過率を10%としたとき、吸収極大波長λmax(UV)より長波長で透過率が90%となる波長λL90と、吸収極大波長λmax(UV)より長波長で透過率が50%となる波長λL50との差λL90−λL50が13nm以下である。
なお、(iv−1)、(iv−2)の要件を満たす色素(U1)の吸収極大波長は、透明樹脂中においても大きく変化しない。
(Iv-1) In a light absorption spectrum having a wavelength of 350 to 800 nm measured by dissolving in dichloromethane, the light absorption spectrum has at least one absorption maximum wavelength in the region of wavelength 415 nm or less, and the absorption maximum in the region of wavelength 415 nm or less The absorption maximum wavelength λ max (UV) on the longest wavelength side is at a wavelength of 360 to 415 nm.
In (iv-2) spectral transmittance curve measured was dissolved in dichloromethane, when the transmittance at the maximum absorption wavelength lambda max (UV) is 10% transmissive at wavelengths longer than the absorption maximum wavelength lambda max (UV) The difference λ L90L50 between the wavelength λ L90 at which the rate is 90% and the wavelength λ L50 at which the transmittance is 50% longer than the absorption maximum wavelength λ max (UV) is 13 nm or less.
In addition, the absorption maximum wavelength of the pigment | dye (U1) which satisfy | fills the requirements of (iv-1) and (iv-2) does not change a lot in transparent resin.

色素(U1)の具体例としては、オキサゾール系、メロシアニン系、シアニン系、ナフタルイミド系、オキサジアゾール系、オキサジン系、オキサゾリジン系、ナフタル酸系、スチリル系、アントラセン系、環状カルボニル系、トリアゾール系等が挙げられる。   Specific examples of the dye (U1) include oxazole, merocyanine, cyanine, naphthalimide, oxadiazole, oxazine, oxazolidine, naphthalic acid, styryl, anthracene, cyclic carbonyl, and triazole. Etc.

市販品としては、例えば、オキサゾール系として、Uvitex(商標)OB(Ciba社製 商品名)、Hakkol(商標) RF−K(昭和化学工業(株)製 商品名)、Nikkafluor EFS、Nikkafluor SB−conc(以上、いずれも日本化学工業(株)製 商品名)等が挙げられる。メロシアニン系として、S0511(Few Chemicals社製 商品名)等が挙げられる。シアニン系として、SMP370、SMP416(以上、いずれも(株)林原製 商品名)等が挙げられる。ナフタルイミド系として、Lumogen(商標)F violet570(BASF社製 商品名)等が挙げられる。   Commercially available products include, for example, Uvitex (trademark) OB (trade name, manufactured by Ciba), Hakcol (trademark) RF-K (trade name, manufactured by Showa Chemical Industry Co., Ltd.), Nikkafluor EFS, and Nikkafluor SB-conc. (All are trade names manufactured by Nippon Chemical Industry Co., Ltd.). Examples of the merocyanine series include S0511 (trade name, manufactured by Few Chemicals). Examples of cyanine include SMP370 and SMP416 (all are trade names manufactured by Hayashibara Co., Ltd.). Examples of naphthalimide include Lumogen (trademark) F violet 570 (trade name, manufactured by BASF).

上記のように、吸収層11は、色素(A)と透明樹脂(B)を含有し、さらに色素(U)を含有するとよい。吸収層11は、色素(A)を含有することで以下の(a1)および(a2)の光学特性を有することが好ましい。
(a1)吸収スペクトルにおいて、波長650〜750nmに吸収極大波長(λmax)を有する。
(a2)波長450〜550nmの光の透過率が80%以上である。
As mentioned above, the absorption layer 11 contains the pigment | dye (A) and transparent resin (B), and it is good to contain a pigment | dye (U) further. It is preferable that the absorption layer 11 has the following optical properties (a1) and (a2) by containing the dye (A).
(A1) The absorption spectrum has an absorption maximum wavelength (λ max ) at a wavelength of 650 to 750 nm.
(A2) The transmittance of light having a wavelength of 450 to 550 nm is 80% or more.

また、ガラスウェハ12(13)上の吸収層11は、反射層と組み合わせて得られる近赤外線吸収型ガラスウェハ30(光学フィルタ)として、以下の(i−1)および(i−2)の光学特性を有するように構成されるとよい。
(i−1)波長450〜550nmにおける入射角0°の光の透過率の平均値が80%以上である。
(i−2)波長650〜720nmにおける入射角0°の光の透過率の平均値が15%以下である。
ここで、吸収層11が上記(a1)および(a2)を満足することで、近赤外線吸収型ガラスウェハとして、上記(i−1)および(i−2)の光学特性が容易に得られるので、好ましい。
Further, the absorption layer 11 on the glass wafer 12 (13) is a near infrared absorption type glass wafer 30 (optical filter) obtained in combination with the reflection layer, and the following optical components (i-1) and (i-2) are used. It may be configured to have characteristics.
(I-1) The average transmittance of light having an incident angle of 0 ° at a wavelength of 450 to 550 nm is 80% or more.
(I-2) The average transmittance of light having an incident angle of 0 ° at a wavelength of 650 to 720 nm is 15% or less.
Here, since the absorption layer 11 satisfies the above (a1) and (a2), the optical characteristics of (i-1) and (i-2) can be easily obtained as a near-infrared absorbing glass wafer. ,preferable.

なお、吸収層11中における色素(A)の含有量は、吸収層11が上記光学特性(a1)および(a2)を満足する量とする。さらに、吸収層11中における色素(A)の含有量は、光学フィルタの入射角0°の分光透過率曲線の波長600nmよりも長い領域、好ましくは波長620〜660nmにおける光の透過率が50%となる波長を有するように調整することが好ましい。具体的には、色素(A)は、吸収層11中において、透明樹脂(B)100質量部に対して、0.1〜30質量部が好ましく、0.5〜25質量部がより好ましく、1〜20質量部が特に好ましい。   In addition, content of the pigment | dye (A) in the absorption layer 11 is taken as the quantity which the absorption layer 11 satisfies the said optical characteristics (a1) and (a2). Further, the content of the dye (A) in the absorption layer 11 is 50% of the light transmittance in a region longer than the wavelength 600 nm of the spectral transmittance curve at an incident angle of 0 ° of the optical filter, preferably in the wavelength of 620 to 660 nm. It is preferable to adjust so as to have a wavelength. Specifically, the pigment (A) is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 25 parts by mass with respect to 100 parts by mass of the transparent resin (B) in the absorption layer 11. 1-20 mass parts is especially preferable.

また、吸収層11は、さらに色素(U)を含有する場合、吸収層11と、ガラスウェハ12(13)と、反射層とを組み合わせて得られる近赤外線吸収型ガラスウェハとして、以下の(ii−1)および(ii−2)の光学特性を有するように構成するとよい。
(ii−1)波長430〜450nmにおいて、入射角0°の光の透過率の平均値が70%以上である。
(ii−2)波長350〜390nmにおいて、入射角0°の光の透過率の平均値が5%以下である。
Moreover, when the absorption layer 11 further contains a pigment (U), the following (ii) is used as a near-infrared absorption type glass wafer obtained by combining the absorption layer 11, the glass wafer 12 (13), and the reflection layer. It may be configured to have the optical characteristics of -1) and (ii-2).
(Ii-1) At a wavelength of 430 to 450 nm, the average value of the transmittance of light having an incident angle of 0 ° is 70% or more.
(Ii-2) At a wavelength of 350 to 390 nm, the average transmittance of light with an incident angle of 0 ° is 5% or less.

さらに、吸収層11中における色素(U)の含有量は、本発明の近赤外線吸収型ガラスウェハの入射角0°の分光透過率曲線のうち波長450nmよりも短い領域、好ましくは波長400〜425nmに透過率が50%となる波長を有するように定めることが好ましい。なお、色素(U)は、吸収層11中において、透明樹脂(B)100質量部に対して、0.01〜30質量部含有されるのが好ましく、0.05〜25質量部がより好ましく、0.1〜20質量部がより一層好ましい。   Furthermore, the content of the dye (U) in the absorption layer 11 is a region shorter than a wavelength of 450 nm in the spectral transmittance curve at an incident angle of 0 ° of the near-infrared absorbing glass wafer of the present invention, preferably a wavelength of 400 to 425 nm. It is preferable to determine the wavelength so that the transmittance is 50%. In addition, it is preferable that 0.01-30 mass parts of pigment | dye (U) is contained with respect to 100 mass parts of transparent resin (B) in the absorption layer 11, and 0.05-25 mass parts is more preferable. 0.1 to 20 parts by mass is even more preferable.

また、吸収層11は、色素(A)および透明樹脂(B)、任意成分の色素(U)以外に、本発明の効果を阻害しない範囲で、近赤外線吸収剤、色調補正色素、近紫外線吸収剤、レベリング剤、帯電防止剤、熱安定剤、光安定剤、酸化防止剤、分散剤、難燃剤、滑剤、可塑剤等を含有してもよい。また、後述する吸収層11を形成する際に用いる塗工液に添加する成分、例えば、シランカップリング剤、熱もしくは光重合開始剤、重合触媒に由来する成分等が挙げられる。吸収層における、これらその他の任意成分の含有量は、透明樹脂(B)100質量部に対して、それぞれ15質量部以下が好ましい。   The absorbing layer 11 is not limited to the pigment (A), the transparent resin (B), and the optional component pigment (U), and does not inhibit the effects of the present invention. Agents, leveling agents, antistatic agents, heat stabilizers, light stabilizers, antioxidants, dispersants, flame retardants, lubricants, plasticizers, and the like. Moreover, the component added to the coating liquid used when forming the absorption layer 11 mentioned later, for example, the component derived from a silane coupling agent, a heat | fever or photoinitiator, a polymerization catalyst, etc. are mentioned. The content of these other optional components in the absorbent layer is preferably 15 parts by mass or less for 100 parts by mass of the transparent resin (B).

吸収層11の膜厚は、0.1〜10μmが好ましい。膜厚が0.1μm未満では、近赤外線吸収能を十分に発現できないおそれがある。また、膜厚が10μm超では膜の平坦性が低下し、吸収率のバラツキが生じるおそれがある。膜厚は、1〜10μmがより好ましい。この範囲にあれば、十分な近赤外線吸収能と膜厚の平坦性を両立できる。なお、近紫外線吸収層を別途設ける場合でも近紫外線吸収層の膜厚は、上記の範囲を満たせばよい。   As for the film thickness of the absorption layer 11, 0.1-10 micrometers is preferable. If the film thickness is less than 0.1 μm, the near-infrared absorbing ability may not be sufficiently exhibited. On the other hand, if the film thickness exceeds 10 μm, the flatness of the film is lowered, and there is a possibility that the absorption rate varies. The film thickness is more preferably 1 to 10 μm. If it exists in this range, sufficient near-infrared absorptivity and flatness of a film thickness can be compatible. Even when a near ultraviolet absorbing layer is separately provided, the film thickness of the near ultraviolet absorbing layer only needs to satisfy the above range.

上記近赤外線吸収剤は、上記色素(A)、好ましくは色素(A1)の光学特性による効果を損なわないものとして、無機微粒子が好ましく使用できる。具体的には、ITO(Indium Tin Oxide)、ATO(Antimony-doped Tin Oxide)、タングステン酸セシウム、ホウ化ランタンなどの微粒子が挙げられる。中でも、ITO微粒子、タングステン酸セシウム微粒子は、可視光の透過率が高く、かつ1200nmを超える赤外域も含めた広範囲の光吸収性を有するため、赤外光の遮蔽性を必要とする場合に特に好ましい。   As the near-infrared absorber, inorganic fine particles can be preferably used as those that do not impair the effects of the optical properties of the dye (A), preferably the dye (A1). Specific examples include fine particles such as ITO (Indium Tin Oxide), ATO (Antimony-doped Tin Oxide), cesium tungstate, and lanthanum boride. Among these, ITO fine particles and cesium tungstate fine particles have a high visible light transmittance and a wide range of light absorption including an infrared region exceeding 1200 nm. Therefore, particularly when infrared light shielding is required. preferable.

吸収層11は、例えば、色素(A)および、透明樹脂(B)または透明樹脂(B)の原料成分、さらに任意に色素(U)を溶媒に分散し、溶解させて調製した塗工液を、ガラスウェハ12(13)上に塗工し、乾燥させ、さらに必要に応じて硬化させて製造できる。吸収層11をこのような方法で成膜することで、所望の膜厚で均一に製造できる。吸収層11が上記任意成分を含む場合、塗工液が該任意成分を含有する。   The absorption layer 11 is, for example, a coating liquid prepared by dispersing and dissolving a dye (A) and a transparent resin (B) or a raw material component of the transparent resin (B), and optionally a dye (U) in a solvent. It can be manufactured by coating on a glass wafer 12 (13), drying, and further curing as necessary. By forming the absorption layer 11 by such a method, it is possible to produce the absorption layer 11 uniformly with a desired film thickness. When the absorption layer 11 contains the said arbitrary component, a coating liquid contains this arbitrary component.

上記溶媒としては、色素(A)および、透明樹脂(B)または透明樹脂(B)の原料成分、さらに任意に含有する色素(U)を安定に分散できる分散媒または溶解できる溶媒であれば、特に限定されない。溶媒の量は、透明樹脂(B)100質量部に対して、10〜5000質量部が好ましく、30〜2000質量部が特に好ましい。なお、塗工液中の不揮発成分(固形分)の含有量は、塗工液全量に対して2〜50質量%が好ましく、5〜40質量%が特に好ましい。   As the solvent, as long as it is a dispersion medium that can stably disperse the dye (A), the raw material component of the transparent resin (B) or the transparent resin (B), and further optionally the dye (U) or a solvent that can be dissolved, There is no particular limitation. 10-5000 mass parts is preferable with respect to 100 mass parts of transparent resin (B), and, as for the quantity of a solvent, 30-2000 mass parts is especially preferable. In addition, 2-50 mass% is preferable with respect to the coating liquid whole quantity, and, as for content of the non-volatile component (solid content) in a coating liquid, 5-40 mass% is especially preferable.

塗工液の調製には、マグネチックスターラー、自転・公転式ミキサー、ビーズミル、遊星ミル、超音波ホモジナイザ等の撹拌装置を使用できる。塗工液の塗工には、浸漬コーティング法、キャストコーティング法、スプレーコーティング法、スピンナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、スリットダイコーター法、等のコーティング法を使用できる。その他、バーコーター法、スクリーン印刷法、フレキソ印刷法等も使用できる。   For the preparation of the coating liquid, a stirring device such as a magnetic stirrer, a rotation / revolution mixer, a bead mill, a planetary mill, or an ultrasonic homogenizer can be used. For coating of coating liquid, dip coating method, cast coating method, spray coating method, spinner coating method, bead coating method, wire bar coating method, blade coating method, roller coating method, slit die coater method, etc. The law can be used. In addition, a bar coater method, a screen printing method, a flexographic printing method, etc. can also be used.

ガラスウェハ12(13)上に上記塗工液を塗工した後、乾燥させることで該ガラスウェハ12(13)上に吸収層11が形成される。塗工液が透明樹脂(B)の原料成分を含有する場合には、さらに硬化処理を行う。反応が熱硬化の場合は乾燥と硬化を同時に行うことができるが、光硬化の場合は、乾燥と別に硬化処理を設ける。   After the coating liquid is applied onto the glass wafer 12 (13), the absorbent layer 11 is formed on the glass wafer 12 (13) by drying. When the coating solution contains the raw material component of the transparent resin (B), a curing treatment is further performed. When the reaction is thermosetting, drying and curing can be performed simultaneously. However, in the case of photocuring, a curing process is provided separately from the drying.

本発明の近赤外線吸収型ガラスウェハは、ガラスウェハ12(13)上に形成される吸収層11の近赤外線吸収特性により、分光透過率曲線が決まる。そして、近赤外線吸収型ガラスウェハは、固体撮像素子が複数形成されたSiウェハと接合されるため、近赤外線吸収型ガラスウェハのうち、固体撮像素子と対向する有効面内において、吸収層11は、分光透過率曲線の面内分布が均一性を有することが重要となる。   In the near-infrared absorbing glass wafer of the present invention, the spectral transmittance curve is determined by the near-infrared absorption characteristics of the absorption layer 11 formed on the glass wafer 12 (13). Since the near-infrared absorbing glass wafer is bonded to the Si wafer on which a plurality of solid-state imaging elements are formed, the absorption layer 11 is within the effective surface of the near-infrared absorbing glass wafer facing the solid-state imaging element. It is important that the in-plane distribution of the spectral transmittance curve has uniformity.

具体的に吸収層11は、色素(A)および、透明樹脂(B)または透明樹脂(B)の原料成分、さらに任意に色素(U)を溶媒に分散し、溶解させて調製した塗工液を、ガラスウェハ12(13)上に塗工し、乾燥させ、さらに必要に応じて硬化させてなる。このように形成する吸収層11は、ガラスウェハ面内で所定の膜厚値tおよびtの差分値である所定のΔt(=t×x)に収まるよう均一性を保つことが重要となる。 Specifically, the absorption layer 11 is a coating solution prepared by dispersing and dissolving the pigment (A), the transparent resin (B) or the raw material component of the transparent resin (B), and optionally the pigment (U). Is coated on the glass wafer 12 (13), dried, and further cured as necessary. It is important that the absorption layer 11 formed in this way maintain uniformity so as to be within a predetermined Δt (= t 0 × x) that is a difference value between a predetermined film thickness value t 0 and t 0 within the glass wafer surface. It becomes.

ここで、吸収層11について、波長620〜690nmの光に対する透過率が50%となる波長λ(T50%)となる膜厚をTとすると、吸収層11のλ(T50%)における吸収係数αを用いて、
0.5=exp(−α×T
と関係付けられる。即ち、吸収層11の平均の厚さtに対しても、
0.5=exp(−α×t
と関係付けられる波長λ(T50%)が特定される。したがって、面内でtの差分値Δt(=t×x)を有する吸収層11の各位置の透過率Tは、次式となる。
T=exp{−α×(t+Δt)}
=exp{−α×t×(1+x)}=0.5(1+x)
ここで、xは、吸収層11の、λ(T50%)が設定値となる厚さtに対する差分値Δtの比率(膜厚分布)x=Δt/tを表す。
Here, with respect to the absorption layer 11, assuming that the film thickness at the wavelength λ (T 50% ) at which the transmittance with respect to light having a wavelength of 620 to 690 nm is 50% is T 0 , the absorption layer 11 at λ (T 50% ) Using the absorption coefficient α,
0.5 = exp (−α × T 0 )
Related to. That is, even for the average thickness t 0 of the absorption layer 11,
0.5 = exp (−α × t 0 )
The wavelength λ (T 50% ) associated with is identified. Therefore, the transmittance T at each position of the absorption layer 11 having the difference value Δt (= t 0 × x) of t 0 in the plane is expressed by the following equation.
T = exp {−α × (t 0 + Δt)}
= Exp {−α × t 0 × (1 + x)} = 0.5 (1 + x)
Here, x represents a ratio (film thickness distribution) x = Δt / t 0 of the difference value Δt with respect to the thickness t 0 at which λ (T 50% ) of the absorption layer 11 is a set value.

図5は、吸収層について、xが±20%の範囲で変動したときの、λ(T50%)における透過率差ΔTの計算結果も併せ示したグラフである。同図は、前述のように、厚さ分布Δd/dと透過率差ΔTの関係を示すが、吸収層11の膜厚分布Δt/tに対しても同じΔTとの関係が成り立つ。図5より、膜厚分布Δt/tが−15%〜+15%で、+5.5%〜−4.9の透過率差の面内分布、膜厚分布Δt/tが−5%〜+5%で、+1.8%〜−1.7%の透過率差の面内分布が生じる。 FIG. 5 is a graph that also shows the calculation result of the transmittance difference ΔT at λ (T 50% ) when x varies within a range of ± 20% for the absorption layer. Although the figure shows the relationship between the thickness distribution Δd / d 0 and the transmittance difference ΔT, as described above, the same relationship with ΔT holds for the film thickness distribution Δt / t 0 of the absorption layer 11. From FIG. 5, the film thickness distribution Δt / t 0 is −15% to + 15%, the in-plane distribution of the transmittance difference of + 5.5% to −4.9, and the film thickness distribution Δt / t 0 is −5% to At + 5%, an in-plane distribution of + 1.8% to -1.7% transmittance difference occurs.

また、吸収層11は、近赤外線吸収特性に応じてλ(T50%)近傍の透過率の波長依存性(T(λ))が生じる。即ち、λ(T50%)近傍の波長変化Δλに対する透過率変化ΔTの割合ΔT/Δλ(=微分係数)を示す傾斜r(%/nm)が得られると、このrの値に基づいて、上記の膜厚分布Δt/tにともなうλ(T50%)の分布Δλ(=ΔT/r)に換算できる。 Further, the absorption layer 11 has wavelength dependency (T (λ)) of transmittance in the vicinity of λ (T 50% ) according to the near-infrared absorption characteristics. That is, when a slope r (% / nm) indicating the ratio ΔT / Δλ (= differential coefficient) of the transmittance change ΔT with respect to the wavelength change Δλ in the vicinity of λ (T 50% ) is obtained, based on the value of r, It can be converted into a distribution Δλ (= ΔT / r) of λ (T 50% ) accompanying the film thickness distribution Δt / t 0 .

図6は、傾斜r(%/nm)が0.4、0.5、0.6、1.0および1.5のときの、膜厚分布Δt/tにともなうλ(T50%)の分布Δλの計算結果も併せ示す。例えば、吸収層11の透過率が90%から10%まで直線的に近似でき、ΔT=80%変化する場合の波長変化Δλは、r=0.5(%/nm)では160nm、r=1.0(%/nm)では80nm、r=1.5(%/nm)では40nmに相当する。 FIG. 6 shows λ (T 50% ) with the film thickness distribution Δt / t 0 when the gradient r (% / nm) is 0.4, 0.5, 0.6, 1.0, and 1.5. The calculation result of the distribution Δλ is also shown. For example, the transmittance of the absorption layer 11 can be linearly approximated from 90% to 10%, and the wavelength change Δλ when ΔT = 80% changes is 160 nm when r = 0.5 (% / nm), and r = 1. 0.0 (% / nm) corresponds to 80 nm, and r = 1.5 (% / nm) corresponds to 40 nm.

図6より、撮像画像の色再現性の低下および色ムラの発生を抑制する目的で、吸収層11のΔλを±3nm以内にするためには、r=ΔT/Δλが1.5(%/nm)の場合、膜厚分布Δt/tを±13%以内にすればよい。一方、rが0.5(%/nm)の場合、膜厚分布Δt/tを±5%以内にすればよい。 From FIG. 6, in order to suppress Δλ of the absorption layer 11 within ± 3 nm for the purpose of suppressing the decrease in color reproducibility and color unevenness of the captured image, r = ΔT / Δλ is 1.5 (% /%). nm), the film thickness distribution Δt / t 0 may be within ± 13%. On the other hand, when r is 0.5 (% / nm), the film thickness distribution Δt / t 0 may be within ± 5%.

また、近赤外線吸収型ガラスウェハは、波長分布Δλが±5nm以内であればよく、±3nm以内が好ましく、±2nm以内がより好ましく、±1nm以内がさらに好ましい。したがって、吸収層11は、面内における波長分布Δλがこの範囲内となるよう、吸収層11内の色素(A)濃度分布を調整するとともに膜厚分布Δt/tを±15%以内とすればよく、±8%以内とすれば好ましく、±5%以内とすればより好ましく、±2%以内とすればさらに好ましい。 Further, the near-infrared absorbing glass wafer may have a wavelength distribution Δλ within ± 5 nm, preferably within ± 3 nm, more preferably within ± 2 nm, and further preferably within ± 1 nm. Therefore, the absorption layer 11 adjusts the dye (A) concentration distribution in the absorption layer 11 so that the in-plane wavelength distribution Δλ is within this range, and the film thickness distribution Δt / t 0 is within ± 15%. It is preferable if it is within ± 8%, more preferably within ± 5%, and even more preferably within ± 2%.

したがって、例えば、直径15cm以上のガラスウェハ面上に膜厚分布の小さい吸収層11を得るためには、色素(A)および、透明樹脂(B)または透明樹脂(B)の原料成分、さらに任意に添加する色素(U)を溶媒に分散し、溶解させて調製した塗工液を均一膜厚に塗布することが前提となる。これを実現するため、前述の塗工液の塗工方法において、塗工液膜厚分布を確保できる塗工方法を用いるとよい。   Therefore, for example, in order to obtain the absorption layer 11 having a small film thickness distribution on the surface of a glass wafer having a diameter of 15 cm or more, the pigment (A) and the raw material components of the transparent resin (B) or the transparent resin (B), and further optional It is assumed that the coating liquid prepared by dispersing and dissolving the dye (U) to be added to the solvent is applied to a uniform film thickness. In order to realize this, in the above-described coating liquid coating method, a coating method capable of ensuring the coating liquid film thickness distribution may be used.

具体的には、半導体ウェハへのフォトレジスト膜塗布や、DVD、Blu−ray(登録商標)などの一部の光ディスクにおいて有機色素記録層や保護膜の塗布に用いられるスピンコート法を用いると、直径8〜12インチのウェハサイズにスピンコートされた数μm膜厚の樹脂層に対して±1%以内の膜厚分布に制御できる。また、液晶テレビの大型ガラス基板に、膜厚が数μmのRGBカラーフィルタを形成する際の、スリットダイコーター法を用いてもよい。例えば、該スリットダイコーター法を用いると、800mm□以上のガラス基板面に膜厚2μmのカラーレジストを、膜厚分布±3%以内で、また、ガラス基板周辺部を除けば1%程度の膜厚分布が得られる。   Specifically, when using a spin coat method used for coating an organic dye recording layer or a protective film in some optical disks such as a photoresist film coating on a semiconductor wafer, DVD, Blu-ray (registered trademark), The film thickness distribution can be controlled within ± 1% with respect to a resin layer having a thickness of several μm spin-coated on a wafer size of 8 to 12 inches in diameter. Moreover, you may use the slit die coater method at the time of forming the RGB color filter with a film thickness of several micrometers on the large sized glass substrate of a liquid crystal television. For example, when the slit die coater method is used, a color resist having a film thickness of 2 μm is applied to a glass substrate surface of 800 mm □ or more within a film thickness distribution of ± 3%, and a film having a thickness of about 1% excluding the peripheral portion of the glass substrate. A thickness distribution is obtained.

したがって、吸収層11の膜厚分布に相当する、塗工液の膜厚分布Δt/tは、±15%以内、好ましくは±8%以内、より好ましくは±5%以内、さらに好ましくは±2%以内になる塗工方法を用いればよい。即ち、吸収層11の(設定値)膜厚tが1〜10μmの場合、Δt/tを±2%以内にするため、ガラスウェハ内の吸収層11の膜厚分布Δtを±20nm以内〜±200nm以内に制御するとよい。 Therefore, the coating thickness distribution Δt / t 0 corresponding to the thickness distribution of the absorbing layer 11 is within ± 15%, preferably within ± 8%, more preferably within ± 5%, and even more preferably ± A coating method that is within 2% may be used. That is, when the (set value) film thickness t 0 of the absorption layer 11 is 1 to 10 μm, the film thickness distribution Δt of the absorption layer 11 in the glass wafer is within ± 20 nm in order to make Δt / t 0 within ± 2%. It is good to control within ˜ ± 200 nm.

<透明樹脂(B)>
透明樹脂(B)は、具体的に、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、およびポリエステル樹脂が挙げられる。透明樹脂(B)としては、これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。
<Transparent resin (B)>
The transparent resin (B) is specifically acrylic resin, epoxy resin, ene thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyarylene ether. Examples include phosphine oxide resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, and polyester resins. As transparent resin (B), 1 type may be used individually from these resin, and 2 or more types may be mixed and used for it.

上記の中でも、色素(A)や色素(U)の透明樹脂(B)に対する溶解性の観点から、透明樹脂は、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、エン・チオール樹脂、エポキシ樹脂、および環状オレフィン樹脂から選ばれる1種以上が好ましい。さらに、透明樹脂は、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、および環状オレフィン樹脂から選ばれる1種以上がより好ましい。ポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等が好ましい。   Among these, from the viewpoint of solubility of the dye (A) and the dye (U) in the transparent resin (B), the transparent resin is an acrylic resin, a polyester resin, a polycarbonate resin, an ene / thiol resin, an epoxy resin, and a cyclic olefin. One or more selected from resins are preferred. Further, the transparent resin is more preferably at least one selected from acrylic resin, polyester resin, polycarbonate resin, polyimide resin, polyamideimide resin, and cyclic olefin resin. As the polyester resin, polyethylene terephthalate resin, polyethylene naphthalate resin and the like are preferable.

(半導体ウェハ積層体)
さらに、本発明は、カメラモジュールを製造するための複数の固体撮像素子が形成された半導体ウェハと近赤外線吸収型ガラスウェハとが接合された半導体ウェハ積層体を提供する。図7は、本発明の近赤外線吸収型ガラスウェハ10(20、30)と複数の固体撮像素子19が形成された半導体ウェハ15が接合された半導体ウェハ積層体40(50)の例を概略的に示す斜視図である。
(Semiconductor wafer laminate)
Furthermore, the present invention provides a semiconductor wafer laminate in which a semiconductor wafer on which a plurality of solid-state imaging elements for manufacturing a camera module are formed and a near-infrared absorbing glass wafer are joined. FIG. 7 schematically shows an example of a semiconductor wafer laminate 40 (50) in which a near-infrared absorbing glass wafer 10 (20, 30) of the present invention and a semiconductor wafer 15 on which a plurality of solid-state imaging devices 19 are formed are joined. It is a perspective view shown in FIG.

図8A、図8Bは、本発明の近赤外線吸収型ガラスウェハ10(20、30)が固体撮像素子19と一体化した半導体ウェハ積層体40(50)の固体撮像素子19周辺を拡大した断面模式図である。固体撮像素子19は、Siウェハ15の片面に、Si半導体(CMOS、CCD)光検出器アレイ16が形成されるとともに画素毎に、RGBモザイクカラーフィルタ17および樹脂マイクロレンズ18が形成されてなる。固体撮像素子19は、Siウェハ15と、近赤外線吸収型ガラスウェハ10(20、30)とが、接着剤21を介して一体化され、半導体ウェハ積層体40(50)をなす。   8A and 8B are schematic cross-sectional views in which the periphery of the solid-state imaging device 19 of the semiconductor wafer laminate 40 (50) in which the near-infrared absorbing glass wafer 10 (20, 30) of the present invention is integrated with the solid-state imaging device 19 is enlarged. FIG. The solid-state imaging device 19 is formed by forming an Si semiconductor (CMOS, CCD) photodetector array 16 on one side of an Si wafer 15 and an RGB mosaic color filter 17 and a resin microlens 18 for each pixel. In the solid-state imaging device 19, the Si wafer 15 and the near-infrared absorbing glass wafer 10 (20, 30) are integrated via an adhesive 21 to form a semiconductor wafer laminated body 40 (50).

図8Aの半導体ウェハ積層体40は、近赤外線吸収型ガラスウェハ10(20、30)の吸収層11側に接着剤21を介して、固体撮像素子19と一体化した構成である。一方、図8Bの半導体ウェハ積層体50は、吸収層11が空気側に面し、吸収層11と対向する側に接着剤21を介して一体化した構成である。接着剤21は、可視光に対して透明な材料であればよい。半導体ウェハ積層体は、吸収層11の配置が、固体撮像素子19側(図8A)でも、空気側(図8B)でもよい。吸収層は、ガラスウェハに比べて柔らかいため、表面にキズが付き易いことから、吸収層11が単層からなる場合、それを固体撮像素子19の接合面側に配置すると、その後の製造工程でキズが生じにくい。   The semiconductor wafer laminated body 40 of FIG. 8A is a structure integrated with the solid-state imaging device 19 via the adhesive 21 on the absorption layer 11 side of the near-infrared absorbing glass wafer 10 (20, 30). On the other hand, the semiconductor wafer laminated body 50 of FIG. 8B has a configuration in which the absorption layer 11 faces the air side and is integrated on the side facing the absorption layer 11 via the adhesive 21. The adhesive 21 may be any material that is transparent to visible light. In the semiconductor wafer laminate, the arrangement of the absorption layer 11 may be on the solid-state imaging device 19 side (FIG. 8A) or on the air side (FIG. 8B). Since the absorption layer is softer than a glass wafer, the surface is easily scratched. Therefore, when the absorption layer 11 is formed of a single layer, if it is disposed on the bonding surface side of the solid-state imaging device 19, the subsequent manufacturing process Scratches are unlikely to occur.

半導体ウェハ積層体50は、ガラスウェハ12(13)をSiウェハ15に接合した後、ガラスウェハ12(13)の表面に吸収層11を形成する工程においても得られる構成である。即ち、半導体ウェハ積層体50は、吸収層11の形成と、ガラスウェハと固体撮像素子の接合、の順番は不問であっても同構成が得られる。   The semiconductor wafer laminated body 50 is a structure obtained also in the process of forming the absorption layer 11 on the surface of the glass wafer 12 (13) after joining the glass wafer 12 (13) to the Si wafer 15. That is, the semiconductor wafer laminated body 50 can obtain the same configuration even if the order of the formation of the absorption layer 11 and the bonding of the glass wafer and the solid-state imaging device is not limited.

固体撮像素子19において、樹脂マイクロレンズ18は、入射光を光検出器アレイ16の受光面に集光する凸レンズ機能となる。そのため、樹脂マイクロレンズ18に用いる透明樹脂の屈折率nMLと接着剤21の屈折率nは、nML>nを満たし、屈折率差(nML−n)は大きいほど好ましい。具体的には、nML≧1.8が好ましく、nML≧1.9がより好ましい。また、n≦1.5が好ましく、n≦1.45がより好ましい。 In the solid-state imaging device 19, the resin microlens 18 has a convex lens function that collects incident light on the light receiving surface of the photodetector array 16. Therefore, the refractive index n ML of the transparent resin used for the resin microlens 18 and the refractive index n G of the adhesive 21 satisfy n ML > n G , and the refractive index difference (n ML −n G ) is preferably as large as possible. Specifically, n ML ≧ 1.8 is preferable, and n ML ≧ 1.9 is more preferable. Further, n G ≦ 1.5 is preferable, and n G ≦ 1.45 is more preferable.

接着剤21は、紫外線硬化型あるいは熱硬化型いずれでもよいが、短時間に接着強度が得られる点で、紫外線硬化型が好ましい。紫外線硬化型の接着剤は、樹脂マイクロレンズ18面と近赤外線吸収型ガラスウェハ10(20、30)のガラス面または吸収層面と十分な接着強度が得られる。接着剤21は、硬化時の重合収縮率が3%以下で、高温高質下や急激な温度変化などの周囲環境条件による位置ズレや接着力低下が小さく、かつ、ハロゲン含有量が少なく、硬化後の未反応成分によるアウトガスが少ないものが好ましい。   The adhesive 21 may be either an ultraviolet curable type or a heat curable type, but an ultraviolet curable type is preferable in that an adhesive strength can be obtained in a short time. The ultraviolet curable adhesive can provide sufficient adhesive strength between the resin microlens 18 surface and the glass surface or absorption layer surface of the near-infrared absorbing glass wafer 10 (20, 30). Adhesive 21 has a polymerization shrinkage rate of 3% or less upon curing, is less susceptible to misalignment and lowering of adhesive strength due to ambient environmental conditions such as high temperature and high quality, and rapid temperature changes, and has a low halogen content. Those with less outgassing due to later unreacted components are preferred.

接着剤21による接合は、硬化前の接着剤を近赤外線吸収型ガラスウェハ10(20、30)に塗布し、近赤外線吸収型ガラスウェハと固体撮像素子19の間に、厚さ10μm以下で均一膜厚となるように一体化して、半導体ウェハ積層体40(50)を得る。紫外線硬化型の接着剤を用いる場合は、近赤外線吸収型ガラスウェハ10(20、30)側から紫外線を接着剤21に照射して重合硬化させるとよい。また、熱硬化型の接着剤を用いる場合は、半導体ウェハ積層体50全体を加熱して重合硬化させるとよい。
なお、吸収層11が、接着剤21の硬化プロセスにおいて、紫外線を透過しない場合や、熱処理で変質する場合は、ガラスウェハ12(13)と固体撮像素子19との接着後に、ガラスウェハ12(13)の表面に吸収層11を形成するとよい。
Bonding with the adhesive 21 is performed by applying an uncured adhesive to the near-infrared absorbing glass wafer 10 (20, 30), and uniformly between the near-infrared absorbing glass wafer 10 and the solid-state imaging device 19 with a thickness of 10 μm or less. It integrates so that it may become a film thickness, and the semiconductor wafer laminated body 40 (50) is obtained. In the case of using an ultraviolet curable adhesive, it is preferable to irradiate the adhesive 21 with ultraviolet rays from the near-infrared absorbing glass wafer 10 (20, 30) side for polymerization and curing. When using a thermosetting adhesive, the entire semiconductor wafer laminate 50 may be heated and polymerized to cure.
In the case where the absorption layer 11 does not transmit ultraviolet rays or is altered by heat treatment in the curing process of the adhesive 21, the glass wafer 12 (13) is bonded after the glass wafer 12 (13) and the solid-state imaging device 19 are bonded. The absorption layer 11 may be formed on the surface of

また、図8Aおよび図8Bの半導体ウェハ積層体において、固体撮像素子19の電圧印加および電気信号取出用の電気配線は省略した。実際には、画素の小型化による感度低下を抑制できる裏面照射型CMOS固体撮像素子の場合、電気配線が半導体ウェハ15の光検出器アレイ16と対向する側に配置され、半導体ウェハ15の貫通電極等の技術により、電極が固体撮像素子裏面に引き出される例が挙げられる。   Further, in the semiconductor wafer laminated body of FIG. 8A and FIG. 8B, electric wiring for voltage application and electric signal extraction of the solid-state imaging device 19 is omitted. Actually, in the case of a back-illuminated CMOS solid-state imaging device capable of suppressing a reduction in sensitivity due to pixel miniaturization, the electrical wiring is disposed on the side facing the photodetector array 16 of the semiconductor wafer 15, and the through electrode of the semiconductor wafer 15 is disposed. An example in which the electrode is drawn out to the back surface of the solid-state imaging device by a technique such as the above.

半導体ウェハ積層体40(50)は、ダイシング装置などを用いて固体撮像素子19のサイズに切断され、固体撮像装置に搭載される。図12は、固体撮像装置60の要部を概略的に示す断面図であり、近赤外線吸収型ガラスウェハ10(20)が接合された固体撮像素子19と、その前面に、反射層14と、撮像レンズ31と、これらを固定する筐体33とを有する。撮像レンズ31は、筐体33の内側に設けられたレンズユニット32により固定される。反射層14は、透明基板の片面または両面に誘電体多層膜を有し、レンズユニット32の光入射側から固体撮像素子19の間の光路中に配置される。図12の固体撮像装置60は、反射層14が、レンズユニット32と近赤外線吸収型ガラスウェハ10(20)との間に配置された例を示すが、この例に限らず、反射層14の誘電体多層膜を撮像レンズ31の表面に形成した構成でもよい。   The semiconductor wafer stacked body 40 (50) is cut into the size of the solid-state imaging device 19 using a dicing device or the like and mounted on the solid-state imaging device. FIG. 12 is a cross-sectional view schematically showing a main part of the solid-state imaging device 60, the solid-state imaging device 19 to which the near-infrared absorbing glass wafer 10 (20) is bonded, the reflective layer 14 on the front surface thereof, An imaging lens 31 and a housing 33 for fixing them are included. The imaging lens 31 is fixed by a lens unit 32 provided inside the housing 33. The reflective layer 14 has a dielectric multilayer film on one side or both sides of the transparent substrate, and is disposed in the optical path between the light incident side of the lens unit 32 and the solid-state imaging device 19. The solid-state imaging device 60 in FIG. 12 shows an example in which the reflective layer 14 is disposed between the lens unit 32 and the near-infrared absorbing glass wafer 10 (20). A configuration in which a dielectric multilayer film is formed on the surface of the imaging lens 31 may be employed.

このように、本発明の半導体ウェハ積層体40(50)は、固体撮像素子19に光学フィルタ機能をウェハレベルで組み込めるため、生産性が向上するとともに特性の安定化が得られる。さらに、従来の光学フィルタ機能を固体撮像素子19や撮像レンズ31に集積化し、光学フィルタ部品点数の削減によりカメラモジュールの組立調整が簡素化されるとともに、固体撮像装置の小型化が可能となる。なお、近赤外線吸収型ガラスウェハ10(20、30)は、ガラスウェハの厚さdの差分値Δdが±30μm以内であるので、レンズユニット32と固体撮像素子19との間隔(フォーカス)調整が緩和できる。 Thus, since the semiconductor wafer laminate 40 (50) of the present invention can incorporate the optical filter function into the solid-state imaging device 19 at the wafer level, the productivity is improved and the characteristics are stabilized. Further, the conventional optical filter function is integrated in the solid-state image sensor 19 and the imaging lens 31, and the assembly adjustment of the camera module is simplified by reducing the number of optical filter components, and the solid-state imaging device can be miniaturized. Since the near infrared absorption glass wafer 10 (20, 30) has a difference value Δd of the glass wafer thickness d 0 within ± 30 μm, the distance (focus) adjustment between the lens unit 32 and the solid-state imaging device 19 is adjusted. Can be relaxed.

以下に、本発明を実施例によりさらに詳細に説明する。
[例1]
図1Aに示す、近赤外線吸収型ガラスウェハ10の製造例を説明する。近赤外線吸収型ガラスウェハ10は、直径15cmで0.2mm厚のガラスウェハ12の片面に吸収層11を備える。
Hereinafter, the present invention will be described in more detail by way of examples.
[Example 1]
A manufacturing example of the near-infrared absorbing glass wafer 10 shown in FIG. 1A will be described. The near-infrared absorbing glass wafer 10 includes an absorbing layer 11 on one side of a glass wafer 12 having a diameter of 15 cm and a thickness of 0.2 mm.

ガラスウェハ12は、アルカリ酸化物(LiO、NaO、KOなど)含有量が0.1%(質量%表示)以下のアルカリフリーガラス(旭硝子社製、商品名:EN−A1)を用いる。ガラスウェハ12は、両面研磨により面内厚さの差分値Δd=3μm以下、即ち、Δd/d=±1.5%以内の加工が施されてなる。なお、EN−A1は、屈折率n=1.52で、波長350〜1150nmの光に対し透明なガラスであり、熱膨張係数は、Siウェハと同等レベルの3.3ppm/K(50〜200℃)である。 The glass wafer 12 is alkali-free glass (trade name: EN-A1 manufactured by Asahi Glass Co., Ltd.) having an alkali oxide (Li 2 O, Na 2 O, K 2 O, etc.) content of 0.1% (mass% display) or less. ) Is used. The glass wafer 12 is processed by double-side polishing so that the in-plane thickness difference value Δd = 3 μm or less, that is, Δd / d 0 = ± 1.5% or less. EN-A1 is a glass having a refractive index n D = 1.52 and transparent to light having a wavelength of 350 to 1150 nm, and its thermal expansion coefficient is 3.3 ppm / K (50 to 200 ° C.).

次に、ポリエステル樹脂(大阪ガスケミカル(株)製、商品名:B−OKP2、屈折率:1.64)の15質量%シクロヘキサノン溶液に、色素(U)および色素(A)を混合し、十分に撹拌して溶解させ、塗工液を調製する。この塗工液を、上記ガラスウェハ12の片方の主面にスピンコート法により塗布し、溶媒を加熱乾燥させた後、φ15cm面内の平均厚さt=2.7μmの吸収層11を形成する。 Next, the dye (U) and the dye (A) were mixed in a 15% by mass cyclohexanone solution of a polyester resin (manufactured by Osaka Gas Chemical Co., Ltd., trade name: B-OKP2, refractive index: 1.64) The mixture is dissolved by stirring to prepare a coating solution. This coating solution is applied to one main surface of the glass wafer 12 by a spin coating method, and the solvent is heated and dried, and then an absorption layer 11 having an average thickness t 0 = 2.7 μm in a φ15 cm plane is formed. To do.

ここで、色素(A)は、吸収極大波長λ(Tmin)が705nmのスクアリリウム系色素(A1)を用い、添加量3(透明樹脂(B)100質量部に対する質量部)で混合する。また、色素(U)に、吸収極大波長λ(Tmin)が396nmのオキサゾール系(U1)のUvitex(商標)OBを用い、添加量5(透明樹脂(B)100質量部に対する質量部)で混合する。ガラスウェハ面内における吸収層11の厚さの差分値Δtは±40nm以内で、Δt/tは略±1.5%以内となる。 Here, the dye (A) is a squarylium dye (A1) having an absorption maximum wavelength λ (T min ) of 705 nm, and is mixed at an addition amount 3 (parts by mass relative to 100 parts by mass of the transparent resin (B)). In addition, the dye (U) is an oxazole-based (U1) Uvitex (trademark) OB having an absorption maximum wavelength λ (T min ) of 396 nm, and the addition amount is 5 (parts by mass relative to 100 parts by mass of the transparent resin (B)). Mix. The difference value Δt of the thickness of the absorption layer 11 in the glass wafer surface is within ± 40 nm, and Δt / t 0 is approximately within ± 1.5%.

図9は、近赤外線吸収型ガラスウェハ10と併用する誘電体多層膜からなる反射層の分光透過率曲線(入射角:0°)である。反射層は、カメラモジュール内に配置された光学素子に、屈折率1.45のSiO膜と、屈折率2.41のTiO膜を交互に40層積層してなるものを用いる。 FIG. 9 is a spectral transmittance curve (incident angle: 0 °) of a reflective layer made of a dielectric multilayer film used in combination with the near-infrared absorbing glass wafer 10. The reflection layer is formed by alternately stacking 40 layers of SiO 2 films having a refractive index of 1.45 and TiO 2 films having a refractive index of 2.41 as optical elements disposed in the camera module.

図10は、近赤外線吸収型ガラスウェハ10と反射層からなる光学部位の分光透過率曲線を示す。図10より、波長350〜400nmの近紫外光における平均透過率が0.3%、波長430〜600nmの可視光における平均透過率が92%、波長700〜1150nmの近赤外光における平均透過率が0.9%で、波長600〜700nmで視感度に近似する分光透過率変化となっている。また、波長600〜700nmの光の透過率が50%となる波長λ(T50%)の、近赤外線吸収型ガラスウェハ面内における平均値は、645nmで、透過率変化の割合ΔT/Δλは略1.08を示し、その面内分布Δλ(T50%)は±1nm以内となる。 FIG. 10 shows a spectral transmittance curve of an optical part composed of a near-infrared absorbing glass wafer 10 and a reflective layer. From FIG. 10, the average transmittance in the near ultraviolet light having a wavelength of 350 to 400 nm is 0.3%, the average transmittance in the visible light having a wavelength of 430 to 600 nm is 92%, and the average transmittance in the near infrared light having a wavelength of 700 to 1150 nm. Is 0.9%, and the spectral transmittance change approximates the visibility at a wavelength of 600 to 700 nm. The average value in the near-infrared absorbing glass wafer surface of the wavelength λ (T 50% ) at which the transmittance of light with a wavelength of 600 to 700 nm is 50% is 645 nm, and the transmittance change ratio ΔT / Δλ is It shows approximately 1.08, and its in-plane distribution Δλ (T 50% ) is within ± 1 nm.

[例2]
次に、例1でガラスウェハ12として用いたEN−A1の代わりに、直径15cmで0.2mm厚、吸収極大波長λ(Tmin)が850nmを示すCuO含有ガラスウェハ(旭硝子社製、商品名:NF−50T)を用いる。なお、波長850nmの光におけるCuO含有ガラスウェハ内部透過率の平均値は10%、透過率50%波長λ(T50%)の平均値は658nmである。ここで、CuO含有ガラスウェハ厚さ分布は、Δd/d=±10%以内、即ちΔd=±20μm以内のとき、Δλ(T50%)は±5.5nm以内である。
[Example 2]
Next, instead of EN-A1 used as the glass wafer 12 in Example 1, a CuO-containing glass wafer (trade name, manufactured by Asahi Glass Co., Ltd.) having a diameter of 15 cm, a thickness of 0.2 mm, and an absorption maximum wavelength λ (T min ) of 850 nm. : NF-50T). The average value of the internal transmittance of the CuO-containing glass wafer in light having a wavelength of 850 nm is 10%, and the average value of the transmittance 50% wavelength λ (T 50% ) is 658 nm. Here, in the CuO-containing glass wafer thickness distribution, when Δd / d 0 = ± 10% or less, that is, Δd = ± 20 μm or less, Δλ (T 50% ) is within ± 5.5 nm.

次に、例1と同様に、ポリエステル樹脂のシクロヘキサノン溶液に、色素(U)および色素(A)を混合し、十分に撹拌して溶解させ、塗工液を調製する。この塗工液を、上記CuO含有ガラスウェハ13の片方の主面にダイコート法により塗布し、溶媒を加熱乾燥させた後、直径15cm面内の平均厚さt=2.7μm、厚さの差分値Δt=±54nm以内(膜厚分布Δt/t=±2%以内)の吸収層11を形成し、近赤外線吸収型ガラスウェハ20を得る。 Next, in the same manner as in Example 1, the dye (U) and the dye (A) are mixed in the cyclohexanone solution of the polyester resin and sufficiently stirred to dissolve, thereby preparing a coating solution. This coating solution was applied to one main surface of the CuO-containing glass wafer 13 by a die coating method, and after the solvent was heated and dried, the average thickness t 0 in the 15 cm diameter plane was 2.7 μm, An absorption layer 11 having a difference value Δt = ± 54 nm or less (thickness distribution Δt / t 0 = ± 2% or less) is formed to obtain a near-infrared absorbing glass wafer 20.

図11は、近赤外線吸収型ガラスウェハ20と例1の反射層により構成される光学部位(光学フィルタ)の分光透過率曲線である。図11より、波長350〜400nmの近紫外光における平均透過率が0.3%、波長430〜600nmの可視光における平均透過率が90%、波長700〜1150nmの近赤外光における平均透過率が0.1%で、波長600〜700nmで視感度に近似する分光透過率変化となっている。例2は、CuO含有ガラスウェハ13を用いているため、例1に比べて近赤外域の遮光性が向上する。また、波長600〜700nmは、緩やかな透過率変化を示す。   FIG. 11 is a spectral transmittance curve of an optical part (optical filter) composed of the near-infrared absorbing glass wafer 20 and the reflective layer of Example 1. From FIG. 11, the average transmittance in the near ultraviolet light having a wavelength of 350 to 400 nm is 0.3%, the average transmittance in the visible light having a wavelength of 430 to 600 nm is 90%, and the average transmittance in the near infrared light having a wavelength of 700 to 1150 nm. Is 0.1%, and the spectral transmittance change approximates the visibility at a wavelength of 600 to 700 nm. In Example 2, since the CuO-containing glass wafer 13 is used, the light shielding property in the near infrared region is improved as compared with Example 1. A wavelength of 600 to 700 nm shows a gradual change in transmittance.

また、波長600〜700nmの範囲で、透過率が50%となる波長λ(T50%)の、ガラスウェハ面内における平均値は621nmで、透過率変化の割合ΔT/Δλは略0.73を示し、その面内分布Δλ(T50%)は±3.5nm以内となる。即ち、CuO含有ガラスウェハ13の厚さ分布Δd/d=±10%以内に起因する、Δλ(T50%)は、±5.5nm以内程度だが、吸収層11を膜厚分布Δt/t=±2%以内で成膜することにより、近赤外線吸収型ガラスウェハ20全体のΔλ(T50%)を低減できる。 Further, the average value in the glass wafer plane of the wavelength λ (T 50% ) at which the transmittance is 50% in the wavelength range of 600 to 700 nm is 621 nm, and the transmittance change ratio ΔT / Δλ is approximately 0.73. The in-plane distribution Δλ (T 50% ) is within ± 3.5 nm. That is, the thickness distribution Δd / d 0 of the CuO-containing glass wafer 13 is within ± 10%, and Δλ (T 50% ) is within ± 5.5 nm, but the absorption layer 11 has a thickness distribution Δt / t. By forming the film within 0 = ± 2%, Δλ (T 50% ) of the entire near-infrared absorbing glass wafer 20 can be reduced.

本発明の近赤外線吸収型ガラスウェハおよび半導体ウェハ積層体は、固体撮像素子を用いたデジタルスチルカメラ、携帯電話カメラ等の撮像装置に有用である。   The near-infrared absorbing glass wafer and semiconductor wafer laminate of the present invention are useful for imaging devices such as digital still cameras and mobile phone cameras using solid-state imaging devices.

10,20,30…近赤外線吸収型ガラスウェハ、11…吸収層、12…ガラスウェハ、13…(近赤外線体積吸収型)ガラスウェハ、14,14a,14b…反射層、15…Siウェハ、16…光検出器アレイ、17…RGBモザイクカラーフィルタ、18…樹脂マイクロレンズ、19…固体撮像素子、21…接着剤、31…撮像レンズ、32…レンズユニット、33…筐体、40,50…半導体ウェハ積層体、60…固体撮像装置(カメラモジュール)。   DESCRIPTION OF SYMBOLS 10,20,30 ... Near-infrared absorption type glass wafer, 11 ... Absorption layer, 12 ... Glass wafer, 13 ... (Near-infrared volume absorption type) glass wafer, 14, 14a, 14b ... Reflection layer, 15 ... Si wafer, 16 DESCRIPTION OF SYMBOLS ... Photodetector array, 17 ... RGB mosaic color filter, 18 ... Resin microlens, 19 ... Solid-state image sensor, 21 ... Adhesive, 31 ... Imaging lens, 32 ... Lens unit, 33 ... Housing, 40, 50 ... Semiconductor Wafer stack, 60... Solid-state imaging device (camera module).

Claims (10)

ガラスウェハと、
前記ガラスウェハの少なくとも一方の主面に吸収層を備え、
前記吸収層は、透明樹脂と吸収色素を含有し、
前記吸収層は、膜厚の平均値をt、前記平均値tに対する膜厚の差分値をΔtとしたとき、
−15%≦Δt/t≦15%
を満たす、近赤外線吸収型ガラスウェハ。
A glass wafer;
An absorption layer is provided on at least one main surface of the glass wafer,
The absorption layer contains a transparent resin and an absorption pigment,
The absorption layer has an average value of the film thickness t 0 , and a difference value of the film thickness with respect to the average value t 0 is Δt.
−15% ≦ Δt / t 0 ≦ 15%
Satisfying near-infrared absorbing glass wafer.
前記ガラスウェハは、CuO含有ガラスウェハである、請求項1に記載の近赤外線吸収型ガラスウェハ。   The near-infrared absorbing glass wafer according to claim 1, wherein the glass wafer is a CuO-containing glass wafer. 前記ガラスウェハは、厚さの平均値をd、前記平均値dに対する厚さの差分値をΔdが±30μm以内である、請求項1または2に記載の近赤外線吸収型ガラスウェハ。 3. The near-infrared absorbing glass wafer according to claim 1, wherein the glass wafer has an average value of d 0 and a difference value of thickness with respect to the average value d 0 of Δd within ± 30 μm. 前記ガラスウェハは、
−15%≦Δd/d≦15%
を満たす、請求項3に記載の近赤外線吸収型ガラスウェハ。
The glass wafer is
−15% ≦ Δd / d 0 ≦ 15%
The near-infrared absorption type glass wafer of Claim 3 satisfy | filling.
前記ガラスウェハは、直径15cm以上である、請求項1〜4いずれか1項に記載の近赤外線吸収型ガラスウェハ。   The near-infrared absorbing glass wafer according to any one of claims 1 to 4, wherein the glass wafer has a diameter of 15 cm or more. 前記吸収色素は、近赤外線吸収色素を含む、請求項1〜5いずれか1項に記載の近赤外線吸収型ガラスウェハ。   The near-infrared absorbing glass wafer according to claim 1, wherein the absorbing dye includes a near-infrared absorbing dye. 前記吸収層は、波長650〜750nmに吸収極大波長λ(Tmin)を有し、
前記吸収極大波長λ(Tmin)の光に対する透過率Tminは、5%以下であり、
さらに、波長620〜690nmに透過率が50%となる波長λ(T50%)を有する、請求項1〜6いずれか1項に記載の近赤外線吸収型ガラスウェハ。
The absorption layer has an absorption maximum wavelength λ (T min ) at a wavelength of 650 to 750 nm,
The transmittance T min for the light having the absorption maximum wavelength λ (T min ) is 5% or less,
Furthermore, the near-infrared absorption type | mold glass wafer of any one of Claims 1-6 which has wavelength (lambda) (T50 % ) from which the transmittance | permeability becomes 50% in wavelength 620-690nm.
前記ガラスウェハの少なくとも一方の主面に誘電体多層膜を有する反射層を備える、請求項1〜7いずれか1項に記載の近赤外線吸収型ガラスウェハ。   The near-infrared absorption type glass wafer of any one of Claims 1-7 provided with the reflection layer which has a dielectric multilayer on the at least one main surface of the said glass wafer. 前記吸収色素は、近紫外線吸収色素を含む、請求項1〜8いずれか1項に記載の近赤外線吸収型ガラスウェハ。   The near-infrared absorbing glass wafer according to any one of claims 1 to 8, wherein the absorbing dye includes a near-ultraviolet absorbing dye. Siウェハ上に備えられた固体撮像素子と、請求項1〜9いずれかに記載の近赤外線吸収型ガラスウェハと、を有する、半導体ウェハ積層体。   The semiconductor wafer laminated body which has a solid-state image sensor provided on Si wafer, and the near-infrared absorption type glass wafer in any one of Claims 1-9.
JP2015220777A 2015-11-10 2015-11-10 Near-infrared absorbing glass wafer and semiconductor wafer laminate Active JP6772450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015220777A JP6772450B2 (en) 2015-11-10 2015-11-10 Near-infrared absorbing glass wafer and semiconductor wafer laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015220777A JP6772450B2 (en) 2015-11-10 2015-11-10 Near-infrared absorbing glass wafer and semiconductor wafer laminate

Publications (2)

Publication Number Publication Date
JP2017090687A true JP2017090687A (en) 2017-05-25
JP6772450B2 JP6772450B2 (en) 2020-10-21

Family

ID=58768274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015220777A Active JP6772450B2 (en) 2015-11-10 2015-11-10 Near-infrared absorbing glass wafer and semiconductor wafer laminate

Country Status (1)

Country Link
JP (1) JP6772450B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123705A1 (en) * 2016-12-26 2018-07-05 旭硝子株式会社 Ultraviolet ray transmitting filter
WO2020129909A1 (en) * 2018-12-19 2020-06-25 Agc株式会社 Optical filter, imaging device, and optical sensor
KR102265168B1 (en) * 2019-12-30 2021-06-14 백석대학교산학협력단 A vehicle sunting film and apparatus for blocking ultraviolet rays using stripe structure
WO2022044286A1 (en) * 2020-08-28 2022-03-03 Hoya株式会社 Near-infrared cut filter and imaging device provided with same
WO2023095457A1 (en) * 2021-11-26 2023-06-01 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and method for manufacturing solid-state imaging device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362943A (en) * 2001-06-08 2002-12-18 Asahi Techno Glass Corp Substrate for optical device, optical device and method for manufacturing optical device
JP2007186683A (en) * 2005-12-13 2007-07-26 Toyo Ink Mfg Co Ltd Colored composition and color filter using the same
JP2007288025A (en) * 2006-04-19 2007-11-01 Dainippon Printing Co Ltd Solid-state imaging apparatus, and manufacturing method thereof
JP2010197595A (en) * 2009-02-24 2010-09-09 Asahi Glass Co Ltd Near infrared ray cutting filter glass, and method for manufacturing the same
JP2012169489A (en) * 2011-02-15 2012-09-06 Sony Corp Solid-state imaging device and method of manufacturing the same and electronic apparatus
WO2014168189A1 (en) * 2013-04-10 2014-10-16 旭硝子株式会社 Infrared-blocking filter
WO2015099060A1 (en) * 2013-12-26 2015-07-02 旭硝子株式会社 Optical filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362943A (en) * 2001-06-08 2002-12-18 Asahi Techno Glass Corp Substrate for optical device, optical device and method for manufacturing optical device
JP2007186683A (en) * 2005-12-13 2007-07-26 Toyo Ink Mfg Co Ltd Colored composition and color filter using the same
JP2007288025A (en) * 2006-04-19 2007-11-01 Dainippon Printing Co Ltd Solid-state imaging apparatus, and manufacturing method thereof
JP2010197595A (en) * 2009-02-24 2010-09-09 Asahi Glass Co Ltd Near infrared ray cutting filter glass, and method for manufacturing the same
JP2012169489A (en) * 2011-02-15 2012-09-06 Sony Corp Solid-state imaging device and method of manufacturing the same and electronic apparatus
WO2014168189A1 (en) * 2013-04-10 2014-10-16 旭硝子株式会社 Infrared-blocking filter
WO2015099060A1 (en) * 2013-12-26 2015-07-02 旭硝子株式会社 Optical filter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123705A1 (en) * 2016-12-26 2018-07-05 旭硝子株式会社 Ultraviolet ray transmitting filter
WO2020129909A1 (en) * 2018-12-19 2020-06-25 Agc株式会社 Optical filter, imaging device, and optical sensor
CN113227844A (en) * 2018-12-19 2021-08-06 Agc株式会社 Optical filter, imaging device, and optical sensor
JPWO2020129909A1 (en) * 2018-12-19 2021-11-04 Agc株式会社 Optical filters, imaging devices and optical sensors
CN113227844B (en) * 2018-12-19 2022-12-06 Agc株式会社 Optical filter, imaging device, and optical sensor
JP7380591B2 (en) 2018-12-19 2023-11-15 Agc株式会社 Optical filters, imagers and optical sensors
KR102265168B1 (en) * 2019-12-30 2021-06-14 백석대학교산학협력단 A vehicle sunting film and apparatus for blocking ultraviolet rays using stripe structure
WO2022044286A1 (en) * 2020-08-28 2022-03-03 Hoya株式会社 Near-infrared cut filter and imaging device provided with same
WO2023095457A1 (en) * 2021-11-26 2023-06-01 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and method for manufacturing solid-state imaging device

Also Published As

Publication number Publication date
JP6772450B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
JP6504226B2 (en) Near infrared cut filter and solid state imaging device
US10683233B2 (en) Light selective transmission type glass and laminated substrate
JP6103152B2 (en) Near-infrared cut filter and solid-state imaging device
JP6168252B2 (en) Near-infrared cut filter and imaging device
JP6332403B2 (en) Optical filter and solid-state imaging device
US10416365B2 (en) Optical arrangement for camera modules, camera modules with optical arrangements, and method of manufacture
JP6443329B2 (en) Infrared shielding filter and imaging device
JP6772450B2 (en) Near-infrared absorbing glass wafer and semiconductor wafer laminate
US20200200956A1 (en) Optical filter and imaging device
JPWO2017030174A1 (en) Optical filter and imaging device
JP7251423B2 (en) Optical components and camera modules
WO2023008291A1 (en) Optical filter
JP2017072748A (en) Optical filter and imaging device using optical filter
KR20200134243A (en) Optical filter and its use
JP6304254B2 (en) Optical member, method for manufacturing the same, and imaging apparatus
WO2024048513A1 (en) Optical filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180723

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6772450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250